Computer Color Matching System (CCMS)

CCMS (Computer Color Matching System) is a system that measures the reflectivity of a target color with a Spectro-colorimeter and calculates the blending ratio of primary color which are registered in a computer in advance to reproduce the color. Since the results of the prepared color can be kept in the computer, customers can meet repeated orders swiftly, not just calculating blending recipes. The system also has a function for controlling color quality such as calculation of color difference and control of shipment lots.

Functions of CCMS

- Color match prediction.
- > Color difference calculation.
- > Determine **metamerism**.
- > Pass/Fail option.
- Color fastness rating.
- ➢ Cost Comparison.
- Strength evaluation of dyes.
- > Whiteness indices.
- > Reflectance curve and K/S curve.
- > Production of Shade library.
- Color strength

Required belongings for CCMS

- **Color measurement Instrument (Spectrophotometers)**.
- Reflectance (R%) from a mixture of Dyes or Pigments applied in a specific way.
- Optical model of color vision to closeness of the color matching (CIE L*A*B).
- Personal Computer

Flow Chart of Color Matching Process with Spectrophotometer

Trial Name	ill-obs	DL*	Da*	Db*	DC*	DH*	DEcmc	P/F DEcmc	MI-(1,2)
🗙 blue 1	D65-10	2.14 L	-1.11 G	1.02 Y	-1.05 D	-1.08 G	1.33	Failed	0.66
	A -10	2.23 L	-0.47 G	1.13 Y	-0.99 D	-0.72 G	1.27		
	F02-10 (C	2.24 L	-0.97 G	1.24 Y	-1.27 D	-0.92 G	1.36		
🛷 blue 1	D65-10	1.34 L	-0.63 G	0.54 Y	-0.57 D	-0.60 G	0.80	Passed	0.34
	A -10	1.39 L	-0.30 G	0.62 Y	-0.53 D	-0.43 G	0.78		
	F02-10 (C	1.41 L	-0.56 G	0.69 Y	-0.71 D	-0.53 G	0.83		
🛷 blue 2	D65-10	1.51 L	-0.76 G	0.26 Y	-0.28 D	-0.75 G	0.89	Passed	0.17
	A -10	1.51 L	-0.58 G	0.23 Y	-0.09 D	-0.62 G	0.85		
	F02-10 (C	1.53 L	-0.64 G	0.29 Y	-0.32 D	-0.63 G	0.88		
🛷 blue 3	D65-10	1.18 L	-0.40 G	0.06 Y	-0.08 D	-0.39 G	0.63	Passed	0.04
	A -10	1.18 L	-0.35 G	0.06 Y	0.02	-0.36 G	0.64		
	F02-10 (C	1.21 L	-0.34 G	0.11 Y	-0.12 D	-0.33 G	0.65		

blue a.a

Kubelka-Munk Theory

In the context of color science, "**Kubelka-Munk theory**" refers to a method used to **quantify the color strength** of a material, typically expressed as a "**K/S**" value, which is calculated **based on the material's reflectance** and derived from the Kubelka-Munk equation as following:

$$\frac{K}{S} = \frac{(1-R)^2}{2R}$$

Where,

R = reflectance

K = absorption

S = scattering co-efficient

A Higher K/S Value Indicates A Stronger Color Intensity

Relation between Color Strength and Reflectance

Sample	Reflectance (R)	K/S
Undyed	0.827	0.0181
Dyed with 0.1% shade	0.31	0.7676
Dyed with 0.5% shade	0.106	3.770

Comparison between visual & instrumental color control

Sl. No.	Color control	Visual	Instrumental
01.	Decision	Uncertain	Certain
02.	Reproducibility	Bad	Good
03.	Faulty decisions	More	Few
04.	Compatibility of various tests		Good
05.	Tolerance limits	Indefinable	Definable
06.	Communication (suppliers/customers)	Bad	Good