

Daffodil International University

Department of Computer Science and Engineering (CSE)

Course Outline

Course Code:	CSE 115				
Course Title:	Introduction to Biology &	Introduction to Biology & Chemistry for Computation			
Program:	B.Sc. in Computer Scient	ce and Engineering			
Faculty:	Faculty of Science and Ir	nformation Technolo	ogy (FSIT)		
Semester:	Fall	Year:	2024		
Credit:	3.0	Contact Hour:	3 Hrs/Week		
Course Level:	L1-T1	L1-T1 Prerequisite: None			
Course Category:	Core Engineering				
Instructor Name:	Faria Nishat Khan				
Designation:	Lecturer				
Email:	farianishat.cse@diu.edu.bd				
Office Address:	Room#505, Knowledge	Tower			

Course Content (from syllabus):

Introduction to Biology and Chemistry for Computation is a 3-credit mid-level course that introduces the basic concepts of Biology and Chemistry. As one of the important subject areas of the study of computer science and information systems, this course will focus on the theoretical aspects as gene, genome, DNA, RNA and Protein and also atom, chemical bonding, chemical reactions, acids and bases, pH, neutralization, titration, nuclear changes, radiation etc. Computational biology focuses on DNA sequence and alignment technique, database searching: read mapping, gene duplication & FASTA algorithm. Different computational chemistry methods: Molecular mechanics, quantum mechanics are core knowledge to learn in this platform. This course also explores the inner workings of a biological world from the programmer's perspective by implementing different algorithms of Computer Science.

Course Description/Rationale:

To explore a new area of expertise that emerged from a fertile field- the combination of biology, chemistry and information sciences. It also exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. This describes the mathematical structure of biological data, especially from sequences and chromosomes. This course will give a prologue to field DNA sequencing and searching algorithms along with different computational chemistry methods (e.g.: molecular mechanics, quantum mechanics, etc.

Course Objective:

To provide a solid conceptual understanding of the fundamentals of Biology and Chemistry for computation. More specifically,

- To provide a solid conceptual understanding of the fundamentals of Introduction to Biology & Chemistry for Computation. More specifically,
- To learn the basic concepts of molecular and cellular biology.
- To learn the differentiation between molecular mechanics & quantum mechanics.
- To learn the importance of computational chemistry in chemical industries.
- To learn DNA sequence alignment Technique.
- To learn implementation of different searching algorithms in Computational Biology.

Course Outcome (CO): at the end of the course, students will be able to do:

CO1	Illustrate molecular & cellular biology and identify impacts/benefits of computational chemistry and Biology.
CO2	Classify different Computational Biology and Chemistry methods and consider the applications in real life and industry centric scenarios.
CO3	Demonstrate their effective knowledge of different Computational Biology Algorithms and experiment with real life scenarios

Content of the course:

Week	Course Content (as summary)	Hrs	COs
1	Introduction and Scope of Computer in Chemistry and Biology.	2.5	CO1
2	Molecular and Cellular Biology	2.5	CO1
3	DNA and RNA structural details and application	2.5	CO1
4	Role of chemistry in computer science & engineering and Computational Chemistry Methods	2.5	CO2
5	Molecular Mechanics & Molecular Dynamics basics and various methods	2.5	CO2
6	Quantum Chemistry Methods	2.5	CO2
7	Importance and real life applications of Computational Chemistry Methods.	2.5	CO2
8	Different DNA Sequence Techniques	2.5	CO3
9	Review of Week 1-8	2.5	CO1, CO2
10	DNA Sequence Alignment (Global Alignment)	2.5	CO3
11	DNA Sequence Alignment (Local Alignment)	2.5	CO3
12	Importance of Computation in Chemical Industries	2.5	CO3
13	Gene Duplication Mutation and Read Mapping	2.5	CO3
14	Genome Indexing, Confusion Matrix, Selectivity Sensitivity	2.5	CO3
15	DNA Database Searching	2.5	CO3
16	Review of Week 1-15	2.5	CO1, CO2, CO3
	Total	48	

Teaching Learning Activity:

TLA	Activity
TLA1	Brainstorming and peer discussion.
TLA2	Class lecture
TLA3	Video lecture and virtual practice tool
TLA4	Hands on simulative practice

Mapping of CO with PO's, TLA's, Blooms Domain, KP's, EP's and EA's

COs	POs	Teaching Learning Activity	Assessment Strategy	Blooms Taxonomy Domains and Levels	Knowledg e Profile (WK)	Complex Engineering Problem (EP)	Complex Engineerin g Activity (EA)
CO1	PO1	TLA1, TLA2, TLA3,	Quiz, Assignment, Mid-term	C3	K1-K4	EP1	
CO2	PO4	TLA1, TLA2,	Quiz, Assignment, Mid-term, Final Exam	C4	K8	EP1 & EP2	
СОЗ	PO5	TLA1, TLA2, TLA3, TLA4	Quiz, Assignment, Mid-term, Final Exam	C3	K6	EP1 & EP7	

Bloom's Taxonomy	Knowledge Profile	CEP Attributes	CEA Attributes
Cognitive Domain	K1-K4: Engineering	EP1: Depth of knowledge	
C3: Apply C5: Evaluate	Knowledge K6: Modern Tool Usage K8: Investigation	required. EP2: Conflicting	
	<u> </u>	<i>EP7: Interdependence</i>	

Justification of CO-PO Mapping:

- The CO1 directly aligns with the PO1 by illustrating molecular and cellular biology, which is a fundamental aspect of engineering knowledge, especially in fields like bioengineering or biomedical engineering. It requires a deep understanding of biological principles and their applications
- The CO2 and PO4 demonstrate the applications in real life and industry-centric scenarios involves an investigative aspect, exploring how these methods are practically applied. This aligns with the PO related to conducting investigations of complex problems using research-based knowledge.
- The CO3 and PO5 consider the algorithms to be modern tools in the context of computational biology. This PO involves creating, selecting, and applying

appropriate techniques and modern tools, which aligns with the use of algorithms.

Justification of Knowledge Profile (KP) Mapping:CO1Ensuring the theory-based understanding of natural sciences, mathematical and
computational support for analysis and specialist knowledge of Computational Chemistry
and BiologyCO2Classifying computational methods and applying them in real-life scenarios involves
engaging with and understanding the current research literature in the discipline.CO3Demonstrating knowledge of computational biology algorithms and experimenting in
real-life scenarios involves applying engineering practices and technologies in the field

Justific	Justification of Complex Engineering Problem (CEP) Mapping (if you address PO1-PO7):					
CO1 CO2 CO3	Illustrating molecular and cellular biology and understanding computational chemistry and biology require in-depth knowledge of specific field, aligning with the need for a fundamentals based, first principles analytical approach Classifying computational methods and applying them in real-life scenarios involves not only in-depth engineering knowledge but also navigating wide-ranging or conflicting technical and engineering issues Demonstrating and experimenting with computational biology algorithms require deep engineering knowledge and tackling high-level problems with many component parts or sub-problems					
Justific	ation of CO and Learning Domains Mapping:					
CO1	Applying : Illustrating molecular and cellular biology and identifying the impacts and benefits of computational chemistry and biology involve applying knowledge to demonstrate understanding					
CO2	Analyzing : Classifying computational methods and considering their applications requires analyzing information and breaking it down into components					
CO3	Applying: Demonstrating knowledge of computational biology algorithms and experimenting with real-life scenarios involves applying theoretical concepts to practical situations					

Course Delivery Plan/Lesson Delivery Plan:

Week/Lesson (hour)	Discussion Topic and Book Reference	Student Activities during Online and Onsite	Mappin g with CO and	Assessment Plan
-----------------------	--	---	----------------------------	--------------------

		[course teacher	PO	
		will decide based		
		on the type of the		
		contents]		
Week-1 Lesson 1 & 2 [3 Hours]	Lesson 1: Overview of chemistry & biology already they have learned which will help to introduce the course. Lesson 2: Scope of Computer in Chemistry and Biology.	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO1 PO1	Class Test, Assignment , Midterm
Week-2 Lesson 3 & 4 [3 Hours]	Lesson 3: Molecular and Cellular Biology (Cell Structure & Basics) Lesson 4: Nucleotide, DNA & RNA Structure, understanding ligand in DNA double helix structure.	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO1 PO1	Class Test, Assignment , Midterm
	Lesson 5: RNA Types & Their Applications.	Brainstorming sessions,		
Week-3 Lesson 5 & 6 [3 Hours]	Lesson 6: DNA Replication & Visualization,	Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO1 PO1	Class Test, Assignment , Midterm
Week-4 Lesson 7 & 8 [3 Hours]	Lesson 7: Role of chemistry in computer science & engineering (Uses and effects of chemistry Benefits of Chemistry, Applications of Chemistry Reference). Lesson 8: Computational Chemistry Methods	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO2 PO4	Class Test, Assignment , Midterm
	(Classical & Quantum Methods)			
Week-5	Lesson 9: Molecular	Brainstorming	CO2	Class Test,
Lesson 9 &	iviecnanics & Molecular	sessions,	PO4	Assignment

10 [3 Hours]	Dynamics Methods. Lesson 10: Schrödinger equation & Wave Function	Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.		, Midterm
Week-6 Lesson 11 & 12 [3 Hours]	Lesson 11: Quantum Chemistry Methods (Ab Initio Methods, Density Functional Methods) Lesson 12: Quantum Chemistry Methods (Semiempirical Methods & Difference between them)	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO2 PO4	Class Test, Assignment , Midterm
Week-7 Lesson 13 & 14 [3 Hours]	Lesson 13: Real life applications of Computational Chemistry Methods. Lesson 14: Importance of Computation in Chemical Industries (DCS, Chromatography, etc.).	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO2 PO4	Class Test, Assignment , Midterm
Week-8 Lesson 15 & 16 [3 Hours]	Lesson 15: DNA Sequence Technique (Sanger Method) Lesson 16: Difference between other DNA Sequencing Techniques	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO2 PO4	Class Test, Assignment , Midterm
Week-9 Lesson 17 & 18 [3 Hours]	Lesson 17: Review class on the topics discussed in Week-1 – Week-4. Lesson 18: Review class on the topics discussed in Week-5 – Week-8.	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO1, CO2, PO1, PO4	Class Test, Assignment , Midterm
Week-10 Lesson 19 & 20 [3 Hours]	Lesson 19: SequenceAlignment Basics.Lesson 20: GlobalAlignment Method and	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture	CO3 PO5	Class Test, Assignment , Final Exam

	example regarding DNA sequence alignment.	video, Lecture note, Open discussion.		
Week-11 Lesson 21 & 22 [3 Hours]	Lesson 21: Local Alignment Basics & Method Description Lesson 22: How the Local and Final Exam Global Alignment methods Relate with Problem Solving in Computer Science	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO3 PO5	Class Test, Assignment , Final Exam
Week-12 Lesson 23 & 24 [3 Hours]	 Lesson 23: Importance of Computation in Chemical Industries (Fertilizer, Water Treatment, Chemical Plant) Lesson 24: Presentation on Selected Topics. 	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO3 PO5	Class Test, Assignment , Final Exam
Week-13 Lesson 25 & 25 [3 Hours]	Lesson 25: Mutation, Gene Duplication (Homolog, Ortholog, Paralog and Speciation) Lesson 26: Read Mapping (keyword Tree, Suffix Tree, Suffix Array)	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO3 PO5	Class Test, Assignment , Final Exam
Week-14 Lesson 27 & 28 [3 Hours]	Lesson 27: Genome Indexing (Burrows Wheeler Transform (BWT), LF Mapping) Lesson 28: Discussing Confusion Matrix (TP, TN, FP, FN), Selectivity & Sensitivity	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion.	CO3 PO5	Class Test, Assignment , Final Exam
Week-15 Lesson 29 & 30 [3 Hours]	Lesson 29: DNA Database Searching (Hash function) and applications of it. Lesson 30: DNA Database Searching (FASTA Algorithms)	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open	CO3 PO5	Class Test, Assignment , Final Exam

		discussion.		
	Lesson 31: Review class	Brainstorming		
	on topic discussed in	sessions,		
Week-16	Week-1 – Week-8	Classroom		Class Test,
		discussion, Voice		Assignment
Lesson 31 &	Lesson 32: Review class on	over PPT, Lecture	_	, Final
32 [3 Hours]	topic discussed in Week-10-	video, Lecture		Exam
	Week-15	note, Open		
		discussion.		

Assessment Pattern:

Assessment		Mark				
Task	CO1	CO2	CO3	CO4	CO5	(Total=100)
Attendance						7
Class Test (CT1, CT2, CT3)						15
Assignment						5
Presentation						8
Midterm Examination	5	5	5	10		25
Semester Final Examination	5	10	10	15		40
Total Mark	10	15	15	15		100

CIE – Breakup (Theory) [60 marks]

Bloom's Criteria	Attendanc e (07)	Class Test (15)	Assignmen t (05)	Presentatio n (08)	Mid Exam (25)
Remember		02			2.5
Understand		05	02	02	7.5
Apply		05		03	12.5
Analyze		03	03	03	2.5
Evaluate					
Create					

SEE – Semester End Examination [40 marks] {Theory}

Bloom Criteria	Score for the Test		
Remember	05		
Understand	10		

Apply	20
Analyze	05
Evaluate	-
Create	-

Learning Materials: Textbook/Recommended Readings:

- 1. Introduction to Computational Chemistry by Frank Jensen.
- 2. An Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner

Reference Books/Supplementary Readings:

- 1. Introduction to Bioinformatics by Arthur Lesk
- 2. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics by Errol G. Lewars.