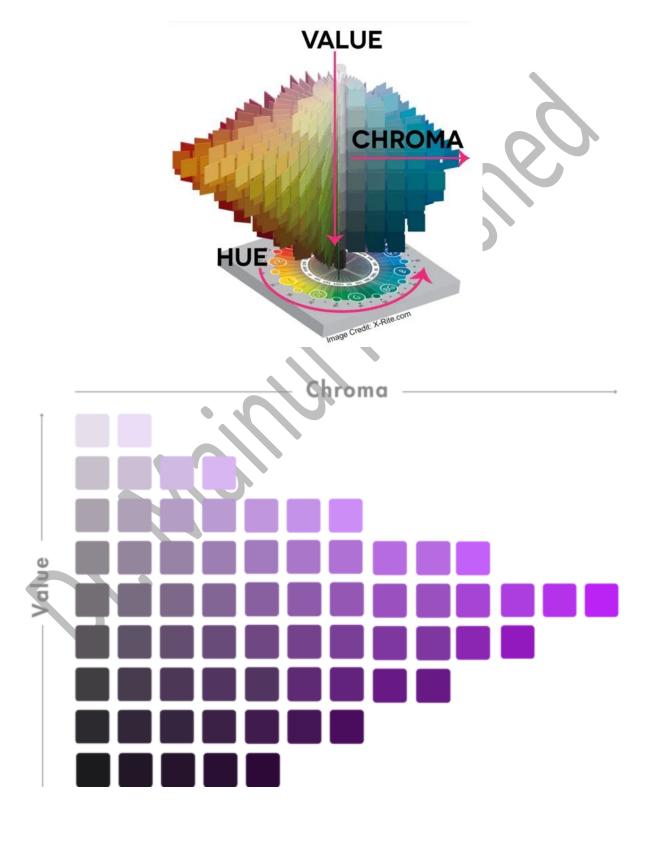

Basic Concepts of Colors


Color is a **visual perception** that results from **light reflection** of objects. The color we see is determined by **the wavelengths of light that are reflected into our eyes.**

Color Concepts

There are **three terms** generally used to describe and specify color. These are hue, value and chroma.

Hue: hue is a term used for color, for example, **pink, mauve, scarlet, beige, tan**, etc are hues. Generally, hue refers to the **origin of the colors** we can see. **Primary and Secondary colors** (Yellow, Orange, Red, Violet, Blue, and Green) are **considered hues**; however, tertiary colors (mixed colors where **neither color is dominant**) would also be considered hues.

Value: value is a term used to describe lightness, darkness, tone or shade of hues. A color is termed light in value when it approaches white and dark in value when it has a deep color or approaches black. **Chroma:** chroma is the term used to describe the depth of color that is the **dullness**, **brightness**, **saturation**, **intensity**, **vividness** or **purity** of color. A **bright**, **intense color is said to have high chroma**.

Color Mixing:

Fundamental laws of color mixing can, therefore, be classified into two types, namely:

1. Light Theory of Color or Additive color mixing occurs when two or more lights mix together.

Primary Color: **Red, Green, Blue**. Secondary Color: **R**+**G**= **Yellow**; **R**+**B**= **Magenta**; **B**+**G**= **Cyan**. Tertiary Color: **R**+**G**+**B**=White.

2. **Pigment Theory of Color** or **Subtractive color mixing** occurs when colorants are mixed together.

Primary Color: **Red, Yellow, Blue** Secondary Color: **R+Y= Orange; R+B= Pink/Violet; B+Y= Green**. Tertiary Color: **R+Y+B= Black**

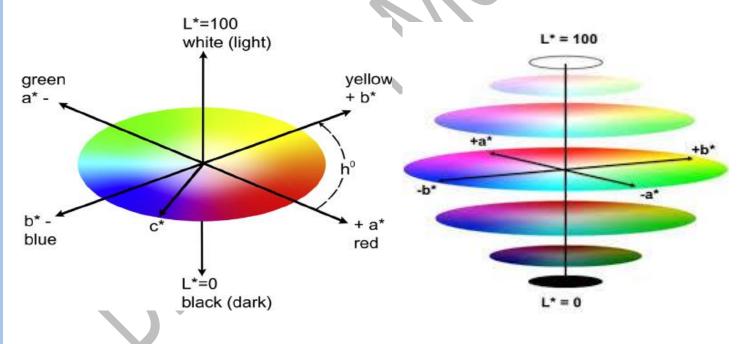
Color Space/ Color Models

A color model is merely a way of describing color. These are among the tristimulus (three-dimensional) color models ('spaces') developed by the CIE. A color space can be described as a method for expressing the color of an object using some kind of notation, such as numbers.

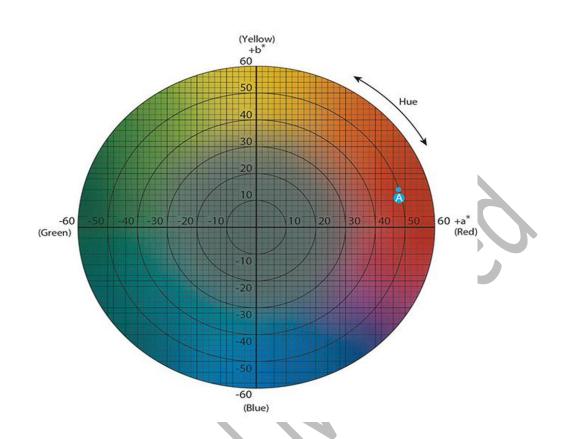
The CIE, is a color space defined by the International Commission on Illumination (abbreviated CIE derived from French words Commission Internationale de l'Eclairage) in 1976. It has defined color spaces, including CIE XYZ, CIE L*a*b*, and CIE L*C*h, for communicating and expressing object color.

CIE L*a*b* Color Space

When a color is expressed in CIE $L^*a^*b^*$,


L* defines lightness (value),

- ➤ a* denotes Red/ Green value or attributes and
- ➢ b* denotes Yellow / Blue value or attributes.


The **CIELAB space** is **three-dimensional** and covers the entire **gamut** (**range**) of **human color perception**. It is based on the **Opponent Model** of human vision, where **Red** and **Green** form an **opponent pair** and **Blue** and **Yellow** form an **opponent pair**.

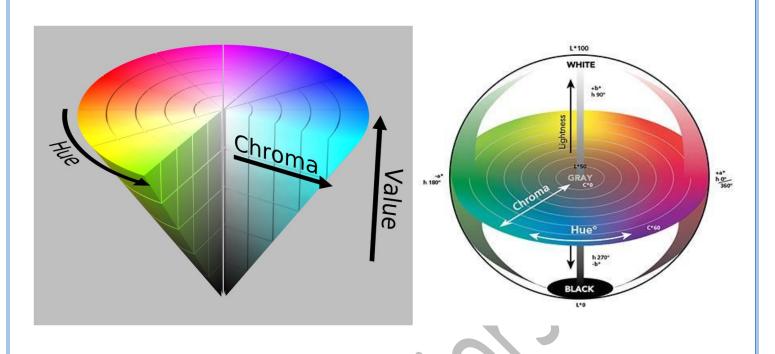
In CIE L*a*b* system-

- L* axis is vertical, where L*=0 is black or total absorption and L*=100 is white or total reflection.
- a* axis is horizontal and perpendicular to L axis. +a* value indicates red hue and -a* value indicates green hue.
- ★ b* axis is horizontal and is perpendicular to both L and a axes. +b* value indicates yellow hue and -b* value indicates blue hue.

So, if we say $L^* = 75.5$, $a^* = +52.48$, $b^* = -22.23$. This will express a specific color.

- \checkmark This is expressed in this color space.
- ✓ **Point A** denote this specific color.

In CIE L*c*h system-


The L*C*h color space uses the same diagram as the L*a*b* color space, but uses cylindrical coordinates.

- ✓ The L* defines lightness, (same as L* in the L*a*b* color space)
- ✓ **c*** specifies **Chroma** and
- ✓ h denotes hue angle.

The values of **c*** and **h** can be expressed in terms of **a*** and **b*** as below:

$$c^* = \sqrt{(a^{*2} + b^{*2})} \quad h^0 = \tan^{-1}\left(\frac{b^*}{a^*}\right)$$

Where, **a***, **b*** chromaticity coordinates in the L***a*****b*** **color space**.

Color Differences

Color differences is defined as the **numerical comparison** of a sample to the standard. Even if **two colors** look the same to one-person, **slight differences** may be found when measured with a **color measurement instrument**. If the color of a product does **not meet the standard**, customer satisfaction is compromised and the amount of **rework and costs increase**. Because of this, **identifying color differences** between a **sample and the standard** early in the process is important.

CIE calls their denotes there color difference ΔE^* (also inaccurately called dE*, dE, or "Delta E") where delta is a Greek letter often used to denote difference, and E stands for Empfindung; German for "sensation". Use of this term can be traced back to Hermann von Helmholtz and Ewald Hering.

For CIE L*a*b*, color difference formula is-

$$\Delta E_{ab}^* = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}.$$

$$\Delta E = \sqrt{\left\{ (\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2 \right\}}$$

Where, ΔL^* , Δa^* , Δb^* are the differences between L*, a*, and b* values between the specimen color and the target color.

Deltas for lightness (Δ L*), chroma (Δ C*), and hue (Δ H*) may be positive (+) or negative (-) in the CIE L*c*h color space models.

- ♦ ΔL^* = difference in lightness and darkness (+ = lighter, = darker)
- ★ ΔC^* = difference in chroma (+ = brighter, = duller)

$$\Delta E = \sqrt{\left\{ (\Delta L^*)^2 + (\Delta c^*)^2 + (\Delta h^0)^2 \right\}}$$

Acceptable Range of Color Difference

- ✓ Practically zero color difference ($\Delta E = 0$) is impossible.
- ✓ Even in a same place of a same colored sample, if we test twice the instrument will show some color difference.
- ✓ But there is an **acceptable range** of color difference.
- \checkmark If ΔE indicates color difference, then-
 - > If $\Delta E \leq 1$, results acceptable and color matches perfectly.
 - > If $\Delta E > 1$, color does not match and results unacceptable.

Color difference may be in two cases-

- color difference due to tailing effect which may acceptable
- Batch to batch color difference which is a major fault and is not acceptable