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Preface

At a Snowbird conference on neural nets in 1992, David Haussler and his col-
leagues at UC Santa Cruz (including one of us, AK) described preliminary re-
sults on modelling protein sequence multiple alignments with probabilistic mod-
els called ‘hidden Markov models’ (HMMs). Copies of their technical report
were widely circulated. Some of them found their way to the MRC Laboratory
of Molecular Biology in Cambridge, where RD and GJM were just switching re-
search interests from neural modelling to computational genome sequence analy-
sis, and where SRE had arrived as a new postdoctoral student with a background
in experimental molecular genetics and an interest in computational analysis. AK
later also came to Cambridge for a year.

All of us quickly adopted the ideas of probabilistic modelling. We were per-
suaded that hidden Markov models and their stochastic grammar analogues are
beautiful mathematical objects, well fitted to capturing the information buried
in biological sequences. The Santa Cruz group and the Cambridge group inde-
pendently developed two freely available HMM software packages for sequence
analysis, and independently extended HMM methods to stochastic context-free
grammar analysis of RNA secondary structures. Another group led by Pierre
Baldi at JPL/Caltech was also inspired by the work presented at the Snowbird
conference to work on HMM-based approaches at about the same time.

By late 1995, we thought that we had acquired a reasonable amount of ex-
perience in probabilistic modelling techniques. On the other hand, we also felt
that relatively little of the work had been communicated effectively to the com-
munity. HMMs had stirred widespread interest, but they were still viewed by
many as mathematical black boxes instead of natural models of sequence align-
ment problems. Many of the best papers that described HMM ideas and meth-
ods in detail were in the speech recognition literature, effectively inaccessible to
many computational biologists. Furthermore, it had become clear to us and sev-
eral other groups that the same ideas could be applied to a much broader class of
problems, including protein structure modelling, genefinding, and phylogenetic
analysis. Over the Christmas break in 1995–96, perhaps somewhat deluded by
ambition, naiveté, and holiday relaxation, we decided to write a book on biologi-
cal sequence analysis emphasizing probabilistic modelling. In the past two years,
our original grand plans have been distilled into what we hope is a practical book.

ix



x Preface

This is a subjective book written by opinionated authors. It is not a tutorial on
practical sequence analysis. Our main goal is to give an accessible introduction to
the foundations of sequence analysis, and to show why we think the probabilis-
tic modelling approach is useful. We try to avoid discussing specific computer
programs, and instead focus on the algorithms and principles behind them.

We have carefully cited the work of the many authors whose work has influ-
enced our thinking. However, we are sure we have failed to cite others whom
we should have read, and for this we apologise. Also, in a book that necessarily
touches on fields ranging from evolutionary biology through probability theory
to biophysics, we have been forced by limitations of time, energy, and our own
imperfect understanding to deal with a number of issues in a superficial manner.

Computational biology is an interdisciplinary field. Its practitioners, including
us, come from diverse backgrounds, including molecular biology, mathematics,
computer science, and physics. Our intended audience is any graduate or ad-
vanced undergraduate student with a background in one of these fields. We aim
for a concise and intuitive presentation that is neither forbiddingly mathematical
nor too technically biological.

We assume that readers are already familiar with the basic principles of molec-
ular genetics, such as the Central Dogma that DNA makes RNA makes protein,
and that nucleic acids are sequences composed of four nucleotide subunits and
proteins are sequences composed of twenty amino acid subunits. More detailed
molecular genetics is introduced where necessary. We also assume a basic profi-
ciency in mathematics. However, there are sections that are more mathematically
detailed. We have tried to place these towards the end of each chapter, and in
general towards the end of the book. In particular, the final chapter, Chapter 11,
covers some topics in probability theory that are relevant to much of the earlier
material.

We are grateful to several people who kindly checked parts of the manuscript
for us at rather short notice. We thank Ewan Birney, Bill Bruno, David MacKay,
Cathy Eddy, Jotun Hein, and Søren Riis especially. Bret Larget and Robert Mau
gave us very helpful information about the sampling methods they have been
using for phylogeny. David Haussler bravely used an embarrassingly early draft
of the manuscript in a course at UC Santa Cruz in the autumn of 1996, and we
thank David and his entire class for the very useful feedback we received. We are
also grateful to David for inspiring us to work in this field in the first place. It
has been a pleasure to work with David Tranah and Maria Murphy of Cambridge
University Press and Sue Glover of SG Publishing in producing the book; they
demonstrated remarkable expertise in the editing and LATEX typesetting of a book
laden with equations, algorithms, and pseudocode, and also remarkable tolerance
of our wildly optimistic and inaccurate target dates. We are sure that some of our
errors remain, but their number would be far greater without the help of all these
people.



Preface xi

We also wish to thank those who supported our research and our work on
this book: the Wellcome Trust, the NIH National Human Genome Research In-
stitute, NATO, Eli Lilly & Co., the Human Frontiers Science Program Organi-
sation, and the Danish National Research Foundation. We also thank our home
institutions: the Sanger Centre (RD), Washington University School of Medicine
(SRE), the Center for Biological Sequence Analysis (AK), and the MRC Labo-
ratory of Molecular Biology (GJM). Jim and Anne Durbin graciously lent us the
use of their house in London in February 1997, where an almost final draft of the
book coalesced in a burst of writing and criticism. We thank our friends, fami-
lies, and research groups for tolerating the writing process and SRE’s and AK’s
long trips to England. We promise to take on no new grand projects, at least not
immediately.





1
Introduction

Astronomy began when the Babylonians mapped the heavens. Our descendants
will certainly not say that biology began with today’s genome projects, but they
may well recognise that a great acceleration in the accumulation of biological
knowledge began in our era. To make sense of this knowledge is a challenge,
and will require increased understanding of the biology of cells and organisms.
But part of the challenge is simply to organise, classify and parse the immense
richness of sequence data. This is more than an abstract task of string parsing, for
behind the string of bases or amino acids is the whole complexity of molecular
biology. This book is about methods which are in principle capable of capturing
some of this complexity, by integrating diverse sources of biological information
into clean, general, and tractable probabilistic models for sequence analysis.

Though this book is about computational biology, let us be clear about one
thing from the start: the most reliable way to determine a biological molecule’s
structure or function is by direct experimentation. However, it is far easier to ob-
tain the DNA sequence of the gene corresponding to an RNA or protein than it
is to experimentally determine its function or its structure. This provides strong
motivation for developing computational methods that can infer biological in-
formation from sequence alone. Computational methods have become especially
important since the advent of genome projects. The Human Genome Project alone
will give us the raw sequences of an estimated 70 000 to 100 000 human genes,
only a small fraction of which have been studied experimentally.

Most of the problems in computational sequence analysis are essentially statis-
tical. Stochastic evolutionary forces act on genomes. Discerning significant sim-
ilarities between anciently diverged sequences amidst a chaos of random muta-
tion, natural selection, and genetic drift presents serious signal to noise problems.
Many of the most powerful analysis methods available make use of probabil-
ity theory. In this book we emphasise the use of probabilistic models, particularly
hidden Markov models (HMMs), to provide a general structure for statistical anal-
ysis of a wide variety of sequence analysis problems.

1



2 1 Introduction

1.1 Sequence similarity, homology, and alignment

Nature is a tinkerer and not an inventor [Jacob 1977]. New sequences are adapted
from pre-existing sequences rather than invented de novo. This is very fortunate
for computational sequence analysis. We can often recognise a significant simi-
larity between a new sequence and a sequence about which something is already
known; when we do this we can transfer information about structure and/or func-
tion to the new sequence. We say that the two related sequences are homologous
and that we are transfering information by homology.

At first glance, deciding that two biological sequences are similar is no dif-
ferent from deciding that two text strings are similar. One set of methods for
biological sequence analysis is therefore rooted in computer science, where there
is an extensive literature on string comparison methods. The concept of an align-
ment is crucial. Evolving sequences accumulate insertions and deletions as well
as substitutions, so before the similarity of two sequences can be evaluated, one
typically begins by finding a plausible alignment between them.

Almost all alignment methods find the best alignment between two strings
under some scoring scheme. These scoring schemes can be as simple as ‘+1
for a match, −1 for a mismatch’. Indeed, many early sequence alignment algo-
rithms were described in these terms. However, since we want a scoring scheme
to give the biologically most likely alignment the highest score, we want to take
into account the fact that biological molecules have evolutionary histories, three-
dimensional folded structures, and other features which constrain their primary
sequence evolution. Therefore, in addition to the mechanics of alignment and
comparison algorithms, the scoring system itself requires careful thought, and
can be very complex.

Developing more sensitive scoring schemes and evaluating the significance of
alignment scores is more the realm of statistics than computer science. An early
step forward was the introduction of probabilistic matrices for scoring pairwise
amino acid alignments [Dayhoff, Eck & Park 1972; Dayhoff, Schwartz & Orcutt
1978]; these serve to quantify evolutionary preferences for certain substitutions
over others. More sophisticated probabilistic modelling approaches have been
brought gradually into computational biology by many routes. Probabilistic mod-
elling methods greatly extend the range of applications that can be underpinned
by useful and consistent theory, by providing a natural framework in which to
address complex inference problems in computational sequence analysis.

1.2 Overview of the book

The book is loosely structured into four parts covering problems in pairwise
alignment, multiple alignment, phylogenetic trees, and RNA structure. Figure 1.1
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1 2 3 4 5 6 7 8 9 10 11

Pairwise
alignment

Multiple
alignment

Phylogenetic
trees

RNA structure Probability
theory

Begin End

Figure 1.1 Overview of the book, and suggested paths through it.

shows suggested paths through the chapters in the form of a state machine, one
sort of model we will use throughout the book.

The individual chapters cover topics as follows:

2 Pairwise alignment. We start with the problem of deciding if a pair of se-
quences are evolutionarily related or not. We examine traditional pair-
wise sequence alignment and comparison algorithms which use dynamic
programming to find optimal gapped alignments. We give some proba-
bilistic analysis of scoring parameters, and some discussion of the statis-
tical significance of matches.

3 Markov chains and hidden Markov models. We introduce hidden Markov
models (HMMs) and show how they are used to model a sequence or
a family of sequences. The chapter gives all the basic HMM algorithms
and theory, using simple examples.

4 Pairwise alignment using HMMs. Newly equipped with HMM theory, we re-
visit pairwise alignment. We develop a special sort of HMM that mod-
els aligned pairs of sequences. We show how the HMM-based approach
provides some nice ways of estimating accuracy of an alignment, and
scoring similarity without committing to any particular alignment.

5 Profile HMMs for sequence families. We consider the problem of finding se-
quences which are homologous to a known evolutionary family or su-
perfamily. One standard approach to this problem has been the use of
‘profiles’ of position-specific scoring parameters derived from a multiple
sequence alignment. We describe a standard form of HMM, called a pro-
file HMM, for modelling protein and DNA sequence families based on
multiple alignments. Particular attention is given to parameter estimation
for optimal searching for new family members, including a discussion of
sequence weighting schemes.

6 Multiple sequence alignment methods. A closely related problem is that of
constructing a multiple sequence alignment of a family. We examine
existing multiple sequence alignment algorithms from the standpoint of
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probabilistic modelling, before describing multiple alignment algorithms
based on profile HMMs.

7 Building phylogenetic trees. Some of the most interesting questions in biol-
ogy concern phylogeny. How and when did genes and species evolve?
We give an overview of some popular methods for inferring evolutionary
trees, including clustering, distance and parsimony methods. The chapter
concludes with a description of Hein’s parsimony algorithm for simulta-
neously aligning and inferring the phylogeny of a sequence family.

8 A probabilistic approach to phylogeny. We describe the application of prob-
abilistic modelling to phylogeny, including maximum likelihood estima-
tion of tree scores and methods for sampling the posterior probability
distribution over the space of trees. We also give a probabilistic interpre-
tation of the methods described in the preceding chapter.

9 Transformational grammars. We describe how hidden Markov models are
just the lowest level in the Chomsky hierarchy of transformational gram-
mars. We discuss the use of more complex transformational grammars
as probabilistic models of biological sequences, and give an introduction
to the stochastic context-free grammars, the next level in the Chomsky
hierarchy.

10 RNA structure analysis. Using stochastic context-free grammar theory, we
tackle questions of RNA secondary structure analysis that cannot be han-
dled with HMMs or other primary sequence-based approaches. These in-
clude RNA secondary structure prediction, structure-based alignment of
RNAs, and structure-based database search for homologous RNAs.

11 Background on probability. Finally, we give more formal details for the math-
ematical and statistical toolkit that we use in a fairly informal tutorial-
style fashion throughout the rest of the book.

1.3 Probabilities and probabilistic models

Some basic results in using probabilities are necessary for understanding almost
any part of this book, so before we get going with sequences, we give a brief
primer here on the key ideas and methods. For many readers, this will be familiar
territory. However, it may be wise to at least skim though this section to get a
grasp of the notation and some of the ideas that we will develop later in the
book. Aside from this very basic introduction, we have tried to minimise the
discussion of abstract probability theory in the main body of the text, and have
instead concentrated the mathematical derivations and methods into Chapter 11,
which contains a more thorough presentation of the relevant theory.

What do we mean by a probabilistic model? When we talk about a model nor-
mally we mean a system that simulates the object under consideration. A proba-
bilistic model is one that produces different outcomes with different probabilities.
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A probabilistic model can therefore simulate a whole class of objects, assigning
each an associated probability. In our case the objects will normally be sequences,
and a model might describe a family of related sequences.

Let us consider a very simple example. A familiar probabilistic system with
a set of discrete outcomes is the roll of a six-sided die. A model of a roll of
a (possibly loaded) die would have six parameters p1 . . . p6; the probability of
rolling i is pi . To be probabilities, the parameters pi must satisfy the conditions
that pi ≥ 0 and

∑6
i=1 pi = 1. A model of a sequence of three consecutive rolls of

a die might be that they were all independent, so that the probability of sequence
[1,6,3] would be the product of the individual probabilities, p1 p6 p3. We will use
dice throughout the early part of the book for giving intuitive simple examples of
probabilistic modelling.

Consider a second example closer to our biological subject matter, which is an
extremely simple model of any protein or DNA sequence. Biological sequences
are strings from a finite alphabet of residues, generally either four nucleotides
or twenty amino acids. Assume that a residue a occurs at random with prob-
ability qa , independent of all other residues in the sequence. If the protein or
DNA sequence is denoted x1 . . . xn , the probability of the whole sequence is then
the product qx1qx2 · · ·qxn = ∏n

i=1 qxi .
1 We will use this ‘random sequence model’

throughout the book as a base-level model, or null hypothesis, to compare other
models against.

Maximum likelihood estimation

The parameters for a probabilistic model are typically estimated from large sets
of trusted examples, often called a training set. For instance, the probability qa

for amino acid a can be estimated as the observed frequency of residues in a
database of known protein sequences, such as SWISS-PROT [Bairoch & Apweiler
1997].We obtain the twenty frequencies from counting up some twenty million
individual residues in the database, and thus we have so much data that as long
as the training sequences are not systematically biased towards a peculiar residue
composition, we expect the frequencies to be reasonable estimates of the under-
lying probabilities of our model. This way of estimating models is called max-
imum likelihood estimation,because it can be shown that using the frequencies
with which the amino acids occur in the database as the probabilities qa max-
imises the total probability of all the sequences given the model (the likelihood).
In general, given a model with parameters θ and a set of data D, the maximum
likelihood estimate for θ is that value which maximises P(D|θ ). This is discussed
more formally in Chapter 11.

When estimating parameters for a model from a limited amount of data, there
is a danger of overfitting, which means that the model becomes very well adapted
to the training data, but it will not generalise well to new data. Observing for

1 Strictly speaking this is only a correct model if all sequences have the same length, because
then the sum of the probability over all possible sequences is 1; see Chapter 3.
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instance the three flips of a coin [tail, tail, tail] would lead to the maximum like-
lihood estimate that the probability of head is 0 and that of tail is 1. We will return
shortly to methods for preventing overfitting.

Conditional, joint, and marginal probabilities

Suppose we have two dice, D1 and D2. The probability of rolling an i with die
D1 is called P(i |D1). This is the conditional probability of rolling i given die D1.
If we pick a die at random with probability P(Dj ), j = 1 or 2, the probability for
picking die j and rolling an i is the product of the two probabilities, P(i , Dj ) =
P(Dj )P(i |Dj ). The term P(i , Dj ) is called the joint probability. The statement

P(X ,Y ) = P(X |Y )P(Y ) (1.1)

applies universally to any events X and Y .
When conditional or joint probabilities are known, we can calculate a marginal

probability that removes one of the variables by using

P(X ) =
∑

Y

P(X ,Y ) =
∑

Y

P(X |Y )P(Y ),

where the sums are over all possible events Y .

Exercise

1.1 Consider an occasionally dishonest casino that uses two kinds of dice. Of
the dice 99% are fair but 1% are loaded so that a six comes up 50% of the
time. We pick up a die from a table at random. What are P(six|Dloaded)
and P(six|Dfair)? What are P(six, Dloaded) and P(six, Dfair)? What is the
probability of rolling a six from the die we picked up?

Bayes’ theorem and model comparison

In the same occasionally dishonest casino as in Exercise 1.1, we pick a die at
random and roll it three times, getting three consecutive sixes. We are suspicious
that this is a loaded die. How can we evaluate whether that is the case? What we
want to know is P(Dloaded|3 sixes); i.e. the posterior probability of the hypothesis
that the die is loaded given the observed data, but what we can directly calculate
is the probability of the data given the hypothesis, P(3 sixes|Dloaded), which is
called the likelihood of the hypothesis. We can calculate posterior probabilities
using Bayes’ theorem,

P(X |Y ) = P(Y |X )P(X )

P(Y )
. (1.2)

The event ‘the die is loaded’ corresponds to X in (1.2) and ‘3 sixes’ corresponds
to Y , so

P(Dloaded|3 sixes) = P(3 sixes|Dloaded)P(Dloaded)

P(3 sixes)
.
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We were given (see Exercise 1.1) that the probability P(Dloaded) of picking
a loaded die is 0.01, and we know that the probability P(3 sixes|Dloaded) of
three sixes given it is loaded is 0.53 = 0.125. The total probability of three sixes,
P(3 sixes), is just P(3 sixes|Dloaded)P(Dloaded)+ P(3 sixes|Dfair)P(Dfair). Now

P(Dloaded|3 sixes) = (0.53)(0.01)

(0.53)(0.01)+ ( 1
6

3
)(0.99)

= 0.21.

So in fact, it is still more likely that we picked up a fair die, despite seeing three
successive sixes.

As a second, more biological example, let us assume we believe that, on aver-
age, extracellular proteins have a slightly different amino acid composition than
intracellular proteins. For example, we might think that cysteine is more com-
mon in extracellular than intracellular proteins. Let us try to use this information
to judge whether a new protein sequence x = x1 . . . xn is intracellular or extra-
cellular. To do this, we first split our training examples from SWISS-PROT into
intracellular and extracellular proteins (we can leave aside unclassifiable cases).

We can now estimate a set of frequencies q int
a for intracellular proteins, and a

corresponding set of extracellular frequencies qext
a . To provide all the necessary

information for Bayes’ theorem, we also need to estimate the probability that any
new sequence is extracellular, pext, and the corresponding probability of being
intracellular, pint. We will assume for now that every sequence must be either
entirely intracellular or entirely extracellular, so pint = 1 − pext. The values pext

and pint are called the prior probabilities, because they represent the best guess
that we can make about a sequence before we have seen any information about
the sequence itself.

We can now write P(x |ext) = ∏
i qext

xi
and P(x |int) = ∏

i q int
xi

. Because we
are assuming that every sequence must be extracellular or intracellular, p(x) =
pext P(x |ext)+ pint P(x |int). By Bayes’ theorem,

P(ext|x) = pext ∏
i qext

xi

pext
∏

i qext
xi

+ pint
∏

i q int
xi

.

P(ext|x) is the number we want. It is called the posterior probability that a se-
quence is extracellular because it is our best guess after we have seen the data.

Of course, this example is confounded by the fact that many transmembrane
proteins have intracellular and extracellular components. We really want to be
able to switch from one assignment to the other while in the sequence. That re-
quires a more complex probabilistic model which we will see later in the book
(Chapter 3).
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Exercises

1.2 How many sixes in a row would we need to see in the above example
before it was most likely that we had picked a loaded die?

1.3 Use equation (1.1) to prove Bayes’ theorem.
1.4 A rare genetic disease is discovered. Although only one in a million peo-

ple carry it, you consider getting screened. You are told that the genetic
test is extremely good; it is 100% sensitive (it is always correct if you
have the disease) and 99.99% specific (it gives a false positive result
only 0.01% of the time). Using Bayes’ theorem, explain why you might
decide not to take the test.

Bayesian parameter estimation

The concept of overfitting was mentioned earlier. Rather than giving up on a
model, if we do not have enough data to reliably estimate the parameters, we can
use prior knowledge to constrain the estimates. This can be done conveniently
with Bayesian parameter estimation.

As well as using Bayes’ theorem for comparing models, we can use it to esti-
mate parameters. We can calculate the posterior probability of any particular set
of parameters θ given some data D using Bayes’ theorem as

P(θ |D) = P(θ )P(D|θ )∫
θ ′ P(θ ′)P(D|θ ′)

. (1.3)

Note that since our parameters are usually continuous rather than discrete
quantities, the denominator is now an integral rather than a sum:

P(D) =
∫

θ ′
P(θ ′)P(D|θ ′).

There are a number of issues that arise concerning (1.3). One problem is ‘what
is meant by P(θ )?’ Where do we obtain a prior distribution over parameters?
Sometimes there is no good rationale for any specific choice, in which case flat
(uniform) or uninformative priors are normally chosen, i.e. ones that are as in-
nocuous as possible. In other cases, we will wish to use an informative P(θ ).
For instance, we know a priori that the amino acids phenylalanine, tyrosine, and
tryptophan are structurally similar and often evolutionarily interchangeable. We
would want to use a P(θ ) that tends to favour parameter sets that give similar
probabilities to these three amino acids over other parameter sets that assign them
very different probabilities. These issues are examined in detail in Chapter 5.

Another issue is how to use (1.3) to estimate good parameters. One approach
is to choose the parameter values for θ that maximise P(θ |D). This is called
maximum a posteriori or MAP estimation. Note that the denominator of (1.3)
is independent of the specific value of θ , and so MAP estimation corresponds to
maximising the likelihood times the prior. If the prior is flat, then MAP estimation
is the same as maximum likelihood estimation.
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Another approach to parameter estimation is to choose the mean of the pos-
terior distribution as the estimate, rather than the maximum value. This can be a
more complicated operation, requiring that the posterior probability can
either be calculated analytically or can be sampled. A related approach is not
to choose a specific set of parameters at all, but instead to evaluate the quan-
tity of interest based on the model at many or all different parameter values by
integration, weighting the results according to the posterior probabilities of the
respective parameter values. This approach is most attractive when the evalua-
tion and weighting can be done analytically – otherwise it can be hard to obtain
a valid result unless the parameter space is very small.

These approaches are part of a field of statistics called Bayesian statistics [Box
& Tiao 1992]. The subjectiveness of issues like the choice of prior leads some
people to be wary of Bayesian methods, though the validity of Bayes’ theorem
per se for manipulating conditional probabilities is not in question. We do not
have a rigid attitude; we use both maximum likelihood and Bayesian methods at
different points in the book. However, when estimating large parameter sets from
small amounts of data, we believe that Bayesian methods provide a consistent
formalism for bringing in additional information from previous experience with
the same type of data.

Example: Estimating probabilities for a loaded die

To illustrate, let us return to our examples with dice. Assume we are given a die
that we expect will be loaded, but we don’t know in what way. We are allowed to
roll it ten times, and we have to give our best estimates for the parameters pi . We
roll 1, 3, 4, 2, 4, 6, 2, 1, 2, 2. The maximum likelihood estimate for p̂5, based on
the observed frequency, is 0. If this were used in a model, then a single observed
5 would rule out the dataset from coming from this die. That seems too harsh.
Intuitively, we have not seen enough data to be sure that this die never rolls a five.

One well-known approach to this problem is to adjust the observed frequen-
cies used to derive the probabilities by adding some fake extra counts to the true
counts observed for each outcome. An example would be to add one to each ob-
served number of counts, so that the estimated probability p̂5 of rolling a five is
now 1

16 . The extra count for each class is called a pseudocount. Using pseudo-
counts corresponds to a posterior mean approach using Bayes’ theorem and a
prior from the Dirichlet family of distributions (see Chapter 11 for more details).
Different sets of pseudocounts correspond to different prior assumptions about
what sort of probabilities a die will have. If in our previous experience most dice
were close to being fair, then we might add a lot of pseudocounts; if we had pre-
viously seen many very biased dice in this particular casino, we would believe
more strongly the data that we collected on this particular example, and weight
the pseudocounts less. Of course, if we collect enough data, the true counts will
always dominate the pseudocounts.



10 1 Introduction

0.0 0.2 0.4 0.6 0.8 1.0

ML MAP

P( )

P( | D)

P(D | )

Figure 1.2 Maximum likelihood estimation (ML) versus maximum a pos-
teriori (MAP) estimation of the probability p5 (x axis) in Example 1.1 with
five pseudocounts per category. The three curves are artificially normalised
to have the same maximum value.

In Figure 1.2 the likelihood P(D|θ ) is shown as a function of p5, and the max-
imum at 0 is evident. In the same figure we show the prior and posterior distribu-
tions with five pseudocounts per category. The prior distribution of p5 implied by
the pseudocounts, P(θ ), is a Dirichlet distribution. Note that the posterior P(θ |D)
is asymmetric; the posterior mean estimate of p5 is slightly more than the MAP
estimate.

Exercise

1.5 In the above example, what is our maximum likelihood estimate for p2,
the probability of rolling a two? What is the Bayesian estimate if we add
one pseudocount per category? What if we add five pseudocounts per
category?

1.4 Further reading

Available textbooks on computational molecular biology include Introduction
to Computational Biology by Waterman [1995], Bioinformatics – The Machine
Learning Approach by Baldi & Brunak [1998] and Sankoff & Kruskal’s Time
Warps, String Edits, and Macromolecules [1983]. For readers with no molecular
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biology background, we recommend Molecular Biology of the Gene by Watson et
al. [1987] as a readable, though encyclopedic, undergraduate-level introduction to
molecular genetics. Introduction to Protein Structure by Branden & Tooze [1991]
is a beautifully illustrated guide to the three-dimensional structures of proteins.
MacKay [1992] has written a persuasive introduction to Bayesian probabilistic
modelling; a more elementary introduction to some of the attractive ideas behind
Bayesian methods is Jefferys & Berger [1992].



2
Pairwise alignment

2.1 Introduction

The most basic sequence analysis task is to ask if two sequences are related. This
is usually done by first aligning the sequences (or parts of them) and then deciding
whether that alignment is more likely to have occurred because the sequences are
related, or just by chance. The key issues are: (1) what sorts of alignment should
be considered; (2) the scoring system used to rank alignments; (3) the algorithm
used to find optimal (or good) scoring alignments; and (4) the statistical methods
used to evaluate the significance of an alignment score.

Figure 2.1 shows an example of three pairwise alignments, all to the same
region of the human alpha globin protein sequence (SWISS-PROT database iden-
tifier HBA_HUMAN). The central line in each alignment indicates identical po-
sitions with letters, and ‘similar’ positions with a plus sign. (‘Similar’ pairs of
residues are those which have a positive score in the substitution matrix used to
score the alignment; we will discuss substitution matrices shortly.) In the first

(a)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

(b)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

(c)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Figure 2.1 Three sequence alignments to a fragment of human alpha
globin. (a) Clear similarity to human beta globin. (b) A structurally plausi-
ble alignment to leghaemoglobin from yellow lupin. (c) A spurious high-
scoring alignment to a nematode glutathione S-transferase homologue
named F11G11.2.

12
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alignment there are many positions at which the two corresponding residues are
identical; many others are functionally conservative, such as the pair D–E towards
the end, representing an alignment of an aspartic acid residue with a glutamic
acid residue, both negatively charged amino acids. Figure 2.1b also shows a bi-
ologically meaningful alignment, in that we know that these two sequences are
evolutionarily related, have the same three-dimensional structure, and function in
oxygen binding. However, in this case there are many fewer identities, and in a
couple of places gaps have been inserted into the alpha globin sequence to main-
tain the alignment across regions where the leghaemoglobin has extra residues.
Figure 2.1c shows an alignment with a similar number of identities or conserva-
tive changes. However, in this case we are looking at a spurious alignment to a
protein that has a completely different structure and function.

How are we to distinguish cases like Figure 2.1b from those like Figure 2.1c?
This is the challenge for pairwise alignment methods. We must give careful
thought to the scoring system we use to evaluate alignments. The next section
introduces the issues in how to score alignments, and then there is a series of
sections on methods to find the best alignments according to the scoring scheme.
The chapter finishes with a discussion of the statistical significance of matches,
and more detail on parameterising the scoring scheme. Even so, it will not always
be possible to distinguish true alignments from spurious alignments. For exam-
ple, it is in fact extremely difficult to find significant similarity between the lupin
leghaemoglobin and human alpha globin in Figure 2.1b using pairwise alignment
methods.

2.2 The scoring model

When we compare sequences, we are looking for evidence that they have diverged
from a common ancestor by a process of mutation and selection. The basic muta-
tional processes that are considered are substitutions, which change residues in a
sequence, and insertions and deletions, which add or remove residues. Insertions
and deletions are together referred to as gaps. Natural selection has an effect on
this process by screening the mutations, so that some sorts of change may be seen
more than others.

The total score we assign to an alignment will be a sum of terms for each
aligned pair of residues, plus terms for each gap. In our probabilistic interpreta-
tion, this will correspond to the logarithm of the relative likelihood that the se-
quences are related, compared to being unrelated. Informally, we expect identities
and conservative substitutions to be more likely in alignments than we expect by
chance, and so to contribute positive score terms; and non-conservative changes
are expected to be observed less frequently in real alignments than we expect by
chance, and so these contribute negative score terms.
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Using an additive scoring scheme corresponds to an assumption that we can
consider mutations at different sites in a sequence to have occurred independently
(treating a gap of arbitrary length as a single mutation). All the algorithms in this
chapter for finding optimal alignments depend on such a scoring scheme. The
assumption of independence appears to be a reasonable approximation for DNA
and protein sequences, although we know that interactions between residues play
a very critical role in determining protein structure. However, it is seriously inac-
curate for structural RNAs, where base pairing introduces very important long-
range dependencies. It is possible to take these dependencies into account, but
doing so gives rise to significant computational complexities; we will delay the
subject of RNA alignment until the end of the book (Chapter 10).

Substitution matrices

We need score terms for each aligned residue pair. A biologist with a good in-
tuition for proteins could invent a set of 210 scoring terms for all possible pairs
of amino acids, but it is extremely useful to have a guiding theory for what the
scores mean. We will derive substitution scores from a probabilistic model.

First, let us establish some notation. We will be considering a pair of sequences,
x and y, of lengths n and m, respectively. Let xi be the i th symbol in x and yj be
the j th symbol of y. These symbols will come from some alphabet A; in the case
of DNA this will be the four bases {A, G, C, T}, and in the case of proteins the
twenty amino acids. We denote symbols from this alphabet by lower-case letters
like a,b. For now we will only consider ungapped global pairwise alignments:
that is, two completely aligned equal-length sequences as in Figure 2.1a.

Given a pair of aligned sequences, we want to assign a score to the alignment
that gives a measure of the relative likelihood that the sequences are related as
opposed to being unrelated. We do this by having models that assign a probability
to the alignment in each of the two cases; we then consider the ratio of the two
probabilities.

The unrelated or random model R is simplest. It assumes that letter a occurs
independently with some frequency qa , and hence the probability of the two se-
quences is just the product of the probabilities of each amino acid:

P(x , y|R) =
∏

i

qxi

∏
j

qyj . (2.1)

In the alternative match model M , aligned pairs of residues occur with a joint
probability pab. This value pab can be thought of as the probability that the
residues a and b have each independently been derived from some unknown orig-
inal residue c in their common ancestor (c might be the same as a and/or b). This
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gives a probability for the whole alignment of

P(x , y|M) =
∏

i

pxi yi .

The ratio of these two likelihoods is known as the odds ratio:

P(x , y|M)

P(x , y|R)
=

∏
i pxi yi∏

i qxi

∏
i qyi

=
∏

i

pxi yi

qxi qyi

.

In order to arrive at an additive scoring system, we take the logarithm of this ratio,
known as the log-odds ratio:

S =
∑

i

s(xi , yi ), (2.2)

where

s(a,b) = log

(
pab

qaqb

)
(2.3)

is the log likelihood ratio of the residue pair (a,b) occurring as an aligned pair, as
opposed to an unaligned pair.

As we wanted, equation (2.2) is a sum of individual scores s(a,b) for each
aligned pair of residues. The s(a,b) scores can be arranged in a matrix. For pro-
teins, for instance, they form a 20 × 20 matrix, with s(ai ,aj ) in position i , j in
the matrix, where ai ,aj are the i th and j th amino acids (in some numbering).
This is known as a score matrix or a substitution matrix. An example of a sub-
stitution matrix derived essentially as above is the BLOSUM50 matrix, shown in
Figure 2.2. We can use these values to score Figure 2.1a and get a score of 130.
Another commonly used set of substitution matrices are called the PAM matrices.
A detailed description of the way that the BLOSUM and PAM matrices are derived
is given at the end of the chapter.

An important result is that even if an intuitive biologist were to write down
an ad hoc substitution matrix, the substitution matrix implies ‘target frequen-
cies’ pab according to the above theory [Altschul 1991]. Any substitution ma-
trix is making a statement about the probability of observing ab pairs in real
alignments.

Exercise

2.1 Amino acids D, E and K are all charged; V, I and L are all hydrophobic.
What is the average BLOSUM50 score within the charged group of three?
Within the hydrophobic group? Between the two groups? Suggest rea-
sons for the pattern observed.
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A R N D C Q E G H I L K M F P S T W Y V

A 5 −2 −1 −2 −1 −1 −1 0 −2 −1 −2 −1 −1 −3 −1 1 0 −3 −2 0
R −2 7 −1 −2 −4 1 0 −3 0 −4 −3 3 −2 −3 −3 −1 −1 −3 −1 −3
N −1 −1 7 2 −2 0 0 0 1 −3 −4 0 −2 −4 −2 1 0 −4 −2 −3
D −2 −2 2 8 −4 0 2 −1 −1 −4 −4 −1 −4 −5 −1 0 −1 −5 −3 −4
C −1 −4 −2 −4 13 −3 −3 −3 −3 −2 −2 −3 −2 −2 −4 −1 −1 −5 −3 −1
Q −1 1 0 0 −3 7 2 −2 1 −3 −2 2 0 −4 −1 0 −1 −1 −1 −3
E −1 0 0 2 −3 2 6 −3 0 −4 −3 1 −2 −3 −1 −1 −1 −3 −2 −3
G 0 −3 0 −1 −3 −2 −3 8 −2 −4 −4 −2 −3 −4 −2 0 −2 −3 −3 −4
H −2 0 1 −1 −3 1 0 −2 10 −4 −3 0 −1 −1 −2 −1 −2 −3 2 −4
I −1 −4 −3 −4 −2 −3 −4 −4 −4 5 2 −3 2 0 −3 −3 −1 −3 −1 4
L −2 −3 −4 −4 −2 −2 −3 −4 −3 2 5 −3 3 1 −4 −3 −1 −2 −1 1
K −1 3 0 −1 −3 2 1 −2 0 −3 −3 6 −2 −4 −1 0 −1 −3 −2 −3
M −1 −2 −2 −4 −2 0 −2 −3 −1 2 3 −2 7 0 −3 −2 −1 −1 0 1
F −3 −3 −4 −5 −2 −4 −3 −4 −1 0 1 −4 0 8 −4 −3 −2 1 4 −1
P −1 −3 −2 −1 −4 −1 −1 −2 −2 −3 −4 −1 −3 −4 10 −1 −1 −4 −3 −3
S 1 −1 1 0 −1 0 −1 0 −1 −3 −3 0 −2 −3 −1 5 2 −4 −2 −2
T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 2 5 −3 −2 0
W −3 −3 −4 −5 −5 −1 −3 −3 −3 −3 −2 −3 −1 1 −4 −4 −3 15 2 −3
Y −2 −1 −2 −3 −3 −1 −2 −3 2 −1 −1 −2 0 4 −3 −2 −2 2 8 −1
V 0 −3 −3 −4 −1 −3 −3 −4 −4 4 1 −3 1 −1 −3 −2 0 −3 −1 5

Figure 2.2 The BLOSUM50 substitution matrix. The log-odds values have
been scaled and rounded to the nearest integer for purposes of computa-
tional efficiency. Entries on the main diagonal for identical residue pairs
are highlighted in bold.

Gap penalties

We expect to penalise gaps. The standard cost associated with a gap of length g
is given either by a linear score

γ (g) = −gd (2.4)

or an affine score

γ (g) = −d − (g −1)e (2.5)

where d is called the gap-open penalty and e is called the gap-extension penalty.
The gap-extension penalty e is usually set to something less than the gap-open
penalty d , allowing long insertions and deletions to be penalised less than they
would be by the linear gap cost. This is desirable when gaps of a few residues are
expected almost as frequently as gaps of a single residue.

Gap penalties also correspond to a probabilistic model of alignment, although
this is less widely recognised than the probabilistic basis of substitution matri-
ces. We assume that the probability of a gap occurring at a particular site in a
given sequence is the product of a function f (g) of the length of the gap, and the
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combined probability of the set of inserted residues,

P(gap) = f (g)
∏

i in gap

qxi . (2.6)

The form of (2.6) as a product of f (g) with the qxi terms corresponds to an
assumption that the length of a gap is not correlated to the residues it contains.

The natural values for the qa probabilities here are the same as those used
in the random model, because they both correspond to unmatched independent
residues. In this case, when we divide by the probability of this region according
to the random model to form the odds ratio, the qxi terms cancel out, so we are left
only with a term dependent on length γ (g) = log( f (g)); gap penalties correspond
to the log probability of a gap of that length.

On the other hand, if there is evidence for a different distribution of residues in
gap regions then there should be residue-specific scores for the unaligned residues
in gap regions, equal to the logs of the ratio of their frequencies in gapped versus
aligned regions. This might happen if, for example, it is expected that polar amino
acids are more likely to occur in gaps in protein alignments than indicated by their
average frequency in protein sequences, because the gaps are more likely to be in
loops on the surface of the protein structure than in the buried core.

Exercises

2.2 Show that the probability distributions f (g) that correspond to the lin-
ear and affine gap schemes given in equations (2.4) and (2.5) are both
geometric distributions, of the form f (g) = ke−λg.

2.3 Typical gap penalties used in practice are d = 8 for the linear case, or
d = 12,e = 2 for the affine case, both expressed in half bits. A bit is
the unit obtained when one takes log base 2 of a probability, so in nat-
ural log units these correspond to d = (8 log2)/2 and d = (12 log2)/2,
e = (2 log2)/2 respectively. What are the corresponding probabilities of
a gap (of any length) starting at some position, and the distributions of
gap length given that there is a gap?

2.4 Using the BLOSUM50 matrix in Figure 2.2 and an affine gap penalty of
d = 12, e = 2, calculate the scores of the alignments in Figure 2.1b and
Figure 2.1c. (You might happen to notice that BLOSUM50 is scaled in
units of 1/3 bits. Using a 12,2 open/extend gap penalty with BLOSUM50
scores implies different gap open/extend probabilities than you obtained
in the previous exercise, where we assumed scores are in units of half
bits. Gap penalties are optimized for use with a particular substitution
matrix, partly because different matrices use different scale factors, and
partly because matrices are tuned for different levels of expected evolu-
tionary divergence between the two sequences.)
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2.3 Alignment algorithms

Given a scoring system, we need to have an algorithm for finding an optimal
alignment for a pair of sequences. Where both sequences have the same length n,
there is only one possible global alignment of the complete sequences, but things
become more complicated once gaps are allowed (or once we start looking for
local alignments between subsequences of two sequences). There are(

2n

n

)
= (2n)!

(n!)2
� 22n

√
πn

(2.7)

possible global alignments between two sequences of length n. It is clearly not
computationally feasible to enumerate all these, even for moderate values of n.

The algorithm for finding optimal alignments given an additive alignment score
of the type we have described is called dynamic programming. Dynamic pro-
gramming algorithms are central to computational sequence analysis. All the re-
maining chapters in this book except the last, which covers mathematical meth-
ods, make use of dynamic programming algorithms. The simplest dynamic pro-
gramming alignment algorithms to understand are pairwise sequence alignment
algorithms. The reader should be sure to understand this section, because it lays
an important foundation for the book as a whole. Dynamic programming algo-
rithms are guaranteed to find the optimal scoring alignment or set of alignments.
In most cases heuristic methods have also been developed to perform the same
type of search. These can be very fast, but they make additional assumptions and
will miss the best match for some sequence pairs. We will briefly discuss a few
approaches to heuristic searching later in the chapter.

Because we introduced the scoring scheme as a log-odds ratio, better align-
ments will have higher scores, and so we want to maximise the score to find
the optimal alignment. Sometimes scores are assigned by other means and inter-
preted as costs or edit distances, in which case we would seek to minimise the
cost of an alignment. Both approaches have been used in the biological sequence
comparison literature. Dynamic programming algorithms apply to either case; the
differences are trivial exchanges of ‘min’ for ‘max’.

We introduce four basic types of alignment. The type of alignment that we want
to look for depends on the source of the sequences that we want to align. For each
alignment type there is a slightly different dynamic programming algorithm. In
this section, we will only describe pairwise alignment for linear gap scores, with
cost d per gap residue. However, the algorithms we introduce here easily extend
to more complex gap models, as we will see later in the chapter.

We will use two short amino acid sequences to illustrate the various align-
ment methods, HEAGAWGHEE and PAWHEAE. To score the alignments, we use
the BLOSUM50 score matrix, and a gap cost per unaligned residue of d = −8.
Figure 2.3 shows a matrix si j of the local score s(xi , yj ) of aligning each residue
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H E A G A W G H E E

P −2 −1 −1 −2 −1 −4 −2 −2 −1 −1
A −2 −1 5 0 5 −3 0 −2 −1 −1
W −3 −3 −3 −3 −3 15 −3 −3 −3 −3
H 10 0 −2 −2 −2 −3 −2 10 0 0
E 0 6 −1 −3 −1 −3 −3 0 6 6
A −2 −1 5 0 5 −3 0 −2 −1 −1
E 0 6 −1 −3 −1 −3 −3 0 6 6

Figure 2.3 The two example sequences we will use for illustrating dynamic
programming alignment algorithms, arranged to show a matrix of corre-
sponding BLOSUM50 values per aligned residue pair. Positive scores are in
bold.

pair from the two example sequences. Identical or conserved residue pairs are
highlighted in bold. Informally, the goal of an alignment algorithm is to incorpo-
rate as many of these positively scoring pairs as possible into the alignment, while
minimising the cost from unconserved residue pairs, gaps, and other constraints.

Exercises

2.5 Show that the number of ways of intercalating two sequences of lengths
n and m to give a single sequence of length n + m, while preserving the
order of the symbols in each, is

(n+m
m

)
.

2.6 Assume that gapped sequence alignments do not allow gaps in the sec-
ond sequence after a gap in the first; that is, allow alignments of form
ABC/A-C and A-CD/AB-D but not AB-D/A-CD. (This is a natural re-
striction, because a region between aligned pairs can be aligned in a large
number of uninteresting ways.) By taking alternating symbols from the
upper and lower sequences in an alignment, then discarding the gap char-
acters, show that there is a one-to-one correspondence between gapped
alignments of the two sequences and intercalated sequences of the type
described in the previous exercise. Hence derive the first part of equation
(2.7).

2.7 Use Stirling’s formula (x! � √
2πx x+ 1

2 e−x ) to prove the second part of
equation (2.7).

Global alignment: Needleman–Wunsch algorithm

The first problem we consider is that of obtaining the optimal global alignment
between two sequences, allowing gaps. The dynamic programming algorithm for
solving this problem is known in biological sequence analysis as the Needleman–
Wunsch algorithm [Needleman & Wunsch 1970], but the more efficient version
that we describe was introduced by Gotoh [1982].
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I G A xi

L G V yj

A I G A xi

G V yj − −
G A xi − −
S L G V yj

Figure 2.4 The three ways an alignment can be extended up to (i , j): xi

aligned to yj , xi aligned to a gap, and yj aligned to a gap.

The idea is to build up an optimal alignment using previous solutions for
optimal alignments of smaller subsequences. We construct a matrix F indexed
by i and j , one index for each sequence, where the value F(i , j) is the score
of the best alignment between the initial segment x1...i of x up to xi and the
initial segment y1... j of y up to yj . We can build F(i , j) recursively. We be-
gin by initialising F(0,0) = 0. We then proceed to fill the matrix from top left
to bottom right. If F(i − 1, j − 1), F(i − 1, j) and F(i , j − 1) are known, it is
possible to calculate F(i , j). There are three possible ways that the best score
F(i , j) of an alignment up to xi , yj could be obtained: xi could be aligned to yj ,
in which case F(i , j) = F(i − 1, j − 1) + s(xi , yj ); or xi is aligned to a gap, in
which case F(i , j) = F(i − 1, j) − d; or yj is aligned to a gap, in which case
F(i , j) = F(i , j − 1) − d (see Figure 2.4). The best score up to (i , j) will be the
largest of these three options.

Therefore, we have

F(i , j) = max




F(i −1, j −1)+ s(xi , yj ),
F(i −1, j)−d ,
F(i , j −1)−d .

(2.8)

This equation is applied repeatedly to fill in the matrix of F(i , j) values, calcu-
lating the value in the bottom right-hand corner of each square of four cells from
one of the other three values (above-left, left, or above) as in the following figure.

F(i,j)

F(i-1,j-1)

F(i-1,j)

F(i,j-1)

-d

-ds(xi,yj)

As we fill in the F(i , j) values, we also keep a pointer in each cell back to the cell
from which its F(i , j) was derived, as shown in the example of the full dynamic
programming matrix in Figure 2.5.

To complete our specification of the algorithm, we must deal with some bound-
ary conditions. Along the top row, where j = 0, the values F(i , j −1) and F(i −
1, j − 1) are not defined so the values F(i ,0) must be handled specially. The
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   0   –8  –16  –24  –32  –40  –48  –56  –64  –72  –80

P   –8   –2   –9  –17  –25  –33  –41  –49  –57  –65  –73

A  –16  –10   –3   –4  –12  –20  –28  –36  –44  –52  –60

W  –24  –18  –11   –6   –7  –15   –5  –13  –21  –29  –37

H  –32  –14  –18  –13   –8   –9  –13   –7   –3  –11  –19

E  –40  –22   –8  –16  –16   –9  –12  –15   –7    3   –5

A  –48  –30  –16   –3  –11  –11  –12  –12  –15   –5    2

E  –56  –38  –24  –11   –6  –12  –14  –15  –12   –9    1

 

HEAGAWGHE-E
--P-AW-HEAE

Figure 2.5 Above, the global dynamic programming matrix for our exam-
ple sequences, with arrows indicating traceback pointers; values on the op-
timal alignment path are shown in bold. (In degenerate cases where more
than one traceback has the same optimal score, only one arrow is shown.)
Below, a corresponding optimal alignment, which has total score 1.

values F(i ,0) represent alignments of a prefix of x to all gaps in y, so we can
define F(i ,0) = −id . Likewise down the left column F(0, j) = − jd .

The value in the final cell of the matrix, F(n,m), is by definition the best score
for an alignment of x1...n to y1...m , which is what we want: the score of the best
global alignment of x to y. To find the alignment itself, we must find the path
of choices from (2.8) that led to this final value. The procedure for doing this
is known as a traceback. It works by building the alignment in reverse, starting
from the final cell, and following the pointers that we stored when building the
matrix. At each step in the traceback process we move back from the current cell
(i , j) to the one of the cells (i − 1, j − 1), (i − 1, j) or (i , j − 1) from which the
value F(i , j) was derived. At the same time, we add a pair of symbols onto the
front of the current alignment: xi and yj if the step was to (i − 1, j − 1), xi and
the gap character ‘−’ if the step was to (i −1, j), or ‘−’ and yj if the step was to
(i , j −1). At the end we will reach the start of the matrix, i = j = 0. An example
of this procedure is shown in Figure 2.5.

Note that in fact the traceback procedure described here finds just one align-
ment with the optimal score; if at any point two of the derivations are equal, an
arbitrary choice is made between equal options. The traceback algorithm is easily
modified to recover more than one equal-scoring optimal alignment. The set of all
possible optimal alignments can be described fairly concisely using a sequence
graph structure [Altschul & Erickson 1986; Hein 1989a]. We will use sequence
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graph structures in Chapter 7 where we describe Hein’s algorithm for multiple
alignment.

The reason that the algorithm works is that the score is made of a sum of
independent pieces, so the best score up to some point in the alignment is the best
score up to the point one step before, plus the incremental score of the new step.

Big-O notation for algorithmic complexity

It is useful to know how an algorithm’s performance in CPU time and required
memory storage will scale with the size of the problem. From the algorithm
above, we see that we are storing (n + 1) × (m + 1) numbers, and each number
costs us a constant number of calculations to compute (three sums and a max).
We say that the algorithm takes O(nm) time and O(nm) memory, where n and m
are the lengths of the sequences. ‘O(nm)’ is a standard notation, called big-O no-
tation, meaning ‘of order nm’, i.e. that the computation time or memory storage
required to solve the problem scales as the product of the sequence lengths nm, up
to a constant factor. Since n and m are usually comparable, the algorithm is usu-
ally said to be O(n2). The larger the exponent of n, the less practical the method
becomes for long sequences. With biological sequences and standard computers,
O(n2) algorithms are feasible but a little slow, while O(n3) algorithms are only
feasible for very short sequences.

Exercises

2.8 Find a second equal-scoring optimal alignment in the dynamic program-
ming matrix in Figure 2.5.

2.9 Calculate the dynamic programming matrix and an optimal alignment
for the DNA sequences GAATTC and GATTA, scoring +2 for a match,
−1 for a mismatch, and with a linear gap penalty of d = 2.

Local alignment: Smith–Waterman algorithm

So far we have assumed that we know which sequences we want to align, and
that we are looking for the best match between them from one end to the other.
A much more common situation is where we are looking for the best alignment
between subsequences of x and y. This arises for example when it is suspected
that two protein sequences may share a common domain, or when comparing
extended sections of genomic DNA sequence. It is also usually the most sen-
sitive way to detect similarity when comparing two very highly diverged se-
quences, even when they may have a shared evolutionary origin along their entire
length. This is because usually in such cases only part of the sequence has been
under strong enough selection to preserve detectable similarity; the rest of the
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   0    0    0    0    0    0    0    0    0    0    0

P    0    0    0    0    0    0    0    0    0    0    0

A    0    0    0    5    0    5    0    0    0    0    0

W    0    0    0    0    2    0   20   12    4    0    0

H    0   10    2    0    0    0   12   18   22   14    6

E    0    2   16    8    0    0    4   10   18   28   20

A    0    0    8   21   13    5    0    4   10   20   27

E    0    0    6   13   18   12    4    0    4   16   26

 

AWGHE
AW-HE

Figure 2.6 Above, the local dynamic programming matrix for the example
sequences. Below, the optimal local alignment, with score 28.

sequence will have accumulated so much noise through mutation that it is no
longer alignable. The highest scoring alignment of subsequences of x and y is
called the best local alignment.

The algorithm for finding optimal local alignments is closely related to that
described in the previous section for global alignments. There are two differences.
First, in each cell in the table, an extra possibility is added to (2.8), allowing
F(i , j) to take the value 0 if all other options have value less than 0:

F(i , j) = max




0,
F(i −1, j −1)+ s(xi , yj ),
F(i −1, j)−d ,
F(i , j −1)−d .

(2.9)

Taking the option 0 corresponds to starting a new alignment. If the best alignment
up to some point has a negative score, it is better to start a new one, rather than
extend the old one. Note that a consequence of the 0 is that the top row and left
column will now be filled with 0s, not −id and − jd as for global alignment.

The second change is that now an alignment can end anywhere in the matrix,
so instead of taking the value in the bottom right corner, F(n,m), for the best
score, we look for the highest value of F(i , j) over the whole matrix, and start the
traceback from there. The traceback ends when we meet a cell with value 0, which
corresponds to the start of the alignment. An example is given in Figure 2.6,
which shows the best local alignment of the same two sequences whose best
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global alignment was found in Figure 2.5. In this case the local alignment is a
subset of the global alignment, but that is not always the case.

For the local alignment algorithm to work, the expected score for a random
match must be negative. If that is not true, then long matches between entirely
unrelated sequences will have high scores, just based on their length. As a con-
sequence, although the algorithm is local, the maximal scoring alignments would
be global or nearly global. A true subsequence alignment would be likely to be
masked by a longer but incorrect alignment, just because of its length. Similarly,
there must be some s(a,b) greater than 0, otherwise the algorithm won’t find any
alignment at all (it finds the best score or 0, whichever is higher).

What is the precise meaning of the requirement that the expected score of a
random match be negative? In the ungapped case, the relevant quantity to con-
sider is the expected value of a fixed length alignment. Because successive posi-
tions are independent, we need only consider a single residue position, giving the
condition ∑

a,b

qaqbs(a,b) < 0, (2.10)

where qa is the probability of symbol a at any given position in a sequence.
When s(a,b) is derived as a log likelihood ratio, as in the previous section, using
the same qa as for the random model probabilities, then (2.10) is always satisfied.
This is because

∑
a,b

qaqbs(a,b) = −
∑
a,b

qaqb log
qaqb

pab
= −H (q2||p)

where H (q2||p) is the relative entropy of distribution q2 = q ×q with respect to
distribution p, which is always positive unless q2 = p (see Chapter 11). In fact
H (q2||p) is a natural measure of how different the two distributions are. It is also,
by definition, a measure of how much information we expect per aligned residue
pair in an alignment.

Unfortunately we cannot give an equivalent analysis for optimal gapped align-
ments. There is no analytical method for predicting what gap scores will result in
local versus global alignment behaviour. However, this is a question of practical
importance when setting parameter values in the scoring system (the match and
gap scores s(a,b) and γ (g)), and tables have been generated for standard scoring
schemes showing local/global behaviour, along with other statistical properties
[Altschul & Gish 1996]. We will return to this subject later, when considering the
statistical significance of scores.

The local version of the dynamic programming sequence alignment algorithm
was developed in the early 1980s. It is frequently known as the Smith–Waterman
algorithm, after Smith & Waterman [1981]. Gotoh [1982] formulated the efficient
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   0    0    0    0    1    1    1    1    1    3    9

P    0    0    0    0    1    1    1    1    1    3    9

A    0    0    0    5    1    6    1    1    1    3    9

W    0    0    0    0    2    1   21   13    5    3    9

H    0   10    2    0    1    1   13   19   23   15    9

E    0    2   16    8    1    1    5   11   19   29   21

A    0    0    8   21   13    6    1    5   11   21   28

E    0    0    6   13   18   12    4    1    5   17   27

9

 

HEAGAWGHEE
HEA.AW-HE.

Figure 2.7 Above, the repeat dynamic programming matrix for the example
sequences, for T = 20 . Below, the optimal alignment, with total score 9 =
29 − 20. There are two separate match regions, with scores 1 and 8. Dots
are used to indicate unmatched regions of x.

affine gap cost version that is normally used (affine gap alignment algorithms are
discussed on page 30).

Repeated matches

The procedure in the previous section gave the best single local match between
two sequences. If one or both of the sequences are long, it is quite possible that
there are many different local alignments with a significant score, and in most
cases we would be interested in all of these. An example would be where there
are many copies of a repeated domain or motif in a protein. We give here a method
for finding such matches. This method is asymmetric: it finds one or more non-
overlapping copies of sections of one sequence (e.g. the domain or motif) in the
other. There is another widely used approach for finding multiple matches due to
Waterman & Eggert [1987], which will be described in Chapter 4.

Let us assume that we are only interested in matches scoring higher than some
threshold T . This will be true in general, because there are always short local
alignments with small positive scores even between entirely unrelated sequences.
Let y be the sequence containing the domain or motif, and x be the sequence in
which we are looking for multiple matches.

An example of the repeat algorithm is given in Figure 2.7. We again use the
matrix F , but the recurrence is now different, as is the meaning of F(i , j). In
the final alignment, x will be partitioned into regions that match parts of y in
gapped alignments, and regions that are unmatched. We will talk about the score
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of a completed match region as being its standard gapped alignment score minus
the threshold T . All these match scores will be positive. F(i , j) for j ≥ 1 is now
the best sum of match scores to x1...i , assuming that xi is in a matched region,
and the corresponding match ends in xi and yj (they may not actually be aligned,
if this is a gapped section of the match). F(i ,0) is the best sum of completed
match scores to the subsequence x1...i , i.e. assuming that xi is in an unmatched
region.

To achieve the desired goal, we start by initialising F(0,0) = 0 as usual, and
then fill the matrix using the following recurrence relations:

F(i ,0) = max

{
F(i −1,0),
F(i −1, j)− T , j = 1, . . . ,m;

(2.11)

F(i , j) = max




F(i ,0),
F(i −1, j −1)+ s(xi , yj ),
F(i −1, j)−d ,
F(i , j −1)−d .

(2.12)

Equation (2.11) handles unmatched regions and ends of matches, only al-
lowing matches to end when they have score at least T . Equation (2.12) han-
dles starts of matches and extensions. The total score of all the matches is ob-
tained by adding an extra cell to the matrix, F(n +1,0), using (2.11). This score
will have T subtracted for each match; if there were no matches of score
greater than T it will be 0, obtained by repeated application of the first option
in (2.11).

The individual match alignments can be obtained by tracing back from cell
(n + 1,0) to (0,0), at each point going back to the cell that was the source of
the score in the current cell in the max() operation. This traceback procedure is
a global procedure, showing what each residue in x will be aligned to. The re-
sulting global alignment will contain sections of more conventional gapped local
alignments of subsequences of x to subsequences of y.

Note that the algorithm obtains all the local matches in one pass. It finds the
maximal scoring set of matches, in the sense of maximising the combined total
of the excess of each match score above the threshold T . Changing the value of T
changes what the algorithm finds. Increasing T may exclude matches. Decreasing
it may split them, as well as finding new weaker ones. A locally optimal match in
the sense of the preceding section will be split into pieces if it contains internal
subalignments scoring less than −T . However, this may be what is wanted: given
two similar high scoring sections significant in their own right, separated by a
non-matching section with a strongly negative score, it is not clear whether it is
preferable to report one match or two.
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Overlap matches

Another type of search is appropriate when we expect that one sequence contains
the other, or that they overlap. This often occurs when comparing fragments of
genomic DNA sequence to each other, or to larger chromosomal sequences. Sev-
eral different types of configuration can occur, as shown here:

y

x

x

y

y

x

x

y

What we want is really a type of global alignment, but one that does not penalise
overhanging ends. This gives a clue to what sort of algorithm to use: we want
a match to start on the top or left border of the matrix, and finish on the right
or bottom border. The initialisation equations are therefore that F(i ,0) = 0 for
i = 1, . . . ,n and F(0, j) = 0 for j = 1, . . . ,m, and the recurrence relations within
the matrix are simply those for a global alignment (2.8). We set Fmax to be the
maximum value on the bottom border (i ,m), i = 1, . . . ,n, and the right border
(n, j), j = 1, . . . ,m. The traceback starts from the maximum point and continues
until the top or left edge is reached.

There is a repeat version of this overlap match algorithm, in which the ana-
logues of (2.11) and (2.12) are

F(i ,0) = max

{
F(i −1,0),
F(i −1,m)− T ;

(2.13)

F(i , j) = max




F(i −1, j −1)+ s(xi , yj ),
F(i −1, j)−d ,
F(i , j −1)−d .

(2.14)

Note that the line (2.13) in the recursion for F(i ,0) is now just looking at com-
plete matches to y1...m , rather than all possible subsequences of y as in (2.11) in
the previous section. However, (2.11) is still used in its original form for obtain-
ing F(n + 1,0), so that matches of initial subsequences of y to the end of x can
be obtained.

Hybrid match conditions

By now it should be clear that a wide variety of different dynamic programming
variants can be formulated. All of the alignment methods given above have been
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   0    0    0    0    0    0    0    0    0    0    0

P    0   –2   –1   –1   –2   –1   –4   –2   –2   –1   –1

A    0   –2   –3    4   –1    3   –4   –4   –4   –3   –2

W    0   –3   –5   –4    1   –4   18   10    2   –6   –6

H    0   10    2   –6   –6   –1   10   16   20   12    4

E    0    2   16    8    0   –7    2    8   16   26   18

A    0   –2    8   21   13    5   –3    2    8   18   25

E    0    0    4   13   18   12    4   –4    2   14   24

 

GAWGHEE
PAW-HEA

Figure 2.8 Above, the overlap dynamic programming matrix for the exam-
ple sequences. Below, the optimal overlap alignment, with score 25.

expressed in terms of a matrix F(i , j), with various differing boundary conditions
and recurrence rules. Given the common framework, we can see how to provide
hybrid algorithms. We have already seen one example in the repeat version of the
overlap algorithm. There are many possible further variants.

For example, where a repetitive sequence y tends to be found in tandem copies
not separated by gaps, it can be useful to replace (2.14) for j = 1 with

F(i ,1) = max




F(i −1,0)+ s(xi , y1),
F(i −1,m)+ s(xi , y1),
F(i −1,1)−d ,
F(i ,0)−d .

This allows a bypass of the −T penalty in (2.11), so the threshold applies only
once to each tandem cluster of repeats, not once to each repeat.

Another example might be if we are looking for a match that starts at the be-
ginning of both sequences but can end at any point. This would be implemented
by setting only F(0,0) = 0, using (2.8) in the recurrence, but allowing the match
to end at the largest value in the whole matrix.

In fact, it is even possible to consider mixed boundary conditions where, for
example, there is thought to be a significant prior probability that an entire copy of
a sequence will be found in a larger sequence, but also some probability that only
a fragment will be present. In this case we would set penalties on the boundaries
or for starting internal matches, calculating the penalty costs as the logarithms
of the respective probabilities. Such a model would be appropriate when looking
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for members of a repeat family in genomic DNA, since normally these are whole
copies of the repeat, but sometimes only fragments are seen.

When performing a sequence similarity search we should ideally always con-
sider what types of match we are looking for, and use the most appropriate algo-
rithm for that case. In practice, there are often only good implementations avail-
able of a few of the standard cases, and it is often more convenient to use those,
and postprocess the resulting matches afterwards.

2.4 Dynamic programming with more complex models

So far we have only considered the simplest gap model, in which the gap score
γ (g) is a simple multiple of the length. This type of scoring scheme is not ideal
for biological sequences: it penalises additional gap steps as much as the first,
whereas, when gaps do occur, they are often longer than one residue. If we are
given a general function for γ (g) then we can still use all the dynamic program-
ming versions described in Section 2.3, with adjustments to the recurrence rela-
tions as typified by the following:

F(i , j) = max




F(i −1, j −1)+ s(xi , yj ),
F(k, j)+γ (i − k), k = 0, . . . , i −1,
F(i ,k)+γ ( j − k), k = 0, . . . , j −1.

(2.15)

which gives a replacement for the basic global dynamic relation. However, this
procedure now requires O(n3) operations to align two sequences of length n,
rather than O(n2) for the linear gap cost version, because in each cell (i , j) we
have to look at i + j +1 potential precursors, not just three as previously. This is
a prohibitively costly increase in computational time in many cases. Under some
conditions on the properties of γ () the search in k can be bounded, returning the
expected computational time to O(n2), although the constant of proportionality
is higher in these cases [Miller & Myers 1988].

Alignment with affine gap scores

The standard alternative to using (2.15) is to assume an affine gap cost structure
as in (2.5): γ (g) = −d − (g −1)e. For this form of gap cost there is once again an
O(n2) implementation of dynamic programming. However, we now have to keep
track of multiple values for each pair of residue coefficients (i , j) in place of the
single value F(i , j). We will initially explain the process in terms of three vari-
ables corresponding to the three separate situations shown in Figure 2.4, which
we show again here for convenience.

I G A xi

L G V yj

A I G A xi

G V yj − −
G A xi − −
S L G V yj



30 2 Pairwise alignment

M
(+1,+1)

Iy
(+0,+1)

Ix
(+1,+0) -e

-e

-d

-d

s(xi,yj)

s(xi,yj)

s(xi,yj)

Figure 2.9 A diagram of the relationships between the three states used for
affine gap alignment.

Let M(i , j) be the best score up to (i , j) given that xi is aligned to yj (left case),
Ix (i , j) be the best score given that xi is aligned to a gap (in an insertion with
respect to y, central case), and finally Iy(i , j) be the best score given that yj is in
an insertion with respect to x (right case).

The recurrence relations corresponding to (2.15) now become

M(i , j) = max




M(i −1, j −1)+ s(xi , yj ),
Ix (i −1, j −1)+ s(xi , yj ),
Iy(i −1, j −1)+ s(xi , yj );

(2.16)

Ix (i , j) = max

{
M(i −1, j)−d ,
Ix (i −1, j)− e;

Iy(i , j) = max

{
M(i , j −1)−d ,
Iy(i , j −1)− e.

In these equations, we assume that a deletion will not be followed directly by an
insertion. This will be true for the optimal path if −d − e is less than the lowest
mismatch score. As previously, we can find the alignment itself using a traceback
procedure.

The system defined by equations (2.16) can be described very elegantly by the
diagram in Figure 2.9. This shows a state for each of the three matrix values, with
transition arrows between states. The transitions each carry a score increment,
and the states each specify a �(i , j) pair, which is used to determine the change
in indices i and j when that state is entered. The recurrence relation for updating
each matrix value can be read directly from the diagram (compare Figure 2.9 with
equations (2.16)). The new value for a state variable at (i , j) is the maximum of
the scores corresponding to the transitions coming into the state. Each transition
score is given by the value of the source state at the offsets specified by the �(i , j)
pair of the target state, plus the specified score increment. This type of description
corresponds to a finite state automaton (FSA) in computer science. An alignment
corresponds to a path through the states, with symbols from the underlying pair
of sequences being transferred to the alignment according to the �(i , j) values in
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the states. An example of a short alignment and corresponding state path through
the affine gap model is shown in Figure 2.10.

It is in fact frequent practice to implement an affine gap cost algorithm using
only two states, M and I, where I represents the possibility of being in a gapped
region. Technically, this is only guaranteed to provide the correct result if the
lowest mismatch score is greater than or equal to −2e. However, even if there are
mismatch scores below −2e, the chances of a different alignment are very small.
Furthermore, if one does occur it would not matter much, because the alignment
differences would be in a very poorly matching gapped region. The recurrence
relations for this version are

M(i , j) = max

{
M(i −1, j −1)+ s(xi , yj ),
I (i −1, j −1)+ s(xi , yj );

I (i , j) = max




M(i , j −1)−d ,
I (i , j −1)− e,
M(i −1, j)−d ,
I (i −1, j)− e.

These equations do not correspond to an FSA diagram as described above, be-
cause the I state may be used for �(1,0) or �(0,1) steps. There is, however, an
alternative FSA formulation in which the �(i , j) values are associated with the
transitions, rather than the states. This type of automaton can account for the
two-state affine gap algorithm, using extra transitions for the deletion and inser-
tion alternatives. In fact, the standard one-state algorithm for linear gap costs can
be expressed as a single-state transition emitting FSA with three transitions cor-
responding to different �(i , j) values (�(1,1), �(1,0) and �(0,1)). For those
interested in pursuing the subject, the simpler state-based automata are called
Moore machines in the computer science literature, and the transition-emitting
systems are called Mealy machines (see Chapter 9).

 V   L   S   P   A   D   -   K
 H   L   -   -   A   E   S   K

M M M M M

Iy

Ix

Ix

Ix

Figure 2.10 An example of the state assignments for an alignment using
the affine gap model.
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Iy
(+0,+1)

Ix
(+1,+0)

-e

-e
-d

-d

t(xi,yj)

t(xi,yj)

B
(+1,+1)

t(xi,yj)

s(xi,yj)
A

(+1,+1)

s(xi,yj)

t(xi,yj)

Figure 2.11 The four-state finite state automaton with separate match
states A and B for high and low fidelity regions. Note that this FSA emits on
transitions with costs s(xi , yj ) and t(xi , yj ), rather than emitting on states,
a distinction discussed earlier in the text.

More complex FSA models

One advantage of the FSA description of dynamic programming algorithms is
that it is easy to see how to generate new types of algorithm. An example is
given in Figure 2.11, which shows a four-state FSA with two match states. The
idea here is that there may be high fidelity regions of alignment without gaps,
corresponding to match state A, separated by lower fidelity regions with gaps,
corresponding to match state B and gap states Ix and Iy . The substitution scores
s(a,b) and t(a,b) can be chosen to reflect the expected degrees of similarity in
the different regions. Similarly, FSA algorithms can be built for alignments of
transmembrane proteins with separate match states for intracellular, extracellular
or transmembrane regions, or for other more complex scenarios [Birney & Durbin
1997]. Searls & Murphy [1995] give a more abstract definition of such FSAs and
have developed interactive tools for building them.

One feature of these more complex algorithms is that, given an alignment path,
there is also an implicit attachment of labels to the symbols in the original se-
quences, indicating which state was used to match them. For example, with the
transmembrane protein matching model, the alignment will assign sections of
each protein to be transmembrane, intracellular or extracellular at the same time
as finding the optimal alignment. In many cases this labelling of the sequence
may be as important as the alignment information itself.

We will return to state models for pairwise alignment in Chapter 4.

Exercise

2.10 Calculate the score of the example alignment in Figure 2.10, with d =
12,e = 2.
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2.5 Heuristic alignment algorithms

So far, all the alignment algorithms we have considered have been ‘correct’, in
the sense that they are guaranteed to find the optimal score according to the spec-
ified scoring scheme. In particular, the affine gap versions described in the last
section are generally regarded as providing the most sensitive sequence matching
methods available. However, they are not the fastest available sequence alignment
methods, and in many cases speed is an issue. The dynamic programming algo-
rithms described so far have time complexity of the order of O(nm), the product
of the sequence lengths. The current protein database contains of the order of 100
million residues, so for a sequence of length one thousand, approximately 1011

matrix cells must be evaluated to search the complete database. At ten million
matrix cells a second, which is reasonable for a single workstation at the time
this is being written, this would take 104 seconds, or around three hours. If we
want to search with many different sequences, time rapidly becomes an important
issue.

For this reason, there have been many attempts to produce faster algorithms
than straight dynamic programming. The goal of these methods is to search
as small a fraction as possible of the cells in the dynamic programming ma-
trix, while still looking at all the high scoring alignments. In cases where se-
quences are very similar, there are a number of methods based on extending com-
puter science exact match string searching algorithms to non-exact cases, that
provably find the optimal match [Chang & Lawler 1990; Wu & Manber 1992;
Myers 1994]. However, for the scoring matrices used to find distant matches,
these exact methods become intractable, and we must use heuristic approaches
that sacrifice some sensitivity, in that there are cases where they can miss the
best scoring alignment. A number of heuristic techniques are available. We give
here brief descriptions of two of the best-known algorithms, BLAST and FASTA,
to illustrate the types of approaches and trade offs that can be made. However, a
detailed analysis of heuristic algorithms is beyond the scope of this book.

BLAST

The BLAST package [Altschul et al. 1990] provides programs for finding high
scoring local alignments between a query sequence and a target database, both
of which can be either DNA or protein. The idea behind the BLAST algorithm is
that true match alignments are very likely to contain somewhere within them a
short stretch of identities, or very high scoring matches. We can therefore look
initially for such short stretches and use them as ‘seeds’, from which to extend
out in search of a good longer alignment. By keeping the seed segments short, it
is possible to pre-process the query sequence to make a table of all possible seeds
with their corresponding start points.
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BLAST makes a list of all ‘neighbourhood words’ of a fixed length (by default
3 for protein sequences, and 11 for nucleic acids), that would match the query
sequence somewhere with score higher than some threshold, typically around
2 bits per residue. It then scans through the database, and whenever it finds a
word in this set, it starts a ‘hit extension’ process to extend the possible match
as an ungapped alignment in both directions, stopping at the maximum scoring
extension (in fact, because of the way this is done, there is a small chance that it
will stop short of the true maximal extension).

The most widely used implementation of BLAST finds ungapped alignments
only. Perhaps surprisingly, restricting to ungapped alignments misses only a small
proportion of significant matches, in part because the expected best score of un-
related sequences drops, so partial ungapped scores can still be significant, and
also because BLAST can find and report more than one high scoring match per
sequence pair and can give significance values for combined scores [Karlin &
Altschul 1993]. Nonetheless, new versions of BLAST have recently become avail-
able that give gapped alignments [Altschul & Gish 1996; Altschul et al. 1997].

FASTA

Another widely used heuristic sequence searching package is FASTA [Pearson &
Lipman 1988]. It uses a multistep approach to finding local high scoring align-
ments, starting from exact short word matches, through maximal scoring un-
gapped extensions, to finally identify gapped alignments.

The first step uses a lookup table to locate all identically matching words of
length ktup between the two sequences. For proteins, ktup is typically 1 or 2, for
DNA it may be 4 or 6. It then looks for diagonals with many mutually supporting
word matches. This is a very fast operation, which for example can be done by
sorting the matches on the difference of indices (i − j).

The best diagonals are pursued further in step (2), which is analogous to the hit
extension step of the BLAST algorithm, extending the exact word matches to find
maximal scoring ungapped regions (and in the process possibly joining together
several seed matches).

Step (3) then checks to see if any of these ungapped regions can be joined
by a gapped region, allowing for gap costs. In the final step, the highest scoring
candidate matches in a database search are realigned using the full dynamic pro-
gramming algorithm, but restricted to a subregion of the dynamic programming
matrix forming a band around the candidate heuristic match.

Because the last stage of FASTA uses standard dynamic programming, the
scores it produces can be handled exactly like those from the full algorithms de-
scribed earlier in the chapter. There is a tradeoff between speed and sensitivity in
the choice of the parameter ktup: higher values of ktup are faster, but more likely
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to miss true significant matches. To achieve sensitivities close to those of full
local dynamic programming for protein sequences it is necessary to set ktup = 1.

2.6 Linear space alignments

Aside from time, another computational resource that can limit dynamic pro-
gramming alignment is memory usage. All the algorithms described so far cal-
culate score matrices such as F(i , j), which have overall size nm, the product of
the sequence lengths. For two protein sequences, of typical length a few hundred
residues, this is well within the capacity of modern desktop computers; but if one
or both of the sequences is a DNA sequence tens or hundreds of thousands of
bases long, the required memory for the full matrix can exceed a machine’s phys-
ical capacity. Fortunately, we are in a better situation with memory than speed:
there are techniques that give the optimal alignment in limited memory, of order
n +m rather than nm, with no more than a doubling in time. These are commonly
referred to as linear space methods. Underlying them is an important basic tech-
nique in pairwise sequence dynamic programming.

In fact, if only the maximal score is needed, the problem is simple. Since the
recurrence relation for F(i , j) is local, depending only on entries one row back,
we can throw away rows of the matrix that are further than one back from the
current point. If looking for a local alignment we need to find the maximum
score in the whole matrix, but it is easy to keep track of the maximum value as
the matrix is being built. However, while this will get us the score, it will not find
the alignment; if we throw away rows to avoid O(nm) storage, then we also lose
the traceback pointers. A new approach must be used to obtain the alignment.

Let us assume for now that we are looking for the optimal global alignment,
using linear gap scoring. The method will extend easily to the other types of
alignment. We use the principle of divide and conquer.

Let u = � n
2�, the integer part of n

2 . Let us suppose for now that we can identify
a v such that cell (u,v) is on the optimal alignment, i.e. v is the row where the
alignment crosses the i = u column of the matrix. Then we can split the dynamic
programming problem into two parts, from top left (0,0) to (u,v), and from (u,v)
to (n,m). The optimal alignment for the whole matrix will be the concatenation
of the optimal alignments for these two separate submatrices. (For this to work
precisely, define the alignment not to include the origin.) Once we have split
the alignment once, we can fill in the whole alignment recursively, by succes-
sively halving each region, at every step pinning down one more aligned pair of
residues. This can either continue down until sequences of zero length are being
aligned, which is trivial and means that the region is completely specified, or al-
ternatively, when the sequences are short enough, the standard O(n2) alignment
and traceback method can be used.
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So how do we find v? For i ≥ u let us define c(i , j) such that (u,c(i , j)) is
on the optimal path from (1,1) to (i , j). We can update c(i , j) as we calculate
F(i , j). If (i ′, j ′) is the preceding cell to (i , j) from which F(i , j) is derived, then
set c(i , j) = j if i = u, else c(i , j) = c(i ′, j ′). Clearly this is a local operation, for
which we only need to maintain the previous row of c(), just as we only maintain
the previous row of F(). We can now read out from the final cell of the matrix the
value we desire: v = c(n,m).

As far as we are aware, this procedure for finding v has not been published
by any of the people who use it. A more widely known procedure first appeared
in the computer science literature [Hirschberg 1975] and was introduced into
computational biology by Myers & Miller [1988], and thus is usually called the
Myers–Miller algorithm in the sequence analysis field. The Myers–Miller algo-
rithm does not propagate the traceback pointer c(i , j), but instead finds the align-
ment midpoint (u,v) by combining the results of forward and backward dynamic
programming passes at row u (see their paper for details). Myers–Miller is an
elegant recursive algorithm, but it is a little more difficult to explain in detail.
Waterman [1995, p. 211] gives a third linear space approach. Chao, Hardison &
Miller [1994] give a review of linear space algorithms in pairwise alignment.

Exercises

2.11 Fill in the correct values of c(i , j) for the global alignment of the example
pair of sequences in Figure 2.5 for the first pass of the algorithm (u = 5).

2.12 Show that the time required by the linear space algorithm is only about
twice that of the standard O(nm) algorithm.

2.7 Significance of scores

Now that we know how to find an optimal alignment, how can we assess the sig-
nificance of its score? That is, how do we decide if it is a biologically meaningful
alignment giving evidence for a homology, or just the best alignment between
two entirely unrelated sequences? There are two possible approaches. One is
Bayesian in flavour, based on the comparison of different models. The other is
based on the traditional statistical approach of calculating the chance of a match
score greater than the observed value, assuming a null model, which in this case
is that the underlying sequences were unrelated.

The Bayesian approach: model comparison

We gave the log-odds ratio on p. 15 as the relevant score without much mo-
tivation. We might argue that what is really wanted is the probability that the
sequences are related as opposed to being unrelated, which would be P(M |x , y),
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rather than the likelihood calculated above, P(x , y|M). P(M |x , y) can be calcu-
lated using Bayes’ rule, once we state some more assumptions. First we must
specify the a priori probabilities of the two models. These reflect our expectation
that the sequences are related before we actually see them. We will write these
as P(M), the prior probability that the sequences are related, and hence that the
match model is correct, and P(R) = 1− P(M), the prior probability that the ran-
dom model is correct. Then once we have seen the data the posterior probability
that the match model is correct, and hence that the sequences are related, is

P(M |x , y) = P(x , y|M)P(M)

P(x , y)

= P(x , y|M)P(M)

P(x , y|M)P(M)+ P(x , y|R)P(R)

= P(x , y|M)P(M)/P(x , y|R)P(R)

1+ P(x , y|M)P(M)/P(x , y|R)P(R)
.

Let

S′ = S + log

(
P(M)

P(R)

)
(2.17)

where

S = log

(
P(x , y|M)

P(x , y|R)

)

is the log-odds score of the alignment. Then

P(M |x , y) = σ (S′)

where

σ (x) = ex

1+ ex
.

σ (x) is known as the logistic function. It is a sigmoid function, tending to 1 as x
tends to infinity, to 0 as x tends to minus infinity, and with value 1

2 at x = 0 (see
Figure 2.12). The logistic function is widely used in neural network analysis to
convert scores built from sums into probabilities – not entirely a coincidence.

From (2.17) we can see that we should add the prior log-odds ratio, log
( P(M)

P(R)

)
,

to the standard score of the alignment. This corresponds to multiplying the likeli-
hood ratio by the prior odds ratio, which makes intuitive sense. Once this has been
done we can in principle compare the resulting value with 0 to indicate whether
the sequences are related. For this to work, we have to be very careful that all the
expressions we use really are probabilities, and in particular that when we sum
them over all possible pairs of sequences that might have been given they sum to
1. When a scoring scheme is constructed in an ad hoc fashion this is unlikely to
be true.
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Figure 2.12 The logistic function.

A particular example of where the prior odds ratio becomes important is when
we are looking at a large number of different alignments for a possible significant
match. This is the typical situation when searching a database. It is clear that if we
have a fixed prior odds ratio, then even if all the database sequences are unrelated,
as the number of sequences we try to match increases, the probability of one of
the matches looking significant by chance will also increase. In fact, given a fixed
prior odds ratio, the expected number of (falsely) significant observations will
increase linearly. If we want it to stay fixed, then we must set the prior odds ratio
in inverse proportion to the number of sequences in the database N . The effect of
this is that to maintain a fixed number of false positives we should compare S with
log N , not 0. A conservative choice would be to choose a score that corresponds
to an expected number of false positives of say 0.1 or 0.01. Of course, this type
of approach is not necessarily appropriate. For example, we may believe that 1%
of all proteins are kinases, in which case the prior odds should be 1

100 , and the
expectation is that although false positives will increase as more sequences are
looked at, so will true positives. On the other hand, if we believe that we will be
looking for cases where one match in the whole database will be significant, then
the log N comparison is more reasonable.

At this point we can turn to consider the statistical significance of a score ob-
tained from the local match algorithm. In this case we have to correct for the fact
that we are looking at the best of many possible different local matches between
subsequences of the two sequences. A simple estimate of the number of start
points of local matches is the product of the lengths of the sequences, nm. If all
matches were constant length and all start points gave independent matches, this
would result in a requirement to compare the best score S with log(nm). How-
ever, these assumptions are both clearly wrong (for instance, match segments at
consecutive points along a diagonal are not independent), with the consequence
that a further small correction factor should be added to S, dependent only on
the scoring function s, but not on n and m. There is no analytical theory for this
effect, but for scoring systems typically used when comparing protein sequences



2.7 Significance of scores 39

it seems that a multiplicative factor of around 0.1 is appropriate. Since what we
care about is an additive term of the logarithm of this factor, the effect is compar-
atively small.

The classical approach: the extreme value distribution

There is an alternative way to consider significance in such situations, using a
more classical statistical framework. We can look at the distribution of the max-
imum of N match scores to independent random sequences. If the probability
of this maximum being greater than the observed best score is small, then the
observation is considered significant.

In the simple case of a fixed ungapped alignment (2.2), the score of a match
to a random sequence is the sum of many similar random variables, and so will
be very well approximated by a normal distribution. The asymptotic distribution
of the maximum MN of a series of N independent normal random variables is
known, and has the form

P(MN ≤ x) � exp(−K Neλ(x−µ)) (2.18)

for some constants K ,λ. This form of limiting distribution is called the extreme
value distribution or EVD (Chapter 11). We can use equation (2.18) to calculate
the probability that the best match from a search of a large number N of unrelated
sequences has score greater than our observed maximal score, S. If this is less
than some small value, such as 0.05 or 0.01, then we can conclude that it is
unlikely that the sequence giving rise to the observed maximal score is unrelated,
i.e. it is likely that it is related.

It turns out that, even when the individual scores are not normally distributed,
the extreme value distribution is still the correct limiting distribution for the max-
imum of a large number of separate scores (see Chapter 11). Because of this, the
same type of significance test can be used for any search method that looks for the
best score from a large set of equivalent possibilities. Indeed, for best local match
scores from the local alignment algorithm, the best score between two (signifi-
cantly long) sequences will itself be distributed according to the extreme value
distribution, because in this case we are effectively comparing the outcomes of
O(nm) distinct random starts within the single matrix.

For local ungapped alignments, Karlin & Altschul [1990] derived the appro-
priate EVD distribution analytically, using results given more fully in Dembo &
Karlin [1991]. We give this here in two steps. First, the number of unrelated
matches with score greater than S is approximately Poisson distributed, with
mean

E(S) = K mne−λS , (2.19)
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where λ is the positive root of ∑
a,b

qaqbeλs(a,b) = 1, (2.20)

and K is a constant given by a geometrically convergent series also dependent
only on the qa and s(a,b). This K corresponds directly to the multiplicative
factor we described at the end of the previous section; it corrects for the non-
independence of possible starting points for matches. The value λ is really a scale
parameter, to convert the s(a,b) into a natural scale. Note that if the s(a,b) were
initially derived as log likelihood quantities using equation (2.3) then λ = 1, be-
cause eλs(a,b) = pab/qaqb.

The probability that there is a match of score greater than S is then

P(x > S) = 1− e−E(S). (2.21)

It is easy to see that combining equations (2.19) and (2.21) gives a distribution
of the same EVD form as (2.18), but without µ. In fact, it is common not to
bother with calculating a probability, but just to use a requirement that E(S) is
significantly less than 1. This converts into a requirement that

S > T + logmn

λ
(2.22)

for some fixed constant T . This corresponds to the Bayesian analysis in the pre-
vious section suggesting that we should compare S with logmn, but in this case
we can assign a precise meaning to the value of T that we use.

Although no corresponding analytical theory has yet been derived for gapped
alignments, Mott [1992] suggested that gapped alignment scores for random se-
quences follow the same form of extreme value distribution as ungapped scores,
and there is now considerable empirical evidence to support this. Altschul & Gish
[1996] have fit λ and K values for (2.19) for a range of standard protein alignment
scoring schemes, using a large amount of randomly generated sample data.

Correcting for length

When searching a database of mixed length sequences, the best local matches to
longer database sequences tend to have higher scores than the best local matches
to shorter sequences, even when all the sequences are unrelated. An example is
shown in Figure 2.13. This is not surprising: if our search sequence has length
n and the database sequences have length mi , then there are more possible start
points in the nmi matrix for larger mi . However, if our prior expectation is that a
match to any database entry should be equally likely, then we want random match
scores to be comparable independent of length.

A theoretically justifiable correction for length dependence is that we should
adjust the best score for each database entry by subtracting log(mi ). This follows
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Figure 2.13 Left, a scatter plot of the distribution of local match scores
obtained from comparing human cytochrome C (SWISS-PROT accession
code P000001) against the SWISS-PROT34 protein database with the
Smith–Waterman implementation SSEARCH [Pearson 1996]. Right, the cor-
responding length-normalised distribution of scores, showing the fit to an
EVD distribution.

from the expression for S′ in the previous section. An alternative, which appears
to perform slightly better in practice and is easily carried out when there are large
numbers of sequences being searched, is to bin all the database entries by length,
and then fit a linear function of the log sequence length [Pearson 1995] (the sep-
aration of ‘background’ from signal makes this a little tricky to implement).

Why use the alignment score as the test statistic?

So far in this section we have always assumed that we will use the same alignment
score as a test statistic for the alignment’s significance as was used to find the best
match during the search phase. It might seem attractive to search for a match with
one criterion, then evaluate it with another, uncorrelated one. This would seem to
prevent the problem that the search phase increases the background level when
testing. However, we need both the search and significance test to have as much
discriminative power as possible. It is important to use the best available statistic
for both. If we miss a genuinely related alignment in the search phase, then we
obviously can’t consider it when testing for significance.

A consequence of using the test statistic for searching is that the best match
in unrelated sequences will tend to look qualitatively like a real match. As a
striking example of this, Karlin & Altschul [1990] showed that when optimal
local ungapped alignments are found between random sequences, the frequency
of observing residue a aligned to residue b in these alignments will be qaqbeλs(a,b),
i.e. exactly the frequency pab with which we expect to observe a being aligned
to b in our true, evolutionarily matched model. The only property we can use to
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discriminate true from false matches is the magnitude of the score, the expectation
of which is proportional to the length of the match.

Of course, it may be that there are complex calculations involved in the most
sensitive scoring scheme, which could not practically be implemented during the
search stage. In this case, it may be necessary to search with a simpler score, but
keep several alternative high scoring alignments, rather than simply the best one.
We give methods for obtaining such suboptimal alignments in Chapter 4.

2.8 Deriving score parameters from alignment data

We finish this chapter by returning to the subject of the first section: how to de-
termine the components of the scoring model, the substitution and gap scores.
There we described how to derive scores for pairwise alignment algorithms from
probabilities. However, this left open the issue of how to estimate the probabili-
ties. It should be clear that the performance of our whole alignment system will
depend on the values of these parameters, so considerable care has gone into their
estimation.

A simple and obvious approach would be to count the frequencies of aligned
residue pairs and of gaps in confirmed alignments, and to set the probabilities
pab, qa and f (g) to the normalised frequencies. (This corresponds to obtaining
maximum likelihood estimates for the probabilities; see Chapter 11.)

There are two difficulties with this simple approach. The first is that of obtain-
ing a good random sample of confirmed alignments. Alignments tend not to be
independent from each other because protein sequences come in families. The
second is more subtle. In truth, different pairs of sequences have diverged by
different amounts. When two sequences have diverged from a common ancestor
very recently, we expect many of their residues to be identical. The probabil-
ity pab for a �= b should be small, and hence s(a,b) should be strongly nega-
tive unless a = b. At the other extreme, when a long time has passed since two
sequences diverged, we expect pab to tend to the background frequency qaqb,
so s(a,b) should be close to zero for all a,b. This suggests that we should use
scores that are matched to the expected divergence of the sequences we wish to
compare.

Dayhoff PAM matrices

Dayhoff, Schwartz & Orcutt [1978] took both these difficulties into consideration
when defining their PAM matrices, which have been very widely used for practical
protein sequence alignment. The basis of their approach is to obtain substitution
data from alignments between very similar proteins, allowing for the evolutionary
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relationships of the proteins in families, and then extrapolate this information to
longer evolutionary distances.

They started by constructing hypothetical phylogenetic trees relating the se-
quences in 71 families, where each pair of sequences differed by no more than
15% of their residues. To build the trees they used the parsimony method (Chap-
ter 7), which provides a list of the residues that are most likely to have occurred
at each position in each ancestral sequence. From this they could accumulate an
array Aab containing the frequencies of all pairings of residues a and b between
sequences and their immediate ancestors on the tree. The evolutionary direction
of this pairing was ignored, both Aab and Aba being incremented each time either
an a in the ancestral sequence was replaced by a b in the descendant, or vice
versa. Basing the counts on the tree avoided overcounting substitutions because
of evolutionary relatedness.

Because they wanted to extrapolate to longer times, the primary value that
they needed to estimate was not the joint probability pab of seeing a aligned to
b, but instead the conditional probability P(b|a, t) that residue a is substituted
by b in time t . P(b|a, t) = pab(t)/qa . We can calculate conditional probabilities
for a long time interval by multiplying those for a short interval, as shown be-
low. These conditional probabilities are known as substitution probabilities; they
play an important part in phylogenetic tree building (see Chapter 8). The short
time interval estimates for P(b|a) can be derived from the Aab matrix by setting
P(b|a) = Ba,b = Aab/

∑
c Aac.

These values must next be adjusted to correct for divergence time t . The ex-
pected frequency of substitutions in a ‘typical’ protein, where the residue a oc-
curs at the frequency qa , is

∑
a �=b qaqb Bab. Dayhoff et al. defined a substitution

matrix to be a 1 PAM matrix (an acronym for ‘point accepted mutation’) if the
expected number of substitutions was 1%, i.e. if

∑
a,b qaqb Bab = 0.01. To turn

their B matrix into a 1 PAM matrix of substitution probabilities, they scaled the
off-diagonal terms by a factor σ and adjusted the diagonal terms to keep the sum
of a row equal to 1. More precisely, they defined Cab = σ Bab for a �= b, and
Caa = σ Baa + (1 − σ ), with σ chosen to make C into a 1 PAM matrix; we will
denote this 1 PAM C by S(1). Its entries can be regarded as the probability of
substituting a with b in unit time, P(b|a, t = 1).

To generate substitution matrices appropriate to longer times, S(1) is raised to
a power n (multiplying the matrix by itself n times), giving S(n) = S(1)n . For
instance, S(2), the matrix product of S(1) with itself, has entries P(a|b, t = 2) =∑

c P(a|c, t = 1)P(c|b, t = 1), which are the probabilities of the substitution of b
by a occurring via some intermediate, c. For small n, the off-diagonal entries in-
crease approximately linearly with n. Another way to view this is that the matrix
S(n) represents the result of n steps of a Markov chain with 20 states, correspond-
ing to the 20 amino acids, each step having transition probabilities given by S(1)
(Markov chains will be introduced fully in Chapter 3).
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Finally, a matrix of scores is obtained from S(t). Since P(b|a) = pab/qa , the
entries of the score matrix for time t are given by

s(a,b|t) = log
P(b|a, t)

qb
.

These values are scaled and rounded to the nearest integer for computational
convenience. The most widely used matrix is PAM250, which is scaled by 3/log2
to give scores in third-bits.

BLOSUM matrices

The Dayhoff matrices have been one of the mainstays of sequence comparison
techniques, but they do have their limitations. The entries in S(1) arise mostly
from short time interval substitutions, and raising S(1) to a higher power, to give
for instance a PAM250 matrix, does not capture the true difference between short
time substitutions and long term ones [Gonnet, Cohen & Benner 1992]. The for-
mer are dominated by amino acid substitutions that arise from single base changes
in codon triplets, for example L ↔ I, L ↔ V or Y ↔ F, whereas the latter show
all types of codon changes.

Since the PAM matrices were made, databases have been formed containing
multiple alignments of more distantly related proteins, and these can be used
to derive score matrices more directly. One such set of score matrices that is
widely used is the BLOSUM matrix set [Henikoff & Henikoff 1992]. In detail, they
were derived from a set of aligned, ungapped regions from protein families called
the BLOCKS database [Henikoff & Henikoff 1991]. The sequences from each
block were clustered, putting two sequences into the same cluster whenever their
percentage of identical residues exceeded some level L%. Henikoff & Henikoff
then calculated the frequencies Aab of observing residue a in one cluster aligned
against residue b in another cluster, correcting for the sizes of the clusters by
weighting each occurrence by 1/(n1n2), where n1 and n2 are the respective cluster
sizes.

From the Aab, they estimated qa and pab by qa = ∑
b Aab/

∑
cd Acd , i.e. the

fraction of pairings that include an a, and pab = Aab/
∑

cd Acd , i.e. the fraction
of pairings between a and b out of all observed pairings. From these they derived
the score matrix entries using the standard equation s(a,b) = log pab/qaqb (2.3).
Again, the resulting log-odds score matrices were scaled and rounded to the near-
est integer value. The matrices for L = 62 and L = 50 in particular are widely
used for pairwise alignment and database searching, BLOSUM62 being standard
for ungapped matching, and BLOSUM50 being perhaps better for alignment with
gaps [Pearson 1996]. BLOSUM62 is scaled so that its values are in half-bits, i.e.
the log-odds values were multiplied by 2/log2, and BLOSUM50 is given in third-
bits. Note that lower L values correspond to longer evolutionary time, and are
applicable for more distant searches.
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Estimating gap penalties

There is no similar standard set of time-dependent gap models. If there were a
time-dependent gap score model, one reasonable assumption might be that the
expected number of gaps would increase linearly with time, but their length dis-
tribution would stay constant. In an affine gap model, this corresponds to mak-
ing the gap-open score d linear in log t , while the gap-extend score e would
remain constant. Gonnet, Cohen & Benner [1992] derive a similar distribution
from empirical data. In fact, they suggest that a better fit is obtained by the
form γ (g) = A + B log t + C log g, although there is some circularity in their
approach because the data come from a complete comparison of the protein
database against itself using sequence alignment algorithms.

In practice, people choose gap costs empirically once they have chosen their
substitution scores. This is possible because there are only two affine gap param-
eters, whereas there are 210 substitution score parameters for proteins. A careful
discussion of the factors involved in choosing gap penalties can be found in Vin-
gron & Waterman [1994].

There is a final twist to be added once we have a combined substitution and gap
model. Now that there is a possibility of a gap occurring in a sequence at a given
position, it is no longer inevitable that there will be a match. It can be argued
that we should include in our substitution score a term for the probability that a
gap has not opened. The probability that there is a gap in a particular position in
sequence x is

∑
i≥1 f (i), and likewise there is the same probability that there is

a gap in y at that position. From this we can derive the probability that there is a
no gap, i.e. that there is a match:

P(no gap) = 1−2
∑
i≥1

f (i). (2.23)

As a consequence, the substitution score, which corresponds to a match, should
not be s(a,b) but instead s ′(a,b) = s(a,b) + log P(no gap). The effect of this
would be to reduce the pairwise scores as gaps become more likely, i.e. as gap
penalties decrease. This correction is, however, small, and is not normally made
when deriving a scoring system from alignment frequencies.

2.9 Further reading

Good reviews of dynamic programming methods for biological sequence com-
parison include Pearson [1996] and Pearson & Miller [1992]. The sensitivity
of dynamic programming methods has been evaluated and compared to the fast
heuristic methods BLAST and FASTA by Pearson [1995] and Shpaer et al. [1996].

Bucher & Hofmann [1996] have described a probabilistic version of the Smith–
Waterman algorithm, which is related to the methods we will discuss in Chapter 4.
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Interesting areas in pairwise dynamic programming alignment that we have not
covered include fast ‘banded’ dynamic programming algorithms [Chao, Pearson
& Miller 1992], the problem of aligning protein query sequences to DNA target
sequences [Huang & Zhang 1996], and the problem of recovering not only the op-
timal alignment but also ‘suboptimal’ or ‘near-optimal’ alignments [Zuker 1991;
Vingron 1996].
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Markov chains and hidden Markov

models

Having introduced some methods for pairwise alignment in Chapter 2, the em-
phasis will switch in this chapter to questions about a single sequence. The main
aim of the chapter is to develop the theory for a very general form of proba-
bilistic model for sequences of symbols, called a hidden Markov model (abbrevi-
ated HMM). The types of question we can use HMMs and their simpler cousins,
Markov models, to consider are: ‘Does this sequence belong to a particular fam-
ily?’ or ‘Assuming the sequence does come from some family, what can we say
about its internal structure?’ An example of the second type of problem would be
to try to identify alpha helix or beta sheet regions in a protein sequence.

As well as giving examples from the biological sequence world, we also give
the mathematics and algorithms for many of the operations on HMMs in a more
general form. These methods, or close analogues of them, are applied in many
other sections of the book. This chapter therefore contains a fairly large amount
of mathematically technical material. We have tried to organise it so that the
first half, approximately, leads the reader through the essential algorithms using
a single biological example. In the later sections we introduce a variety of other
examples to illustrate more complex extensions of the basic approaches.

In the next chapter, we will see how HMMs can also be applied to the types
of alignment problem discussed in Chapter 2, in Chapter 5 they are applied to
searching databases for protein families, and in Chapter 6 to alignment of several
sequences simultaneously. In fact, the search and alignment applications con-
stitute probably the best-known use of HMMs for biological sequence analysis.
However, we present HMM theory here in a less specialised context in order to
emphasise its much broader applicability, which goes far beyond that of sequence
alignment.

The overwhelming majority of papers on HMMs belong to the speech recog-
nition literature, where they were applied first in the early 1970s. One of the
best general introductions to the subject is the review by Rabiner [1989], which
also covers the history of the topic. Although there will be quite a bit of over-
lap between that and the present chapter, there will be important differences in
focus.

47
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Before going on to introduce HMMs for biological sequence analysis, it is
perhaps interesting to look briefly at how they are used for speech recognition
[Rabiner & Juang 1993]. After recording, a speech signal is divided into pieces
(called frames) of 10–20 milliseconds. After some preprocessing each frame is
assigned to one out of a large number of predefined categories by a process known
as vector quantisation. Typically there are 256 such categories. The speech signal
is then represented as a long sequence of category labels and from that the speech
recogniser has to find out what sequence of phonemes (or words) was spoken.
The problems are that there are variations in the actual sound uttered, and there
are also variations in the time taken to say the various parts of the word.

Many problems in biological sequence analysis have the same structure: ba-
sed on a sequence of symbols from some alphabet, find out what the sequence
represents. For proteins the sequences consist of symbols from the alphabet of 20
amino acids, and we typically want to know what protein family a given sequence
belongs to. Here the primary sequence of amino acids is analogous to the speech
signal and the protein family to the spoken word it represents. The time-variation
of the speech signal corresponds to having insertions and deletions in the protein
sequences.

Let us turn to a simpler example, which we will use to introduce first standard
Markov models, of the non-hidden variety, then a simple hidden Markov model.

Example: CpG islands

In the human genome wherever the dinucleotide CG occurs (frequently written
CpG to distinguish it from the C-G base pair across the two strands) the C nu-
cleotide (cytosine) is typically chemically modified by methylation. There is a
relatively high chance of this methyl-C mutating into a T, with the consequence
that in general CpG dinucleotides are rarer in the genome than would be expected
from the independent probabilities of C and G. For biologically important rea-
sons the methylation process is suppressed in short stretches of the genome, such
as around the promoters or ‘start’ regions of many genes. In these regions we
see many more CpG dinucleotides than elsewhere, and in fact more C and G nu-
cleotides in general. Such regions are called CpG islands [Bird 1987]. They are
typically a few hundred to a few thousand bases long.

We will consider two questions: Given a short stretch of genomic sequence,
how would we decide if it comes from a CpG island or not? Second, given a long
piece of sequence, how would we find the CpG islands in it, if there are any? Let
us start with the first question.

3.1 Markov chains

What sort of probabilistic model might we use for CpG island regions? We
know that dinucleotides are important. We therefore want a model that generates
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sequences in which the probability of a symbol depends on the previous symbol.
The simplest such model is a classical Markov chain. We like to show a Markov
chain graphically as a collection of ‘states’, each of which corresponds to a par-
ticular residue, with arrows between the states. A Markov chain for DNA can be
drawn like this:

TA

GC

where we see a state for each of the four letters A, C, G, and T in the DNA alpha-
bet. A probability parameter is associated with each arrow in the figure, which
determines the probability of a certain residue following another residue, or one
state following another state. These probability parameters are called the transi-
tion probabilities, which we will write ast :

ast = P(xi = t |xi−1 = s). (3.1)

For any probabilistic model of sequences we can write the probability of the
sequence as

P(x) = P(xL , xL−1, . . . , x1)

= P(xL |xL−1, . . . , x1)P(xL−1|xL−2, . . . , x1) · · · P(x1)

by applying P(X ,Y ) = P(X |Y )P(Y ) many times. The key property of a Markov
chain is that the probability of each symbol xi depends only on the value of the
preceding symbol xi−1, not on the entire previous sequence, i.e. P(xi |xi−1, . . . , x1)
= P(xi |xi−1) = axi−1xi . The previous equation therefore becomes

P(x) = P(xL |xL−1)P(xL−1|xL−2) · · · P(x2|x1)P(x1)

= P(x1)
L∏

i=2

axi−1xi . (3.2)

Although we have derived this equation in the context of CpG islands in DNA
sequences, it is in fact the general equation for the probability of a specific se-
quence from any Markov chain. There is a large literature on Markov chains, see
for example Cox & Miller [1965].
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TA

GC

B E

Figure 3.1 Begin and end states can be added to a Markov chain (grey
model) for modelling both ends of a sequence.

Exercise

3.1 The sum of the probabilities of all possible sequences of length L can be
written (using (3.2))

∑
{x}

P(x) =
∑

x1

∑
x2

. . .
∑
xL

P(x1)
L∏

i=2

axi−1xi .

Show that this is equal to 1.

Modelling the beginning and end of sequences

Notice that as well as specifying the transition probabilities we must also give the
probability P(x1) of starting in a particular state. To avoid the inhomogeneity of
(3.2) introduced by the starting probabilities, it is possible to add an extra begin
state to the model. At the same time we add a letter to the alphabet, which we
will call B. By defining x0 = B the beginning of a sequence is also included in
(3.2), so for instance the probability of the first letter in the sequence is

P(x1 = s) = aBs .

Similarly we can add a symbol E to the end of a sequence to ensure the end is
modelled. Then the probability of ending with residue t is

P(E |xL = t) = atE .

To match the new symbols, we add begin and end states to the DNA model (see
Figure 3.1). In fact, we need not explicitly add any letters to the alphabet, but
instead can treat the two new states as ‘silent’ states that just serve as start and
end points.

Traditionally the end of a sequence is not modelled in Markov chains; it is
assumed that the sequence can end anywhere. The effect of adding an explicit
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end state is to model a distribution of lengths of the sequence. This way the model
defines a probability distribution over all possible sequences (of any length). The
distribution over lengths decays exponentially; see the exercise below.

Exercises

3.2 Assume that the model has an end state, and that the transition from any
state to the end state has probability τ . Show that the sum of the proba-
bilities (3.2) over all sequences of length L (and properly terminating by
making a transition to the end state) is τ (1− τ )L−1.

3.3 Show that the sum of the probability over all possible sequences of any
length is 1. This proves that the Markov chain really describes a proper
probability distribution over the whole space of sequences. (Hint: Use
the result that, for 0 < x < 1,

∑∞
i=0 xi = 1/(1− x).)

Using Markov chains for discrimination

A primary use for equation (3.2) is to calculate the values for a likelihood ratio
test. We illustrate this here using real data for the CpG island example. From a set
of human DNA sequences we extracted a total of 48 putative CpG islands and de-
rived two Markov chain models, one for the regions labelled as CpG islands (the
‘+’ model) and the other from the remainder of the sequence (the ‘−’ model).
The transition probabilities for each model were set using the equation

a+
st = c+

st∑
t ′ c

+
st ′

, (3.3)

and its analogue for a−
st , where c+

st is the number of times letter t followed letter
s in the labelled regions. These are the maximum likelihood (ML) estimators for
the transition probabilities, as described in Chapter 1.

(In this case there were almost 60 000 nucleotides, and ML estimators are ade-
quate. If the number of counts of each type had been small, then a Bayesian es-
timation process would have been more appropriate, as discussed in Chapter 11
and below for HMMs.) The resulting tables are

+ A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

− A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

where the first row in each case contains the frequencies with which an A is
followed by each of the four bases, and so on for the other rows, so each row
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sums to one. These numbers are not the same; for example, G following A is much
more common than T following A. Notice also that the tables are asymmetric. In
both tables the probability for G following C is lower than that for C following G,
although the effect is stronger in the ‘−’ table, as expected.

To use these models for discrimination, we calculate the log-odds ratio

S(x) = log
P(x |model +)

P(x |model −)
=

L∑
i=1

log
a+

xi−1xi

a−
xi−1xi

=
L∑

i=1

βxi−1xi

where x is the sequence and βxi−1xi are the log likelihood ratios of corresponding
transition probabilities. A table for β is given below in bits:1

β A C G T

A −0.740 0.419 0.580 −0.803
C −0.913 0.302 1.812 −0.685
G −0.624 0.461 0.331 −0.730
T −1.169 0.573 0.393 −0.679

Figure 3.2 shows the distribution of scores, S(x), normalised by dividing by
their length, i.e. as an average number of bits per molecule. If we had not nor-
malised by length, the distribution would have been much more spread out.

We see a reasonable discrimination between regions labelled CpG island and
other regions. The discrimination is not very much influenced by the length nor-
malisation. If we wanted to pursue this further and investigate the cases of mis-
classification, it is worth remembering that the error could either be due to an
inadequate or incorrectly parameterised model, or to mislabelling of the training
data.

3.2 Hidden Markov models

There are a number of extensions to classical Markov chains, which we will come
back to later in the chapter. Here, however, we will proceed immediately to hid-
den Markov models. We will motivate this by turning to the second of the two
questions posed initially for CpG islands: How do we find them in a long unanno-
tated sequence? The Markov chain models that we have just built could be used
for this purpose, by calculating the log-odds score for a window of, say, 100 nu-
cleotides around every nucleotide in the sequence and plotting it. We would then

1 Base 2 logarithms were used, in which case the unit is called a bit. See Chapter 11.
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Bits

0

5

10

Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non-CpG with light
grey.

A+

C+ G+
T+

A− C− G−
T−

Figure 3.3 An HMM for CpG islands. In addition to the transitions shown,
there is also a complete set of transitions within each set, as in the earlier
simple Markov chains.

expect CpG islands to stand out with positive values. However, this is somewhat
unsatisfactory if we believe that in fact CpG islands have sharp boundaries, and
are of variable length. Why use a window size of 100? A more satisfactory ap-
proach is to build a single model for the entire sequence that incorporates both
Markov chains.

To simulate in one model the ‘islands’ in a ‘sea’ of non-island genomic se-
quence, we want to have both the Markov chains of the last section present in the
same model, with a small probability of switching from one chain to the other
at each transition point. However, this introduces the complication that we now
have two states corresponding to each nucleotide symbol. We resolve this by re-
labelling the states. We now have A+, C+, G+ and T+ which emit A, C, G and T
respectively in CpG island regions, and A−, C−, G− and T− correspondingly in
non-island regions; see Figure 3.3.
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The transition probabilities in this model are set so that within each group they
are close to the transition probabilities of the original component model, but there
is also a small but finite chance of switching into the other component. Overall
there is more chance of switching from ‘+’ to ‘−’ than vice versa, so if left to
run free, the model will spend more of its time in the ‘−’ non-island states than
in the island states.

The relabelling is the critical step. The essential difference between a Markov
chain and a hidden Markov model is that for a hidden Markov model there is not
a one-to-one correspondence between the states and the symbols. It is no longer
possible to tell what state the model was in when xi was generated just by looking
at xi . In our example there is no way to tell by looking at a single symbol C in
isolation whether it was emitted by state C+ or state C−

Formal definition of an HMM

Let us formalise the notation for hidden Markov models, and derive the probabil-
ity of a particular sequence of states and symbols. We now need to distinguish the
sequence of states from the sequence of symbols. Let us call the state sequence
the path, π . The path itself follows a simple Markov chain, so the probability of
a state depends only on the previous state. The i th state in the path is called πi .
The chain is characterised by parameters

akl = P(πi = l|πi−1 = k). (3.4)

To model the beginning of the process we introduce a begin state, as was intro-
duced earlier to model the beginning of sequences in Markov chains (Figure 3.1).
The transition probability a0k from this begin state to state k can be thought of as
the probability of starting in state k. It is also possible to model ends as before
by always ending a state sequence with a transition into an end state. For conve-
nience we label both begin and end states as 0 (there is no conflict here because
you can only transit out of the begin state, and only into the end state, so variables
are not used more than once).

Because we have decoupled the symbols b from the states k, we must introduce
a new set of parameters for the model, ek(b). For our CpG model each state is
associated with a single symbol, but this is not a requirement; in general a state
can produce a symbol from a distribution over all possible symbols. We therefore
define

ek(b) = P(xi = b|πi = k), (3.5)

the probability that symbol b is seen when in state k. These are known as the
emission probabilities.

For our CpG island model the emission probabilities are all 0 or 1. To illustrate
emission probabilities we reintroduce here the casino example from Chapter 1.
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Example: The occasionally dishonest casino, part 1

Let us consider an example from Chapter 1. In a casino they use a fair die most of
the time, but occasionally they switch to a loaded die. The loaded die has prob-
ability 0.5 of a six and probability 0.1 for the numbers one to five. Assume that
the casino switches from a fair to a loaded die with probability 0.05 before each
roll, and that the probability of switching back is 0.1. Then the switch between
dice is a Markov process. In each state of the Markov process the outcomes of a
roll have different probabilities, and thus the whole processs is an example of a
hidden Markov model. We can draw it like this:

Fair

1:   1/6
2:   1/6
3:   1/6
4:   1/6
5:   1/6
6:   1/6

Loaded

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6:   1/2

0.95 0.9

0.05

0.1

where the emission probabilities e() are shown in the state boxes.

What is hidden in the above model? If you can just see a sequence of rolls (the
sequence of observations) you do not know which rolls used a loaded die and
which used a fair one, because that is kept secret by the casino; that is, the state
sequence is hidden. In a Markov chain you always know exactly in which state a
given observation belongs. Obviously the casino wouldn’t tell you that they use
loaded dice and what the various probabilities are. Yet for this more complicated
situation, which we will return to later, it is possible to estimate the probabilities
in the above HMM (once you have a suspicion that they use two different dice).

The reason for the name emission probabilities is that it is often convenient
to think of HMMs as generative models, that generate or emit sequences. For
instance we can generate random sequences of rolls from the model of the fair/-
loaded dice above by simulating the successive choices of die, then rolls of the
chosen die. More generally a sequence can be generated from an HMM as fol-
lows: First a state π1 is chosen according to the probabilities a0i . In that state an
observation is emitted according to the distribution eπ1 for that state. Then a new
state π2 is chosen according to the transition probabilities aπ1i and so forth. This
way a sequence of random, artificial observations are generated. Therefore, we
will sometimes say things like P(x) is the probability that x was generated by
the model.

It is now easy to write down the joint probability of an observed sequence x
and a state sequence π :

P(x ,π ) = a0π1

L∏
i=1

eπi (xi )aπi πi+1 , (3.6)



56 3 Markov chains and hidden Markov models

where we require πL+1 = 0. For example, the probability of sequence CGCG being
emitted by the state sequence (C+,G−,C−,G+) in our model is

a0,C+ × 1 × aC+,G− × 1 × aG−,C− × 1 × aC−,G+ × 1 × aG+,0.

Equation (3.6) is the HMM analogue of equation (3.2). However, it is not so
useful in practice because in general we do not know the path. In the following
sections we describe how to estimate the path, either by finding the most likely
one, or alternatively by using an a posteriori distribution over states. Then we go
on to show how to estimate the parameters for an HMM.

Most probable state path: the Viterbi algorithm

Although it is no longer possible to tell what state the system is in by looking at
the corresponding symbol, it is often the sequence of underlying states that we are
interested in. To find out what the observation sequence ‘means’ by considering
the underlying states is called decoding in the jargon of speech recognition. There
are several approaches to decoding. Here we will describe the most common
one, called the Viterbi algorithm. It is a dynamic programming algorithm closely
related to the ones covered in Chapter 2.

In general there may now be many state sequences that could give rise to
any particular sequence of symbols. For example, in our CpG model the state
sequences (C+,G+,C+,G+), (C−,G−,C−,G−) and (C+,G−,C+,G−) would all
generate the symbol sequence CGCG. However, they do so with very different
probabilities. The third is the product of multiple small probabilities of switching
back and forth between the components, and hence is much smaller than the first
two. The second is itself significantly smaller than the first because it contains
two C to G transitions which are significantly less probable in the ‘−’ component
than in the ‘+’ component. Of these three choices, therefore, it is most likely that
the sequence CGCG came from a set of ‘+’ states.

A predicted path through the HMM will tell us which part of the sequence
is predicted as a CpG island, because we assumed above that each state was
assigned to model either CpG islands or other regions. If we are to choose just
one path for our prediction, perhaps the one with the highest probability should
be chosen,

π∗ = argmax
π

P(x ,π ). (3.7)

The most probable path π∗ can be found recursively. Suppose the probability
vk(i) of the most probable path ending in state k with observation i is known for
all the states k. Then these probabilities can be calculated for observation xi+1 as

vl(i +1) = el(xi+1)max
k

(vk(i)akl). (3.8)
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v C G C G

B 1 0 0 0 0
A+ 0 0 0 0 0
C+ 0 0.13 0 0.012 0
G+ 0 0 0.034 0 0.0032
T+ 0 0 0 0 0
A− 0 0 0 0 0
C− 0 0.13 0 0.0026 0
G− 0 0 0.010 0 0.00021
T− 0 0 0 0 0

Figure 3.4 For the model of CpG islands shown in Figure 3.3 and the se-
quence CGCG, this is the resulting table of v. The most probable path is
shown with bold face.

All sequences have to start in state 0 (the begin state), so the initial condition is
that v0(0) = 1. By keeping pointers backwards, the actual state sequence can be
found by backtracking. The full algorithm is:

Algorithm: Viterbi

Initialisation (i = 0): v0(0) = 1, vk(0) = 0 for k > 0.

Recursion (i = 1 . . . L): vl(i) = el(xi )maxk(vk(i −1)akl);
ptri (l) = argmaxk(vk(i −1)akl).

Termination: P(x ,π∗) = maxk(vk(L)ak0);
π∗

L = argmaxk(vk(L)ak0).

Traceback (i = L . . .1): π∗
i−1 = ptri (π

∗
i ). �

Note that an end state is assumed, which is the reason for ak0 in the termination
step. If ends are not modelled, this a will disappear.

There are some implementational issues both for the Viterbi algorithm and the
algorithms described later. The most severe practical problem is that multiply-
ing many probabilities always yields very small numbers that will give underflow
errors on any computer. For this reason the Viterbi algorithm should always be
done in log space, i.e. calculating log(vl(i)), which will make the products be-
come sums and the numbers stay reasonable. This is discussed in Section 3.6.

Figure 3.4 shows the full table of values of v for the sequence CGCG and the
CpG island model. When we apply the same algorithm to a longer sequence the
derived optimal path π∗ will switch between the ‘+’ and the ‘−’ components of
the model, and thereby give the precise boundaries of the predicted CpG island
regions.

Example: The occasionally dishonest casino, part 2

For a sequence of dice rolls we can now find the most probable path through
the model shown on p. 55. A total of 300 random rolls were generated from the
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Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

model as described earlier. Each roll was generated either with the fair die (F)
or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well.

Exercise

3.4 Show that π∗ = argmax
π

P(π |x) is equivalent to (3.7).

The forward algorithm

For Markov chains we calculated the probability of a sequence, P(x), with equa-
tion (3.2). The resulting values were used to distinguish between CpG islands
and other DNA for instance. We want to be able to calculate this probability for
an HMM as well. Because many different state paths can give rise to the same
sequence x , we must add the probabilities for all possible paths to obtain the full
probability of x ,

P(x) =
∑
π

P(x ,π ). (3.9)

The number of possible paths π increases exponentially with the length of the
sequence, so brute force evaluation of (3.9) by enumerating all paths is not prac-
tical. One approach is to use equation (3.6) evaluated at the most probable path
π∗ obtained in the last section as an approximation to P(x). This implicitly as-
sumes that the only path with significant probability is π∗, a somewhat startling
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assumption which however in many cases is surprisingly good. In fact the ap-
proximation is unnecessary, because the full probability can itself be calculated
by a similar dynamic programming procedure to the Viterbi algorithm, replacing
the maximisation steps with sums. This is called the forward algorithm.

The quantity corresponding to the Viterbi variable vk(i) in the forward algo-
rithm is

fk(i) = P(x1 . . . xi ,πi = k), (3.10)

which is the probability of the observed sequence up to and including xi , requir-
ing that πi = k. The recursion equation is

fl(i +1) = el(xi+1)
∑

k

fk(i)akl . (3.11)

The full algorithm is:

Algorithm: Forward algorithm

Initialisation (i = 0): f0(0) = 1, fk(0) = 0 for k > 0.

Recursion (i = 1 . . . L): fl(i) = el(xi )
∑

k

fk(i −1)akl .

Termination: P(x) =
∑

k

fk(L)ak0. �

Like the Viterbi algorithm, the forward algorithm (and the backward algorithm
in the next section) can give underflow errors when implemented on a computer.
Again this can be solved by working in log space, although not as elegantly as
for Viterbi. Alternatively a scaling method can be used. Both approaches are de-
scribed in Section 3.6.

As well as their use in the forward algorithm, the quantities fk(i) have a num-
ber of other uses, including those described in the next two sections.

The backward algorithm and posterior state probabilities

The Viterbi algorithm finds the most probable path through the model, but as
we remarked at the time, this may not always be the most appropriate basis for
further inference about the sequence. We might for instance want to know what
the most probable state is for an observation xi . More generally, we may want the
probability that observation xi came from state k given the observed sequence,
i.e. P(πi = k|x). This is the posterior probability of state k at time i when the
emitted sequence is known.

Our approach to the posterior probability is a little indirect. We first calculate
the probability of producing the entire observed sequence with the i th symbol
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being produced by state k:

P(x ,πi = k) = P(x1 . . . xi ,πi = k)P(xi+1 . . . xL |x1 . . . xi ,πi = k)

= P(x1 . . . xi ,πi = k)P(xi+1 . . . xL |πi = k), (3.12)

the second row following because everything after k only depends on the state at
k. The first term in this is recognised as fk(i) from (3.10) that was calculated by
the forward algorithm of the previous section. The second term is called bk(i),

bk(i) = P(xi+1 . . . xL |πi = k). (3.13)

It is analogous to the forward variable, but instead obtained by a backward recur-
sion starting at the end of the sequence:

Algorithm: Backward algorithm

Initialisation (i = L): bk(L) = ak0 for all k.

Recursion (i = L −1, . . . ,1): bk(i) =
∑

l

aklel(xi+1)bl(i +1).

Termination: P(x) =
∑

l

a0l el(x1)bl(1). �

The termination step is rarely needed, because P(x) is usually found by the
forward algorithm, and it is just shown for completeness.

Equation (3.12) can now be written as P(x ,πi = k) = fk(i)bk(i), and from it
we obtain the required posterior probabilities by straightforward conditioning,

P(πi = k|x) = fk(i)bk(i)

P(x)
, (3.14)

where P(x) is the result of the forward (or backward) calculation.

Example: The occasionally dishonest casino, part 3

In Figure 3.6 the posterior probability for the die being fair is shown for the
sequence of rolls shown in Figure 3.5. Notice that the posterior probability does
not reflect which die was actually used in some places. This is to be expected,
simply because a misleading sequence of rolls can occur at random.

Posterior decoding

A major use of the P(πi = k|x) is for two alternative forms of decoding in ad-
dition to the Viterbi decoding we introduced in the previous section. These are
particularly useful when many different paths have almost the same probability
as the most probable one, because then it is not well justified to consider only the
most probable path.
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Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

The first approach is to define a state sequence π̂i that can be used in place of
π∗

i ,

π̂i = argmax
k

P(πi = k|x). (3.15)

As suggested by its definition, this state sequence may be more appropriate when
we are interested in the state assignment at a particular point i , rather than the
complete path. In fact, the state sequence defined by π̂i may not be particularly
likely as a path through the entire model; it may even not be a legitimate path at
all if some transitions are not permitted, which is normally the case.

The second, and perhaps more important, new decoding approach arises when
it is not the state sequence itself which is of interest, but some other property
derived from it. Assume we have a function g(k) defined on the states. The natural
value to look at then is

G(i |x) =
∑

k

P(πi = k|x)g(k). (3.16)

An important special case of this is where g(k) takes the value 1 for a subset
of the states and 0 for the rest. In this case, G(i |x) is the posterior probability
of the symbol i coming from a state in the specified set. For example, with our
CpG island model, what really concerns us is whether a base is part of an island
or not. For this purpose we want to define g(k) = 1 for k ∈ {A+,C+,G+,T+}
and g(k) = 0 for k ∈ {A−,C−,G−,T−}. Then G(i |x) is precisely the posterior
probability according to the model that base i is in a CpG island.

In the case where we have a labelling of the states defining a partition of them
(as we in fact have with the CpG island model, labelling them as ‘+’ or ‘−’)
it is possible to use (3.16) to find the most probable label at each position of the
sequence. This is not quite the most probable global labelling of a given sequence.
That, however, is not entirely straightforward. See Schwartz & Chow [1990] and
Krogh [1997b] for further discussion of this.

Example: Prediction of CpG islands

Now CpG islands can be predicted from our model. By the Viterbi algorithm we
can find the most probable path through the model. When this path goes through
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Figure 3.7 The posterior probability of the die being fair, but using proba-
bility 0.01 for switching to the loaded die (cf. Figure 3.6).

the + states, a CpG island is predicted. For the set of 41 sequences, each with
a putative CpG island, all the islands are found except for two (false negatives),
and 121 new ones are predicted (false positives). The real CpG islands are quite
long (of the order of 1000 bases), whereas the predicted ones are short, and a
CpG island is usually predicted as several short ones. By applying the two simple
post-processing steps (1) concatenate predictions less than 500 bases apart (2)
discard predictions shorter than 500, the number of false positives are reduced to
67.

Using posterior decoding, the same two CpG islands are missed and 236 false
positives are predicted. Using the same post-processing as above this number is
reduced to 83. For this problem, there is not a big difference between the two
methods, except that the posterior decoding predicts even more very short is-
lands. It is possible that some of the false positives are real CpG islands. The two
false negatives are perhaps wrongly labelled, but it is also possible that a more
sophisticated model is needed for capturing all the features of these signals.

Example: The occasionally dishonest casino, part 4

The model for the casino is changed, so there is only a probability of 0.01 for
switching from fair to loaded. Obviously the probability of staying with the fair
die must then be 0.99, but all other probabilities are unchanged. From this model
1000 random rolls are generated. From these rolls the most probable path found
by the Viterbi algorithm never visits the loaded die state. In Figure 3.7 the poste-
rior probability for the dice being fair is shown for these rolls. Although not per-
fect, posterior decoding would predict something reasonably close to the truth.

3.3 Parameter estimation for HMMs

Probably the most difficult problem faced when using HMMs is that of speci-
fying the model in the first place. There are two parts to this: the design of the
structure, i.e. what states there are and how they are connected, and the assign-
ment of parameter values, the transition and emission probabilities akl and ek(b).
In this section we will discuss the parameter estimation problem, for which there
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is a well-developed theory. In the next section we will consider model structure
design, which is more of an art.

The framework in which we will be working is to assume that we have a set of
example sequences of the type that we want the model to fit well, known as train-
ing sequences. Let these be x1, . . . , xn . We assume that they are independent, and
thus that the joint probability of all the sequences given a particular assignment
of parameters is the product of the probabilities of the individual sequences. In
fact, we work in log space, and so with the log probability of the sequences,

l(x1, . . . , xn|θ ) = log P(x1, . . . , xn|θ ) =
n∑

j=1

log P(x j |θ ), (3.17)

where θ represents the entire current set of values of the parameters in the model
(all the as and es). This is equal to the log likelihood of the model; see Chapter 11.

Estimation when the state sequence is known

Just as it was easier to write down the probability of a sequence when the path
was known, so it is easier to estimate the probability parameters when the paths
are known for all the examples. Frequently this is the case. An example would
be if we were given a set of genomic sequences in which the CpG islands were
already labelled, based on experimental data. Other examples would be for an
HMM that predicted secondary structure, with training sequences obtained from
the set of proteins with known structures, or for an HMM predicting genes from
genomic sequences, where the transcript structure has been determined by cDNA
sequencing.

When all the paths are known, we can count the number of times each particu-
lar transition or emission is used in the set of training sequences. Let these be Akl

and Ek(b). Then, as shown in Chapter 11, the maximum likelihood estimators for
akl and ek(b) are given by

akl = Akl∑
l ′ Akl ′

and ek(b) = Ek(b)∑
b′ Ek(b′)

. (3.18)

The estimation equation for akl is exactly the same as for a simple Markov chain.
As always, maximum likelihood estimators are vulnerable to overfitting if there

are insufficient data. Indeed if there is a state k that is never used in the set of
example sequences, then the estimation equations are undefined for that state,
because both the numerator and denominator will have value zero. To avoid such
problems it is preferable to add predetermined pseudocounts to the Akl and Ek(b)
before using (3.18).

Akl = number of transitions k to l in training data+ rkl ,

Ek(b) = number of emissions of b from k in training data+ rk(b).
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The pseudocounts rkl and rk(b) should reflect our prior biases about the proba-
bility values. In fact they have a natural probabilistic interpretation as the param-
eters of Bayesian Dirichlet prior distributions on the probabilities for each state
(see Chapter 11). They must be positive, but do not need to be integers. Small
total values

∑
l ′ rkl ′ or

∑
b′ rk(b′) indicate weak prior knowledge, whereas larger

total values indicate more definite prior knowledge, which requires more data to
modify it.

Estimation when paths are unknown: Baum–Welch and Viterbi
training

When the paths are unknown for the training sequences, there is no longer a
direct closed-form equation for the estimated parameter values, and some form of
iterative procedure must be used. All the standard algorithms for optimisation of
continuous functions can be used; see for example Press et al. [1992]. However,
there is a particular iteration method that is standardly used, known as the Baum–
Welch algorithm [Baum 1972]. This has a natural probabilistic interpretation.
Informally, it first estimates the Akl and Ek(b) by considering probable paths for
the training sequences using the current values of akl and ek(b). Then (3.18) is
used to derive new values of the as and es. This process is iterated until some
stopping criterion is reached.

It is possible to show that the overall log likelihood of the model is increased
by the iteration, and hence that the process will converge to a local maximum.
Unfortunately, there are usually many local maxima, and which one you end up
with depends strongly on the starting values of the parameters. The problem of
local maxima is particularly severe when estimating large HMMs, and later we
will discuss various ways to help deal with it.

More formally, the Baum–Welch algorithm calculates Akl and Ek(b) as the ex-
pected number of times each transition or emission is used, given the training
sequences. To do this it uses the same forward and backward values as the poste-
rior probability decoding method. The probability that akl is used at position i in
sequence x is (see Exercise 3.5)

P(πi = k,πi+1 = l|x ,θ ) = fk(i)aklel(xi+1)bl(i +1)

P(x)
. (3.19)

From this we can derive the expected number of times that akl is used by summing
over all positions and over all training sequences,

Akl =
∑

j

1

P(x j )

∑
i

f j
k (i)aklel(x

j
i+1)b j

l (i +1), (3.20)

where f j
k (i) is the forward variable fk(i) defined in (3.10) calculated for sequence
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j , and b j
l (i) is the corresponding backward variable. Similarly, we can find the

expected number of times that letter b appears in state k,

Ek(b) =
∑

j

1

P(x j )

∑
{i |x j

i =b}
f j
k (i)b j

k (i), (3.21)

where the inner sum is only over those positions i for which the symbol emitted
is b.

Having calculated these expectations, the new model parameters are calculated
just as before using (3.18). We can iterate using the new values of the parameters
to obtain new values of the As and Es as before, but in this case we are converging
in a continuous-valued space, and so will never in fact reach the maximum. It is
therefore necessary to set a convergence criterion, typically stopping when the
change in total log likelihood is sufficiently small. Other stop criteria than the log
likelihood change can be used for the iteration. For instance the log likelihood
can be normalised by the number of sequences n and maybe also by the sequence
lengths, so that you consider the change in the average log likelihood per residue.
We can summarise the Baum–Welch algorithm like this:

Algorithm: Baum–Welch

Initialisation: Pick arbitrary model parameters.
Recurrence:

Set all the A and E variables to their pseudocount values r (or to zero).
For each sequence j = 1 . . .n:

Calculate fk(i) for sequence j using the forward algorithm (p. 59).
Calculate bk(i) for sequence j using the backward algorithm (p. 60).
Add the contribution of sequence j to A (3.20) and E (3.21).

Calculate the new model parameters using (3.18).
Calculate the new log likelihood of the model.

Termination:
Stop if the change in log likelihood is less than some predefined threshold
or the maximum number of iterations is exceeded. �

As indicated here, it is normal to add pseudocounts to the A and E values
just as in the case where the state paths are known. This works well, but the
normal Bayesian interpretation in terms of Dirichlet priors does not carry through
rigorously in this case; see Chapter 11.

The Baum–Welch algorithm is a special case of a very powerful general ap-
proach to probabilistic parameter estimation called the EM algorithm. This al-
gorithm and the derivation of Baum–Welch is given in Section 11.6 of
Chapter 11.
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An alternative to the Baum–Welch algorithm is frequently used, which we will
call Viterbi training. In this approach, the most probable paths for the training se-
quences are derived using the Viterbi algorithm given above, and these are used
in the re-estimation process given in the previous section. Again, the process is
iterated when the new parameter values are obtained. In this case the algorithm
converges precisely, because the assignment of paths is a discrete process, and
we can continue until none of the paths change. At this point the parameter es-
timates will not change either, because they are determined completely by the
paths. Unlike Baum–Welch, this procedure does not maximise the true likeli-
hood, i.e. P(x1, . . . , xn|θ ) regarded as a function of of the model parameters θ .
Instead, it finds the value of θ that maximises the contribution to the likelihood
P(x1, . . . , xn ,π∗(x1), . . . ,π∗(xn)|θ ) from the most probable paths for all the se-
quences. Probably for this reason, Viterbi training performs less well in general
than Baum–Welch. However, it is widely used, and it can be argued that when the
primary use of the HMM is to produce decodings via Viterbi alignments, then it
is good to train using them.

Example: The occasionally dishonest casino, part 5

We are suspicious that a casino is operated as described in the example on p. 55,
but we do not know for certain. Night after night we collect data by simply ob-
serving rolls. When we have enough, we want to estimate a model. Assume the
data we collected were the 300 rolls shown in Figure 3.5. From this sequence of
observations a model was estimated by the Baum–Welch algorithm. Initially all
the probabilities were set to random numbers. Here are diagrams of the model
that generated the data (identical to the one in the example on p. 55) and the esti-
mated model.

Fair

1:   1/6
2:   1/6
3:   1/6
4:   1/6
5:   1/6
6:   1/6

Loaded

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6:   1/2

0.95 0.9

0.05

0.1

Fair

1:  0.19
2:  0.19
3:  0.23
4:  0.08
5:  0.23
6:  0.08

Loaded

1:  0.07
2:  0.10
3:  0.10
4:  0.17
5:  0.05
6:  0.52

0.73 0.71

0.27

0.29

You can see they are fairly similar, although the estimated transition probabilities
are quite different from the real ones. This is partly a problem of local minima,
and by trying more times it is actually possible to obtain a model closer to the cor-
rect one. However, from a limited amount of data it is never possible to estimate
the parameters exactly.
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To illustrate the last point, 30 000 random rolls were generated (data are not
shown!), and a model was estimated. This came very close to the correct one:

Fair

1:  0.17
2:  0.17
3:  0.17
4:  0.17
5:  0.17
6:  0.15

Loaded

1:  0.10
2:  0.11
3:  0.10
4:  0.11
5:  0.10
6:  0.48

0.93 0.88

0.07

0.12

To see how good these models are compared to just assuming a fair die all the
time, the log-odds per roll was calculated using the 300 observations for the three
models:

The correct model 0.101 bits
Model estimated from 300 rolls 0.097 bits
Model estimated from 30 000 rolls 0.100 bits

The worst model estimated from 300 rolls has almost the same log-odds as the
two other models. That is because it is being tested on the same data as it was
estimated from. Testing it on an independent set of rolls yields significantly lower
log-odds than the other two models.

Exercises

3.5 Derive the result (3.19). Use the fact that

P(πi = k,πi+1 = l|x ,θ ) = 1

P(x |θ )
P(x ,πi = k,πi+1 = l|θ ),

and that this again can be written in terms of P(x1, . . . , xi ,πi = k|θ ) and

P(xi+1, . . . , xL ,πi+1 = l|x1, . . . , xi ,θ ,πi = k)

= P(xi+1, . . . , xL ,πi+1 = l|θ ,πi = k).

3.6 Derive (3.21).

Modelling of labelled sequences

In the above example with CpG islands we have seen how HMMs can be used to
predict the labelling of unannotated sequences. In these examples we had to train
the models of CpG islands separately from the model of non-CpG islands and
then combine them into a larger HMM afterwards. This separate estimation can
be quite tedious, especially if there are more than two different classes involved.
Also, if the transitions between the submodels are ambiguous, so for instance a
given sequence can use more than one transition from the CpG submodel to the
other submodel, then the estimation of the transitions is not a simple counting
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Figure 3.8 The forward table for a model with four states labelled + and
four labelled −. Each column corresponds to an observation and each row
to a state of the model. The first ten residues shown, x1, . . . , x10, are assumed
to be labelled −−−++++−−−.

problem. There is, however, a more straightforward method to estimate every-
thing at once, which we will describe now.

The starting point is the combined model of all the classes, where we have
assigned a class label to each state. To model CpG islands the natural labels are
‘+’ for the island states and ‘−’ for the non-island states. We also have labels on
the observations x = x1, . . . , xL , which we we call y = y1, . . . , yL . The yi is ‘+’ if
xi is part of a CpG island and ‘−’ otherwise. In the Baum–Welch algorithm (or
the Viterbi alternative) we now only allow valid paths through the model when
calculating the f s and bs. A valid path is one where the state labels and sequence
labels are the same, i.e., πi has label yi . During the forward and backward algo-
rithms this corresponds to setting fl(i) = 0 and bl(i) = 0 for all the states l with
a label different from yi (see Figure 3.8).

Discriminative estimation

Unless there are ambiguous transitions between submodels, the above estimation
procedure gives the same result as if the submodels were estimated separately
by the Baum–Welch algorithm and then combined with appropriate transitions
afterwards. This actually corresponds to maximising the likelihood

θ M L = argmax
θ

P(x , y|θ ).

Usually our primary interest is in obtaining good predictions of y, so it is prefer-
able to maximise P(y|x ,θ ) instead. This is called conditional maximum likeli-
hood (CML),

θC M L = argmax
θ

P(y|x ,θ ); (3.22)

see for example Juang & Rabiner [1991] and Krogh [1994]. A related criterion is
called maximum mutual information or MMI [Bahl et al. 1986].
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The likelihood P(y|x ,θ ) can be rewritten as

P(y|x ,θ ) = P(x , y|θ )

P(x |θ )
,

where P(x , y|θ ) is the probability calculated by the forward algorithm for la-
belled sequences described above, and P(x |θ ) is the probability calculated by the
standard forward algorithm disregarding all the labels. There is no EM algorithm
for optimising this likelihood, and the estimation becomes more complex; see for
example Normandin & Morgera [1991] and the references above.

3.4 HMM model structure

Choice of model topology

So far we have assumed that transitions are possible from any state to any other
state. Although it is tempting to start with a fully connected model, i.e. one in
which all transitions are allowed, and ‘let the model find out for itself’ which
transitions to use, it almost never works in practice. For problems of any re-
alistic size it will usually lead to very bad models, even with plenty of train-
ing data. Here the problem is not over fitting, but local maxima. The less con-
strained the model is, the more severe the local maximum problem becomes.
There are methods that attempt to adapt the model topology based on the data
by adding and removing transitions and states [Stolcke & Omohundro 1993;
Fujiwara, Asogawa & Konagaya 1994]. However, in practice successful HMMs
are constructed by carefully deciding which transitions are to be allowed in the
model, based on knowledge about the problem under investigation.

To disable the transition from state k to state l corresponds to setting akl = 0.
If we use Baum–Welch estimation (or the Viterbi approximation) then akl will
still be zero after the re-estimation process, because when the probability is zero
the expected number of transitions from k to l will also be zero. Therefore all the
mathematics is unchanged even if not all transitions are possible.

We should choose a model which has an interpretation in terms of our knowl-
edge of the problem. For instance, to model CpG islands it was important that the
model was capable of giving a different probability to a CG dinucleotide in the
island states from in the non-island states, because that was expected to be the
main determinator for CpG islands.

Duration modelling

When modelling a phenomenon where for instance the nucleotide distribution
does not change for a certain length of DNA, the simplest model design is to
make a state with a transition to itself with probability p. We did this with both
our CpG island and our dishonest casino example. After entering the state there
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is a probability 1− p of leaving it, so the probability of staying in the state for l
residues is

P(l residues) = (1− p)pl−1. (3.23)

(The emission probabilities are disregarded.) This exponentially decaying distri-
bution on lengths (called a geometric distribution) can be inappropriate in some
applications, where the distribution of lengths is important and significantly dif-
ferent from exponential. More complex length distributions can be modelled by
introducing several states with the same distribution over residues and transitions
between each other. For instance a (sub-) model like this:

will give sequences of a minimum length of 5 residues and an exponentially de-
caying distribution over longer sequences. Similarly, a model like this:

can model any distribution of lengths between 2 and 10.
A more subtle way of obtaining a non-geometric length distribution is to use an

array of n states, each with a transition to itself of probability p and a transition
to the next of probability 1− p:

p

1−p

p

1−p

p

1−p

p

1−p

Obviously the smallest sequence length such a model can capture is n. For any
given path of length l through the model, the probability of all its transitions
is pl−n(1 − p)n (we are disregarding emission probabilities for now, as above).
The number of possible paths through the states is

( l−1
n−1

)
, so the total probability

summed over all possible paths is

P(l) =
(

l −1

n −1

)
pl−n(1− p)n . (3.24)

This distribution is called a negative binomial and it is shown in Figure 3.9 for
p = 0.99 and n ≤ 5. For small lengths the number of paths through the model
grows faster than the geometrical distribution decays, and therefore the distribu-
tion becomes bell-shaped. The number of paths depends on the model topology,
and it is possible to make more general models where the number of paths has a
different dependence on n and l. For continuous Markov processes the types of
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Figure 3.9 The probability distribution over lengths for models with p =
0.99 and n identical states, with n ranging from 1 to 5.

distributions that can be obtained are called Erlang distributions or more gener-
ally phase-type distributions, see for example Asmussen [1987].

Alternatively, it is possible to model the length distribution explicitly. As length
is equivalent to time in many signal processing applications, this is called dura-
tion modelling. The price one has to pay is that algorithms are much slower. See
Rabiner [1989] for more details.

Silent states

We have already seen examples of states that do not emit symbols in an HMM,
the begin and end states. Such states are called silent states or null states, and
they can also be useful in other places in an HMM. In Chapter 5 we will see an
example where all states in a chain of states need to be connected to all states later
in the chain. The length of such a chain is often 200 states or more, and connect-
ing them appropriately with transitions would require roughly 20 000 transition
probabilities (assuming 200 states). This number is too large to be reliably es-
timated from realistic datasets. Instead, by using silent states, we can get away
with around 800 transitions.

The situation is as follows: to allow for arbitrary deletions a chain of states
needs to be completely ‘forward connected’.

Instead we can connect all the states to a parallel chain of silent states, represented
here by circles.
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Because the silent states do not emit any letters, it is possible to get from any
‘real’ state to any later ‘real’ state without emitting any letters.

A price is paid for the reduction in the number of parameters. The fully con-
nected model can have for instance high probability transitions from state 1 to
state 5 and from state 2 to state 4, but low probability ones for transitions 1 to 4
and 2 to 5. This would not be possible with the model using silent states.

So long as there are no loops consisting entirely of silent states, it is easy to ex-
tend all the HMM algorithms to incorporate them. The condition that there are no
loops mean that the states can be numbered so that any transition between silent
states goes from a lower to a higher numbered state. For the forward algorithm,
the change is as follows:

(i) For all ‘real’ states l, calculate fl(i +1) as before from fk(i) for states k.

(ii) For any silent state l, set fl(i +1) to
∑

k fk(i +1)akl for ‘real’ states k.

(iii) Starting from the lowest numbered silent state l add
∑

k fk(i + 1)akl to
fl(i +1) for all silent states k < l.

The change to the Viterbi algorithm is exactly the same (sums replaced by max-
imisation of course), and for the backward algorithm the change is essentially the
same except in the third step the silent states are updated in reverse order.

If there are loops consisting entirely of silent states, the situation gets a little
more complicated. It is possible to eliminate the silent states from the calculation
by calculating (exactly) the effective transition probabilities between real states
in the model, which involves inverting the transition matrix for the Markov model
of silent states [Cox & Miller 1965]. Often, however, these effective transitions
correspond to a fully connected model, and this leads to a substantial increase in
the complexity of the model. Usually it is best to simply make sure such loops do
not exist.

Exercises

3.7 Calculate the total number of transitions needed in a forward connected
model as the one shown above with a length of L . Calculate the same
number for a model with silent states (as above).

3.8 Show that the number of paths through an array of n states is indeed( l−1
n−1

)
for length l as in (3.24).

3.9 Consider the model with n states with self-loops giving rise to equation
(3.24). What is the probability for the most likely path through the model
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for a sequence of length l (when ignoring emission probabilities)? Is this
type of length modelling useful with the Viterbi algorithm?

3.5 More complex Markov chains

High order Markov chains

An nth order Markov process is a stochastic process where each event depends
on the previous n events, so

P(xi |xi−1, xi−2, . . . , x1) = P(xi |xi−1, . . . , xi−n). (3.25)

The Markov chains we have discussed so far are of order 1.
An nth order Markov chain over some alphabet A is equivalent to a first order

Markov chain over the alphabet An of n-tuples. This follows from the simple fact
that P(xk |xk−1 . . . xk−n) = P(xk , xk−1 . . . xk−n+1|xk−1 . . . xk−n) (the probability of
A and B given B is the probability of A given B). That is, the probability of xk

given the n-tuple ending in xk−1 is equal to the probability of the n-tuple ending
in xk given the n-tuple ending in xk−1.

Consider the simple example of a second order Markov chain for sequences of
only two different characters A and B. A sequence is translated to a sequence of
pairs, so for instance the sequence ABBAB becomes AB-BB-BA-AB. The equiv-
alent four-state first order Markov chain will look like this:

AA AB

BA BB

In this equivalent model not all transitions are allowed (or alternatively, some of
the transition probabilities are zero). This is because only two different pairs can
follow a given letter; the state AB for instance can only be followed by the states
BA and BB. No sequence exists that can go from state AB to state AA. Similarly,
a second order model for DNA is equivalent to a first order model over an alpha-
bet of the 16 dinucleotides. A sequence of five bases, CGTCA, corresponds to a
chain of four states, CG-GT-TC-CA, in a dinucleotide model.

Despite the theoretical equivalence between an nth order model and a first or-
der model, the framework of high order models (meaning models of order greater
than 1) is sometimes more convenient. Theoretically the high order models are
treated in a way completely equivalent to first order models.
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GTCAGATGAGCAAAGTCAGACTCGCAATT

ATGAACGTATCCCAGTAACGCC
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Figure 3.10 The organisation of genes in prokaryotes.

Finding prokaryotic genes

An example is given by a model for identifying prokaryotic genes. Genes of
prokaryotes (bacteria) have a very simple one-dimensional structure. A gene cod-
ing for a protein starts with a start codon, then has a number of codons coding
for amino acids, and ends with a stop codon; see Figure 3.10. Codons are DNA
nucleotide triplets of which 61 code for amino acids and three are stop codons.
In order to focus on the modelling, many complications such as frame shifts and
non-protein genes are ignored here.

It is very easy to find good gene candidates by simply looking for stretches of
DNA with the correct structure, i.e. starting with one of the three possible start
codons, continuing with a number of non-stop codons and ending with one of
the three stop codons. Such a gene candidate is called an open reading frame or
just an ORF. Usually there are many overlapping ORFs that have the same stop
codon, but different start codons. (The term ORF is often used for the maximal
open reading frame between two stop codons, but we shall use it for all possible
gene candidates.) There are many more ORFs than real genes, and here we will
sketch possible ways of distinguishing between a non-coding ORF and a real
gene.

In this example DNA from the bacterium E. coli is used (the dataset is de-
scribed in detail in Krogh, Mian & Haussler [1994]). We consider only genes
more than 100 nucleotides long. In the dataset there are 1100 such genes. This
set is arbitrarily divided into a training set of 900 for training our models, and a
test set containing the remaining 200 genes.
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Figure 3.11 Histograms of the log-odds per nucleotide for all NORFs
(grey) and genes (black line) according to a first order Markov chain. Be-
cause of the large number of NORFs, the histogram bin size is five times
smaller for the NORFs.

We estimate a first order model just as we did for the CpG islands early in
this chapter and test how well it discriminates genes from other ORFs. In the test
set we found roughly 6500 ORFs with a length of more than 100 bases. ORFs
that share the stop codon with a known real gene were not included, because they
would generally score very well and make our subsequent analysis more difficult.
The remaining ORFs that are not labelled as coding will be called NORFs (for
non-coding ORFs).

In Figure 3.11 a histogram is shown of the log-odds per nucleotide. As the null
model for calculating log-odds we used the simplest possible, with the probability
for each nucleotide equal to the frequency by which it occurs in all the data.
The average log-odds per nucleotide for all the genes is 0.018, whereas it is half
as much (0.009) for the NORFs, but the variance makes it almost useless for
discrimination. You could fool yourself into thinking that the model had a decent
discriminative power if you plotted the histogram of log-odds without dividing by
the sequence length, because the genes are longer on average than NORFS, and
therefore also the total log-odds is larger for the NORFs. Almost all the apparent
information about genes would come from the length distribution and not from
the model.

It is worth noticing that the average of the histogram is not at 0 bits, and that
the averages of the two distributions (genes and NORFs) are quite close. This
indicates that the Markov chain has indeed found a non-random correlation be-
tween nucleotide pairs, but it is essentially the same in coding and non-coding
regions. In a second order chain, the probability of a nucleotide depends on the
two previous ones, so it spans the length of a codon. Therefore we also tried a
second order model, but the result is almost identical to the one for the first or-
der model, so we do not show the histogram. It would probably not help much
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to switch to a Markov chain of even higher order, because these models do not
separate the three reading frames, i.e. the three different nucleotide positions in
the codon.

It is possible to make a high order inhomogeneous Markov chain (discussed
in the next section) for modelling the bases in three different reading frames,
but since our goal is to score ORFs, we will do it differently. The sequences are
transformed to sequences of codons. An arbitrary symbol is assigned to each of
the 64 codons, and all genes and NORFs are translated to this alphabet (yielding
sequences of one-third the length of the nucleotide sequences). Notice that this
transformation is slightly different from the one above for transforming an nth
order model into a first order one, because the triplets are non-overlapping.

A 64-state first order Markov chain was estimated from the translated se-
quences and tested on the genes in the test set and the NORFs in exactly the
same way as the models above. The result is shown in Figure 3.12. Although the
separation is not perfect, we see that it is much better than for the other model.
Notice that the distribution we compare to in the log-odds score now is a uniform
distribution over codons. The grey peak is centred around 0, indicating that the
Markov chain has found a signal that is special to coding regions, and that codon
usage is essentially random in the average NORF, and that a significant fraction
of the NORFs scoring highly represent real genes that are not labelled as such in
our data. It is likely that most of the ORFs scoring above 0.3–0.35 bits in this plot
are overlapping with real genes. The NORF histogram uses a smaller bin size (as
in Figure 3.11), and if the same bin size was used, the NORF histogram would
be about five times higher.

If the log-odds is not normalised by sequence length the discrimination im-
proves significantly, because real genes tend to be longer than NORFs, see
Figure 3.12.

Exercises

3.10 Calculate the number of parameters in the above codon model. The dataset
contains on the order of 300000 codons. Would it be feasible to estimate
a second order Markov chain from this dataset?

3.11 How can the above gene model be improved?

Inhomogeneous Markov chains

As we saw above, a successful Markov model of genes needs to model the codon
statistics. This can also be done without translating to another alphabet. It is well
known that in genes the three codon positions have quite different statistics, and
therefore it is natural to use three different Markov chains to model coding re-
gions. The three models are numbered 1 to 3 according to the position in the
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Figure 3.12 The top plot shows the histograms of NORFs and genes for the
Markov chain of codons (cf. Figure 3.11). Below, the log-odds is shown as
a function of length for genes (+) and NORFs (·).

codon. Assuming that x1 is in codon position 3, the probability of x2, x3, . . . would
then be

a1
x1x2

a2
x2x3

a3
x3x4

a1
x4x5

a2
x5x6

· · ·
where the parameters for model k are called ak . This is called an inhomogeneous
Markov chain. Here we assumed the chain was first order, but it is of course
possible to extend it to order n. The estimation of the parameters is a straight-
forward extension of the estimation of the homogeneous models described in
Section 3.1: for a second order inhomogeneous Markov chain as above the pa-
rameters of model 1 are estimated by counting the triplets with the last base in
codon position 1, and similarly for model 2 and 3.

Inhomogeneous Markov chains are used extensively in the GENEMARK gene-
finding program [Borodovsky & McIninch 1993], which is currently the most
widely used method for prokaryotic genefinding. Inhomogeneous models of or-
der up to five of coding regions have been combined with homogeneous models
of the non-coding regions to localise genes in a number of different bacterial
genomes.
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The first order model described above can also be constructed as an HMM,
with the number of states equal to three times the length of the alphabet (a total
of 12 for DNA). Higher order models can be made by adding many additional
states to the HMM. However, it is also possible to have nth order Markov emis-
sion probabilities in the states of an HMM, in which the emission probabilities
are conditioned on the n previous characters, so the emission probabilities (3.5)
become

ek(b|b1, . . . ,bn) = P(xi |πi = k, xi−1 = b1, . . . , xi−n = bn).

All the algorithms derived for standard HMMs can be used with only obvious
alterations for models with these emissions. Such models are also being used for
genefinding [Krogh 1998].

Exercise

3.12 Draw the HMM that corresponds to the first order inhomogeneous Mar-
kov chain given above.

3.6 Numerical stability of HMM algorithms

Even on modern floating point processors we will run into numerical problems
when multiplying many probabilities in the Viterbi, forward, or backward algo-
rithms. For DNA for instance, we might want to model genomic sequences of
100 000 bases or more. Assuming that the product of one emission and one tran-
sition probability is typically 0.1, the probability of the Viterbi path would then be
of the order of 10−100000. Most computers would behave badly with such num-
bers: either an underflow error would occur and the program would crash; or,
worse, the program would keep running and produce arbitrary wrong numbers.
There are two different ways of dealing with this problem.

The log transformation

For the Viterbi algorithm we should always use the logarithm of all probabilities.
Since the log of a product is the sum of the logs, all the products are turned
into sums. Assuming the logarithm base 10, the log of the above probability of
10−100000 is just −100000. Thus, the underflow problem is essentially solved.
Additionally, the sum operation is faster on some computers than the product, so
on these computers the algorithm will also run faster.

We will put a tilde on all the model parameters after taking the log, so for
example ãkl = logakl . Then the recursion relation for the Viterbi algorithm (3.8)
becomes

Vl(i +1) = ẽl(xi+1)+max
k

(Vk(i)+ ãkl),
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where we use V for the logarithm of v. The base of the logarithm is not important
as long as it is larger than 1 (such as 2, e, and 10).

It is more efficient to take the log of all the model parameters before running
the Viterbi algorithm, to avoid calling the logarithm function repeatedly during
the dynamic programming iteration.

For the forward and backward algorithms there is a problem with the log trans-
formation: the logarithm of a sum of probabilities cannot be calculated from the
logs of the probabilities without using exponentiation and log functions, which
are computationally expensive. However, the situation is not in practice so bad.
Assume you want to calculate r̃ = log(p + q) from the log of the probabilities,
p̃ = log p and q̃ = logq . The direct way is to do r̃ = log(exp( p̃) + exp(q̃)). By
pulling out p̃, one can write this as

r̃ = p̃ + log(1+ exp(q̃ − p̃)).

It is possible to approximate the function log(1 + exp(x)) by interpolation from
a table. For a reasonable level of accuracy, the table can actually be quite small,
assuming we always pull out the largest of p̃ and q̃, because exp(q̃ − p̃) rapidly
approaches zero for large ( p̃ − q̃).

Scaling of probabilities

An alternative to using the log transformation is to rescale the f and b variables,
so they stay within a manageable numerical interval [Rabiner 1989]. For each i
define a scaling variable si , and define new f variables

f̃l(i) = fl(i)∏i
j=1 sj

. (3.26)

From this it is easy to see that

f̃l(i +1) = 1

si+1
el(xi+1)

∑
k

f̃k(i)akl ,

so the forward recursion (3.11) is only changed slightly. This will work however
we define si , but a convenient choice is one that makes

∑
l f̃l(i) = 1, which means

that

si+1 =
∑

l

el(xi+1)
∑

k

f̃k(i)akl .

The b variables have to be scaled with the same numbers, so the recursion step
in (3.3) becomes

b̃k(i) = 1

si

∑
l

akl b̃l(i +1)el(xi+1)

This scaling method normally works well, but in models with many silent
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states, such as the one we describe in Chapter 5, underflow errors can still
occur.

Exercises

3.13 Use (3.26) to prove that P(x) = ∏L
j=1 sj with the above choice of si . It is

of course wiser to calculate log P(x) = ∑
j logsj .

3.14 Use the result of the previous exercise to show that the equation (3.20)
actually simplifies when using the scaled f and b variables. Also, derive
the result (3.21) for the scaled variables.

3.7 Further reading

More basic introductions to HMMs include Rabiner & Juang [1986] and Krogh
[1998].

Some early applications of HMM-like models to sequence analysis was done
by Borodovsky et al. [1986a; 1986b; 1986c] who used inhomogeneous Markov
chains as described on p. 76. This later led to the GENEMARK genefinder program
[Borodovsky & McIninch 1993]. Cardon & Stormo [1992] introduced an expec-
tation maximisation (EM) method, which has many similarities with an HMM,
for modelling protein binding motifs. Later applications of HMMs to genefind-
ing include Krogh, Mian & Haussler [1994], Henderson, Salzberg & Fasman
[1997], and Krogh [1997a,1997b,1998] as well as systems combining neural net-
works and HMMs [Stormo & Haussler 1994; Kulp et al. 1996; Reese et al. 1997;
Burge & Karlin 1997]. Such hybrid systems are also becoming quite popular
for other applications; see for instance Bengio et al. [1992], Frasconi & Bengio
[1994], Renals et al. [1994], Baldi & Chauvin [1995], and Riis & Krogh [1997].

Churchill [1989] used HMMs for modelling compositional differences be-
tween DNA from mitochondria and from the human X chromosome and bacter-
iophage lambda, and later for studying the compositional structure of genomes
[Churchill 1992]. Other applications include a three-state HMM for prediction
of protein secondary structure [Asai, Hayamizu & Handa 1993], a HMM with
ten states in a ring for modelling an oscillatory pattern in nucleosomes [Baldi et
al. 1996], detection of short protein coding regions and analysis of translation
initiation sites in cyanobacteria [Yada & Hirosawa 1996; Yada, Sazuka & Hiro-
sawa 1997], characterization of prokaryotic and eukaryotic promoters [Pedersen
et al. 1996], and recognition of branch points [Tolstrup, Rouzé & Brunak 1997].
Several other applications of HMMs will be discussed in the context of profile
HMMs in Chapters 5 and 6.
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Pairwise alignment using HMMs

Now that we have acquired new technical machinery from hidden Markov model
theory, we return for a brief chapter to pairwise sequence alignment. In Chapter 2
we introduced finite state automata with multiple states as a convenient descrip-
tion of more complex dynamic programming algorithms for pairwise alignment.
It is also possible to consider them as a basis for a probabilistic interpretation
of the gapped alignment process, by converting them into HMMs. One advan-
tage of this approach is that we will be able to use the resulting probabilistic
model to explore questions about the reliability of the alignment obtained by dy-
namic programming, and to explore alternative (suboptimal) alignments. Indeed,
by weighting all alternatives probabilistically, we will be able to score the simi-
larity of two sequences independent of any specific alignment. We can also build
more specialised probabilistic models out of simple pieces, to model more com-
plex versions of sequence alignment, as discussed previously for FSAs.

Let us first review briefly the finite state automaton that we introduced for
pairwise alignment with affine gap penalties. We required three states, M cor-
responding to a match, and two states corresponding to inserts, which we name
here X and Y as shown in Figure 4.1. The recurrence relations for updating the

M
(+1,+1)

Y
(+0,+1)

X
(+1,+0) -e

-e

-d

-d

s(xi,yj)

s(xi,yj)

s(xi,yj)

M

Y

X ε

ε

δ

δ

qxi

qyj

1−ε

1−ε

1−2δ
pxiyj

Figure 4.1 A finite state machine diagram for affine gap alignment on the
left, and the corresponding probabilistic model on the right.
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values of these states in the dynamic programming matrix are

V M(i , j) = s(xi , yj )+max




V M(i −1, j −1),
V X(i −1, j −1),
V Y(i −1, j −1);

(4.1)

V X(i , j) = max

{
V M(i −1, j)−d ,
V X(i −1, j)− e;

V Y(i , j) = max

{
V M(i , j −1)−d ,
V Y(i , j −1)− e.

These equations are appropriate for global alignment. As previously, we will gen-
erally give detailed equations for global alignment, while indicating what changes
need to be made for local alignment.

4.1 Pair HMMs

We need to make two sets of changes to an FSA as shown on the left side of Fig-
ure 4.1 to turn it into an HMM. First, as shown on the right of Figure 4.1, we must
give probabilities both for emissions of symbols from the states, and for transi-
tions between states. For example, state M has emission probability distribution
pab for emitting an aligned pair a:b, and states X and Y will have distributions
qa for emitting symbol a against a gap. Because state X emits symbols xi from
sequence x , we write qxi inside the circle representing state X. We also specify
transition probabilities between the states, which must satisfy the requirement
that the probabilities for all the transitions leaving each state sum to one. Allow-
ing for symmetry, there are two free parameters for the transition probabilities
between the three main states. We denote the transition from M to an insert state
(X or Y) by δ, and the probability of staying in an insert state by ε.

However, the resulting model shown on the right side of Figure 4.1 does not
generate a full model that will provide a probability distribution over all possi-
ble sequences. To do that, we need to define a Begin and an End state, as shown
in Figure 4.2. In effect these formalise the initialisation and termination condi-
tions that we needed for the dynamic programming algorithms in Chapter 2. We
will see below that more complex arrangements of Begin and End states can
correspond to local and other types of alignments. Adding an explicit End state
introduces the need for another parameter, the probability of a transition into the
End state, which we assume for now to be the same from each of M, X and Y; we
call it τ . This will in effect determine the average length of an alignment from the
model. For now, we will set the transitions from the Begin state to be the same as
from the M state (we could have just said that we will start in M, but we wanted
to make clear that initialisation can be given independent consideration as well
as termination).
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Figure 4.2 The full probabilistic version of Figure 4.1.

This gives us a probabilistic model that is very similar to a hidden Markov
model as we defined it in Chapter 3. The difference is that instead of emitting
a single sequence it emits a pairwise alignment. We will call this type of model
a pair HMM to distinguish it from the more standard types of HMMs that emit
single sequences. All the algorithms from Chapter 3 carry across to pair HMMs,
although they need an extra dimension of search space because of the extra emit-
ted sequence. For example, instead of writing vk(i) for the Viterbi probabilities,
we write vk(i , j). We will give below the explicit sets of equations for the key
algorithms, applied to the basic pair HMM shown in Figure 4.2.

Just as a standard HMM can generate a sequence, our pair HMM can generate
an aligned pair of sequences. This is done by starting in the Begin state, and
cycling over the following two steps: (1) pick the next state according to the
distribution of transition probabilities leaving the current state; (2) pick a symbol
pair to be added to the alignment according to the emission distribution in the new
state. The process stops when a transition is made into the End state. Because we
have probabilities for each step, we can also keep track of the total probability of
generating a particular alignment that we have made. This is just the product of
the probabilities of each individual step.

The most probable path is the optimal FSA alignment

The Viterbi algorithm from Chapter 3 will allow us to find the most probable path
through a pair HMM given sequences x and y. The correct form for the global
pair HMM of Figure 4.2 is as follows. To make the equations simpler, we define
the Begin state to be M. As in the previous chapter, we use lower-case symbols
v

•(i , j) for probability values, and upper-case V •(i , j) for log-odds scores. We
give the Viterbi algorithm first in terms of probabilities:
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Algorithm: Viterbi algorithm for pair HMMs

Initialisation:
vM(0,0) = 1. vX(0,0) = vY(0,0) = 0.
All v

•(i ,−1),v •(−1, j) are set to 0.vM(0,0) = 1. All other v
•(i ,0),v •(0, j) are set to 0.

Recurrence: i = 0, . . . ,n, j = 0, . . . ,m except (0,0);

vM(i , j) = pxi yj max




(1−2δ − τ )vM(i −1, j −1),
(1− ε − τ )vX(i −1, j −1),
(1− ε − τ )vY(i −1, j −1);

vX(i , j) = qxi max

{
δvM(i −1, j),
εvX(i −1, j);

vY(i , j) = qyj ,max

{
δvM(i , j −1)
εvY(i , j −1).

Termination:
vE = τ max(vM(n,m),vX(n,m),vY(n,m)). �

To find the best alignment, we keep pointers and trace back as usual. Of course,
to get the alignment itself we keep track of which residues are emitted at each step
in the path during the traceback, as in Chapter 2, as well as (or even in place of)
the sequence of states as for the type of HMM described in Chapter 3.

Although it is clear that the recurrence equations of the pair HMM Viterbi
algorithm have the same sort of form as those for the state machine version of
pairwise alignment (4.1), it is instructive to see the exact form of the correspon-
dence.

First, we have to transform into log-odds ratios with respect to the random
model. In fact, now we have a full probabilistic model for our alignment, we
should also have one for our random model, with a proper termination condition.
Previously we have ignored the fact that our random model could not produce se-
quences of varying length in a proper probabilistic fashion. Here is a new random
model, which is also a pair HMM.

YX
qxi

1−η
qyj

Begin End
1−η

1−ηη

η

η

η

1−η

The main states are X and Y, which emit the two sequences in turn, independently
of each other. Each has a loop back onto itself with probability (1−η). As well as
Begin and End states, there is also a silent state in between X and Y, indicated by
a smaller circle. This does not emit any symbols, but is used to gather inputs from
both the X and Begin states (see the section on silent states on p. 71 for further
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information on how these are used). When defined this way the model allows
zero-length sequences x or y, just as the pair HMM model in Figure 4.2 does,
and generates a simple form for the random model distribution over sequences.
The probability of a pair of sequences x and y according to this model is

P(x , y|R) = η(1−η)n
n∏

i=1

qxi η(1−η)m
m∏

j=1

qyj

= η2(1−η)n+m
n∏

i=1

qxi

m∏
j=1

qyj . (4.2)

We now want to allocate the terms in this expression to those that make up the
probability of the Viterbi alignment, so that the odds ratio for the whole alignment
can be expressed as a product of odds ratios of individual terms (and, correspond-
ingly, so that the log-odds ratio of the alignment is a sum of log-odds terms). We
do this by allocating one factor of (1−η) and the corresponding qa factor to each
residue that is emitted in a Viterbi step. So the match transitions will be allocated
(1 − η)2qaqb where a and b are the two residues matched, and the insert states
(1 −η)qa where a is the residue inserted. Because the Viterbi path must account
for all the residues, exactly (n +m) terms will be used, and all of (4.2) except the
initial factor of η2 is accounted for.

In log-odds terms, we can now compute in terms of an additive model with log-
odds emission scores and log-odds transition scores. In practice this is normally
the most practical way to implement pair HMMs. From this, it is possible to
merge the emission scores with the transitions as shown here:

s(a,b) = log
pab

qaqb
+ log

(1−2δ − τ )

(1−η)2
,

d = − log
δ(1− ε − τ )

(1−η)(1−2δ − τ )
,

e = − log
ε

1−η
,

to produce scores that correspond to the standard terms used in sequence align-
ment by dynamic programming. Note that the qa contribution to d and e has van-
ished because the factors from the Viterbi and random models cancelled. Also
in order to absorb differences in the transitions coming from the match and gap
states, there has been a little sleight of hand in the expressions for s and d . We
intend to use s(a,b) as a score for every match, whether following another match
or an insertion. In order to make this work correctly, we have built into d an ad-
justment to correct for the difference in match score when returning back from an
insertion. This means that the dynamic programming matrix terms for the inser-
tions no longer correspond exactly to the log-odds ratios of being in those states,
although the final result will be correct.
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We can now give the log-odds version of the Viterbi alignment algorithm in a
form that looks like standard pairwise dynamic programming.

Algorithm: Optimal log-odds alignment

Initialisation:
V M(0,0) = −2logη, V X(0,0) = V Y(0,0) = −∞.
All V •(i ,−1), V •(−1, j) are set to −∞.

Recursion: i = 0, . . . ,n, j = 0, . . . ,m except (0,0);

V M(i , j) = s(xi , yj )+max




V M(i −1, j −1),
V X(i −1, j −1),
V Y(i −1, j −1);

V X(i , j) = max

{
V M(i −1, j)−d ,
V X(i −1, j)− e;

V Y(i , j) = max

{
V M(i , j −1)−d ,
V Y(i , j −1)− e.

Termination:
V = max(V M(n,m), V X(n,m)+ c, V Y(n,m)+ c). �

These are identical to (4.1) except for the constant 2 logη in the initialisation,
and the constant c = log(1−2δ − τ )− log(1−ε− τ ) in the termination, which is
needed to correct back for our adjustment described above in d . In fact the latter
correction is only a result of having used the same exit probability τ for match
and insert states. If the exit transition probabilities from the gap states are set to
(1−ε)τ/(1−2δ) then c will be zero, and hence the log-odds algorithm will have
exactly the same form as our standard pairwise affine gap alignment algorithm,
with a single additive constant coming from the initialisation conditions.

The procedure as we have described it shows how for any pair HMM of the
type shown in Figure 4.2 we can derive an equivalent FSA for obtaining the most
probable alignment. This allows us to see a rigorous probability-based interpre-
tation for the terms used in sequence alignment. To do the reverse, i.e. to go from
a dynamic programming algorithm expressed as an FSA to a pair HMM, is more
complicated. There will in general be a need for a new parameter λ which will
act as a global scaling factor for the scores, and for any given set of scores there
may be constraints on the choice of η and τ .

A pair HMM for local alignment

The model shown in Figure 4.2 is appropriate to finding a global match be-
tween sequences. As described in Chapter 2, many of the most sensitive pairwise
searches are local. When we introduced the local alignment algorithm, and other
variants such as the repeat and overlap algorithms, we explained them in terms
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Figure 4.3 A pair HMM for local alignment. This is composed of the global
model (states M, X and Y) flanked by two copies of the random model
(states RX1, RY1 and RX2, RY2).

of changes in the update equations and boundary conditions. Both of these are
made explicit in the pair HMM formalism by adding states and transitions. We
can therefore draw a separate pair HMM model for each variant. In Figure 4.3 we
show a model for local alignment. This looks more complicated than the global
model in Figure 4.2, but it is made up of simpler pieces in a straightforward
fashion.

A complete probabilistic model must account for all of the sequences x and
y: not only the local alignment between x and y, but also the unaligned flanking
sequences. We therefore add extra model sections before and after the three-state
matching segment from Figure 4.2. Each flanking segment is a copy of the com-
plete random background model, because the sequences in the flanking regions
are unaligned. Most terms in the likelihood contributions of these sections will
cancel out with equivalent terms in the random model when calculating the log-
odds scores of a match in comparison to the random model, leaving only the local
matching score from the central part of the model, and some extra one-off terms.
Similar composite models can be built for overlap and repeat models, and the
various hybrids discussed in Chapter 2.

Exercises

4.1 What is the probability that sequence x has length t under the full random
model?

4.2 What is the expected length of sequences from the full random model?
How should the parameter η be set?
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4.2 The full probability of x and y, summing over all paths

Having a pair HMM allows us to do more than provide an alternative rationale for
standard pairwise alignment by dynamic programming. One issue that we raised
when discussing the significance of matches in Chapter 2 was that, when sim-
ilarity is weak, it is hard to identify the correct alignment to score and test for
significance. Now we can bypass this problem (and the approach taken through-
out the whole of Chapter 2) by calculating the probability that a given pair of
sequences are related according to the HMM by any alignment. We do this by
summing over alignments,

P(x , y) =
∑

alignments π

P(x , y,π ).

How do we calculate this sum? Again, there is a standard HMM algorithm, de-
scribed in Chapter 3 as the forward algorithm. The way this works out for pair
HMMs is that we can again use the same dynamic programming idea that we used
for finding the maximal scoring alignment, but add rather than take the maximum
at each step. The probability version of the forward algorithms is given below,
using f k(i , j) to represent the combined probability of all alignments up to (i , j)
that end in state k. As before, we give this only for the global model of Figure 4.2;
the extension to other types of pairwise alignment model such as the local model
described above is straightforward.

Algorithm: Forward calculation for pair HMMs

Initialisation:

f M(0,0) = 1. f X(0,0) = f Y(0,0) = 0.

All f •(i ,−1), f •(−1, j) are set to 0.

Recursion: i = 0, . . . ,n, j = 0, . . . ,m except (0,0);

f M(i , j) = pxi yj

[
(1−2δ − τ ) f M(i −1, j −1)+
(1− ε − τ )( f X(i −1, j −1)+ f Y(i −1, j −1))

]
;

f X(i , j) = qxi

[
δ f M(i −1, j)+ ε f X(i −1, j)

]
;

f Y(i , j) = qyj

[
δ f M(i , j −1)+ ε f Y(i , j −1)

]
.

Termination:
f E(n,m) = τ

[
f M(n,m)+ f X(n,m)+ f Y(n,m)

]
. �

We can now consider the log-odds ratio of the resulting full probability
P(x , y) = f E(n,m) to the null model probability given by (4.2). This is a mea-
sure of the likelihood that the two sequences are related to each other by some
unspecified alignment, as opposed to being unrelated. In doing this we have not
assumed any specific alignment. Of course, if there is an unambiguous best align-
ment, almost all the probability in the total sum will be contributed by the single
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HBA_HUMAN KVADALTNAVAHVD-----DMPNALSALSDLH
KV + +A ++ +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

HBA_HUMAN KVADALTNAVAHVDDM-----PNALSALSDLH
KV + +A ++ +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

HBA_HUMAN KVADALTNA-----VAHVDDMPNALSALSDLH
KV + +A V V +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

Figure 4.4 An example of uncertainty in positioning a gap: three signifi-
cantly different gap placements in the globin alignment from Figure 2.1(b),
with very similar scores.

path corresponding to this best alignment. However, the full score will always
be higher than that for the optimal alignment (using the same scoring scheme),
and it can be significantly different when there are many comparable alternative
alignments, or alignment variations.

An important use of the full probability is to define a posterior distribution
P(π |x , y) over alignments π given a pair of sequences x , y. This is given by

P(π |x , y) = P(x , y,π )

P(x , y)
. (4.3)

If we set π = π�, the Viterbi path, in (4.3), then we obtain the posterior probabil-
ity according to the model of the Viterbi path vE(n,m)/ f E(n,m), which we can
interpret as the probability that the optimal scoring alignment is ‘correct’. Fre-
quently this is vanishingly small! For example for the alignment of alpha globin
to leghaemoglobin in Figure 2.1(b) it is 4.6 × 10−6. This observation, although
perhaps alarming if one was hoping that the standard alignment algorithms would
find the ‘correct’ alignment, is not surprising. There are many small variants of
the best alignment that have nearly the same score, or equivalently are nearly
equally likely. In particular, where there is a gap there is often a choice of where
the gap should be placed; moving it left or right by a residue or so frequently
leads to no change or a seemingly random fluctuation.

Figure 4.4 shows an example of this behaviour with corresponding sections of
the human alpha globin and lupin leghaemoglobin sequences. The first alignment
shown is close to the structurally verified alignment, and has score 3 (BLOSUM50,
gap-open −12, gap-extend minus −2). The next has the same score, although the
gap is offset by two positions. The third has score 6, although the gap is misplaced
by five residues. The difference in scores of 3 coresponds to an increase in relative
likelihood of a factor of two according to the alignment model, since BLOSUM50
scores are given in third-bits. It is clear that simple sequence alignment is not an
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accurate way to determine the alignment in this case, which is admittedly highly
diverged.

Exercise

4.3 The relative scores for gap position variants such as shown in Figure 4.4
depend only on the substitution scores, not the gap scores. Why is this,
and what are the consequences for alignment accuracy using dynamic
programming algorithms?

4.3 Suboptimal alignment

Given that there are frequently alternative alignments with nearly the same prob-
ability (or more generally nearly the same score) as the best alignment, it is nat-
urally of interest to see what they are. Such alignments are known as suboptimal
alignments. There are a number of different approaches to examining and char-
acterising suboptimal alignments. First let us consider more carefully what we
might expect to find.

One class of alignments with scores close to the optimal score will be those
mentioned above that only differ in a few positions from the optimal alignment
(e.g. those in Figure 4.4). Because minor variations at different places in the align-
ment can be combined independently, the number of these ‘local’ variants grows
exponentially as the difference in score from the optimal score increases. It is
therefore impractical to give all such variants. However, the flexibility in vary-
ing the alignment can vary substantially with position along the alignment. There
are sampling methods that illustrate typical variants, and methods that show for
each cell in the dynamic programming matrix how ‘close’ it is to being in the
alignment. Examples of both of these are given below.

Another type of suboptimal alignment is one that differs substantially, or per-
haps completely, from the optimal alignment. Methods for finding this type of
suboptimal alignment can be used where one suspects that more than one correct
alignment may be present, for instance where there are repeats in one or both of
the sequences. In general, this is more relevant when searching for local align-
ments, which only align together a part of each sequence.

Probabilistic sampling of alignments

We first give a method for sampling alignments from the posterior distribution
defined in (4.3). Recall that this gave a probability to each possible alignment of
the two sequences, according to its likelihood of being correct under the model.
An ensemble of such samples will give a picture of the type of alignment in-
formation that is reliably retrievable from a given sequence pair. Any particular
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property of direct interest can be estimated by averaging over the sample, as sug-
gested in the section on posterior decoding of HMMs (p. 61). This is a powerful
general strategy for using similarity information when the alignment is uncertain
in detail; for example it is used later in the book in Chapter 8.

To generate a sample alignment, we trace back through the matrix of f k(i , j)
values, but instead of taking the highest scoring choice at each step, we make a
probabilistic choice based on the relative strengths of the three components. To
illustrate how this is done, let us imagine we are part way through the traceback,
in state M at position (i , j), which we call cell M(i , j). We know from the forward
algorithm that

f M(i , j) = pxi yj

[
(1−2δ − τ ) f M(i −1, j −1)+
(1− ε − τ )( f X(i −1, j −1)+ f Y(i −1, j −1))

]
.

We choose the next step to be

M(i −1, j −1) with prob.
pxi yj (1−2δ − τ ) f M(i −1, j −1)

f M(i , j)
,

X(i −1, j −1) with prob.
pxi yj (1− ε − τ ) f X(i −1, j −1)

f M(i , j)
,

Y(i −1, j −1) with prob.
pxi yj (1− ε − τ ) f Y(i −1, j −1)

f M(i , j)
.

The corresponding distribution if in cell X(i , j) would be to choose

M(i −1, j) with prob.
qxi δ f M(i −1, j)

f X(i , j)
,

X(i −1, j) with prob.
qxi ε f X(i −1, j)

f X(i , j)
,

and similarly for cell Y(i , j).
A set of sample global alignments from our simple example data is given here:

HEAGAWGHEE HEAGAWGHE-E HEAGAWGHE-E
-P-A-WHEAE -PA--W-HEAE -P--AW-HEAE

HEAGAWGHEE HEAGAWGHEE HEAGAWGHEE
P---AWHEAE -P--AWHEAE --PA-WHEAE

You can see that alternatives are more likely where gaps are required and
evidence for the alignment is weak, as at the beginning of the sequences. Pair-
ings that contribute strongly to the score, such as the Ws, or that come in blocks,
as at the end of the sequence, are more stable. The frequency of a pairing in such
samples can be used as a natural indicator of its reliability in the alignment. Below
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we present a direct way of calculating the expected value of this frequency, i.e.
the probability that any particular pair of residues should be aligned, according
to the model.

The same type of sampling approach that we have used here will be used later
in the book when building multiple alignments (Chapter 5).

Finding distinct suboptimal alignments

As mentioned above, a number of different methods have been given for find-
ing alignments that are not simply minor variants of the optimal alignment. One
approach is to use the ‘repeat’ algorithm in Chapter 2. This found the optimal
set of high-scoring matches between one sequence and multiple non-overlapping
segments of the other sequence. However, for the current purposes, this is un-
satisfactory because it treats the two sequences differently. Also, the best single
alignment may not even be present in the set.

The most widely used method for searching for distinct suboptimal alignments
is due to Waterman & Eggert [1987], who give an algorithm to find the next best
alignment that has no aligned residue pairs in common with any previously de-
termined alignment. Once the top match has been obtained, the standard (Viterbi)
dynamic programming matrix is recalculated, with the additional step during the
recurrence that cells corresponding to residue pairs contained in the best match
are set to zero, preventing them from contributing to the next alignment. The re-
sulting matrix and score will therefore contain information about the second best
alignment. This procedure can be repeated, zeroing all the cells for any match
obtained so far each time, until the next score is below T (see Figure 4.5). In fact,
if the matrix is stored in memory then it is not necessary to recalculate the com-
plete matrix each iteration: a marking procedure can be used to indicate which
cells need to be updated. For references to some of the other approaches to finding
suboptimal alignments, see Section 4.6.

4.4 The posterior probability that xi is aligned to yj

If the probability of any single complete path being entirely correct is small,
can we say anything about the local accuracy of an alignment? Often part of
an alignment is fairly clear, and other regions are less certain. The degree of
conservation varies depending on structural and functional contraints, so that core
sequences may be well conserved, while loop regions are not reliably alignable.
Given this situation, it can be useful to be able to give a reliability measure for
each part of an alignment.

The HMM formalism allows us to do this. The idea is that we calculate the
combined probability of all the alignments that pass through a specified matched
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   0    0    0    0    0    0    0    0    0    0    0

P    0    0    0    0    0    0    0    0    0    0    0

A    0    0    0    5    0    5    0    0    0    0    0

W    0    0    0    0    2    0   20   12    4    0    0

H    0   10    2    0    0    0   12   18   22   14    6

E    0    2   16    8    0    0    4   10   18   28   20

A    0    0    8   21   13    5    0    4   10   20   27

E    0    0    6   13   18   12    4    0    4   16   26

 

 H E A G A W G H E E
   0    0    0    0    0    0    0    0    0    0    0

P    0    0    0    0    0    0    0    0    0    0    0

A    0    0    0    5    0    0    0    0    0    0    0

W    0    0    0    0    2    0    0    0    0    0    0

H    0   10    2    0    0    0    0    0    0    0    0

E    0    2   16    8    0    0    0    0    0    0    6

A    0    0    8   21   13    5    0    0    0    0    0

E    0    0    6   13   18   12    4    0    0    6    6

 

Figure 4.5 The Waterman–Eggert algorithm applied to our standard data
example. Above, the standard local alignment matrix exactly as in Fig-
ure 2.6. Below, the best local match has been zeroed out so that the second
best alignment can be obtained.

pair of residues (xi , yj ). We then compare this value with the full probability of
all alignments of the pair of sequences, calculated in the previous section. If the
ratio is near to one, then we can say that that match is highly reliable; if near zero,
then the match is unreliable. This method used to do this is very closely related
to the algorithm given for posterior decoding in Chapter 3.

Let us introduce a new notation xi  yj to mean that xi is aligned to yj . Then
from standard conditional probability theory we have

P(x , y, xi  yj ) = P(x1...i , y1... j , xi  yj )P(xi+1...n , yj+1...m |x1...i , y1... j , xi  yj )

= P(x1...i , y1... j , xi  yj )P(xi+1...n , yj+1...m |xi  yj )

The first term is the forward probability f M(i , j) calculated above by the forward
algorithm. The second is the corresponding backward probability bM(i , j) which
is calculated by the corresponding backward algorithm.
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Algorithm: Backward calculation for pair HMMs

Initialisation:

bM(n,m) = bX(n,m) = bY(n,m) = τ .
All b •(i ,m +1),b •(n +1, j) are set to 0.

Recursion: i = n, . . . ,1, j = m, . . . ,1 except (n,m);

bM(i , j) = (1−2δ − τ )pxi+1 yj+1bM(i +1, j +1)
+ δ

[
qxi+1bX(i +1, j)+qyj+1bY(i , j +1)

]
;

bX(i , j) = (1− ε − τ )pxi+1 yj+1bM(i +1, j +1)+ εqxi+1bX(i +1, j);

bY(i , j) = (1− ε − τ )pxi+1 yj+1bM(i +1, j +1)+ εqyj+1bY(i , j +1). �

There is no special termination step needed, because we only need the b •(i , j)
values for i , j ≥ 1.

We can now use Bayes’ rule to obtain

P(xi  yj |x , y) = P(x , y, xi  yj )

P(x , y)
,

and can also obtain similar values for the posterior probabilities of using specific
insert states. Figure 4.6 shows the results of this procedure applied to the example
sequences that we used in Chapter 2.

Miyazawa [1994] describes essentially the same approach, and goes on to de-
fine what he calls a ‘probability alignment’. It might seem attractive to define an
alignment of x to y by finding for each i the j that maximises P(xi  yj ) (we drop
explicit conditioning with respect to x and y from here on, since it will always be
present). However, this is not guaranteed to produce a well-formed alignment; it
may contain aligned pairs (i1, j1), (i2, j2) which are inconsistent with the sequence
orders, i.e. for which i2 > i1 and j1 < j2. Miyazawa pointed out that if we restrict
ourselves to pairs (i , j) for which P(xi  yj ) > 0.5, then these will always be con-
sistent, and will also only align each xi to at most one yj . In places where the
alignment is clear, it will be covered by this condition. On the other hand, where
it is not clear, for example in corresponding loop regions of distantly related pro-
teins, there will be gaps in both sequences where no particular pairs of residues
are strongly supported as being aligned.

The expected accuracy of an alignment

Miyazawa’s approach typically gives rise to incomplete alignments, in that there
may be significant sections where no P(xi  yj ) > 0.5. Although this may be what
is wanted, it is also possible to use the posterior match probabilities to give a com-
plete alignment with maximal overall accuracy, in the sense outlined below. We
first note that we can calculate the expected overlap A(π ) between a given align-
ment π and paths sampled from the posterior distribution. This is equivalently
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Match H E A G A W G H E E
  87    0    0    0    0    0    0    0    0    0    0

P    0   24   36   18    7    0    0    0    0    0    0

A    0    0    2   26   15   43    0    0    0    0    0

W    0    0    0    0    0    0   85    1    0    0    0

H    0    0    0    0    0    0    0   12   73    0    0

E    0    0    0    0    0    0    0    1    8   65    0

A    0    0    0    0    0    0    0    0    1   21    0

E    0    0    0    0    0    0    0    0    0    0   86

 

X insert H E A G A W G H E E
   0   62   26    7    0    0    0    0    0    0    0

P    0    0   22   32   36    0    0    0    0    0    0

A    0    0    0    2   28   42    0    0    0    0    0

W    0    0    0    0    0    0    0   72    0    0    0

H    0    0    0    0    0    0    0    0    3    0    0

E    0    0    0    0    0    0    0    0    0    0    0

A    0    0    0    0    0    0    0    0    0    1    0

E    0    0    0    0    0    0    0    0    0    0    2

 

Y insert H E A G A W G H E E
   0    0    0    0    0    0    0    0    0    0    0

P    0    0    0    0    0    0    0    0    0    0    0

A    0    0    0    0    0    0    0    0    0    0    0

W    0    0    0    0    0    0    0    0    0    0    0

H    0    0    0    0    0    0    1    0    0    0    0

E    0    0    0    0    0    0    0    0   12    0    0

A    0    0    0    0    0    0    0    0    0   64    0

E    0    0    0    0    0    0    0    0    0    0   10

Figure 4.6 Posterior probabilities for the example data used in Chapter 2.
The three tables show the posterior probabilities of using the M, X or Y
states respectively at each (i , j) position. Values are shown as percentages,
i.e. 100 times the relevant probability rounded to the nearest integer. The
path indicated is the optimal accuracy path in the sense of (4.4).
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the expected number of correct matches in π , which is a natural measure of the
overall accuracy of π .

A(π ) =
∑

(i , j)∈π

P(xi  yj ),

where the sum is over all aligned pairs in π . For the alpha globin/leghaemoglobin
alignment of Figure 2.1(b) A(π ) = 16.48, or on average 0.40 per aligned residue.

Given this new type of score for an alignment, can we find the alignment be-
tween two sequences with the highest accuracy? We might hope that this, while
perhaps not providing the most discriminative score for use in detecting whether
two sequences are related, would give a more accurate alignment if they are.
The method required is surprisingly simple. We perform standard dynamic pro-
gramming using score values given by the posterior probabilities of pair matches,
without gap costs. The recursion equations are:

A(i , j) = max




A(i −1, j −1)+ P(xi  yj ),
A(i −1, j),
A(i , j −1),

(4.4)

and the standard traceback procedure will produce the best alignment. It is clear
that this procedure will optimise the sum of the P(xi  yj ) terms in a legitimate
alignment. Interestingly the same algorithm works for any sort of gap score; what
will change with different scores are the P(xi  yj ) terms themselves, which are
obtained from the standard, scoring scheme-specific dynamic programming pro-
cedures described above.

The optimal accuracy path for the short sequences used as examples in Chap-
ter 2 is shown in Figure 4.6. Note that it is not the same as the most likely, or
Viterbi path. The initial P in the shorter sequence is clearly preferably aligned to
the E and not the A of the longer sequence, although the individual scores for
aligning P to E and A are the same. Intuitively, the reason for this is that aligning
to the E allows more options in where the subsequent gap can be placed.

4.5 Pair HMMs versus FSAs for searching

One of the strong points of probabilistic modelling is that, if data D correspond
to samples from a model M , then, in the limit of an infinitely large amount of
data, the likelihood takes its maximum value for M , i.e. P(D|M) > P(D|M̃),
where M̃ is any other model. In particular, if M has a set of parameters, such as
the transition and emission probabilities of an HMM, the likelihood of the data
will be maximised by giving the model the parameter values corresponding to the
sample.
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S

B

α

1−α

1 1 1
a b a c

1

qa

Figure 4.7 This FSA emits sequences from S with probability qa, and
strings abac from the block B of four states below. If the probability of
transition to B is low, the most probable path will never use B, even if the
sequence includes the motif abac.

As a consequence, if the parameters of a pair HMM describe the statistics
of pairs of related sequences well, then we should use that model with those
parameter values for searching. If we also have a model, R, that gives a good
description of the generation of random sequence, then Bayesian model compar-
ison with M and R is an appropriate procedure (p. 36 in Chapter 2). According
to this philosophy, we should be using probabilistic models for searching. How-
ever, most currently used algorithms (Chapter 2) fall short of this in two ways.
First, they do not compute the full probability P(x , y|M) of the pair of sequences,
summing over all alignments, but instead find the best match, or Viterbi path.
Second, regarded as FSAs, their parameters may not be readily translated into
probabilities.

Consider first the effects of using Viterbi paths. It is easy to show that, in
this case, a model whose parameters match the data need not be the best search
model. Figure 4.7 shows a simple HMM example. A state S generates symbols
with probabilities qa; S has a transition to itself with probability α and can make
a transition with probability 1 − α to a sequential block B of states that emits
a fixed string abac of length four before returning to the original state. The
probability of emitting abac from S is PS(abac) = α4qaqbqaqc, whereas the
probability of emitting abac from B (starting at S) is 1 − α. If PS(abac) >

1 − α, the most probable path for any set of data will only use S, because the
transition to B is too improbable. Nonetheless, the presence of a greater than
expected number of strings abac in the data is what distinguishes the output of
the model from that of the random model that emits symbols with probabilities
qa . Model comparison using the best match rather than the total probability, will
fail to detect the source of the data, even for very large datasets. We can partially
correct for these deficiencies by changing our parameters. For instance, the model
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Figure 4.8 (a) An FSA that computes the local match algorithm. s(a,b) are
the scores for the BLOSUM50 matrix. (b) Two HMMs, an aligned sequence
model (above) and a random model (below) whose log-odds ratio score is
the same as the score of the FSA shown in (a). The probabilities pab and qa

are those used to define the BLOSUM50 matrix.

will be able to detect these types of sequences if the probability of the transition
to B is increased to τ where τ > PS(abac). However, then every abac will be
classed as coming from B, which is not correct either.

Consider now the problem of turning an FSA for pairwise alignment into a
probabilistic model. Figure 4.8(a) shows an FSA for local matches; it has initial
and final states that emit an unpaired sequence with zero cost. Since the length
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of this unpaired sequence can be arbitrary, and since a probabilistic model will
always have a non-zero cost for each emission, no fixed rescaling procedure can
make the scores of this model into the log probabilities of an HMM. On the
other hand, if we are doing Bayesian model comparison, and if we define a ran-
dom model R that emits an unpaired sequence with the same probabilities used
by the local alignment model M for its inital and final unaligned regions, then
the log-odds for the unpaired sequence will be zero. We may then be able to
find two pair HMMs whose log-odds ratios match the FSA scores, for example
Figure 4.8(b). Note that the transition probabilities here are not very plausible,
since they imply very short sequences. Yet the parameters assumed for the FSA
are known to work well. Based on this, we suspect that the standard parame-
ters have been empirically set to ‘unconsciously’ compensate for the same failing
of Viterbi as a search method as is illustrated in the simple case of Figure 4.8.
This leads us to suggest that probabilistic models may underperform standard
alignment methods if Viterbi is used for database searching, but if the forward
algorithm is used to provide a complete score independent of specific align-
ment, then probabilistic models like pair HMMs may improve upon the standard
methods.

Exercises

4.4 Show that using the full probabilistic model with the example in Fig-
ure 4.7 allows discrimination between model and random data.

4.5 Compare this with using the Viterbi path in the model where the transi-
tion probability to B has been raised to τ such that τ > PS(abac).

4.6 We can modify the model further by setting all the emission probabilities
at S to the same value, 1/A, where A is the alphabet size. The difference
between this model and a random model with the same emission prob-
abilities is then precisely the number of strings abac in the data. Does
this discriminate as well as the full probabilistic model?

4.6 Further reading

Although the explicit formulation of pairwise alignment in terms of pair hidden
Markov models that we have given here is not standard, several authors have con-
sidered an equivalent full probabilistic model. Bucher & Hofmann [1996] discuss
searching with a local probabilistic model normalised via a partition function.
Bishop & Thompson [1986] introduced a related model in the context of evo-
lutionary analysis, a strand that has been developed more recently by Thorne,
Kishino & Felsenstein [1991; 1992], who have developed parameter estimation
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methods for probabilistic models of gapped alignment of DNA sequences. We
discuss some of these evolutionary motivated models further in Chapter 8.

Zuker [1991] and Barton [1993] describe methods for finding suboptimal align-
ments that differ from the method of Waterman & Eggert [1987]. Mevissen &
Vingron [1996] give an alternative approach to quantifying the reliability of a
dynamic programming alignment, and Vingron [1996] provides a good recent
review of methods for finding and assessing the significance of suboptimal
alignments.



5
Profile HMMs for sequence families

So far we have concentrated on the intrinsic properties of single sequences, such
as CpG islands in DNA, or on pairwise alignment of sequences. However, func-
tional biological sequences typically come in families, and many of the most
powerful sequence analysis methods are based on identifying the relationship of
an individual sequence to a sequence family. Sequences in a family will have
diverged from each other in their primary sequence during evolution, having sep-
arated either by a duplication in the genome, or by speciation giving rise to cor-
responding sequences in related organisms. In either case they normally maintain
the same or a related function. Therefore, identifying that a sequence belongs to
a family, and aligning it to the other members, often allows inferences about its
function.

If you already have a set of sequences belonging to a family, you can perform
a database search for more members using pairwise alignment with one of the
known family members as the query sequence. To be more thorough, you could
even search with all the known members one by one. However, pairwise searching
with any one of the members may not find sequences distantly related to the
ones you have already. An alternative approach is to use statistical features of the
whole set of sequences in the search. Similarly, even when family membership is
clear, accurate alignment can be often be improved significantly by concentrating
on features that are conserved in the whole family.

How, in brief, do we identify such features? Just as a pairwise alignment cap-
tures much of the relationship between two sequences, a multiple alignment can
show how the sequences in a family relate to each other. Figure 5.1 shows a
multiple alignment of seven sequences from the large globin family (hundreds
of globin sequences are available in the protein sequence databases). The three
dimensional structure has been obtained for each protein in the alignment shown,
and the sequences have been aligned on the basis of aligning the eight alpha
helices of the conserved globin fold, and also on the basis of aligning certain
key residues in the sequences, such as two conserved histidines (H) which are
the residues which interact with an oxygen-binding heme prosthetic group in the
globin active site.

It is clear that some positions in the globin alignment are more conserved than
others. In general the helices are more conserved than the loop regions between

101
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Helix AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC
HBA_HUMAN ---------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN --------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP ----------LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU --------GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... v a W kv . . g . L.. f . P . F F

Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
HBA_HUMAN -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus . t .. . v..Hg kv. a a...l d . a l. l H .

Helix FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH
HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------
HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------
MYG_PHYCA -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-------
GLB5_PETMA -QVDPQYFKVLAAVIADTVAAG---------DAGFEKLMSMICILLRSAY-------
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---
GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS-----
Consensus v. f l . .. .... f . aa. k. . l sky

Figure 5.1 An alignment of seven globins from Bashford, Chothia &
Lesk [1987]. To the left is the protein identifier in the SWISS-PROT

database [Bairoch & Apweiler 1997]. The eight alpha helices are shown as
A–H above the alignment. A consensus line below the alignment indicates
residues that are identical among at least six of the seven sequences in upper
case, ones identical in four or five sequences in lower case, and positions
where there is a residue identical in three sequences with a dot.

them, and certain residues are particularly strongly conserved. When identifying
a new sequence as a globin, it would be desirable to concentrate on checking that
these more conserved features are present. How to obtain and use such informa-
tion will be the subject of this chapter.

As might be expected, our approach to consensus modelling will be to make
a probabilistic model. In particular, we will develop a particular type of hidden
Markov model well suited to modelling multiple alignments. We call these profile
HMMs after standard profiles, which are closely related non-probabilistic struc-
tures introduced previously for the same purpose by Gribskov, McLachlan &
Eisenberg [1987]. Profile HMMs are probably the most popular application of
hidden Markov models in molecular biology at the moment [Eddy 1996].

We will assume for the purposes of this chapter that we are given a correct
multiple alignment, from which we will build a model that can be used to find and
score potential matches to new sequences. The multiple alignment could be built
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from structural information, like the globin alignment shown here, or it could
come from a sequence-based alignment procedure, such as those discussed in
Chapter 6.

Much of this chapter makes use of the theory presented in Chapter 3 for general
HMMs. The most important algorithms will be presented again in the specific
form relevant to profile HMMs. There is also an extensive discussion of how to
estimate optimal probability parameters from multiple sequence alignments.

5.1 Ungapped score matrices

One general feature of protein family multiple alignments, which can be seen
in Figure 5.1, is that gaps tend to line up with each other, leaving solid blocks
where there are no insertions or deletions in any of the sequences. We will start
by considering models for these ungapped regions.

As an example, consider the E helix of Figure 5.1. A natural probabilistic
model for such a region would be to specify independent probabilities ei (a) of
observing amino acid a in position i (we use letter e because these will turn out
to be the emission probabilities of the hidden Markov model when we introduce
gaps). The probability of a new sequence x according to this model is then

P(x |M) =
L∏

i=1

ei (xi ),

where L is the length of the block, 21 in this case. As usual, we are in fact more
interested in the ratio of this probability to the probability of x under a random
model, and so to test for membership in the family we evaluate the log-odds ratio

S =
L∑

i=1

log
ei (xi )

qxi

.

The values log ei (a)
qa

behave like elements in a score matrix s(a,b), where the
second index is position i , rather than amino acid b. For this reason, such an
approach is known as a position specific score matrix (PSSM). A PSSM can be
used to search for a match in a longer sequence x of length N by evaluating the
score Sj for each starting point j in x from 1 to N − L +1, where L is the length
of the PSSM.

5.2 Adding insert and delete states to obtain profile HMMs

Although a PSSM captures some conservation information, it is clearly an inad-
equate representation of all the information in a multiple alignment of a protein
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family. We have to find some way to take account of gaps. It is possible to com-
bine the scores of multiple ungapped block models, and this is the approach taken
by Henikoff & Henikoff [1991] in the BLOCKS database. However, we will pur-
sue here the aim of developing a single probabilistic model for the whole extent
of the alignment.

One approach is to allow gaps at each position in the alignment, using the
same gap score γ (g) at each position, as in pairwise alignment. However, this
is also ignoring information, because the alignment gives us explicit indications
of where gaps are more and less likely. We want to capture this information to
give us position sensitive gap scores, just as the emission probabilities gave us
position sensitive substitution scores.

The approach we take is to build a hidden Markov model (HMM), with a repet-
itive structure of states, but different probabilities in each position. This will pro-
vide a full probabilistic model for sequences in the sequence family. We start off
by observing that the PSSM can be viewed as a trivial HMM with a series of
identical states that we will call match states, separated by transitions of proba-
bility 1.

Begin EndMj

Alignment is trivial because there is no choice of transitions. We rename the
emission probabilities for the match states to eMi (a).

The next step is to deal with gaps. We must treat insertions and deletions sep-
arately. To handle insertions, i.e. portions of x that do not match anything in the
model, we introduce a set of new states Ii , where Ii will be used to match inser-
tions after the residue matching the i th column of the multiple alignment. The
Ii have emission distribution eIi (a), but these are normally set to the background
distribution qa , just as for seeing an unaligned inserted residue in a pairwise align-
ment. We need transitions from Mi to Ii , a loop transition from Ii to itself, to ac-
commodate multi-residue insertions, and a transition back from Ii to Mi+1. Here
is a single insert state of this kind:

Mj

Ij

Begin End

We denote insert states in our diagrams by diamonds. The log-odds cost of an
insert is the sum of the costs of the relevant transitions and emissions. Assuming
that eIi (a) = qa as described above, there is no log-odds contribution from the
emission, and the score of a gap of length k is

logaM j I j + logaI j M j+1 + (k −1) logaI j I j .
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From this you can see that the type of insert state shown corresponds to an affine
gap scoring model.

Deletions, i.e. segments of the multiple alignment that are not matched by
any residue in x , could be handled by forward ‘jump’ transitions between non-
neighbouring match states:

However, to allow arbitrarily long gaps in a long model this way would require a
lot of transitions. Instead we introduce silent states D j as described in Section 3.4:

Begin EndMj

Dj

Because the silent states do not emit any residues, it is possible to use a sequence
of them to get from any match state to any later one, between two residues in the
sequence. The cost of a deletion will then be the sum of the costs of an M → D
transition followed by a number of D → D transitions, then a D → M transition.
This is at first sight exactly analogous to the cost of an insert, although the path
through the model looks different. In detail, it is possible that the D → D tran-
sitions will have different probabilities, and hence contribute differently to the
score, whereas all the I → I transitions for one insert involve the same state, and
so are guaranteed to have the same cost.

The full resulting HMM has the structure shown in Figure 5.2. This form of
model, which we call a profile HMM, was first introduced in Haussler et al.
[1993] and Krogh et al. [1994]. We have added transitions between insert and
delete states, as they did, although these are usually very improbable. Leaving
them out has negligible effect on scoring a match, but can create problems when
building the model.

Begin EndMj

Dj

Ij

Figure 5.2 The transition structure of a profile HMM. We use diamonds to
indicate the insert states and and circles for the delete states.
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Profile HMMs generalise pairwise alignment

We have seen how the costs of using gap states in a profile HMM mirror those
used in pairwise alignment with affine gaps. To help make clear the relationship,
it is useful to consider the degenerate case where the multiple alignment from
which we build the HMM contains just one sequence.

Let us compare Figure 5.2 with Figure 4.2. If we call the example sequence y,
then Figure 5.2 is an unrolled version of Figure 4.2, with the yj emissions each
coming from a separate copy of the pair HMM. The states M j correspond to a
sequence of match states M, the I j to corresponding incarnations of X, and the D j

to incarnations of Y. To achieve as close a correspondence as possible, the natural
values for the match emission probabilities eMi (a) are pyi a/qyi , the conditional
probabilities of seeing a given yi in a pairwise alignment, and for the transition
probabilities aMi Ii = aMi Di+1 = δ and aIi Ii = aDi Di+1 = ε for all i .

In formal terms our profile HMM is effectively the hidden Markov model ob-
tained by conditioning the pair HMM of Figure 4.2 on emitting sequence y as
one of the sequences in its alignment. Because of this, the Viterbi equations for
finding the most probable alignment of x to our profile HMM are essentially the
same as those for the most probable alignment of x and y to the pair HMM de-
scribed in Chapter 4. If we convert them into log-odds ratio form we recover our
standard affine gap cost pairwise alignment equations of (2.16), as we will see
below. Any differences are due to slightly different Begin and End arrangements.

5.3 Deriving profile HMMs from multiple alignments

Although it is nice to see that the profile HMM is doing the same sort of dynamic
programming as we have used before for pairwise alignment, this is not why we
introduced them. The key idea behind profile HMMs is that we can use the same
structure as shown in Figure 5.2, but set the transition and emission probabilities
to capture specific information about each position in the multiple alignment of
the whole family. Essentially, we want to build a model representing the consen-
sus sequence for the family, not the sequence of any particular member.

There are a number of different ways to derive the parameter values from a
multiple alignment of the sequences in the family. To provide an example for
illustrating these methods, Figure 5.3 shows a short section of the globin align-
ment shown in Figure 5.1.

Non-probabilistic profiles

A model similar to the profile HMM was first introduced by Gribskov, McLachlan
& Eisenberg [1987] who coined the name ‘profile’ (see also Gribskov, Lüthy &
Eisenberg [1990]). However, they did not have an underlying probabilistic model,
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HBA_HUMAN ...VGA--HAGEY...
HBB_HUMAN ...V----NVDEV...
MYG_PHYCA ...VEA--DVAGH...
GLB3_CHITP ...VKG------D...
GLB5_PETMA ...VYS--TYETS...
LGB2_LUPLU ...FNA--NIPKH...
GLB1_GLYDI ...IAGADNGAGV...

*** *****

Figure 5.3 Ten columns from the multiple alignment of seven globin protein
sequences shown in Figure 5.1. The starred columns are ones that will be
treated as ‘matches’ in the profile HMM.

but rather directly assigned position specific scores for each match state and gap
penalty, for use in standard ‘best match’ dynamic programming. They set the
scores for each consensus position to the averages of the standard substitution
scores from all the residues seen in the corresponding multiple alignment column.
For example, they would set the score for residue a in column 1 of our example
to be

5
7 s(V,a)+ 1

7 s(F,a)+ 1
7 s(I,a)

where s(a,b) is the standard substitution matrix. They also set gap penalties for
each column using a heuristic equation that decreased the cost of a gap (either
insertion or deletion) according to the length of the longest gap observed in the
multiple alignment spanning the column.

Although this seems an intuitively obvious way to combine information, and it
has been used effectively by many people for finding new members of families,
it does produce anomalies. For example, column 1 is much more strongly con-
served than column 2 in the example shown in Figure 5.3, but the information
in column 1 will be smeared out just as much by the substitution matrix as that
in column 2. If we had an alignment with 100 sequences, all with a cysteine (C)
at some position, then the implicit probability distribution for that column for an
‘average’ profile would be exactly the same as would be derived from a single
sequence. This does not correspond to our expectation that the likelihood of a
cysteine should go up as we see more confirming examples.

In addition to these observations about substitution scores, the scores for gaps
do not behave as expected. For example, from the alignment in Figure 5.3 the
score for a deletion would be set to be the same in column 2, where there is a
deletion in one sequence, HBB_HUMAN, as in column 4, where there is a deletion
opening in five of the seven sequences. It would be more reasonable to set the
probability of a new gap opening to be higher in column 4.



108 5 Profile HMMs for sequence families

Changes have been made to non-probabilistic profiles to address these and
other problems [Thompson, Higgins & Gibson 1994b; Gribskov & Veretnik
1996], and we shall return to some of these later.

Basic profile HMM parameterisation

Let us turn back to hidden Markov model profiles. Like all HMMs, these have
emission and transition probabilities. Assuming that these probabilities are non-
zero, a profile HMM can model any possible sequence of residues from the given
alphabet. It therefore defines a probability distribution over the whole space of
sequences. The aim of the parameterisation process it to make this distribution
peak around members of the family.

The parameters we have available to control the shape of the distribution are
the values of the probabilities, and also the length of the model. There is a lot to
say about setting these optimally. We give here the basic methods from Krogh et
al. [1994]. After sections on database searching and variants for local alignment,
we will return to an extended discussion of alternative parameter estimation tech-
niques.

The choice of length of the model corresponds more precisely to a decision on
which multiple alignment columns to assign to match states, and which to assign
to insert states. The profile HMM we derived above from the single sequence y
had a match state for each residue yi . However, looking at Figure 5.3 it seems
clear that the consensus sequence for this region should only have eight residues,
and that the two non-starred residues in GLB1_GLYDI should be treated as an
insertion with respect to the consensus. For the time being we will use a heuristic
rule to decide which columns should correspond to match states, and which to
inserts. A simple rule that works well is that columns that are more than half gap
characters should be modelled by inserts.

The second problem is how to assign the probability parameters. We regard the
alignment as providing a set of independent samples of alignments of sequences
x to our HMM. Since the alignments are given, we can estimate the parameters
directly using equations (3.18) from Section 3.3. We just count up the number of
times each transition or emission is used, and assign probabilities according to

akl = Akl∑
l ′ Akl ′

and ek(a) = Ek(a)∑
a′ Ek(a′)

where k and l are indices over states, and akl and ek are the transition and emission
probabilities, and Akl and Ek are the corresponding frequencies.

In the limit of having a very large number of sequences in our training align-
ment, this will give an accurate and consistent estimate of the probabilities. How-
ever, it has problems when there are only a few sequences. A major difficulty
is that some transitions or emissions may not be seen in the training alignment,
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Figure 5.4 A hidden Markov model derived from the small alignment
shown in Figure 5.3 using Laplace’s rule. Emission probabilities are shown
as bars opposite the different amino acids for each match state, and tran-
sition probabilities are indicated by the thickness of the lines. The I → I
transition probabilities times 100 are shown in the insert states. (Figure
generated automatically using the SAM package.)

and so would acquire zero probability, which would mean they would never be
allowed in the future. More broadly, we are not using any previous knowledge
about protein alignments, as the earlier non-probabilistic methods did implicitly,
by using an independently derived substitution matrix. As a minimal approach
to avoid zero probabilities, we can add pseudocounts to the observed frequencies
(as in Chapters 1 and 3). The simplest pseudocount method is Laplace’s rule: to
add one to each frequency. We discuss better ways to choose the pseudocount val-
ues, and other approaches to estimating the parameters, at greater length below
in Section 5.6.

Example: Parameters for an HMM based on Figure 5.3

Let us assume that we use Laplace’s rule to obtain parameters for an HMM corre-
sponding to the alignment in Figure 5.3. Then eM1(V) = 6/27,eM1(I) = eM1(F) =
2/27, and eM1(a) = 1/27 for all residue types a other than V, I, F. Similarly,
aM1M2 = 7/10,aM1D2 = 2/10 and aM1I1 = 1/10 (following column 1 there are six
transitions from match to match, one transition to a delete state, in HBB_HUMAN,
and no insertions). Figure 5.4 shows the complete set of parameters for the HMM
in diagrammatic form.

5.4 Searching with profile HMMs

One of the main purposes of developing profile HMMs is to use them to detect po-
tential membership in a family by obtaining significant matches of a sequence to
the profile HMM. We will assume for now that we are looking for global matches.
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In practice, as for pairwise alignment, one of the local alignment methods may be
more sensitive for finding distant matches. We discuss these in the next section.

We have a choice of ways to score a match to a hidden Markov model. We
can either use the Viterbi equations to give the most probable alignment π∗ of a
sequence x together with its probability P(x ,π∗|M), or the forward equations to
calculate the full probability of x summed over all possible paths P(x |M).

In either case, for practical purposes the result we want to consider when eval-
uating potential matches is the log-odds ratio of the resulting probability to the
probability of x given our standard random model

P(x |R) =
∏

i

qxi .

We therefore show here versions of the Viterbi and forward algorithms that are
designed specifically for profile HMMs, and which result directly in the desired
log-odds values. Note that changing to log-odds does not change the result; we
could have subtracted the random model log score afterwards. However, it is
cleaner and more efficient. Another practical reason for working in log-odds units
is to avoid problems of underflow when working with raw probabilities, as we
discussed in Section 3.6.

Viterbi equations

Let V M
j (i) be the log-odds score of the best path matching subsequence x1...i to

the submodel up to state j , ending with xi being emitted by state M j . Similarly
V I

j (i) is the score of the best path ending in xi being emitted by I j , and V D
j (i) for

the best path ending in state D j . Then we can write

V M
j (i) = log

eM j (xi )

qxi

+max




V M
j−1(i −1)+ logaM j−1M j ,

V I
j−1(i −1)+ logaI j−1M j ,

V D
j−1(i −1)+ logaD j−1M j ;

V I
j (i) = log

eI j (xi )

qxi

+max




V M
j (i −1)+ logaM j I j ,

V I
j (i −1)+ logaI j I j ,

V D
j (i −1)+ logaD j I j ;

(5.1)

V D
j (i) = max




V M
j−1(i)+ logaM j−1D j ,

V I
j−1(i)+ logaI j−1D j ,

V D
j−1(i)+ logaD j−1D j .

These are the general equations. In a typical case, there is no emission score
eI j (xi ) in the equation for V I

j (i) because we assume that the emission distribution
from the insert states I j is the same as the background distribution, so the proba-
bilities cancel in the log-odds form. Also, the D → I and I → D transition terms
may not be present, as discussed above.
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We need to take a little care over initialisation and termination of the dynamic
programming. We want to allow the alignment to start and end in a delete or insert
state, in case the beginning or end of the sequence does not match the first or the
last match state of the model. The simplest way to ensure this mechanistically is
to rename the Begin state as M0 and set V M

0 (0) = 0 (as we did in Chapter 3). We
then allow transitions to I0 and D1. Similarly, at the end we can collect together
possible paths ending in insert and delete states by renaming the End state to
ML+1 and using the top relation without the emission term to calculate V M

L+1(n)
as the final score.

If these recurrence equations are compared with those for standard gapped dy-
namic programming in (2.16), it can be seen that apart from renaming of variables
this is the same algorithm, but with the substitution, gap-open and gap-extend
scores all depending on position in the model, j .

Forward algorithm

The recurrence equations for the forward algorithm are similar to the Viterbi
equations, but with the max() operation replaced by addition. We define vari-
ables FM

j (i), F I
j (i) and FD

j (i) for the partial full log-odds ratios, corresponding to
V M

j (i), V I
j (i) and V D

j (i). The recurrence equations are then:

FM
j (i) = log

eM j (xi )

qxi

+ log
[
aM j−1M j exp

(
FM

j−1(i −1)
)

+ aI j−1M j exp
(
F I

j−1(i −1)
)+aD j−1M j exp

(
FD

j−1(i −1)
)]

;

F I
j (i) = log

eI j (xi )

qxi

+ log
[
aM j I j exp

(
FM

j (i −1)
)

+ aI j I j exp
(
F I

j (i −1)
)+aD j I j exp

(
FD

j (i −1)
)]

;

FD
j (i) = log

[
aM j−1D j exp

(
FM

j−1(i)
)+aI j−1D j exp

(
F I

j−1(i)
)

+ aD j−1D j exp
(
FD

j−1(i)
)]

.

Initialisation and termination conditions are handled as for the Viterbi case, with
FM

0 (0) being initialised to 0.
Although these appear a little complicated, in a practical implementation the

operation log(ex +ey) can be performed efficiently to adequate accuracy by func-
tion lookup and interpolation; see Section 3.6.

Alternatives to log-odds scoring

In some of the earlier papers on HMMs, rather than calculating the log-odds score
relative to a random model, the logarithm of the probability of the sequence given
the model was used directly. This was called the LL score for ‘log likelihood’:
LL(x) = log P(x |M). The LL score is strongly length dependent, so for searching
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Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.

it is not good enough to use a simple threshold. It is better to use LL divided by
the sequence length, but even that is not always perfect, because the dependence
between LL and sequence length is not linear (see example below).

A way to get around this is to estimate an average score and a standard de-
viation as a function of length and then use the number of standard deviations
each sequence is away from the average. This is called the Z-score, and is also
illustrated in the example below.

Example: Modelling and searching for globins

From 300 randomly picked globin sequences a profile HMM was estimated from
scratch, i.e. starting from unaligned sequences using procedures we will explain
in Chapter 6. A simple pseudocount regulariser was used. The estimation was
done several times and the model with the highest overall LL score was picked.
(We used the default settings of the SAM package, version 1.2; Hughey & Krogh
[1996]).

With this model a database of about 60 000 proteins (SWISS-PROT release 34;
Bairoch & Apweiler [1997]) was searched using the forward algorithm. The LL
and log-odds scores were found for each sequence. For the null model we used
the amino acid frequencies of the 300 sequences in the training set. In Figure 5.5
the length-normalised scores are shown for all the globins in the training set, all
the other globins in the database and all the rest of the proteins with lengths up
to 300 amino acids.1 The globin sequences are clearly separated from the non-
globins apart from a few in the ‘twilight zone.’

The main difference between the two is in the variance of the score for non-
globins, which is lower for the log-odds score, and therefore the separation is
clearer. However, just choosing a cut-off of zero for the log-odds would miss a

1 A few dubious globins and other strange sequences were removed from these data.
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

lot of real globins in the search. This is because the profile HMM is not broad
enough: it is too concentrated on a subset of the globins. Although there are ways
to address this problem directly that we will return to later in the chapter, it is
also possible to take a pragmatic approach to the separation of signal from noise
given the results of the search, and calculate Z-scores for each hit.

To calculate Z-scores, a smooth curve is fitted to the LL or log-odds score of the
non-globin sequences (a method is outlined in Krogh et al. [1994]). A standard
deviation is then estimated for each length (or rather a little interval around it),
and for each score the distance from the smooth curve is calculated in units of the
standard deviation. This is the Z-score. The result (still as a function of sequence
length) is shown in Figure 5.6.2

It is evident that it is now possible to find a threshold which will separate most
globins from all other sequences. It is also clear that the score based on log-odds
is much better for discrimination, with approximately three times the signal to
noise ratio of the LL score. The reason for this is that dividing by the probability
of the random model adjusts for the residue composition of the sequence. Without
doing that, sequences with similar residue compositions as globins will tend to
score more highly than sequences containing different residues, increasing the
variance of the noise.

Alignment

Aside from finding matches, the other principal use of profile HMMs is to give
an alignment of a sequence to the family, or more precisely to add it into the
multiple alignment of the family. This is primarily the subject of the next chapter,

2 There is no analytical result about the shape of these score distributions. The global align-
ment distribution is probably not exactly a Gaussian [Waterman 1995], but it appears to be
a good approximation. For local alignments the extreme value distribution may be more
reasonable, as discussed in Chapter 2.
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on multiple alignment methods, which covers alignment with profile HMMs at
length. For now, we will just point out that the natural solution is to take the high-
est scoring, or Viterbi, alignment. This is obtained by tracing back on the Viterbi
variables V •

j (i), exactly as with pairwise alignment. Beyond this, all the methods
of Chapter 4 can be applied, to explore variants, and to assess the reliability of
the alignment.

5.5 Profile HMM variants for non-global alignments

We have seen that there is a very close relationship between the Viterbi alignment
of a sequence to a profile HMM and the global dynamic programming compar-
ison between two sequences using affine gap penalties, which we described in
Chapter 2. It is therefore possible to generalise all the variations of dynamic pro-
gramming, such as those that find local, repeat and overlap matches, to use profile
HMMs.

However, we have developed probabilistic models much more fully since
Chapter 2, and this time we want to take more care to ensure that the result of
converting to a local algorithm remains a proper probabilistic model, i.e. that
we assign each sequence a true probability so that the sum over all sequences∑

x P(x |M) = 1. Our approach to doing this is to specify a new model for the
complete sequence x , which incorporates the original profile HMM together with
one or more copies of a simple self-looping model that is used to account for the
regions of unaligned sequence. These behave very like the insert states that we
added to the profile itself. We call them flanking model states, because they are
used to model the flanking sequences to the actual profile match itself.

The model for local (Smith–Waterman style) alignment is shown here:

Begin

Q

End

Q

The flanking model states are shown as shaded diamonds. Notice that as well
as specifying the emission probabilities of the new states, which will normally
of course be qa , we must specify a number of new transition probabilities. The
looping probability on the flanking states should be close to 1, since they must
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account for long stretches of sequence. Let us set these to (1−η). Note also that
we have made use of silent states, shown as shaded circles, as ‘switching points’
to reduce the total number of transitions.

The next issue is how to set all the transition probabilities from the left flanking
state to different start points in the model. One option is to give them equal prob-
abilities, η/L . Another is to assign more probability to starting at the beginning
of the model. The default option in the HMMER package for profile HMMs [Eddy
1996] assigns probability η/2 to the start of the profile, and η/(2(L − 1)) to the
other positions, favouring matches that start at the beginning of the model.

If all the probability is assigned to the first model state, then it forces this model
to match only complete copies of the profile in the searched sequence, ensuring
a type of ‘overlap’ match constraint. This can be appropriate when, for example,
the HMM represents a protein domain that you expect to find either present as a
whole or absent. However, to allow for rare cases where the first residue might be
missing, it may be wise in such cases to allow a direct transition from the flanking
state into a delete state, as shown here:

EndBegin

Q Q

It is clear that by tinkering with the transition connections and probabilities a
wide variety of different models can be produced, each potentially useful in dif-
ferent circumstances. A final example similar to the first model for local matches
is

Begin Q End

which allows repeat matches to subsections of the profile model, like the repeat
algorithm variant in Chapter 2.

Note that all these variants of transition connectivity and probability assign-
ment affect not only the types of match that are allowed, but also the score. More
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restrictive transition distributions will give higher match scores if a good match is
found, so are preferable if they can be designed to represent the types of correct
matches that are expected.

Exercises

5.1 Show that if the random model is the same as that described in Chapter 4
(a succession of two states looping on themselves with probability (1 −
η)), with η the same as in the flanking models, the local alignment model
gives update equations like those of equation (2.9).

5.2 Explain the reasons for any differences.

5.6 More on estimation of probabilities

As promised above, we now return to the subject of parameter estimation at
greater length. Although our discussion for most of this section will be focused
on the emission probabilities, analogous methods can be used for the transition
probabilities. The aim here is to introduce methods that can be used. A more de-
tailed mathematical discussion about the estimation of probabilites from sample
counts is given in Chapter 11 (p. 312).

The most straightforward approach to parameter estimation would be to give
the maximum likelihood estimates for the parameters. We will change notation
slightly from that used before. Given observed frequencies cja of residue a in
position j of the alignment, maximum likelihood estimates for eM j (a), the corre-
sponding model parameters, are

eM j (a) = cja∑
a′ cja′

. (5.2)

As we described above, a clear problem with this is that if there are no observed
examples of a particular outcome then its probability is estimated as zero. This
will frequently occur. For example, in the alignment of Figure 5.3 only V, I and
F are present in the first column. However, it is quite likely that other amino acids
will occur in that position amongst all the other globin sequences in biology. The
easiest way to deal with this problem is to add pseudocounts to the observed
counts cja . Below, we first discuss the pseudocount approach at greater length,
then give some more complex alternatives.

Simple pseudocounts

A very simple and much-used pseudocount method is to add a constant to all the
counts, which prevents the problem with zero probabilities. When the constant is
one, as we used above in our example, this is called ‘Laplace’s rule’. A slightly
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more sophisticated method is to add a quantity proportional to the background
distribution, giving

eM j (a) = cja + Aqa∑
a′ cja′ + A

, (5.3)

where cja are the real counts, and A is the weight put on the pseudocounts as
compared to the real counts. Values of A of around twenty seem to work well for
protein alignments.

This form of regularisation has the appealing feature that eM j (a) is approxi-
mately equal to qa if very little data is available, i.e. all the real counts are very
small compared to A. At the other extreme, where a large amount of data is avail-
able, the effect of the regulariser becomes insignificant and eM j (a) is essentially
equal to the maximum likelihood solution. So, at this intuitive level, pseudocounts
make a lot of sense.

Adding pseudocounts amounts to adding some fake imagined data into the
alignment, based on our general knowledge of proteins, to represent all the other
things that might happen. They thus correspond to prior information about protein
families, before having seen the specific data for the family in the form of the
alignment. This statement can be formalised in a Bayesian framework. Bayes’
equation tells us how to combine data, D, with a prior probability distribution
over the parameters P(θ ) to give a posterior distribution over θ , from which we
can take either the maximum or the mean as our best estimate,

P(θ |D) = P(D|θ )P(θ )

P(D)
.

In our case the parameters θ are our model probabilities. The pseudocount
method given above corresponds in this Bayesian framework to assuming a
Dirichlet prior distribution with parameters αa = Aqa over the probabilities; see
Chapter 11 for mathematical details.

Dirichlet mixtures

The problem with the simple pseudocounts, as compared to the substitution ma-
trix based methods, is that only the most rudimentary prior knowledge can be
contained in a single pseudocount vector. For this reason we need a lot of ex-
ample data in the alignment to get good estimates of the parameters. Experience
suggests that to achieve good discrimination typically fifty or more examples are
desirable when modelling proteins.

In order to include better prior information, it was therefore suggested by
Brown et al. [1993] that one should use a mixture of Dirichlet distributions as
the prior. The idea is that there might be several different sets of pseudocount pri-
ors α1•, . . . ,αK• corresponding to different types of alignment environments, where
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αk
a corresponds to Aqa in the example above. One set might be relevant for ex-

posed loop environments, one for buried small residue environments, etc. Given
our counts cja we first estimate how likely each prior distribution k is (based on
how well it fits the observed data), then combine their effects according to these
posterior probabilities:

eM j (a) =
∑

k

P(k|cj )
cja +αk

a∑
a′(cja′ +αk

a′)
,

where the P(k|ci ) are the posterior mixture coefficients. We calculate these by
Bayes’ rule,

P(k|cj ) = pk P(cj |k)∑
k′ pk′ P(cj |k ′)

where the pk are the prior probabilities of each mixture component, and P(cj |k)
is the probability of the data according to Dirichlet mixture k. The equation for
P(cj |k) has a frightening looking form, which is in fact fairly simple to calculate:

P(cj |k) =
(∑

a cja
)
!∏

a cja!

∏
a �(cja +αk

a)

�
(∑

a cja +αk
a

) �
(∑

a αk
a

)
∏

a �(αk
a)

,

where �(x) is the gamma function, a standard function over the reals related to
the factorial function on the integers. For further details and an explanation of this
equation, see Chapter 11, where we also describe how the mixture component
distributions αk• are obtained.

Using this type of approach, it seems that good profile HMMs can be fit to
alignments with as few as ten or twenty examples [Sjölander et al. 1996].

Substitution matrix mixtures

An alternative approach to using a mixture of Dirichlets is to adjust the pseudo-
counts in a single Dirichlet formulation, using information from the observed
counts and a substitution matrix. This is not a theoretically well-founded ap-
proach, but it makes intuitive sense as a heuristic, combining features of the non-
probabilistic profile methods and the Dirichlet pseudocount methods.

The first step is to convert the matrix entries s(a,b) into conditional proba-
bilities P(b|a). If we assume that the substitution matrix entries are derived as
log-odds ratios, as in Chapter 2, then s(a,b) = log(P(a,b)/qaqb), which is the
same as log(P(b|a)/P(b)), so P(b|a) = qbes(a,b). We can in fact derive P(b|a)
values from an arbitrary score matrix s(a,b) given background probabilities qa;
see below.

Given conditional probabilities P(b|a) we can generate pseudocounts as fol-
lows. Let f ja be the maximum likelihood probabilities derived from the counts,
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so f ja = cja/
∑

a′ cja′ . Using these we set pseudocount values with

αja = A
∑

b

f jb P(a|b),

where A is a positive constant comparable to the one we used with simple pseudo-
counts [Tatusov, Altschul & Koonin 1994; Claverie 1994; Henikoff & Henikoff
1996]. We then use essentially the same equation as (5.3) to obtain the model
parameters:

eM j (a) = cja +αja∑
a′ cja′ +αja′

.

There is no obvious statistical interpretation for this type of pseudocount, but
the idea is quite natural: amino acid i contributes to pseudocount j in proportion
to its abundance in the column and the probability of its changing to amino acid
j . The formula interpolates between the treatment of pairwise alignments and the
maximum likelihood solution. The substitution matrix term dominates if there
are small numbers of sequences (especially if A � 1), and values close to the
maximum likelihood estimate are obtained when the number of counts is large
(more precisely when the total number of counts Cj � A).

There are various choices for the scaling constant A of the pseudocounts. For
instance A = 1 was used in Lawrence et al. [1993], but this appears to be too weak
in practice. Claverie [1994] suggests A = min(20, N ), and Henikoff & Henikoff
[1996] suggest A = 5R, where R is the number of different residue types ob-
served in the column (i.e. the number of a for which cja > 0).

Deriving P(b|a) from an arbitrary matrix

Even if a score matrix s(a,b) was not derived as a log-odds matrix, as long as cer-
tain conditions are fulfilled it is possible to find a scale factor λ such that λs(a,b)
will behave correctly when interpreted as a log-odds matrix [Altschul 1991]. The
conditions are that the matrix is negatively biased, i.e.

∑
ab qaqbs(a,b) < 0, and

that it contains at least one positive entry.
What we want is a set of values ri j for which

s(a,b) = 1

λ
log

rab

qaqb
,

where rab can be interpreted as the probability for the pair a,b. This equation is
easily inverted, so we get the pair probabilities expressed in terms of the substi-
tution matrix rab = qaqb exp(λs(a,b)). To be legitimate probabilities the rab have
to sum to one. We therefore need to find a λ such that

f (λ) =
∑
a,b

qaqbeλs(a,b) −1 = 0. (5.4)

One such value is λ = 0, but clearly this is not what we want. The two conditions
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we gave above turn out to be sufficient to ensure there is another, positive solution
to this equation; see the exercises below.

The resulting value of λ is called the natural scaling factor of the substitution
matrix. This probabilistic interpretation of the substitution matrix leads to an en-
tropy measure for the matrix of

∑
ab rab log(rab/qaqb), which is a useful quantity

for characterising and comparing substitution matrices [Altschul 1991].

Exercises

5.3 Use the negative bias condition to show that f (λ) is negative for small
enough λ. Hint: calculate f ′(0), the derivative of f (λ) at λ = 0.

5.4 Use the second condition, that there is at least one positive s(a,b), to
show that f (λ) becomes positive for large enough λ.

5.5 Finally, show that the second derivative of f (λ) is positive, and from this
and the results of the previous two exercises that there is one and only
one positive value of λ satisfying (5.4).

Estimation based on an ancestor

There is a more principled and direct way to use the information in substitution
matrices for estimating the HMM probabilities than that described above. This
approach does not use pseudocounts. Instead, it assumes that all the observed se-
quences have been derived independently from a common ancestor, and generates
an estimate of the residue present in a given position in that common ancestor (or
rather a posterior probability distribution for what that residue was). From this
we can estimate the probability of seeing each residue in a new descendant of the
ancestor, different from those in the sample.

Assume we have example sequences xk with residues xk
j in column j of the

alignment (we have adjusted our notation slightly; this xk
j is not the j th residue

in sequence xk if there are gaps, but it is a convenient notation for what we need
here). Once again, we need the conditional probabilities P(b|a) derived from the
substitution matrix. Let the residue in the common ancestor be yj . Then we can
use Bayes rule to calculate the posterior probability that yj = a

P(yj = a|alignment) = qa
∏

k P(xk
j |a)∑

a′ qa′
∏

k P(xk
j |a′)

. (5.5)

Note that we needed a prior distribution for residues at the common ancestor,
which we set to qa because that is our background probability for amino acids in
the absence of further information.

We can now calculate the HMM emission probabilities as the predicted proba-
bilities for a new sequence

eM j (a) =
∑

a′
P(a|a′)P(yj = a′|alignment). (5.6)
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One problem with this approach is that, as we noticed above, different columns
vary widely in their degree of conservation. Indeed, that is one of the proper-
ties that we wanted to exploit when using alignments to estimate profile HMMs.
However, using a single substitution matrix implies assuming a fixed degree of
conservation. As we discussed in Chapter 2, matrices typically come in families
varying in their level of implied conservation. Examples are the PAM [Dayhoff,
Schwartz & Orcutt 1978] and the BLOSUM [Henikoff & Henikoff 1992] series of
matrices. We can therefore significantly improve the approach in (5.5) and (5.6) if
we optimise over choice of matrix from a family. This way, a very conserved col-
umn might use a conservative matrix, such as PAM30, and a very varied column
would use a divergent matrix, such as PAM500.

How do we choose the optimal matrix? A natural approach is to maximise the
likelihood of the observed data

P(x1
j , . . . , x N

j |t) =
∑

a

qa

∏
k

P(xk
j |a, t) (5.7)

where t is the matrix family parameter (t for evolutionary time). It would also be
possible to use a Bayesian approach here, proposing a prior distribution over t ,
then combining this with (5.7) in Bayes’ rule to obtain a posterior distribution for
t , and summing over this in (5.6). However, that would require signficantly more
computation.

The maximum likelihood time-dependent approach is closely related to the
‘evolutionary weights’ method in the PROFILE package [Gribskov & Veretnik
1996]. However, that method estimates different evolutionary times t for each
possible ancestral amino acid, and also adjusts the resulting weights with respect
to a set of baseline probabilities; for details see Gribskov & Veretnik [1996].
There are also strong connections between the methods of this subsection and
those discussed later in Chapter 8 when building phylogenetic trees using maxi-
mum likelihood methods.

Testing the pseudocount methods

All the methods mentioned above have been tested in various ways. Direct tests,
in which profiles were constructed and used for searching, were carried out ex-
tensively by Henikoff & Henikoff [1996]. The best method turned out to be the
substitution matrix based method (5.6), with A = 5R as described above; the
Dirichlet mixture regulariser came a reasonably close second. Other tests gave
different results [Tatusov, Altschul & Koonin 1994; Karplus 1995], so it is not
clear which method is best, and it is likely that this will depend on the application
and the details of the mixture components or substitution matrix used.

An interesting method was for testing various regularisers was given by
Karplus [1995]. Instead of performing a huge number of database searches, he
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asked the following question:3 How well can an amino acid distribution be ap-
proximated from a small sample? Columns were extracted from a large set of
deep alignments (the BLOCKS database; Henikoff & Henikoff [1991]). Imagine
we take a small sample of size n with counts sa from a column with complete
counts Ca . From the sample counts sa we can estimate the probabilities es(a) of
other symbols that might occur in the same column, using one of the methods
described above (we use a subscript s to remind ourselves that this estimation is
dependent on the sample counts). We can also estimate the probabilities of other
symbols directly from the frequencies with which they occur in all columns of
the database together with the probability P(s|C) of drawing s from a column C
(given by the multinomial distribution). This estimate is given by:

P(a|s) =
∑

columns C P(s|C)Ca∑
columns C P(s|C)|C | ,

where |C | denotes the number of symbols in the column C . P(a|s) can only
be calculated up to a sample size of n = 5, but this is also the most interesting
regime, because it is for small sample sizes that regularisation is most crucial.
We can now use the relative entropy −∑

a P(a|s) loges(a) to compare the ‘ideal’
probability P(a|s) with that given by the regulariser. Summing over all samples
s of size n gives a measure

En =
∑

s,|s|=n

P(s)

(
−

∑
a

P(a|s) loges(a)

)
, (5.8)

where P(s) is the probability of drawing the sample s averaged over all columns
in the database. This can be calculated using P(s) = ∑

C P(s|C)|C |/∑
C |C |.

Karplus proposed that a good regulariser should minimise En . He showed that
several of the more complex regularisers described above resulted in estimators
that were very close to optimal, in the sense that En was very small up to n = 5.
Of course, we are ultimately interested in database searches, and it is not evident
that the regulariser obtaining the lowest value of En will actually be best for
searching. It is likely that the typical similarities in the source alignment database
are not the same as the ones that we will be searching for with our HMM.

As well as evaluating methods, Karplus’ approach can also be used to set the
free parameters in the various methods described above, for example the total
number of pseudocounts A to use in (5.3). For any value of A we can calcu-
late En from our database of columns, either directly or by some sort of random
sampling, and in fact we can also calculate the gradient of the relative entropy
with respect to A. We can therefore find the value of A that minimises this av-
erage relative entropy, using gradient descent methods [Press et al. 1992], or by

3 This page has been rewritten for the second printing.
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other optimisation methods. In principle this can be done for any sample size n,
yielding parameters dependent on n.

5.7 Optimal model construction

When we first discussed the parameterisation of profile HMMs, we pointed out
that as well as estimating the probability parameters, it is necessary to decide
which columns of the alignment should be assigned to insert states, and which to
match states. We call this process model construction. At the time we proposed a
simple heuristic, but we can do better than that. There is an efficient dynamic pro-
gramming algorithm which can find the column assignments that maximise the
posterior probability of the model, at the same time as fitting optimal probability
parameters.

In the profile HMM formalism, it is assumed that an aligned column of sym-
bols corresponds either to emissions from the same match state or to emissions
from the same insert state. It therefore suffices to mark which columns come
from match states to specify a profile HMM architecture and the state paths for
all the sequences in the alignment, as shown in Figure 5.7. In a marked column,
symbols are assigned to match states and gaps are assigned to delete states. In
an unmarked column, symbols are assigned to insert states and gaps are ignored.
State transition and symbol emission counts are obtained from the state paths,
and these counts can be used to estimate probability parameters by one of the
methods in the previous section. In passing, we note that this model estimation
procedure implicitly assumes that the multiple alignment is correct, i.e. that the
implied state paths have probability one and all other state paths have probability
zero, which is akin to a Viterbi assumption. The next chapter addresses issues of
simultaneous alignment and model estimation.

There are 2L combinations of markings for an alignment of L columns, and
hence 2L different profile HMMs to choose from. There are at least three ways
to determine the marking. In manual construction, the user marks alignment
columns by hand. This is perhaps the simplest way to allow users to manually
specify the model architecture to use for a given alignment. In heuristic construc-
tion, a rule is used to decide whether a column should be marked. For instance,
a column might be marked when the proportion of gap symbols in it is below a
certain threshold. In MAP construction, a maximum a posteriori choice is deter-
mined by dynamic programming. A description of this algorithm follows.

MAP match–insert assignment

The MAP construction algorithm recursively calculates a number Sj , which is the
log probability of the optimal model for the alignment up to and including column
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Figure 5.7 As an example of model construction from an alignment, a small
DNA multiple alignment is given (a), with three columns marked above with
x’s. These three columns are assigned to positions 1–3 in the model ar-
chitecture (b). The assignment of columns to model positions determines
the symbol emission and state transition counts (c) from which probability
parameters would be estimated.

j , assuming that column j is marked. Sj is calculated from smaller subalignments
ending at a marked column i (i < j) by incrementing Si with the summed log
probability of the transitions and emissions for the columns between i and j . The
relevant probability parameters are estimated ‘on the fly’ from the counts that
are implied by marking columns i and j while leaving unmarked the intervening
columns (if any).

Transition and emission counts for a section of alignment bounded by marked
columns i and j are independent of how columns are marked before i and after j ,
thus making a dynamic programming recursion possible. Only marked columns
are considered in the recursion, because transition and emission counts for un-
marked columns are not independent of the assignment of neighbouring columns;
a single insert state may account for more than one column in the alignment.

For instance, let Ti j be the summed log probability of all the state transitions
between marked columns i and j . We can determine Ti j from the observed state
transition counts cxy and the probabilities axy:

Ti j =
∑

x ,y∈M,D,I

cxy logaxy .
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Transition counts cxy are obtained from the partial state paths implied by mark-
ing i and j . For instance, if in one sequence we see a gap in column i , five residues
in columns i +1 to j −1, and a residue in column j , we would count one delete–
insert transition, four insert–insert transitions, and one insert–match transition.
The transition probabilities axy are estimated from the cxy in the usual fashion,
possibly including Dirichlet prior terms αxy (or indeed, any form of prior that is
independent of the marking outside of i , . . . , j):

axy = cxy +αxy∑
y cxy +αxy

.

Let Mj be the analogous log probability contribution for match state symbol
emissions in column j , and Ii+1, j−1 be the same for the insert state emissions for
columns i +1, . . . , j −1 (for j − i > 1). We can now give the algorithm:

Algorithm: MAP model construction

Initialisation:
S0 = 0, ML+1 = 0.

Recurrence: for j = 1, . . . , L +1:
Sj = max

0≤i< j
Si +Ti j +Mj +Ii+1, j−1 +λ;

σj = argmax
0≤i< j

Si +Ti j +Mj +Ii+1, j−1 +λ.

Traceback: From j = σL+1, while j > 0:
Mark column j as a match column;
j = σj . �

A profile HMM is then built from the marked alignment. The extra term λ is
a penalty used to favour models with fewer match states. In Bayesian terms, λ is
the log of the prior probability of marking each column, implying a simple but
adequate exponentially decreasing prior distribution over model lengths.

With some care in implementation, this algorithm is O(L) in memory and
O(L2) in time for an alignment of L columns.

5.8 Weighting training sequences

One issue that we have avoided completely so far is that of weighting sequences
when estimating parameters. In a typical alignment, there are often some se-
quences that are very closely related to each other. Intuitively, some of the in-
formation from these sequences is shared, so we should not give them each the
same influence in the estimation process as a single sequence that is more highly
diverged from all the others. In the extreme that two sequences are identical, it
makes sense that they should each get half the weight of other sequences, so that
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Figure 5.8 On the left, a tree of sequences with branch lengths. On the
right, the corresponding ‘current’ and ‘voltage’ values used in the ‘Kirch-
hoff’s law’ approach to sequence weighting (see text).

the net effect is of having only one of them. Statistically, the problem is that typ-
ically the examples we have do not constitute a good random sample from all the
sequences that belong to the family; the assumption of independence is incorrect.
To deal with this sort of situation, there have been a large number of proposals for
different ways to assign weights to sequences. In principle, any of these can be
used in combination with any of the methods of the preceding sections on fitting
model parameters and model construction.

Simple weighting schemes derived from a tree

Many weighting approaches are based on building a tree relating the sequences.
Since sequences in a family are related by an evolutionary tree, a very natural ap-
proach is to try to reconstruct this tree and use it when estimating the independent
contribution of each of the observed sequences, downweighting sequences that
have only recently diverged. We discuss phylogenetic tree construction at length
later in Chapters 7 and 8, as well as in the next chapter on multiple sequence
alignment. For our current purposes, the fine details of the method are probably
not too important, and we will assume that we are given a tree connecting the
sequences, with branch lengths indicating the relative degrees of divergence for
each edge in the tree.

One of the intuitively simplest weighting schemes [Thompson, Higgins & Gib-
son 1994b] can be expressed nicely as follows. We are given a tree made of a
conducting wire of constant thickness and apply a voltage V to the root. All the
leaves are set to zero potential and the currents flowing from them are measured
and taken to be the weights. Clearly, the currents will be smaller in the highly di-
vided parts of the tree so these weights have the right qualitative properties. They
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can be calculated by applying Kirchhoff’s laws. For instance, in the tree shown in
Figure 5.8, let the current and voltage at node n be In and Vn , respectively. Since
constant factors do not affect the calculation, we can set the resistance equal to
the edge-time. We then find V5 = 2I1 = 2I2, V6 = 2I1 + 3(I1 + I2) = 5I3, and
V7 = 8I4 = 5I3 +3(I1 + I2 + I3). There are therefore three equations relating the
four currents, and these give I1 : I2 : I3 : I4 = 20 : 20 : 32 : 47.

Another attractively simple idea was proposed by Gerstein, Sonnhammer &
Chothia [1994]. Their algorithm works up the tree from the leaves, incrementing
the weights. Initially the weight of a sequence is set equal to the edge-time of
the edge immediately above it. Now, suppose node n has been reached. The edge
above n has edge-time tn , and this is shared out amongst the weights of all the
sequences at the leaves below n, incrementing them by a fraction proportional to
their current weight values. Formally, the increase �wi in a weight wi is given
by

�wi = tn
wi∑

leaves k below n wk
. (5.9)

The same operation is carried out up to the root.
This is clearly an easy and efficient algorithm. For instance, the weights in the

tree of Figure 5.8 are computed as follows: Initially the weights are set to the
edge lengths of the leafs, w1 = w2 = 2, w3 = 5, and w4 = 8. At node 5 the edge
length of 3 above node 5 is shared out equally to w1 and w2, giving them 3/2
each, so now w1 = w2 = 2 + 3/2 = 3.5. At node 6 we find the edge of length 3
above node 6 is shared out to nodes 1, 2 and 3 in the ratio 3.5 : 3.5 : 5, making
w1 = w2 = 3.5 + 3 × 3.5/12, and w3 = 5 + 3 × 5/12. With w4 = 8, this gives
w1 : w2 : w3 : w4 = 35 : 35 : 50 : 64. Even though these weights are close to those
given by the Kirchhoff rule, the methods are in a sense opposed, for in a tree with
two leaves and one edge longer than the other, the longer edge is down weighted
by Kirchhoff and up weighted by (5.9).

Root weights from Gaussian parameters

One view of weights is that they should represent the influence of leaves on the
root distribution. It is possible to make this idea precise, as Altschul, Carroll &
Lipman [1989] showed. They built on the version of Felesenstein’s ‘pruning’ al-
gorithm which applies to continuous parameters [Felsenstein 1973]. Instead of
discrete members of an alphabet we have a continuous real-valued variable, like
the weight of an organism. In place of a substitution matrix we have a probability
density that defines the probability of substituting one value, x , of this variable
by another, y. A simple example of such a density is a Gaussian, where the prob-
ability of x → y along an edge with time t is exp(−(x − y)2/(2σ 2t). The pruning
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Figure 5.9 The tree described in the text when deriving Gaussian weights.

algorithm now proceeds exactly as for a finite alphabet, but with integrals replac-
ing discrete sums [Felsenstein 1973].4

Felsenstein’s algorithm yields a Gaussian distribution for the parameter in
question at the root whose mean µ depends linearly on the values xi of the param-
eters at the leaves, so µ = ∑

wi xi . Altschul, Carroll & Lipman [1989] proposed
that these wi should be used as weights. They represent the influence of each leaf
at the root.

Example: Altschul–Carroll–Lipman weights for a three-leaf tree

To illustrate how the weights are derived, consider the simple three-leaf tree
shown in Figure 5.9, where leaf i takes the value xi . The probability distribu-
tion at node 4 is given by

P(x at node 4 | L1, L2) = K1e
− (x−x1)2

2t1 e
− (x−x2)2

2t2

where K1 is a normalising constant. One can rewrite this as

P(x at node 4 | L1, L2) = K1e
− (x−v1x1−v2x2)2

2t12

where v1 = t2/(t1 + t2), v2 = t1/(t1 + t2) and t12 = t1t2/(t1 + t2). If we were consid-
ering only the two-leaf tree with root at node 4, the mean of the root distribution
would be given by µ = v1x1 +v2x2, and the weights would be v1 and v2. Contin-
uing with our three-leaf tree, however, we find next that the distribution at node 5

4 Historically, the continuous case came first, and Felsenstein defined the pruning algorithm
for Gaussian distributions of real-valued parameters. In the cited paper he takes account of
the distribution of the parameters at each leaf, e.g. the mean and variance of the weight of
an organism. Puzzlingly, he also introduces covariances between values for different leaves.
It is not clear how to calculate a covariance between, say, the weights of cows and cats. For
proteins, having multiple corresponding sites in an alignment would allow correlations to be
considered in principle.
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is given by

P(y at node 5 | L1, L2, L3) = K2e
− (y−x3)2

2t3

∫
e
− (x−v1x1−v2x2)2

2t12 e
− (x−y)2

2t4 dx

where K2 is a normalising constant, and the integral is taken over all possible
values of x at node 4 (and is the exact equivalent of the sum over all possible
ancestral assignments of residues in the case of a discrete alphabet). This is a
standard Gaussian integral, and boils down to the following

P(y at node 5 | L1, L2, L3) = K3e
− (y−w1x1−w2x2−w3x3)2

2t123

where K3 is a new normalising constant and t123 = t3{t1t2 + t4(t1 + t2)}/�, with
� = t1t2 + (t3 + t4)(t1 + t2). The mean of the distribution of y, i.e. of the root
distribution, is given by

µ = w1x1 +w2x2 +w3x3

with w1 = t2t3/�, w2 = t1t3/�, and w3 = {t1t2 + t4(t1 + t2)}/�. These are there-
fore the Altschul–Carroll–Lipman weights for a tree with three leaves.

Voronoi weights

There are also weighting schemes not based on trees. One approach is based on
an image of the sequences from a family lying in ‘sequence space’. In general,
some will lie in clusters and others will be widely separated. The philosophy of
the Voronoi scheme [Sibbald & Argos 1990] is to assume that this unevenness
represents effects of sampling, including the ‘sampling’ performed by natural
selection in favouring certain phyla. A more thorough trawl through all eligible
sequences of the protein family, or perhaps a multitude of reruns of evolution,
should produce a flat distribution within some region. To compensate for the gaps,
we want to give sequences a weight proportional to the volume of empty space
around them.

If sequence space were two-dimensional, or even low-dimensional, we could
use standard methods from computational geometry to divide up space into re-
gions around each example point. The standard approach is to take lines joining
neighbouring pairs of points and draw their perpendicular bisectors, extending
them till they join up. This produces a partitioning into polygons (in two di-
mensions) called a Voronoi diagram [Preparata & Shamos 1985], which has the
property that the polygon around each point is the set of all points closer to that
point than any other.

Sequence space is of course a high-dimensional construct in which the Voronoi
geometry is hard to picture or calculate. However, we can implement the under-
lying principle of it by sampling sequences randomly from sequence space and
testing to see which of the family sequences each sequence lies closest to. The
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trick is in the sampling. This is accomplished by choosing, at each position of
the alignment, uniformly from those residues which occur at that position in any
sequence. If we count ni such sample sequences closest to the i th family member
(dividing up the counts if there is a tie), then we can define the i th weight to be
ni/

∑
k nk .

Maximum discrimination weights

Another approach to weighting comes indirectly, from focusing initially on a re-
formulation of the primary goal in building the model [Eddy, Mitchison & Durbin
1995]. Rather than maximising the likelihood of sequences in the family, or even
their posterior probability derived from Bayesian priors, we are normally inter-
ested in making the correct decision on whether sequences are members of the
family or not. We are therefore interested in the probability

P(M |x) = P(x |M)P(M)

P(x |M)P(M)+ P(x |R)(1− P(M))
,

where x is a sequence from the family, M is the model for the family that we
are fitting, R is our alternative, random model for sequences not in the family,
and P(M) is the prior probability of a new sequence belonging to the family.
Given example training sequences xk , we would like to maximise the probability
of classifying them all correctly, which is

D =
∏

k

P(M |xk),

not
∏

P(xk |M) as usual with maximum likelihood based approaches. We call D
the discrimination of the model on the set of sequences xk . Maximising D will
have the effect of emphasising performance on distant or difficult members of the
family. Sequences that are easily classified will have P(M |x) values very close
to one; changing parameters to increase their likelihood P(x |M) will have very
little effect on D. On the other hand, increasing the likelihood of sequences for
which P(M |x) is small can potentially have a big effect.

It turns out that the parameter values that maximise D can be shown to be the
ones that maximise a weighted version of the likelihood, where the weights are
proportional to 1 − P(M |xi ), i.e. the probability of misclassifying sequence i .
This can be seen from the observation that if y = ex/(K + ex ), then

∂ log y

∂x
= K

K + ex
= (1− y).

If we set x = log
( P(x |M)

P(x |R)

)
, which is the log likelihood ratio for sequence x , then

y = P(M |x). So at a maximum of log D we will also be at a maximum of the
weighted sum of log likelihood ratios, with weights 1 − P(M |xi ), and since the



5.8 Weighting training sequences 131

random model is fixed this is equivalent to a maximum of the weighted log likeli-
hood of the model M . The maximum discrimination criterion therefore amounts
to another sequence weighting system.

One difference from previous systems, however, is that these weights are de-
fined in a somewhat circular fashion; they depend upon the model that is being
fit. When using maximum discrimination weighting as a method, an iterative ap-
proach must be used; an initial set of weights gives rise to a model, from which
posterior probabilities P(M |x) can be calculated, giving rise to new weights, and
hence a new model, and so on until convergence is achieved. This iterative re-
estimation procedure is analogous to the versions of the EM algorithm used to fit
HMM parameters to sets of unlabelled sequences (p. 64 and p. 324).

Maximum discrimination training has a big advantage in that it is directly op-
timising performance on the type of operation that the model will be used for,
ensuring that the most effort is applied to recognising the most distant sequences.
On the other hand, exactly the same point can lead to problems. If there is any
training sequence that has been misclassified, then the distortion needed to give it
a good score can damage performance for correct members of the class. To some
extent, though, this same problem occurs with all weighting schemes: incorrectly
assigned sequences will be the most distant ones in any tree that gets built from
the examples.

Maximum entropy weights

Finally, we describe two weighting methods based on the idea of trying to make
the statistical spread of the model as broad as possible.

Assume column i of a multiple alignment has kia residues of type a and a
total of mi different types of residues. To make a distribution as uniform as pos-
sible from these counts by weighting each sequence, we can choose a weight
for sequence k of 1/(mi kixk

i
). Maximum likelihood estimation will then yield a

distribution pia = kia/(mi kia) = 1/mi , i.e. all the residues appearing in the col-
umn will have the same probability. To illustrate the idea, suppose we have ten
sequences with residue A at a site, and one sequence with a B, so the unweighted
frequencies of A and B are cA = 10

11 , cB = 1
11 . The weights of the ten sequences

are w1 = w2 = . . . = w10 = 1/(2×10) = 0.05, and w11 = 1/(2×1) = 0.5, which
have the effect of making the overall weighting for each of A and B equal.

The preceding paragraph only considered one column. With just one weight
per sequence, it is of course not possible to make the distribution uniform for all
columns in an alignment. However, by averaging over all columns, one may hope
to obtain reasonable weights. That is, the weights are calculated as

wk =
∑

i

1

mi kixk
i

,
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and then normalised to sum to one. This weighting scheme was proposed by
[Henikoff & Henikoff 1994].

Instead of averaging, there is another approach to combining the information
from the different columns that has a simple theoretical justification. A standard
measure of the ‘uniformity’ of a distribution is the entropy (11.8), which is larger
the more uniform the distribution is. Indeed, it is easy to see that the weights cho-
sen above based on a single column maximise the entropy of the distribution pia

for that column. An HMM defines a probability distribution over sequences, and
therefore a natural extension of the single column weighting to full sequences is
to maximise the entropy of the complete HMM distribution [Krogh & Mitchison
1995]. We will see that, perhaps surprisingly, this is closely related to maximum
discrimination weighting.

Let us consider all the sites in an alignment with no gaps. We then sum the
entropies from each site, and choose the weights to maximise this sum; that is
we maximise

∑
i Hi (w •) +λ

∑
k wk , where Hi (w •) = −∑

a pia log pia , and pia

is the weighted frequency of residue a at the i th site, computed as above.
Suppose for instance that we have the sequences x1 = AFA, x2 = AAC, and

x3 = DAC. Giving them weights w1, w2 and w3, respectively, the entropies at
each site are

H1(w •) = −(w1 +w2) log(w1 +w2)−w3 logw3,

H2(w •) = −w1 logw1 − (w2 +w3) log(w2 +w3),

H3(w •) = −w1 logw1 − (w2 +w3) log(w2 +w3).

We assume that the weights sum to one, and therefore we have to use a Lagrange
multiplier term λ

∑
k wk , when differentiating and finding the maximum of the

entropy. Setting the derivatives of H1(w •)+ H2(w •)+ H3(w •)+λ
∑

k wk to zero
gives (w1 +w2)w2

1 = (w1 +w2)(w2 +w3)2 = w3(w2 +w3)2, which implies w1 =
w3 = 0.5,w2 = 0. This makes the frequencies in each column equal, which was
our goal. If it seems odd to give a sequence zero weight, note that the residue at
each site in x2 is always present in one of the other two sequences. Intuitively, x2

lies ‘between’ x1 and x3, (in fact, it would be a possible ancestral sequence of x1

and x3 in an evolutionary reconstruction based on parsimony; see Chapter 7).
Another way to view the result of this example is that if we set the model prob-

abilities to be the weighted counts frequencies, as a weighted maximum likeli-
hood procedure would, the resulting model assigns an equal probability to all
of the original sequences, x1, x2 and x3. This seems very reasonable, accord-
ing to the view that all the example sequences should be treated as equally good
members of the family for which we are building the model. In fact, Krogh &
Mitchison [1995] show that the maximum entropy procedure assigns weights to
the example sequences so that some subset of the sequences (perhaps all of them)
have non-zero weight and equal probabilities under the resulting model, or they
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have a higher probability, in which case they have zero weight. The former can
be thought of as boundary points for the region of sequence space occupied by
the whole sequence set, while the latter are internal points.

Furthermore, empirical tests indicate that the maximum entropy weights are
optimal in the sense that they maximise the minimum score assigned to any
of the example sequences [Krogh & Mitchison 1995]. This is an absolute ver-
sion of the criterion specified in the previous section on maximum discrimination
weights; rather than simply weighting the weakest match most strongly, all the
parameter-fitting effort is applied to increasing its score, until it reaches that of
the other non-zero-weighted sequences. Although satisfying an attractive goal,
maximum entropy weighting suffers from the same problems as maximum dis-
crimination: if a sequence is an outlier that should not be a full member of the
family, the method will force it in, possibly at a substantial cost in performance
on all other sequences. In addition, the rejection of all information from some of
the sequences may seem intuitively undesirable.

Exercise

5.6 Compute the weights for the following sequence set, using each of the
weighting methods described above except Voronoi weights (which re-
quires random sampling of sequences): AGAA, CCTC, AGTC.

5.9 Further reading

PSSM methods were introduced during the 1980s for finding new members of
sequence families, although the matrix values were not always obtained using
an explicit probability-based derivation. They are also known by other names,
such as weight matrices [Staden 1988]. More recent papers using related methods
include those by Stormo [1990]; Henikoff & Henikoff [1994]; Tatusov, Altschul
& Koonin [1994].

The non-probabilistic versions of profiles already have a long history, and
many variants of the profile method have been suggested and tested. Thompson,
Higgins & Gibson [1994b] and Luthy, Xenarios & Bucher [1994] report an im-
provement when the sequences are weighted using one of the BLOSUM matrices
[Henikoff & Henikoff 1992] instead of a PAM matrix. In Thompson, Higgins &
Gibson [1994b] the treatment of gaps is also improved.

Several ways have been suggested for incorporating structural information into
profiles. In Luthy, McLachlan & Eisenberg [1991] substitution matrices were es-
timated for six different structural environments: the three secondary structure
elements α-helix, β-sheet, and ‘other’ combined with an outside/inside classi-
fication, which was based on the exposure of an amino acid to solvent. Other
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variations of structural profiles can be found in Bowie, Luthy & Eisenberg [1991];
Wilmanns & Eisenberg [1993].

Early on, profile HMMs were adopted by Baldi et al. [1994], who used them to
model globins, immunoglobulins and kinases. In this work a different estimation
method was also introduced, which was based on gradient descent, see also Baldi
& Chauvin [1994]. The same basic structure of profile HMMs has since been used
in several different areas. A library of HMMs for all the big protein families has
been established under the name of PFAM [Sonnhammer, Eddy & Durbin 1997].
The library of regular expressions called PROSITE [Bairoch, Bucher & Hofmann
1997] is being extended to something essentially like profile HMMs [Bucher et
al. 1996]. Profile HMMs also have several uses for DNA. For instance they can
be used to find DNA repeat family members in large-scale genomic sequence.



6
Multiple sequence alignment methods

In Chapter 5, we assumed that a reasonable multiple sequence alignment was al-
ready known and provided the starting point for constructing a profile HMM. We
now look at what a ‘reasonable’ multiple alignment is, and at ways to construct
one automatically from unaligned sequences.

Multiple alignments must usually be inferred from primary sequences alone.
Biologists produce high quality multiple sequence alignments by hand using
expert knowledge of protein sequence evolution. This knowledge comes from
experience. Important factors include: specific sorts of columns in alignments,
such as highly conserved residues or buried hydrophobic residues; the influence
of secondary and tertiary structure, such as the alternation of hydrophobic and
hydrophilic columns in exposed beta sheet; and expected patterns of insertions
and deletions, that tend to alternate with blocks of conserved sequence. Further-
more, the phylogenetic relationships between sequences dictate constraints on
the changes that occur in columns and in the patterns of gaps. RNA alignments
involve similar knowledge but additionally they are often strongly constrained
by a secondary structure model that in many cases has also been inferred from
primary sequence data (Chapter 10).

Manual multiple alignment is tedious. Automatic multiple sequence alignment
methods are a topic of extensive research in computational biology. In general, an
automatic method must have a way to assign a score so that better multiple align-
ments get better scores. We should carefully distinguish the problem of scoring a
multiple alignment from the problem of searching over possible multiple align-
ments to find the best one. Descriptions of multiple sequence alignment programs
tend to emphasise the alignment algorithm rather than the scoring function. How-
ever, by now it should be clear that the scoring function is our primary concern
in probabilistic modelling, and algorithms, though important, are secondary. One
of our goals in probabilistic modelling is to incorporate as many of an expert’s
evaluation criteria as possible into our scoring procedure.

We therefore start our discussion of automatic multiple alignment by consider-
ing carefully what we want to do. We look at what a multiple sequence alignment
means, structurally and evolutionarily. Then we consider the question of how best
to turn the biological criteria into a numerical scoring scheme, so that a program
will recognise a good multiple alignment. We examine various approaches taken
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by different multiple alignment programs. We conclude by describing full proba-
bilistic multiple alignment approaches based on the profile HMMs we introduced
in Chapter 5 and comparing the strengths and weaknesses of profile HMM align-
ment to other methods. We will focus primarily on protein alignments, though
most of the discussion applies to DNA alignments as well. (Alignment of RNA
is complicated by long-range correlations due to base pairing and is not treated
until Chapter 10.)

6.1 What a multiple alignment means

In a multiple sequence alignment, homologous residues among a set of sequences
are aligned together in columns. ‘Homologous’ is meant in both the structural and
evolutionary sense. Ideally, a column of aligned residues occupy similar three-
dimensional structural positions and all diverge from a common ancestral residue.
For example, in Figure 6.1, a manually generated multiple alignment of ten im-
munoglobulin superfamily sequences is shown. A crystal structure of one of the
sequences (1tlk, telokin) is known. The telokin structure and alignments to other
related sequences reveal conserved characteristics of the I-set immunoglobulin
superfamily fold, including eight conserved β-strands and certain key residues
in the sequences, such as two completely conserved cysteines in the b and f
strands which form a disulfide bond in the core of the folded structure. The other
nine sequences, from various neural cell adhesion molecules, have been manually
aligned to 1tlk based on this expert structural knowledge.

Except for trivial cases of highly identical sequences, it is not possible to unam-
biguously identify structurally or evolutionarily homologous positions and create
a single ‘correct’ multiple alignment. Since protein structures also evolve (though
more slowly than protein sequences), we do not expect two protein structures with
different sequences to be entirely superposable. Chothia & Lesk [1986] examined
pairwise structural alignments in several different protein families and found that
for a given pair of divergent but clearly homologous (30% identical) protein se-
quences, usually only about 50% of the individual residues were superposable in
the two structures (Figure 6.2). The globin family, often used as a ‘typical’ protein
family in computational work, is in fact exceptional: almost the entire structure
is conserved among divergent sequences. Even the definition of ‘structurally su-
perposable’ is subjective and can be expected to vary among experts.

In principle, there is always an unambiguously correct evolutionary alignment
even if the structures diverge. In practice, however, an evolutionarily correct
alignment can be even more difficult to infer than a structural alignment. While
structural alignment has an independent point of reference (superposition of crys-
tal or NMR structures), the evolutionary history of the residues of a sequence fam-
ily is not independently known from any source; it must itself be inferred from
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structure: ...aaaaa...bbbbbbbbbb.....cccccccCCC..C........ddd
1tlk ILDMDVVEGSAARFDCKVEGY--PDPEVMWFKDDNP--VKESR----HFQ
AXO1_RAT RDPVKTHEGWGVMLPCNPPAHY-PGLSYRWLLNEFPNFIPTDGR---HFV
AXO1_RAT ISDTEADIGSNLRWGCAAAGK--PRPMVRWLRNGEP--LASQN----RVE
AXO1_RAT RRLIPAARGGEISILCQPRAA--PKATILWSKGTEI--LGNST----RVT
AXO1_RAT ----DINVGDNLTLQCHASHDPTMDLTFTWTLDDFPIDFDKPGGHYRRAS
NCA2_HUMAN PTPQEFREGEDAVIVCDVVSS--LPPTIIWKHKGRD--VILKKDV--RFI
NCA2_HUMAN PSQGEISVGESKFFLCQVAGDA-KDKDISWFSPNGEK-LTPNQQ---RIS
NCA2_HUMAN IVNATANLGQSVTLVCDAEGF--PEPTMSWTKDGEQ--IEQEEDDE-KYI
NRG_DROME RRQSLALRGKRMELFCIYGGT--PLPQTVWSKDGQR--IQWSD----RIT
NRG_DROME PQNYEVAAGQSATFRCNEAHDDTLEIEIDWWKDGQS--IDFEAQP--RFV
consensus: ........G..+.+.C.+.........+.W........+........++

structure: ddd.....eeeeee.......fffffffff.......gggggggggggg.
1tlk IDYDEEGNCSLTISEVCGDDDAKYTCKAVNSL-----GEATCTAELLVET
AXO1_RAT SQTT----GNLYIARTNASDLGNYSCLATSHMDFSTKSVFSKFAQLNLAA
AXO1_RAT VLA-----GDLRFSKLSLEDSGMYQCVAENKH-----GTIYASAELAVQA
AXO1_RAT VTSD----GTLIIRNISRSDEGKYTCFAENFM-----GKANSTGILSVRD
AXO1_RAT AKETI---GDLTILNAHVRHGGKYTCMAQTVV-----DGTSKEATVLVRG
NCA2_HUMAN VLSN----NYLQIRGIKKTDEGTYRCEGRILARG---EINFKDIQVIVNV
NCA2_HUMAN VVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDG----SESEATVNVKIFQ
NCA2_HUMAN FSDDSS---QLTIKKVDKNDEAEYICIAENKA-----GEQDATIHLKVFA
NRG_DROME QGHYG---KSLVIRQTNFDDAGTYTCDVSNGVG----NAQSFSIILNVNS
NRG_DROME KTND----NSLTIAKTMELDSGEYTCVARTRL-----DEATARANLIVQD
consensus: ..........L.+..+...+.+.Y.C.................+.+.+..

Figure 6.1 A multiple alignment of ten I-set immunoglobulin superfamily
domains, adapted from Harpaz & Chothia [1994]. To the left are sequence
identifiers from the PDB or SWISS-PROT databases. The eight β-strands of
the telokin structure, 1tlk, are annotated at the top (a-g; C represents the
c’ strand). Aligned columns are annotated at the bottom if all residues are
identical (letter) or highly conservative (+).

sequence alignment. Since sequence tends to diverge more rapidly than structure,
parts of proteins which are structurally unalignable are typically not alignable by
sequence either.

Thus, our ability to define a single ‘correct’ alignment will vary with the rela-
tedness of the sequences being aligned. An alignment of very similar sequences
will generally be unambiguous, but these alignments are not of great interest
to us; a simple program can get the alignment right. For cases of interest (e.g.
for a family of proteins sharing perhaps only 30% average pairwise sequence
identity), we must keep in mind that there is no objective way to define an un-
ambiguously correct alignment. Usually, a small subset of key residues will be
identifiable which can be aligned unambiguously for all the sequences in a family
almost regardless of sequence divergence [Harpaz & Chothia 1994]; core struc-
tural elements will also tend to be conserved and meaningfully alignable; but
other regions may not be meaningfully alignable because of structural evolution
and sequence divergence.

Assessments of multiple alignment quality must keep these considerations in
mind. Asking a sequence alignment program to produce exactly the same align-
ment as a manual structural alignment, for instance, means building in the same
meaningless biases about how to ‘align’ structurally unalignable regions. Instead,
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Figure 6.2 Proportion of structurally superposable residues in pairwise
alignments as a function of sequence identity; redrawn from data in Chothia
& Lesk [1986]. ‘Other’ structural alignments include pairwise alignments
of two dihydrofolate reductases, two lysozymes, plastocyanin/azurin, and
papain/actinidin.

we should focus attention on the subset of columns corresponding to key residues
and core structural elements that can be aligned with confidence [McClure, Vasi
& Fitch 1994].

6.2 Scoring a multiple alignment

Our scoring system should take into account at least two important features of
multiple alignments: (1) the fact that some positions are more conserved than
others, e.g. position-specific scoring; and (2) the fact that the sequences are not
independent, but instead are related by a phylogenetic tree. An idealised way to
score a multiple alignment would therefore be to specify a complete probabilis-
tic model of molecular sequence evolution. Given the correct phylogenetic tree
for the sequences, the probability of a multiple alignment is the product of the
probabilities of all the evolutionary events necessary to produce that alignment
via ancestral intermediate sequences times the prior probability of the root an-
cestral sequence. The desired evolutionary model would be very complex. The
probabilities of evolutionary change would depend on the evolutionary times
along each branch of the tree, as well as position-specific structural and func-
tional constraints imposed by natural selection, so that key residues and structural
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elements would be conserved. High-probability alignments would then be good
structural and evolutionary alignments under this model.

Unfortunately, we do not have enough data to parameterise such a complex
evolutionary model. Simplifying assumptions must be made. In this chapter, we
concentrate mostly on workable approximations that partly or entirely ignore the
phylogenetic tree while doing some sort of position-specific scoring of aligning
structurally compatible residues. In Chapters 7 and 8 we will look at more explicit
models of phylogenetic trees and molecular evolution, most of which make an ap-
proximation of a position-independent rather than position-specific evolutionary
model.

Almost all alignment methods assume that the individual columns of an align-
ment are statistically independent. Such a scoring function can be written as

S(m) = G +
∑

i

S(mi ) (6.1)

where mi is column i of the multiple alignment m, S(mi ) is the score for column
i , and G is a function for scoring the gaps that occur in the alignment.

We write G as an unspecified function because methods of scoring gaps in
multiple alignments differ greatly. The simplest method is to treat a gap symbol
as an extra residue type, which then just gives S(m) = ∑

i S(mi ). However, most
multiple alignment methods use affine scoring functions that pay a higher cost
for opening the gap than extending it, so successive gap residues are not treated
independently. For simplicity, we will focus in the next several paragraphs on
definitions of S(mi ) for scoring a column of aligned residues with no gaps.

Minimum entropy

We now define some notation. As above, m is a multiple alignment. Let m j
i be the

symbol in column i for sequence j . Let cia be the observed counts for residue a
in column i ; cia = ∑

j δ(m j
i = a), where δ(m j

i = a) is 1 if m j
i = a and 0 otherwise.

Let mi be the column m1
i , . . . ,m N

i of aligned symbols in column i , and let ci be
the count vector ci1, . . . ,ci K of observed symbols in column i for an alphabet of
K different residues.

If the phylogenetic tree for the sequences has many intermediate ancestors,
then the statistical dependence between sequences is complex (see Chapter 7).
The scoring problem is greatly simplified if we assume that sequences have all
been generated independently. If we assume that residues within the column are
independent, as well as being independent between columns, then the probability
of a column mi is

P(mi ) =
∏

a

pcia
ia , (6.2)

where pia is the probability of residue a in column i . We can define a column
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score as the negative logarithm of this probability:

S(mi ) = −
∑

a

cia log pia . (6.3)

This is an entropy measure directly related to the equation for Shannon entropy
in information theory (Chapter 11). It is a convenient measure of the variability
observed in an aligned column of residues. The more variable the column is, the
higher the entropy. A completely conserved column would score 0. We could
define a good alignment to be one which minimises the total entropy of the align-
ment (e.g.

∑
i S(mi )).

As we have seen before (Chapter 5), the parameters pia can be estimated from
counts cia; for instance, the maximum likelihood estimate is just

pia = cia∑
a′ cia′

. (6.4)

In practice we would normally regularise this probability estimate with pseudo-
counts or Dirichlet priors.

This is obviously near to the HMM formulation of the problem. Profile HMMs
go further and also model insertions and deletions in the alignment probabilis-
tically. In return for giving up the evolutionary tree and assuming independence
between sequences, we gain the ability to straightforwardly estimate a position-
specific model of both residue probabilities in columns and insertions and dele-
tions. Standard profiles make a similar assumption.

The assumption that the sequences are independent can be reasonable if rep-
resentative sequences of a sequence family are carefully chosen. It is often the
case, though, that the sample of sequences is biased and certain evolutionary
subfamilies are under- or over-represented relative to others. A variety of tree-
based weighting schemes have been proposed to deal with this problem to par-
tially compensate for the defects of the sequence independence assumption
(see Chapter 5).

Sum of pairs: SP scores

The standard method of scoring multiple alignments is not the HMM formulation,
but is similar in that it does not use a phylogenetic tree and it assumes statisti-
cal independence for the columns. Columns are scored by a ‘sum of pairs’ (SP)
function using a substitution scoring matrix. The SP score for a column is defined
as:

S(mi ) =
∑
k<l

s(mk
i ,ml

i ), (6.5)

where scores s(a,b) come from a substitution scoring matrix such as a PAM or
BLOSUM matrix. For simple linear gap costs, gaps are handled by defining s(a,−)
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and s(−,a) to be the gap cost, and s(−,−) to be zero. Otherwise gaps are scored
separately (e.g. for affine gap costs).

Summing all the pairwise substitution scores in the column might seem to be a
natural thing to do. However, substitution scores are usually derived as log-odds
scores for pairwise comparisons. The correct extension to multiple alignments
would be, for instance, log(pabc/qaqbqc) for a three-way alignment, rather than
the SP score log(pab/qaqb) + log(pbc/qbqc) + log(pac/qaqc). There is no proba-
bilistic justification of the SP score; each sequence is scored as if it descended
from the N −1 other sequences instead of a single ancestor. Evolutionary events
are over-counted, a problem which increases as the number of sequences in-
creases. Altschul, Carroll & Lipman [1989] recognised the problem and proposed
a weighting scheme designed to partially compensate for this defect in SP scores
(Chapter 5).

Example: A problem with SP scores

As an intuitive, concrete example of a problem with the standard SP multiple
alignment scoring system, consider an alignment of N sequences which all have
leucine (L) at a certain position for some important functional reason. The score
of an L aligned to L according to the BLOSUM50 substitution matrix (Figure 2.2)
is 5, so the SP score of the column is 5 × N (N − 1)/2, where N (N − 1)/2 is the
number of symbol pairs in the column. If instead there were one glycine (G) in
the column and N − 1 Ls, the score for the column would be 9 × (N − 1) less,
because a G-L pair scores −4 instead of +5, and N − 1 pairs are affected. That
is, the SP score for a column with one G is worse than the score for a column of
all Ls by a fraction of

9(N −1)

5N (N −1)/2
= 18

5N
.

Notice the inverse dependence on N ; the relative difference in score between the
correct alignment and the incorrect alignment decreases with the number of se-
quences in the alignment. This is clearly counter-intuitive. The relative difference
ought to increase with the more evidence we have for a conserved leucine. See
p. 106 for another example.

6.3 Multidimensional dynamic programming

With some appreciation of scoring issues in mind, we turn to algorithms for con-
structing multiple alignments.

It is possible to generalise pairwise dynamic programming alignment (Chap-
ter 2) to the alignment of N sequences. However, this turns out to be impractical
for more than a few sequences, as we will see shortly. We assume the columns of
an alignment are statistically independent, and for now we also assume that gaps
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are scored with a linear gap cost γ (g) = gd for a gap of length g and some gap
cost d . Thus we can calculate the overall score S(m) for an alignment as a sum of
the scores S(mi ) for each column i :

S(m) =
∑

i

S(mi ). (6.6)

Multidimensional dynamic programming with affine gap costs and multiple sta-
tes is possible, using methods like those in Chapter 2, but the formalism becomes
tedious in many dimensions.

Define αi1,i2,...,iN as the maximum score of an alignment up to the subsequences
ending with x1

i1
, x2

i2
, . . . , x N

iN
. The dynamic programming algorithm is

αi1,i2,...,iN = max




αi1−1,i2−1,...,iN −1 + S(x1
i1

, x2
i2

, . . . , x N
iN

),

αi1,i2−1,...,iN −1 + S(−, x2
i2

, . . . , x N
iN

),

αi1−1,i2,i3−1,...,iN −1 + S(x1
i1

,−, . . . , x N
iN

),
...

αi1−1,i2−1,...,iN + S(x1
i1

, x2
i2

, . . . ,−),

αi1,i2,i3−1,...,iN −1 + S(−,−, . . . , x N
iN

),
...

αi1,i2−1,...,iN−1−1,iN + S(−, x2
i2

, . . . ,−),
...

(6.7)

where all combinations of gaps appear except the one where all residues are re-
placed by gaps. There are 2N − 1 such combinations. Initialisation, termination,
and traceback steps for the algorithm are not shown here, but also follow analo-
gously from the pairwise dynamic programming algorithm.

It is possible to simplify the notation by introducing �i which is 0 or 1 and
define the ‘product’

�i · x =
{

x if �i = 1,
− if �i = 0.

(6.8)

Now the recursion can be written as follows [Sankoff & Cedergren 1983; Water-
man 1995]:

αi1,i2,...,iN = max
�1+...+�N >0

{
αi1−�1,i2−�2,...,iN −�N + S(�1 · x1

i1
,�2 · x2

i2
, . . . ,�N · x N

iN
)
}

.

(6.9)
The algorithm requires the computation of the whole dynamic programming

matrix with L1L2 · · · L N entries. To calculate each entry we need to maximise
over all 2N − 1 combinations of gaps in a column, excluding the case where all
the �k are zero. Assuming the sequences are of roughly the same length L̄ , the
memory complexity of the multidimensional dynamic programming algorithm is
O(L̄ N ) and the time complexity is O(2N L̄ N ).
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Note that we did not specify the functional form of the column score S(mi ).
The only assumption necessary to make multidimensional dynamic programming
work is that column scores are independent. In principle, S(mi ) could be calcu-
lated using an evolutionary model [Sankoff 1975].

Exercise

6.1 Assume we have a number of sequences that are 50 residues long, and
that a pairwise comparison of two such sequences takes one second of
CPU time on our computer. An alignment of four sequences takes
(2L)N−2 = 102N−4 = 104 seconds (a few hours). If we had unlimited
memory and we were willing to wait for the answer until just before the
sun burns out in five billion years, how many sequences could our com-
puter align?

MSA

A clever algorithm for reducing the volume of the multidimensional dynamic
programming matrix that needs to be examined was described by Carrillo & Lip-
man [1988]. This algorithm was implemented in the multiple alignment program
MSA [Lipman, Altschul & Kececioglu 1989]. MSA can optimally align up to five
to seven protein sequences of reasonable length (200–300 residues).

Carrillo & Lipman assume an SP scoring system for both residues and gaps.
We assume here that the score of a multiple alignment is the sum of the scores of
all pairwise alignments defined by the multiple alignment; a somewhat broader
definition of the score is possible [Altschul 1989]. Let akl denote the pairwise
alignment between sequences k and l. Then the score of the complete alignment
is given by

S(a) =
∑
k<l

S(akl). (6.10)

Let âkl be the optimal pairwise alignment of k, l, which we can calculate in O(L̄2)
time by standard dynamic programming. Obviously S(akl) ≤ S(âkl).

Combining this simple observation and the definition of the SP scoring system,
we can obtain a lower bound on the score of any pairwise alignment that can occur
in the optimal multiple alignment. Assume for the moment that we have a lower
bound σ (a) on the score of the optimal multiple alignment, so σ (a) ≤ S(a). From
the above and the SP score definition it must be true that, for the optimal multiple
alignment a,

σ (a) ≤ S(akl)− S(âkl)+
∑
k′<l ′

S(âk′l ′)

and thus
S(akl) ≥ βkl

where βkl = σ (a)+ S(âkl)−
∑
k′<l ′

S(âk′l ′).
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Figure 6.3 Carrillo & Lipman’s algorithm allows the search for optimal
alignments to be restricted to a subset of the multidimensional programming
matrix, shown here as three-dimensional. The sets Bkl are shown in dark
grey, and the cells in the matrix to which the search can be confined are
outlined in black.

Therefore, we know we only need to consider pairwise alignments of k and l
that score better than βkl . This lower bound βkl is easily calculated. We can obtain
a good bound σ (a) by any fast heuristic multiple alignment algorithm (for exam-
ple one of the progressive alignment algorithms given below). The N (N − 1)/2
optimum pairwise alignments âkl are each calculated and scored by standard pair-
wise alignment. The higher these bounds are, the smaller the volume of dynamic
programming matrix that must be calculated and the faster the algorithm will run.
(Indeed, by default MSA heuristically picks a higher βkl and so does not guarantee
an optimal multiple alignment.)

Now, for each pair k, l we can find the complete set Bkl of coordinate pairs
(ik , il) such that the best alignment of xk to xl through (ik , il) scores more than
βkl . This set is calculated in O(L̄2) time by summing the forward and backward
Viterbi scores for each cell of the complete pairwise dynamic programming table,
and testing if the result is greater than βkl . The costly multidimensional dynamic
programming algorithm can then be restricted to evaluate only cells in the inter-
section of all these sets: i.e. cells (i1, i2, . . . , iN ) for which (ik , il) is in Bkl for all
k, l (see Figure 6.3). It is tricky to manage the intersection matrix and perform the
dynamic programming calculation efficiently. Details are given in Gupta, Kece-
cioglu & Schaffer [1995].

Altschul & Lipman [1989] extended the theory of the Carrillo–Lipman algo-
rithm to more realistic scoring systems based on evolutionary stars and trees
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instead of SP scores, but we are not aware of any implementations of those
ideas.

6.4 Progressive alignment methods

Probably the most commonly used approach to multiple sequence alignment is
progressive alignment. This works by constructing a succession of pairwise align-
ments. Initially, two sequences are chosen and aligned by standard pairwise align-
ment; this alignment is fixed. Then, a third sequence is chosen and aligned to the
first alignment, and this process is iterated until all sequences have been aligned.

Progressive alignment strategies were introduced by a number of authors [Ho-
geweg & Hesper 1984; Waterman & Perlwitz 1984; Feng & Doolittle 1987;
Taylor 1987; Barton & Sternberg 1987; Higgins & Sharp 1989]. The algorithms
differ in several ways: (1) in the way that they choose the order to do the align-
ment; (2) in whether the progression involves only alignment of sequences to a
single growing alignment or whether subfamilies are built up on a tree structure
and, at certain points, alignments are aligned to alignments; and (3) in the proce-
dure used to align and score sequences or alignments against existing alignments.

Progressive alignment is heuristic: it does not separate the process of scoring
an alignment from the optimisation algorithm. It does not directly optimise any
global scoring function of alignment correctness. The advantage of progressive
alignment is that it is fast and efficient, and in many cases the resulting alignments
are reasonable.

The most important heuristic of progressive alignment algorithms is to align
the most similar pairs of sequences first. These are the most reliable alignments.
Most algorithms build a ‘guide tree’. This is a binary tree whose leaves rep-
resent sequences and whose interior nodes represent alignments. The root node
represents a complete multiple alignment. The nodes furthest from the root repre-
sent the most similar pairs. The methods used to construct guide trees are similar
to the methods used to construct phylogenetic trees (Chapter 7), but guide trees
are typically ‘quick and dirty’ trees unsuitable for serious phylogenetic inference.

Feng–Doolittle progressive multiple alignment

The Feng–Doolittle algorithm was one of the first progressive alignment algo-
rithms [Feng & Doolittle 1987]. In overview, it is as follows:

Algorithm: Feng–Doolittle progressive alignment

(i) Calculate a diagonal matrix of N (N −1)/2 distances between all pairs of
N sequences by standard pairwise alignment, converting raw alignment
scores to approximate pairwise ‘distances’.



146 6 Multiple sequence alignment methods

(ii) Construct a guide tree from the distance matrix using the clustering algo-
rithm by Fitch & Margoliash [1967a].

(iii) Starting from the first node added to the tree, align the child nodes (which
may be two sequences, a sequence and an alignment, or two alignments).
Repeat for all other nodes in the order that they were added to the tree
(i.e. from most similar pairs to least similar pairs) until all sequences have
been aligned. �

The method for converting alignment scores to distances does not need to be
especially accurate, as the goal is only to create an approximate guide tree, not
an evolutionary tree. Feng & Doolittle calculate the distance D as

D = − log Seff = − log
Sobs − Srand

Smax − Srand
, (6.11)

where Sobs is the observed pairwise alignment score; Smax is the maximum score,
the average of the score of aligning either sequence to itself; and Srand is the ex-
pected score for aligning two random sequences of the same length and residue
composition. The last one, Srand, may either be calculated by random shuffling
of the two sequences, or by an approximate calculation given in Feng & Doolit-
tle [1996]. The effective score Seff can thus be viewed as a normalised percent-
age similarity; it is expected to roughly decay exponentially towards zero with
increasing evolutionary distance, hence the −log to make the measure more ap-
proximately linear with evolutionary distance. In phylogenetic tree construction,
more care must be taken in calculating distances from alignments.

The Fitch–Margoliash algorithm is one of the fast clustering algorithms that
build evolutionary trees from distance matrices. Clustering algorithms are de-
scribed in Chapter 7.

Sequence–sequence alignments are done with the usual pairwise dynamic pro-
gramming algorithm. A sequence is added to an existing group by aligning it
pairwise to each sequence in the group in turn. The highest scoring pairwise
alignment determines how the sequence will be aligned to the group. For align-
ing a group to a group, all sequence pairs between the two groups are tried; the
best pairwise sequence alignment determines the alignment of the two groups.
Thus, the scoring system is essentially the standard pairwise PAM score with an
affine gap penalty. After an alignment is completed, gap symbols are replaced
with a neutral X character. Feng & Doolittle call this the rule of ‘once a gap, al-
ways a gap’. The rule allows pairwise sequence alignments to be used to guide
the alignment of sequences to groups or groups to groups; otherwise, any given
pairwise sequence alignment would not necessarily be consistent with the pre-
existing alignment of a group. Since there is no cost for aligning an X with any-
thing (including a gap symbol), the rule has a desirable side effect of encourag-
ing gaps to occur in the same columns in subsequent pairwise alignments. The
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X rewriting is not needed in profile-based progressive alignment algorithms (see
below).

Profile alignment

A problem with the Feng–Doolittle approach is that all alignments are deter-
mined by pairwise sequence alignments. Once an aligned group has been built
up, it is advantageous to use position-specific information from the group’s mul-
tiple alignment to align a new sequence to it. The degree of sequence conser-
vation at each position should be taken into account and mismatches at highly
conserved positions penalised more stringently than mismatches at variable po-
sitions. Gap penalties in positions might be reduced where lots of gaps occur in
the cluster alignment, and increased where no gaps occur. This is the same argu-
ment that motivated the development of sequence profiles for database searching
(Chapter 5). It also makes sense to apply profiles in progressive multiple sequence
alignment.

Many progressive alignment methods use pairwise alignment of sequences to
profiles [Thompson, Higgins & Gibson 1994a; Gribskov, McLachlan & Eisen-
berg 1987] or of profiles to profiles (see e.g. Gotoh [1993]) as a subroutine which
is used many times in the process. The exact definition of the scoring function
used in profile–sequence or profile–profile alignment varies. Aligned residues
are usually scored by some form of a sum-of-pairs score, but the handling of
gaps varies substantially between different methods.

As discussed previously, for linear gap scoring, profile alignment is simple,
because the gap scores can be included in the SP score (6.5) by setting s(−,a) =
s(a,−) = −g and s(−,−) = 0. Assume we have two multiple alignments (or
‘profiles’), one containing sequence 1 to n, and the other containing sequence
n + 1 to N . An alignment of these two profiles means that gaps are inserted in
whole columns, so the alignment within one of the profiles is not changed. The
score (6.5) of the global alignment is then

∑
i

S(mi ) =
∑

i

∑
k<l≤N

s(mk
i ,ml

i )

=
∑

i

∑
k<l≤n

s(mk
i ,ml

i )+
∑

i

∑
n<k<l≤N

s(mk
i ,ml

i )+
∑

i

∑
k≤n,n<l≤N

s(mk
i ,ml

i ).

All we did was to split up the sum into two sums only concerning the two profiles
and one sum containing all the cross terms. The first two sums are unaffected
by the global alignment, because adding columns of gap characters to a profile
adds zero to the score (s(−,−) = 0). Therefore the optimal alignment of the two
profiles can be obtained by only optimising the last sum with the cross terms.
This can be done exactly like a standard pairwise alignment, where columns are
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scored against columns by adding the pair scores. Obviously one of the profiles
can consist of a single sequence only, which corresponds to aligning a single
sequence to a profile.

CLUSTALW

One widely used implementation of profile-based progressive multiple alignment
is the CLUSTALW program [Thompson, Higgins & Gibson 1994a], which suc-
ceeded an earlier popular program, CLUSTALV [Higgins, Bleasby & Fuchs 1992].
CLUSTALW works in much the same way as the Feng–Doolittle method except for
its carefully tuned use of profile alignment methods. In overview, the CLUSTALW

algorithm is as follows:

Algorithm: CLUSTALW progressive alignment

(i) Construct a distance matrix of all N (N −1)/2 pairs by pairwise dynamic
programming alignment followed by approximate conversion of similar-
ity scores to evolutionary distances using the model of Kimura [1983].

(ii) Construct a guide tree by a neighbour-joining clustering algorithm by
Saitou & Nei [1987].

(iii) Progressively align at nodes in order of decreasing similarity, using se-
quence–sequence, sequence–profile, and profile–profile alignment. �

CLUSTALW is unabashedly ad hoc in its alignment construction and scoring
stage. In addition to the usual methods of profile construction and alignment,
various additional heuristics of CLUSTALW contribute to its accuracy:

• Sequences are weighted to compensate for biased representation in large sub-
families. The profile scoring function in CLUSTALW is fundamentally
sum-of-pairs. As with Carrillo–Lipman, sequence weighting is important to
compensate for the defects of the sum-of-pairs.

• The substitution matrix used to score an alignment is chosen on the basis of
the similarity expected of the alignment; closely related sequences are aligned
with ‘hard’ matrices (e.g. BLOSUM80), and distant sequences are aligned with
‘soft’ matrices (e.g. BLOSUM50).

• Position-specific gap-open profile penalties are multiplied by a modifier that is
a function of the residues observed at the position. These penalties were ob-
tained from gap frequencies observed in a large number of structurally based
alignments. In general, hydrophobic residues (which are more likely to be
buried) give higher gap penalties than hydrophilic or flexible residues (which
are more likely to be surface-accessible).
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• Gap-open penalties are also decreased if the position is spanned by a consecu-
tive stretch of five or more hydrophilic residues.

• Both gap-open and gap-extend penalties are increased if there are no gaps in a
column but gaps occur nearby in the alignment. This rule tries to force all the
gaps to occur in the same places in an alignment.

• In the progressive alignment stage, if the score of an alignment is low, the guide
tree may be adjusted on the fly to defer the low-scoring alignment until later
in the progressive alignment phase when more profile information has been
accumulated.

From the standpoint of probabilistic modelling, it is of interest to study such
carefully crafted heuristics. It might be good to co-opt the heuristics into more
formal probabilistic models, bringing to bear the ability of full probabilistic mod-
els to optimise large sets of free parameters.

Iterative refinement methods

One problem with progressive alignment algorithms is that the subalignments are
‘frozen’. That is, once a group of sequences has been aligned, their alignment
to each other cannot be changed at a later stage as more data arrive. Iterative
refinement algorithms attempt to circumvent this problem [Barton & Sternberg
1987; Berger & Munson 1991; Gotoh 1993].

In iterative refinement, an initial alignment is generated, for instance as out-
lined above; then one sequence (or a set of sequences) is taken out and realigned
to a profile of the remaining aligned sequences. If a meaningful score is being
optimised, this either increases the overall score or results in the same score.
Another sequence is chosen and realigned, and so on, until the alignment does
not change. The procedure is guaranteed to converge to a local maximum of the
score provided that all the sequences are tried and a maximum score exists, sim-
ply because the sequence space is finite.

The method of Barton & Sternberg [1987] is an example of how some of the
methods mentioned so far can be combined. It works as follows:

Algorithm: Barton–Sternberg multiple alignment

(i) Find the two sequences with the highest pairwise similarity and align
them using standard pairwise dynamic programming alignment.

(ii) Find the sequence that is most similar to a profile of the alignment of
the first two, and align it to the first two by profile–sequence alignment.
Repeat until all sequences have been included in the multiple alignment.

(iii) Remove sequence x1 and realign it to a profile of the other aligned se-
quences x2, . . . , x N by profile–sequence alignment. Repeat for sequences
x2, . . . , x N .
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(iv) Repeat the previous realignment step a fixed number of times, or until the
alignment score converges. �

The ideas of profile alignment and iterative refinement come quite close to the
formulation of probabilistic hidden Markov model approaches for the multiple
alignment problem. We turn to HMM methods now.

6.5 Multiple alignment by profile HMM training

In Chapter 5 it was shown that sequence profiles could be recast in probabilistic
form as profile HMMs. Thus, profile HMMs could simply be used in place of
standard profiles in progressive or iterative alignment methods. The use of pro-
file HMM formalisms may have certain advantages. In particular, the essentially
ad hoc SP scoring scheme can be replaced by the more explicit profile HMM
assumption that the sequences are generated independently from a single ‘root’
probability distribution.

Profile HMMs can also be trained from initially unaligned sequences using the
Baum–Welch expectation maximisation algorithm from Chapter 3. These sorts of
approaches, drawn from the HMM literature, were in fact the first HMM-based
multiple alignment approaches to be applied. If the trained model is used for a
final step of Viterbi alignment of each individual sequence, training generates a
multiple alignment in addition to a model [Krogh et al. 1994].

Multiple alignment with a known profile HMM

Before tackling the problem of estimating a model and a multiple alignment
simultaneously from initially unaligned training sequences, we consider the sim-
pler problem of obtaining a multiple alignment from a known model. This prob-
lem often arises in sequence analysis, for instance when we have a multiple
alignment and a model of a small representative set of sequences in a family,
and we wish to use that model to align a large number of other family members
together.

We have seen how to align a sequence to a profile HMM: the most probable
path through the model is found by the Viterbi algorithm. Constructing a mul-
tiple alignment just requires calculating a Viterbi alignment for each individual
sequence. Residues aligned to the same profile HMM match state are aligned
in columns. This implies an important difference between profile HMM mul-
tiple alignments and traditional multiple alignments which will be clearer by
example.

Figure 6.4 shows a small profile HMM and the multiple alignment it was de-
rived from. The shaded residues were arbitrarily defined to be insertions for the
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FPHF-DLS-----HGSAQ
FESFGDLSTPDAVMGNPK
FDRFKHLKTEAEMKASED
FTQFAG-KDLESIKGTAP
FPKFKGLTTADQLKKSAD
FS-FLK-GTSEVPQNNPE
FG-FSG----AS---DPG

Figure 6.4 A model (top) estimated from an alignment (bottom). The
residues in the shaded area of the alignment were treated as inserts. See
Figure 5.4 for a description of the model drawing.

purposes of this example, and the other ten columns correspond to ten profile
HMM match states. The same seven sequences were realigned to the model, giv-
ing the optimal Viterbi paths shown in Figure 6.5. These paths result in the multi-
ple alignment shown in Figure 6.6, left, where lower-case residues were assigned
to an insert state and upper-case residues were assigned to a match state.

The important observation here is that the original alignment (Figure 6.4) and
the new alignment (Figure 6.6, left) are the same alignment. A profile HMM does
not attempt to align the lower-case residues assigned to insert states. The choice
of how to put the insert residues in the alignment is arbitrary; some profile HMM
implementations simply left-justify insert regions, as shown in Figure 6.6. The
insert state residues usually represent parts of the sequences which are atypical,
unconserved, and not meaningfully alignable. As we discussed earlier, this is a
biologically realistic view of multiple alignment. For instance, we expect loops of
homologous protein structures often to be structurally different and unalignable.
In contrast, many other multiple alignment algorithms align the whole sequences,
regardless of what parts of the sequence are meaningfully alignable or not.

The alignment on the right in Figure 6.6 shows a new sequence aligned to
the same model. This sequence has more inserted residues than any of the other
seven sequences in the shaded area assigned to insert state 6, so the alignment
of the other seven sequences must be adjusted to allow space for these two new
residues. In an implementation, we typically look at all the Viterbi paths and find
the maximum number of inserted residues for each insert state before building
the multiple alignment, so we know up front how much room we need to leave to
accommodate insertions.
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Position 1 2 3 4 5 6 insert 7 8 9 10 11

F P H F – D LS H G S A Q
F E S F G D LSTPDAV M G N P K
F D R F K H LKTEAEM K A S E D
F T Q F A G KDLESI K G T A P
F P K F K G LTTADQL K K S A D
F S – F L K GTSEVP Q N N P E
F G – F S G AS – – D P G

Figure 6.5 The most probable paths of the seven sequences through the
model. If the path goes through a match state in position i of the model, the
corresponding residue is placed in the column labelled i . If it goes through a
delete state, a ‘–’ is placed in the table instead, and when it goes through the
insert state in position 6 the corresponding residue is placed in the column
labelled ‘insert’.

FPHF-Dls.....HGSAQ
FESFGDlstpdavMGNPK
FDRFKHlkteaemKASED
FTQFAGkdlesi.KGTAP
FPKFKGlttadqlKKSAD
FS-FLKgtsevp.QNNPE
FG-FSGas.....--DPG

FS-FLKngvdptaai--NPK
FPHF-Dls.......HGSAQ
FESFGDlstpdav..MGNPK
FDRFKHlkteaem..KASED
FTQFAGkdlesi...KGTAP
FPKFKGlttadql..KKSAD
FS-FLKgtsevp...QNNPE
FG-FSGas.......--DPG

Figure 6.6 Left: the alignment of the seven sequences is shown with lower-
case letters meaning inserts. The dots are just space-filling characters to
make the matches line up correctly. Right: the alignment is shown after a
new sequence was added to the set. The new sequence is shown at the top,
and because it has more inserts more space-filling dots were added.

Overview of profile HMM training from unaligned sequences

Now we turn to the harder problem of estimating both a model and a multi-
ple alignment from initially unaligned sequences. The method is summarised as
follows:

Algorithm: Multiple alignment using profile HMMs

Initialisation: Choose the length of the profile HMM and initialise parameters.
Training: Estimate the model using the Baum–Welch algorithm (p. 65) or the

Viterbi alternative (p. 66). It is usually necessary to use a heuristic method
for avoiding local optima (see below).

Multiple alignment: Align all sequences to the final model using the Viterbi algo-
rithm (p. 56) and build a multiple alignment as described in the previous
section. �

We now consider the problems of initialisation and training in detail.
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Initial model

A profile HMM is a repeating linear structure of three states (match, delete, and
insert). The only decision that must be made in choosing an initial architecture
for Baum–Welch estimation is the length of the model M . Here M is the number
of match states in the profile HMM rather than the total number of states, which
is 3M +3 for the profile HMM architecture of Chapter 5. A commonly used rule
is to set M to be the average length of the training sequences (or to set it based
on prior knowledge).

Since Baum–Welch estimation finds local optima, not global, it is important to
choose initial models carefully. The model should be encouraged to use ‘sensible’
transitions; for instance, transitions into match states should be large compared
to other transition probabilities. At the same time, we want to start Baum–Welch
from multiple different points to see if all converge to approximately the same
optimum, so we want some randomness in the choice of initial model parameters.

One reasonable approach is to sample the model’s initial parameters from the
model’s Dirichlet prior over parameters (Chapter 11). Alternatively, we can ini-
tialise the model with frequencies derived from the prior, use this model to gen-
erate a small number of random sequences, and then use these counts as ‘data’ to
estimate an initial model. A further possibility is to estimate the initial model by
model construction from an existing guess at the multiple alignment of some or
all of the sequences.

Baum–Welch expectation maximisation

The basic parameter estimation is done by a straightforward application of the
Baum–Welch algorithm from Chapter 3. Below we give the algorithms in the
notation of Chapter 5 for reference.

Algorithm: Forward algorithm for profile HMMs

Initialisation: fM0(0) = 1.

Recursion: fMk (i) = eMk (i)[ fMk−1 (i −1)aMk−1Mk + fIk−1 (i −1)aIk−1Mk

+ fDk−1 (i −1)aDk−1Mk ];

fIk (i) = eIk (i)[ fMk (i −1)aMk Ik + fIk (i −1)aIk Ik

+ fDk (i −1)aDk Ik ];

fDk (i) = fMk−1 (i)aMk−1Dk + fIk−1 (i)aIk−1Dk + fDk−1 (i)aDk−1Dk .

Termination: fMM+1 (L +1) = fMM (L)aMM MM+1 + fIM (L)aIM MM+1

+ fDM (L)aDM MM+1 . �
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Algorithm: Backward algorithm for profile HMMs

Initialisation: bMM+1 (L +1) = 1;
bMM (L) = aMM MM+1 ;
bIM (L) = aIM MM+1 ;

bDM (L) = aDM MM+1 .

Recursion: bMk (i) = bMk+1 (i +1)aMk Mk+1eMk+1 (xi+1)
+bIk (i +1)aMk Ik eIk (xi+1)+bDk+1 (i)aMk Dk+1 ;

bIk (i) = bMk+1 (i +1)aIk Mk+1eMk+1 (xi+1)
+bIk (i +1)aIk Ik eIk (xi+1)+bDk+1 (i)aIk Dk+1 ;

bDk (i) = bMk+1 (i +1)aDk Mk+1eMk+1 (xi+1)
+bIk (i +1)aDk Ik eIk (xi+1)+bDk+1 (i)aDk Dk+1 . �

The forward and backward variables can then be combined to re-estimate emis-
sion and transition probability parameters as follows:

Algorithm: Baum–Welch re-estimation equations for profile HMMs

Expected emission counts from sequence x :

EMk (a) = 1

P(x)

∑
i |xi =a

fMk (i)bMk (i);

EIk (a) = 1

P(x)

∑
i |xi =a

fIk (i)bIk (i).

Expected transition counts from sequence x :

AXk Mk+1 = 1

P(x)

∑
i

fXk (i)aXk Mk+1eMk+1 (xi+1)bMk+1 (i +1);

AXk Ik = 1

P(x)

∑
i

fXk (i)aXk Ik eIk (xi+1)bIk (i +1);

AXk Dk+1 = 1

P(x)

∑
i

fXk (i)aXk Dk+1bDk+1 (i).
�

As usual the Baum–Welch re-estimation procedure can be replaced by the
Viterbi alternative described on p. 66 (see below also). Other types of estimation
have also been used for estimation of profile HMMs, such as gradient descent
[Baldi et al. 1994].

Avoiding local maxima

The Baum–Welch algorithm is guaranteed to find a local maximum on the prob-
ability ‘surface’ but there is no guarantee that this local optimum is anywhere
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near the global optimum nor a biologically reasonable solution. Much the same
is true for any practical score optimising multiple alignment method (multidi-
mensional dynamic programming finds global optima but is not practical). Part
of the reason is that these models are usually quite long, and thus there are many
opportunities to get stuck in a wrong solution. For instance, two variations of the
same conserved motif may end up being modelled as two different motifs or a
conserved region is squeezed in between two other regions and ends up as being
modelled as an insert. One way to search the parameter space is simply to start
again many times from different (random) initial models and keep the best scoring
final one.

A more involved approach is to use some form of stochastic search algorithm
that ‘bumps’ Baum–Welch off from local maxima. (The two approaches can be
combined, and usually are.) The most common stochastic algorithm is simulated
annealing [Kirkpatrick, Gelatt & Vecchi 1983]. We describe what simulated an-
nealing does, and then discuss a profile HMM training algorithm inspired by
simulated annealing.

Theoretical basis of simulated annealing

Some compounds only crystallise if they are slowly annealed from high tempera-
ture to low temperature. If the temperature is lowered too fast the structure ends
up in a local free energy minimum and is disordered. In an optimisation problem
we have some function to minimise, which we can call the ‘energy’ E(x), where
x represents all the variables in which it has to be minimised. (Maximising a
function is identical to minimising the negative value of the function.) Inspired
by the physics example, one can introduce an artificial ‘temperature’ T , and by
the laws of statistical physics the probability of a configuration (or ‘state’) x is
given by the Gibbs distribution:1

P(x) = 1

Z
exp

(
− 1

T
E(x)

)
. (6.12)

The normalising term Z = ∫
exp(− 1

T E(x))dx is called the partition function in
statistical physics. Since x is usually multidimensional, this is a complicated in-
tegral and often it is impossible to calculate Z .

In the limit of T → 0, all configurations except the one(s) with the lowest
energy have probability 0 (the system is ‘frozen’). In the limit of T → ∞, all
configurations are equiprobable (the system is ‘molten’). By analogy with crys-
tallisation, the minimum (or minima) can be found by sampling this probability
distribution at high temperature first, and then at gradually decreasing tempera-
tures. This is called simulated annealing. In other applications, not considered

1 In physics, the temperature is multiplied by Boltzmann’s constant, but the temperature here
is not a real physical temperature, and therefore it is not needed here.
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here, simulated annealing is usually done by so-called Monte Carlo methods
[Binder & Heerman 1988].

For an HMM, a natural energy function is the negative logarithm of the likeli-
hood, − log P(data|θ ), so the probability (6.12) is

exp
(− 1

T [− log P(data|θ )]
)

Z
= P(data|θ )1/T

Z
= P(data|θ )1/T∫

P(data|θ ′)1/T dθ ′ (6.13)

To pick a model from this distribution appears distinctly non-trivial. The two
methods we mention below are approximations.

Noise injection during Baum–Welch HMM re-estimation

An ad hoc approach inspired by simulated annealing was introduced in Krogh
et al. [1994]. The important point of simulated annealing is that it is possible
to escape local minima because of the stochastic choice of configuration (as op-
posed to algorithms that seek to always lower the energy). A similar effect can be
obtained by adding noise to the counts estimated in the forward–backward pro-
cedure, and to let the size of this noise decrease slowly, just as the temperature
decreases in simulated annealing. In Krogh et al. [1994] the noise was generated
by a random walk in the initial model. Some systematic studies of the effective-
ness of the method were presented in Hughey & Krogh [1996].

Simulated annealing Viterbi estimation of HMMs

A second approach was introduced by Eddy [1995], in which a model is trained
by a simulated annealing variant of the Viterbi approximation to Baum–Welch
estimation. A similar algorithm was described by Allison & Wallace [1993], but
in the context of finite state automata rather than HMMs.

Recall that in Viterbi estimation (p. 66) the most probable path for each se-
quence is used to obtain the counts from which the new model is estimated,
rather than summing over all paths to obtain expectations for the counts. If there
are N sequences, there is an exact translation from the N paths π1, . . . ,π N to the
parameters of the model. Therefore, we can treat the paths as the fundamen-
tal parameters in which to maximise the likelihood, so the simulated anneal-
ing can be done in these (discrete) variables instead of the (continuous) model
parameters, θ .

The key difference between Viterbi estimation and the simulated annealing
variant is that while Viterbi selects the highest probability path π for each se-
quence x , simulated annealing samples each path π according to the likelihood
of the path given the current model as modified by a temperature T :

Prob(π ) = P(π , x |θ )1/T∑
π ′ P(π ′, x |θ )1/T
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The denominator is Z , the partition function. However, it is just a sum over all
paths and therefore can be obtained by a modified forward algorithm using ex-
ponentiated transition and emission parameters. Exponentiated parameters are
pre-calculated for computational efficiency: âi j = ai j

1/T , and êj (x) = ej (x)1/T

and used in place of the unmodified probability parameters in the forward calcu-
lation described on p. 59. The partition function Z is then the result of the forward
algorithm, which would be P(x) when the unexponentiated parameters are used.

A suboptimal path π is then selected from the forward dynamic programming
lattice by a stochastic traceback. The alignment consists of a series of states πi

which are recursively chosen with a probability determined from the forward
variable. As this algorithm applies to any HMM, we use the same general notation
as used for the forward algorithm as described in Chapter 3:

Algorithm: Stochastic sampling traceback algorithm for HMMs

Initialisation: πL+1 = End.

Recursion: for L +1 ≥ i ≥ 1,

Prob(πi−1|πi ) = fi−1,πi−1 âπi−1,πi /
(∑

k fi−1,k âk,πi

)
.

�

In other words, for each state reached in the traceback, a previous state is cho-
sen based on its share of the (exponentiated) path sum probability coming into
the current state.2

This suboptimal alignment algorithm is then used to implement a simulated
annealing variant of Viterbi training. Instead of determining an optimal multip-
le alignment with respect to the current model at each step of each iteration, a
suboptimal multiple alignment is sampled. The degree of the suboptimality is
controlled by a temperature factor T , which is started high (giving very ran-
domised alignments) and slowly reduced. Since the new alignment is chosen
from the probability distribution over alignments given the previous model (as
in the expectation step of expectation maximisation), not by the probability of
the alignment according to its optimal model, the procedure is not entirely cor-
rect according to the formal statistical mechanical basis of simulated annealing
[Kirkpatrick, Gelatt & Vecchi 1983].

Finding the best ‘schedule’ for how fast to lower the temperature is a whole
science (or perhaps art) in itself. There is a theoretical result for simulated anneal-
ing saying that if the temperature is lowered slowly enough, finding the optimum

2 An algebraic proof that this algorithm correctly calculates the partition function and correctly
samples a path from the Boltzmann/Gibbs distribution over all possible paths (given the cur-
rent model θ ) follows fairly straightforwardly from the fact that exponentiation is distributive
over multiplication, e.g. (a1,2a2,3a3,4)1/T = (a1,2)1/T (a2,3)1/T (a3,4)1/T = â1,2â2,3â3,4.
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is guaranteed, but the time required for this is prohibitive. In practice a simple ex-
ponentially or linearly decreasing temperature schedule is often used, where each
step amounts to either multiplying T by some number less than 1 or to reducing
it by some small constant amount.

Comparison to Gibbs sampling

The ‘Gibbs sampler’ algorithm described by Lawrence et al. [1993] has substan-
tial similarities. The statistical model used by Lawrence et al. is a short ungapped
motif model which is essentially a profile HMM with no insert or delete states
(though they do not refer to it as an HMM). The training data consist of a set of se-
quences which contain (in the simplest case) exactly one instance of some motif,
such as a specific protein-binding site on DNA, where the position of the motif is
initially unknown. The problem is to simultaneously find the motif positions and
to estimate the parameters for a consensus statistical model of them (by knowing
one, we can find the other, just as an alignment implies an HMM and vice versa).
It is a natural problem for expectation maximisation (EM; Chapter 11), where the
missing data are the positions of the motifs, that can simply be specified by their
start points in the sequences; these correspond to the alignments which are the
missing data we are trying to infer in HMM training. Indeed, earlier algorithms
[Lawrence & Reilly 1990] applied expectation maximisation to the problem, but
these approaches proved prone to poor local optima.

In an HMM framework, both the above simulated annealing algorithm and the
Gibbs sampler are stochastic sampling variants of the Viterbi approximation of
EM. At each iteration of Gibbs sampling, a sequence is removed from the align-
ment; an HMM is built of the remaining aligned sequences; and then a new align-
ment of the sequence to the rest is sampled probabilistically using the stochastic
sampling algorithm at T = 1. This iteration is repeated until the model reaches
a region of high probability. The Gibbs sampler is thus like running the above
simulated annealing Viterbi algorithm at a constant T = 1, where alignments are
sampled from a probability distribution unmodified by any effect of a temperature
factor. For a general description of Gibbs sampling, see Chapter 11.

Adaptively modifying model architecture; model surgery

After (or even during) training a model, we can look at the alignment it produces
and decide that: (a) some of the match states are redundant and should be ab-
sorbed in an insert state; or (b) it seems like one or more insert states absorb too
much sequence, in which case they should be expanded (i.e. more match mod-
ules can be inserted before or after the insert state). This can happen both because
the initial choice of model length was not as good as it could have been, and be-
cause of local optima encountered during training. It is advantageous to devise
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procedures to adaptively modify the model’s architecture during training and just
after training has been completed.

In Krogh et al. [1994] a method called model surgery was described. From the
‘counts’ estimated by the forward–backward procedure (or the Viterbi analogue)
we can see how much a certain transition is used by the training sequences. The
usage of a match state is the sum of counts for all letters in the state. If a certain
match state is used by less than half the sequences (or some other predefined
fraction) the corresponding module is deleted. Similarly if more than half (or
some other predefined fraction) of the sequences use the transitions into a certain
insert state, this is expanded to some number of new modules. The number of
new modules is determined by the average length of the insertions. Though it is
ad hoc, it works well.

Another approach is to re-estimate both a model architecture and model pa-
rameters using the maximum a posteriori (MAP) model construction algorithm
given in Chapter 5. As this procedure requires an alignment, not expected counts,
it cannot be applied during the usual Baum–Welch expectation maximisation
procedure. It can be applied correctly during training by the Viterbi approxi-
mation to Baum–Welch, and in fact can completely replace the usual param-
eter re-estimation process, leading to a (locally) convergent optimisation algo-
rithm that simultaneously optimises both the architecture and parameters of the
HMM. It can also be applied periodically (much like model surgery is applied)
during full Baum–Welch estimation by inserting an iteration of Viterbi alignment
and MAP model construction. In this use, it is not necessarily guaranteed to im-
prove the overall likelihood of the data, but, like model surgery, is a pretty good
heuristic.

6.6 Further reading

Surveys of the voluminous multiple alignment algorithm literature include Car-
rillo & Lipman [1988], Chan, Wong & Chiu [1992], and Gotoh [1996].

A class of multiple alignment algorithms we have not discussed here are sim-
ulated annealing algorithms that define ‘moves’ (small changes in a candidate
alignment) and an objective function for determining the probability of whether a
proposed move should be accepted or not. These sampling algorithms are Monte
Carlo-style simulated annealing algorithms that are quite distinct from the simu-
lated annealing variant of Viterbi HMM estimation we have discussed [Lukashin,
Engelbrecht & Brunak 1992; Hirosawa et al. 1993; Kim & Pramanik 1994; Kim,
Pramanik & Chung 1994].

Consensus motif finding algorithms like the Gibbs sampler are closely akin to
multiple alignment algorithms, as we briefly discussed. Other examples of mo-
tif finders besides the Gibbs sampler include Stormo & Hartzell [1989], Hertz,
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Hartzell & Stormo [1990], Bailey & Elkan [1994], and Bailey & Elkan [1995].
The problem of multiply aligning three-dimensional structures is also related to
the multiple sequence alignment problem (but even harder) [Russell & Barton
1992; Holm & Sander 1993; Gerstein & Levitt 1996].

Several papers have systematically tested the accuracy of different multiple
alignment algorithms against structurally or manually generated alignments, in-
cluding McClure, Vasi & Fitch [1994] and Gotoh [1996].



7
Building phylogenetic trees

In the previous chapter, we considered the problem of multiple alignment of sets
of sequences. One can argue [Sankoff, Morel & Cedergren 1973] that alignment
of sequences should take account of their evolutionary relationship. For example,
an alignment that implies many substitutions between closely related sequences
is less plausible than one that makes most of its changes over large evolutionary
distances.

Some multiple alignment algorithms use a tree; for instance, we have seen
that several progressive alignment algorithms use a ‘guide tree’. As the name
suggests, this tree is meant to guide the clustering process rather than satisfy a
taxonomist. In this chapter we shift emphasis, and begin to take a serious interest
in building trees. However, we do not lose sight of alignment: the last section
describes methods for simultaneous alignment and tree building.

We concentrate here on two general approaches to tree building: distance meth-
ods and parsimony; the next chapter formulates phylogeny probabilistically.

7.1 The tree of life

The similarity of molecular mechanisms of the organisms that have been studied
strongly suggests that all organisms on Earth had a common ancestor. Thus any
set of species is related, and this relationship is called a phylogeny. Usually the
relationship can be represented by a phylogenetic tree. The task of phylogenetics
is to infer this tree from observations upon the existing organisms.

Traditionally, morphological characters (both from living and fossilised organ-
isms) have been used for inferring phylogenies. Zuckerkandel & Pauling’s pio-
neering paper [1962] showed that molecular sequences provide sets of charac-
ters that can carry a large amount of information. If we have a set of sequences
from different species, therefore, we may be able to use them to infer a likely
phylogeny of the species in question. This assumes that the sequences have de-
scended from some common ancestral gene in a common ancestral species.

The widespread occurrence of gene duplication means that the foregoing as-
sumption needs to be checked carefully. The phylogenetic tree of a group of se-
quences does not necessarily reflect the phylogenetic tree of their host species,
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axolotl
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panda
alligator

duck

vulture
goshawk

theta
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epsilon gamma
beta delta

myoglobin
haemoglobins

Figure 7.1 Above: a tree of orthologues based on a set of alpha
haemoglobins. Below: a tree of paralogues, the alpha, beta, gamma,
delta, epsilon, zeta and theta chains of human haemoglobins, and human
myoglobin. The orthologues are the alpha haemoglobins with SWISS-PROT

identifiers HBA_ACCGE, HBA_AEGMO, HBA_AILFU, HBA_AILME,
HBA_ALCAA, HBA_ALLMI, HBA_AMBME, and HBA_ANAPL, chosen
because they were alphabetically the first eight alpha globins in PFAM

[Sonnhammer, Eddy & Durbin 1997] (http://genome.wustl.edu/Pfam/). The
paralogues are globins with SWISS-PROT identifiers HBAT_HUMAN,
HBAZ_HUMAN, HBA_HUMAN, HBB_HUMAN, HBD_HUMAN,
HBE_HUMAN, HBG_HUMAN, and MYG_HUMAN. The trees were
made by neighbour-joining, Section 7.3, using J. Felsenstein’s package
PHYLIP (http://evolution.genetics.washington.edu/phylip.html). The dis-
tances used for neighbour-joining were the PAM-based ML distances (see
p. 229) determined by the program PROTDIST in PHYLIP.
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because gene duplication is another mechanism, in addition to speciation, by
which two sequences can be separated and diverge from a common ancestor.
Genes which diverged because of speciation are called orthologues. Genes which
diverged by gene duplication are called paralogues. If we are interested in in-
ferring the phylogenetic tree of the species carrying the genes, we must use or-
thologous sequences. But, of course, we might be interested in the phylogeny of
duplication events, in which case we might construct a phylogeny of paralogues,
even the paralogues within a single species. The distinction between paralogues
and orthologues is illustrated by Figure 7.1.

7.2 Background on trees

In this chapter, all trees will be assumed to be binary, meaning that an edge that
branches splits into two daughter edges (Figure 7.2). This is equivalent to saying
that three edges meet at every branch node, a node being an endpoint of an edge.
The assumption that the tree is binary is not a serious limitation, because any
other branching pattern can be approximated by a binary tree in which some of
the branches are very short.

Each edge of the tree has a certain amount of evolutionary divergence asso-
ciated to it, defined by some measure of distance between sequences, or from
a model of substitution of residues over the course of evolution. We adopt the
general term ‘length’ or ‘edge length’ here, and represent this by the lengths of
edges in the figures we draw. The relationship between phylogenetically deter-
mined lengths and palaeontological time periods was examined by Langley &
Fitch [1974], who found that different proteins can change at very different rates,
and the same sequence can evolve much faster in some organisms than others.
However, averaging over larger sets of proteins does demonstrate a broad corre-
spondence between lengths and evolutionary time periods [Doolittle et al. 1996;
Wray, Levinto & Shapiro 1996].

A true biological phylogeny has a ‘root’, or ultimate ancestor of all the se-
quences. Some algorithms provide information, or at least a conjecture, about
the location of the root. Others, like parsimony and the probabilistic models in
the next chapter, are completely uninformative about its position, and other crite-
ria have to be used for rooting the tree. We consider here how to represent both
rooted and unrooted trees.

Figure 7.2 shows an unrooted tree and a rooted version of it. Note that, in
the latter, we have drawn the root at the top, with the leaves, the terminal nodes
corresponding to the observed sequences, at the base.

The leaves of trees have names or numbers. Sometimes these can be swopped
without altering the phylogeny (e.g. numbers 4 and 5 in Figure 7.2), but they
often cannot (e.g. swopping 1 and 2 in the figure changes the phylogeny). A tree
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Figure 7.2 An example of a binary tree, showing the root and leaves, and
the direction of evolutionary time (the most recent time being at the bottom
of the figure). The corresponding unrooted tree is also shown; the direction
of time here is undetermined.

with a given labelling will be called a labelled branching pattern. More loosely,
we refer to this as the tree topology1 and denote it by the symbol T . To complete
the definition of a phylogenetic tree, one must also define the lengths of its edges;
these will generally be denoted2 by ti with a suitable numbering scheme for the
is.

Counting and labelling trees

The nodes and edges of a rooted tree can be counted as follows: Suppose there
are n leaves. As we move up the tree, the edges coalesce as each new node is
reached. Each time this happens, the number of edges is reduced by one. So there
must be (n − 1) nodes in addition to the n leaves, giving (2n − 1) nodes in all,
and one fewer edges, i.e. (2n − 2), discounting the edge above the root node.
We shall label the leaves using the numbers 1 to n, and assign the branch nodes
the numbers n + 1 to 2n − 1, reserving 2n − 1 for the root node. The lengths of
edges will be labelled by the node at the bottom of the edge, so d1 is the length
associated to the edge above node 1, and so on.

An unrooted tree with n leaves has 2n −2 nodes altogether and 2n −3 edges. A
root can be added to it at any of its edges, thereby producing (2n −3) rooted trees
from it. Figure 7.3 shows this for n = 3; the three positions for the root yield three
rooted trees. There are therefore (2n −3) times as many rooted trees as unrooted
trees, for a given number n of leaves.

Instead of the root, we can add an extra edge or ‘branch’ with a distinct label at
its leaf (i.e. a ‘4’) to the unrooted tree with three leaves in Figure 7.3, thereby
obtaining an unrooted tree with four leaves. There are three such trees, with

1 A topologist would reserve this term for the unlabelled branching patterns, i.e. the distinct
classes of tree that cannot be rearranged into each other by permutation of edges at nodes or
shrinking or extending of edges.

2 A deliberate echo of ‘time’, the variable we are ultimately interested in.
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Figure 7.3 The rooted trees (right-hand column) derived from the unrooted
tree for three sequences by picking different edges as positions for the root
(arrows).

(2n − 3) = 5 edges, and it is easy to see that they are distinct labelled branch-
ing patterns. There are then five ways of adding a further branch labelled with
a distinct label (‘5’), giving in all 3 × 5 = 15 unrooted trees with five leaves.
Continuing this, we see that there are (3) · (5) · . . . · (2n − 5) unrooted trees with
n leaves; this number is also written (2n − 5)!!. From what was said above, it
follows that there are (2n − 3)!! rooted trees. The number of trees grows very
rapidly with n; for n = 10 there are about two million unrooted trees, and for
n = 20, 2.2 × 1020 of them. For further information on tree counting, see
Felsenstein [1978b].
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Exercises

7.1 Draw the rooted trees obtained by adding the root in all seven possible
positions to the unrooted tree in Figure 7.2.

7.2 The trees with three and four leaves in Figure 7.3 all have the same unla-
belled branching pattern. For both rooted and unrooted trees, how many
leaves do there have to be to obtain more than one unlabelled branching
pattern? Find a recurrence relation for the number of rooted trees. (Hint:
Consider the trees formed by joining two trees at their roots.)

7.3 All trees considered so far have been binary, but one can envisage ternary
trees that, in their rooted form, have three branches descending from a
branch node. The unrooted trees therefore have four edges radiating from
every branch node. If there are m branch nodes in an unrooted ternary
tree, how many leaves are there and how many edges?

7.4 Consider next a composite unrooted tree with m ternary branch nodes
and n binary branch nodes. How many leaves are there, and how many
edges? Let Nm,n denote the number of distinct labelled branching pat-
terns of this tree. Extend the counting argument for binary trees to show
that

Nm,n = (3m +2n −1)Nm,n−1 + (n +1)Nm−1,n+1

(Hint: the first term after the ‘=’ counts the number of ways that a new
edge can be added to an existing edge, thereby creating an additional
binary node; the second term corresponds to edges added at binary nodes,
thereby producing ternary nodes.)

7.5 Use the above recurrence relationship to calculate Nm,0, the number of
distinct pure ternary trees with m branch nodes, for small values of m.
(Hint: We know that N0,i = (2i − 1)!!, and the recurrence relationship
allows one to express Nm,0 in terms of N0,i , for i ≤ n. Programmers will
enjoy writing a recursive program that carries out this operation.) Check
that the calculated numbers satisfy Nm,0 = ∏m

i=1 (1+9i(i −1)/2). Can
you prove this formula?

7.3 Making a tree from pairwise distances

Some of the more intuitively accessible methods of tree building begin with a set
of distances di j between each pair i , j of sequences in the given dataset. There are
many different ways of defining distance. For example, one can take di j to be the
fraction f of sites u where residues xi

u and x j
u differ (presupposing an alignment

of the two sequences). This gives a sensible definition for small fractions f . For
two unrelated sequences, however, random substitutions will cause f to approach
the fraction of differences expected by chance, and we would like the distance
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to become large as f tends to this value. Markov models of residue substitution,
such as the Jukes–Cantor model for DNA (p. 196), can be used to define distances
that behave this way. Thus the Jukes–Cantor distance is di j = − 3

4 log(1−4 f/3),
which tends to infinity as the equilibrium value of f (75% of residues different)
is approached. We return to the definition of distances in Section 8.6.

Clustering methods: UPGMA

We begin with a clustering procedure [Sokal & Michener 1958] called UPGMA,
which stands for unweighted pair group method using arithmetic averages. De-
spite its formidable acronym, the method is simple and intuitively appealing. It
works by clustering the sequences, at each stage amalgamating two clusters and
at the same time creating a new node on a tree. The tree can be imagined as be-
ing assembled upwards, each node being added above the others, and the edge
lengths being determined by the difference in the heights of the nodes at the top
and bottom of an edge.

First we define the distance di j between two clusters Ci and Cj to be the aver-
age distance between pairs of sequences from each cluster:

di j = 1

|Ci ||Cj |
∑

p in Ci ,q in Cj

dpq , (7.1)

where |Ci | and |Cj | denote the number of sequences in clusters i and j , re-
spectively. Note that, if Ck is the union of the two clusters Ci and Cj , i.e. if
Ck = Ci ∪Cj , and if Cl is any other cluster, then (Exercise 7.6):

dkl = dil |Ci |+djl |Cj |
|Ci |+ |Cj | . (7.2)

The clustering procedure is:

Algorithm: UPGMA

Initialisation:
Assign each sequence i to its own cluster Ci ,
Define one leaf of T for each sequence, and place at height zero.

Iteration:
Determine the two clusters i , j for which di j is minimal. (If there are

several equidistant minimal pairs, pick one randomly.)
Define a new cluster k by Ck = Ci ∪Cj , and define dkl for all l by (7.2).
Define a node k with daughter nodes i and j , and place it at height di j/2.
Add k to the current clusters and remove i and j .

Termination:
When only two clusters i , j remain, place the root at height di j/2.
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Figure 7.4 An example of how UPGMA produces a rooted tree by suc-
cessively clustering sequences, in this case a set of five sequences whose
distances can be represented by points in the plane (this will not generally
be true of a set of distances).

To check that this procedure produces well-defined edge lengths, we have to
show that a parent node always lies above its daughters (see Exercise 7.7). There
are variants of UPGMA that define the distance between clusters as the mini-
mum or maximum of the distances between constituent sequences, rather than
the average, but UPGMA seems to have the best performance recor.

Example: UPGMA applied to five sequences

The distances between five sequences are represented schematically as distances
in the plane (Figure 7.4). UPGMA works as follows: First, the two closest
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sequences are found; suppose these are x1 and x2. Their parent node is given
the number 6 and edge lengths t1 and t2 defined by t1 = t2 = 1

2 d12. Next, we
define the distance di6 between a sequence xi and the new branch node 6, rep-
resenting the cluster {x1, x2}, to be the average 1

2 (d1i + d2i ), and search for the
closest pair amongst all remaining sequences and node 6. This pair is {x4, x5};
their parent node, node 7, is constructed as above and edge lengths t4 and t5
defined by d4 = d5 = 1

2 d45. This process is repeated. The next closest pair is
x3 and node 7. A parent node, node 8, to x3 and node 7 is introduced, and the
edge above x3 assigned a length t3 = 1

2 d37, and the edge above node 7 a length
t7 = 1

2 d37 − 1
2 d45, so that the sum of times down all branches is the same. The last

amalgamation occurs between node 6 ({x1, x2}) and node 8 ({x3, x4, x5}), with a
distance d68 = 1

6 (d13 +d14 +d15 +d23 +d24 +d25).

Exercises

7.6 Show that, if distances between clusters are defined by (7.1), and if Ck =
Ci ∪Cj , then dkl for any l is given by (7.2).

7.7 Show that a node always lies above its daughter nodes. (Hint: if not, show
that an incorrect choice of closest clusters would have been made when
one of the daughters was formed.)

Molecular clocks and the ultrametric property of distances

UPGMA produces a rooted tree of a special kind. The edge lengths in the result-
ing tree can be viewed as times measured by a molecular clock with a constant
rate. The divergence of sequences is assumed to occur at the same constant rate
at all points in the tree, which is equivalent to saying that the sum of times down
a path to the leaves from any node is the same, whatever the choice of path. If our
distance data are derived by adding up edge lengths in a tree T with a molecular
clock, then UPGMA will reconstruct T correctly. To see this, imagine a horizon-
tal line rising through the tree T starting from the level of the leaves: each time it
crosses a node, the distances of all the leaves in the left branch from that node to
the leaves in the right branch will be the current minimum distance, and a node
will therefore be added precisely where the node is encountered in the original
tree T .

If the original tree is not well-behaved in this way, but has different length
routes to its leaves, as in Figure 7.5 (left), then it may be reconstructed incor-
rectly by UPGMA (Figure 7.5 right). What goes wrong in this case is that the
closest leaves are not neighbouring leaves: they do not have a common parent
node. A test of whether reconstruction is likely to be correct is the ultrametric
condition. The distances di j are said to be ultrametric if, for any triplet of se-
quences, xi , x j , xk , the distances di j ,djk ,dik are either all equal, or two are equal
and the remaining one is smaller. This condition holds for distances derived from
a tree with a molecular clock.
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Figure 7.5 A tree (left) that is reconstructed incorrectly by UPGMA (right).

Exercise

7.8 It can be shown that, if the distances di j are ultrametric, and if a tree
is constructed from these distances by UPGMA, then the distances ob-
tained from this tree by taking twice the height of the node on the path
between i and j are identical to the di j . Check that this is true in the
example of UPGMA applied to five sequences if the distances are ultra-
metric. (Hint: Show that, when two clusters Ck and Cl are amalgamated,
the ultrametric condition implies that the distances between any leaf in
Ck and any leaf in Cl are the same.)

Additivity and neighbour-joining

In describing the molecular clock property of the trees produced by UPGMA,
we implicitly assumed another important property: additivity. Given a tree, its
edge lengths are said to be additive if the distance between any pair of leaves is
the sum of the lengths of the edges on the path connecting them. This prop-
erty is built in automatically as the UPGMA tree is constructed. However, it
is possible for the molecular clock property to fail but for additivity to hold,
and in that case there are algorithms that can be used to reconstruct the tree
correctly.

Given a tree T with additive lengths {d •}, we can try to reconstruct it from
the pairwise distances of its leaves {di j } as follows: Find a pair of neighbouring
leaves, i.e. leaves that have the same parent node, k. Suppose their numbers are
i , j . Remove them from the list of leaf nodes and add k to the current list of nodes,
defining its distance to leaf m by

dkm = 1
2 (dim +djm −di j ). (7.3)

By additivity, the distances dkm just defined are precisely those between the equiv-
alent nodes in the original tree (see Figure 7.6). In this way we can strip away
leaves, reducing the number by one at each operation, until we get down to a pair
of leaves.
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Figure 7.6 For any three leaves i , j and m there is a node, k here, where
the branches to them meet. By additivity, dim = dik +dkm, djm = djk +dkm

and di j = dik + djk , from which it follows that dkm = 1
2 (dim + djm − di j ),

which is equation (7.3).
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Figure 7.7 A tree whose closest pair of leaves are not neighbouring leaves.
The lengths of edges are shown. If the lengths are additive, we find d12 = 0.3
and d13 = 0.5, so the neighbouring pair 1,3 are further apart than the non-
neighbouring pair 1,2.

If we could determine from distances alone a pair of neighbouring leaves,
therefore, we could reconstruct a tree with additive lengths exactly. The remark-
able fact is that we can pick neighbouring leaves, using a procedure proposed by
Saitou & Nei [1987] and modified by Studier & Keppler [1988].

First, note that it does not suffice to pick simply the two closest leaves, i.e. the
pair i , j with di j minimal. Figure 7.7 shows why. If one of a pair of neighbours
has a short edge and the other a long edge, the one with the short edge may be
closer to another leaf than its true neighbour, as happens in the illustrated tree.
To avoid this, the trick is to subtract the averaged distances to all other leaves; in
effect, this compensates for long edges. We define

Di j = di j −
(
ri + rj

)
,

where

ri = 1

|L|−2

∑
k∈L

dik , (7.4)
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and |L| denotes the size of the set L of leaves. The claim now is that a pair of
leaves i , j for which Di j is minimal will be neighbouring leaves; we give a proof
at the end of this chapter. It is instructive to check that this is true of the tree in
Figure 7.7 (see Exercise 7.9).

The complete algorithm for neighbour-joining works by constructing a tree T
by steps, keeping a list L of active nodes in this tree. If there were a pre-existing
additive tree, L would be the current remaining set of leaf nodes as neighbouring
pairs were stripped away, and T would be the tree built up from these stripped-off
nodes.

Algorithm: Neighbour-joining

Initialisation:

Define T to be the set of leaf nodes, one for each given sequence, and

put L = T .

Iteration:

Pick a pair i , j in L for which Di j , defined by (7.4), is minimal.

Define a new node k and set dkm = 1
2 (dim +djm −di j ), for all m in L .

Add k to T with edges of lengths dik = 1
2 (di j + ri − rj ), djk = di j −dik ,

joining k to i and j , respectively.

Remove i and j from L and add k.

Termination:

When L consists of two leaves i and j add the remaining edge between

i and j , with length di j .
�

The definition of the length dik by 1
2 (di j + ri − rj ) gives the correct length if

additivity holds, since this expression is the average of 1
2 (di j +dim −djm) over all

leaves m, and each such term is just dik (compare (7.3)).
Additivity is a property that depends on the distance measure used: a tree may

be additive with respect to one distance measure and not with respect to another.
In Section 8.6 we shall see that a certain type of maximum likelihood distance
measure would be expected to give additivity, in the limit of a large amount of
data, if the underlying model assumptions were correct. Real data, of course, will
only be at best approximately additive.

We can use neighbour-joining even if lengths are not additive, but reconstruc-
tion of the correct tree is no longer guaranteed. Just as the ultrametric condition
provided a test for the molecular clock property, so we can use the following
property of distances as a test for additivity: For every set of four leaves i , j ,k
and l, two of the distances di j + dkl , dik + djl and dil + djk must be equal and
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Figure 7.8 Additivity means that two of the summed lengths d12 + d34,
d13 + d24, d14 + d23 must be larger than the third and equal in size. This
holds if the pairwise distances are obtained by summing edge lengths, as
the diagrams show.

larger than the third. This four-point condition is a consequence of additivity, be-
cause two of the sums include the length of the ‘bridge’ connecting pairs of leaves
(see Figure 7.8).

Exercises

7.9 Show that the smallest distances Di j in the tree in Figure 7.7 correspond
to neighbouring leaves.

7.10 Show that, for a tree with four leaves, Di j for a pair of neighbours is less
than Di j for all other pairs by the ‘bridge length’, i.e. the length of the
edge joining the two branch nodes in the tree.

Rooting trees

Neighbour-joining, unlike UPGMA, produces unrooted trees. Finding the root is
a secondary task, which can be accomplished by adding an outgroup, or species
that is known to be more distantly related to each of the remaining species than
they are to each other. The point in the tree where the edge to the outgroup joins
is therefore the best candidate for the root position. In the top tree in Figure 7.1,
for instance, the axolotl can be treated as an outgroup, as it is an amphibian
whereas all the other species are amniotes. It is therefore reasonable to place
the divide between the axolotl and the other species earlier than any of the other
branches.

In the absence of a convenient outgroup, there are somewhat ad hoc strategies,
such as picking the midpoint of the longest chain of consecutive edges, which
would be expected to identify the root if deviations from a molecular clock were
not too great.
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Figure 7.9 Building a tree by parsimony.

7.4 Parsimony

We come now to what is probably the most widely used of all tree building algo-
rithms: parsimony. It works by finding the tree which can explain the observed
sequences with a minimal number of substitutions. It uses a different general
strategy from the distance-based algorithms considered so far. Instead of build-
ing a tree, it assigns a cost to a given tree, and it is necessary to search through all
topologies, or to pursue a more efficient search strategy that achieves this effect
(see p. 178), in order to identify the ‘best’ tree. We can therefore distinguish two
components to the algorithm:

(1) the computation of a cost for a given tree T ;
(2) a search through all trees, to find the overall minimum of this cost.
We begin with an example. Suppose we have the following four aligned nu-

cleotide sequences:

AAG
AAA
GGA
AGA

We can try out different trees for these four sequences and count the number of
substitutions needed in each tree, summing over all sites. Figure 7.9 shows three
possible trees for the above four sequences; they differ in the order in which the
sequences are assigned to the leaves. In each tree, hypothetical sequences have
been assigned to the ancestral nodes so as to minimise the number of changes
needed in the whole tree. We shall see shortly how this is done. The leftmost tree
needs fewer changes (a total of three) than the two shown to its right (which need
four each).

As we see in this example, parsimony treats each site independently, and then
adds the substitutions for all sites. The basic step is therefore counting the
minimal number of changes that need to be made at one site, given a topology
and an assignment of residues to the leaves. There is a simple algorithm to carry
out this step. Consider first a slight extension of parsimony, called weighted par-
simony, that doesn’t just count the number of substitutions, but adds costs S(a,b)



7.4 Parsimony 175

for each substitution of a by b; the aim is now to minimise this cost [Sankoff
& Cedergren 1983]. Weighted parsimony reduces to traditional parsimony when
S(a,a) = 0 for all a, and S(a,b) = 1 for all a �= b.

To compute the minimal cost at site u we proceed as follows: Let Sk(a) denote
the minimal cost for the assignment of a to node k.

Algorithm: Weighted parsimony

Initialisation:

Set k = 2n −1, the number of the root node.

Recursion: Compute Sk(a) for all a as follows:

If k is leaf node:

Set Sk(a) = 0 for a = xk
u , Sk(a) = ∞, otherwise.

If k is not a leaf node:

Compute Si (a), Sj (a) for all a at the daughter nodes i , j , and

define Sk(a) = minb(Si (b)+ S(a,b))+minb(Sj (b)+ S(a,b)).

Termination:

Minimal cost of tree = mina S2n−1(a).
�

Note that the steps under ‘Recursion’ require that Si and Sj are computed for
the daughter nodes i , j of k, and this is achieved by returning to ‘Recursion’
for both i and j . The effect is that the algorithm starts at the leaves and works
its way up to the root. This way of passing through a tree is called post-order
traversal, and plays an important part in many computer implementations of tree
algorithms.

It is sometimes of interest to find the ancestral assignments of residues that
give the minimal cost. For instance, one way of defining a length for an edge
is to count the number of mismatches along that edge that occur in all possible
minimal-cost ancestral assignments to the tree. This can be achieved by keeping
pointers from each residue a at node k to those residues b and c at daughter nodes
i and j , respectively, that were the minimising choices in the equation defining
Sk(a) in the weighted parsimony algorithm. We define pointers lk(a), rk(a) to left
and right daughters of node k, respectively (these pointers perhaps having more
than one target if there are several possible minimising residues), and add the
steps

Set lk(a) = argminb(Si (b)+ S(a,b)),

and rk(a) = argminb(Sj (b)+ S(a,b)). (7.5)
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at the end of the ‘Recursion’ block of the weighted parsimony algorithm. To ob-
tain an assignment of ancestral residues, we pick a residue a at the root that gives
the minimal cost S2n−1(a) and trace back to the leaves using the pointers, choos-
ing arbitrarily whenever the pointers have several possible targets.

In the case of traditional parsimony, where we just count the number of substi-
tutions, all that is needed to obtain the cost of the tree is to keep a list of minimal
cost residues at each node, together with the current cost C .

Algorithm: Traditional parsimony [Fitch 1971]

Initialization:

Set C = 0 and k = 2n −1.

Recursion: To obtain the set Rk :

If k is leaf node:

Set Rk = xk
u .

If k is not a leaf node:

Compute Ri , Rj for the daughter nodes i , j of k, and set

Rk = Ri ∩ Rj if this intersection is not empty, or else

set Rk = Ri ∪ Rj and increment C .

Termination:

Minimal cost of tree= C .
�

There is a traceback procedure for finding ancestral assignments in traditional
parsimony: We choose a residue from R2n−1, then proceed down the tree. Having
chosen a residue from the set Rk , we pick the same residue from the daughter set
Ri if possible, and otherwise pick a residue at random from Ri (and similarly for
the other daughter set Rj ).

The tree T in Figure 7.10 shows two possible sets of ancestral residues ob-
tained by this traceback procedure (the two middle figures). The bottom left fig-
ure shows another assignment that cannot be obtained this way. The reason for
this failure is that keeping a list of minimal cost residues at each node neglects
the possibility that a mismatch cost can be paid at some level in the tree and
recouped higher up. This is automatically taken care of with the algorithm for
weighted parsimony. The bottom right figure shows the minimal costs for A, B at
each node, and the particular choices of back-pointers defined by (7.5) that lead
to the assignments in the tree on the bottom left. Note that the left pointer from
the top node goes to the residue B whose cost is one more than the minimum.
The difference of one is recouped because a B does not have to pay a mismatch
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Figure 7.10 Traditional parsimony with a cost of one for a substitution
(marked by an ‘X’ on the edge), and zero cost otherwise. The sets Rk are
shown in the top tree, the two middle trees show assignments of ancestral
residues obtained by traceback using the sets Rk. The bottom left tree shows
a further eligible set of ancestral residues that cannot be obtained this way,
and the bottom right tree shows how this assignment would be obtained
using the traceback for weighted parsimony (7.5).
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penalty for this transition. In general, the assignments not obtained by traceback
with Rk can be found by keeping a set Qk of residues at node k whose cost is
one more than that of the residues in Rk . The traditional parsimony algorithm can
readily be extended so the Qs are computed at the same time as the Rs.

We have formulated parsimony in the context of rooted trees. However, the
minimum cost for a tree in traditional parsimony is independent of where the root
is located. In fact, the two edges below the root cannot both have substitutions in
them in an optimal tree, for otherwise the assignment at the root could be changed
to the assignment of one of the nodes below, with a reduction in cost. This means
that, in principle, the root can be removed and costs counted along the edges of the
unrooted tree. As it happens, it is easiest to count costs in a rooted tree, because
the root defines a direction and hence a unique parent–daughter relationship for
applying the parsimony algorithm. But the independence of root position means
that the number of trees that have to be searched over is reduced.

Exercises

7.11 Show that the tradition parsimony algorithm gives the same cost as that
for weighted parsimony using weights S(a,a) = 0 for all a, and S(a,b) =
1 for all a �= b. (Hint: Show that, to obtain the minimal cost residues a of
Sk(a) at each node k, it suffices to keep the list Rk at each node.)

7.12 Show that the minimal cost with weighted parsimony is also independent
of the position of the root, provided the substitution cost is a metric, i.e.
satisfies S(a,a) = 0, symmetry S(a,b) = S(b,a), and the triangle inequal-
ity S(a,c) ≤ S(a,b)+ S(b,c), for all a,b,c.3 (Hint: If there is a residue A
at the root, and different residues B and C at the two daughters, show that
the triangle inequality implies the cost cannot be minimal. Use the other
two properties of a metric to show that the root can be moved to either of
the daughter nodes without increase of cost.)

Selecting labelled branching patterns by branch and bound

We have seen that the search of trees with parsimony can be reduced because
only unrooted trees need be considered. Nonetheless, the number of topologies
swiftly becomes large as the number of leaves increases. For this reason some
more efficient search strategy is needed than simple enumeration.

There are tree-searching methods that proceed stochastically; for instance, we
can swop randomly chosen branches on a tree and choose the altered tree if it

3 Sankoff & Cedergren [1983] assume their cost is a metric, but this is the only place where
this property is needed.



7.4 Parsimony 179

scores better than the current one. This is not guaranteed to find the overall best
tree. Another strategy is to build up the tree by adding edges one at a time. Three
sequences are chosen randomly and placed on an unrooted tree. Another sequence
is then chosen and added to the edge that gives the best score for the tree of
four sequences. A further randomly chosen sequence is added in the best-scoring
position, and so on, until the tree is complete. This too is not guaranteed to find
the overall best tree, and indeed adding the sequences in different orders can yield
different final trees [Felsenstein 1981a].

With parsimony, there is an alternative strategy which is guaranteed to find the
best tree; it exploits the fact that the number of substitutions in a tree can only be
increased by adding an extra edge. The idea behind branch and bound is to begin
systematically building trees with increasing numbers of leaves, but to abandon a
particular avenue of tree building whenever the current incomplete tree has a cost
exceeding the smallest cost obtained so far for a complete tree.

Let us enumerate all the unrooted trees by an array [i3][i5][i7] . . . [i2n−5], with
each ik taking values 1 . . .k. The correspondence with trees is obtained as follows:
Take the unrooted tree with the three sequences x1, x2 and x3 and add an edge for
x4 on the edge labelled by i3. Since this new edge divides a pre-existing edge in
two, the total number of edges is now 3+2 = 5. The value of i5 determines which
of these we add x5 to, giving 5 + 2 = 7 edges. And so on, up to xn , which has
(2n −5) choices of position.

Now think of [i3][i5][i7] . . . [i2n−5] as a milometer (or odometer in the USA) on
a car’s dashboard. The rightmost numbers advance till they reach 2n − 5, when
they go back to 1 and the next-to-rightmost array index clicks forward by 1.
When the next-to-rightmost array index reaches 2n −7 it starts again at 1 and the
second-to-right array index clicks forward by 1. And so on.

This enumerates all trees with n leaves in a specified sequence, but we also
want to count trees with fewer than n leaves, since we are going to build trees of
varying sizes. We therefore add a ‘0’ to each counter, meaning that there is no
edge of the order specified by the counter, and we let each index cycle from 0 to
ik . However, this will produce some meaningless values, because we cannot add
an edge to a non-existent edge, i.e. we cannot have a non-zero counter to the right
of a 0. Therefore, when we reach a situation with a row of 0s on the right, we
have to advance the leftmost 0 to 1 to make the next step (e.g. going from (i) to
(ii) in Figure 7.11).

The process starts from the milometer setting [1][0][0] . . . [0]. Let the smallest
cost so far for a complete tree be C . Whenever the cost of our current tree T is
more than C , we know that T is not the optimal tree. But (here’s the trick) if
this happens when all the counters to the right of a given non-zero counter are 0,
instead of advancing them all to ‘1’ we can click the rightmost non-zero counter
one forward. The reason for this is that the rightmost non-zero counter defines a
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Figure 7.11 A milometer (or odometer) used for counting unrooted trees.

tree with k < n leaves, and adding more leaves can only increase the cost. We
can therefore proceed to the next tree with k leaves (e.g. go from (i) to (iii) in
Figure 7.11). This method can save a great deal of searching.

7.5 Assessing the trees: the bootstrap

The tree building algorithms we have described present us with a tree, or perhaps,
in the case of parsimony, several optimal trees, but with no measure of how much
they should be trusted. Felsenstein [1985] suggested using the bootstrap [Efron &
Tibshirani 1993] as a method of assessing the significance of some phylogenetic
feature, such as the segregation of a particular set of species on their own branch
(a ‘clade’).

The bootstrap works as follows: Given a dataset consisting of an alignment of
sequences, an artificial dataset of the same size is generated by picking columns
from the alignment at random with replacement. (A given column in the origi-
nal dataset can therefore appear several times in the artificial dataset.) The tree
building algorithm is then applied to this new dataset, and the whole selection
and tree building procedure is repeated some number of times, typically of the
order of 1000 times. The frequency with which a chosen phylogenetic feature
appears is taken to be a measure of the confidence we can have in this fea-
ture.

For certain probabilistic models, the bootstrap frequency of a phylogenetic fea-
ture F can be shown to approximate the posterior distribution P(F |data) (see
p. 213). When the bootstrap is applied to a non-probabilistically formulated model,
such as parsimony, it can be interpreted in terms of statistical hypothesis testing,
though a rather more elaborate procedure than that given above may be needed to
make the bootstrap conform to standard notions of confidence intervals [Efron,
Halloran & Holmes 1996].
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Figure 7.12 Dynamic programming matrix for Sankoff & Cedergren’s al-
gorithm for 3 sequences. Each transition in the matrix is shown by an ar-
row. For 3 sequences there are 7 transitions at each point. Each has a cost
assigned to it, which is the minimal cost, derived by the parsimony algo-
rithm, of a tree whose leaves are defined by the transition, as follows: If
1 is subtracted from a coordinate, the relevant leaf is assigned the preced-
ing character in the input sequence; if the coordinate is unchanged, its leaf
is assigned a ‘-’. For instance, the transition from (i , j − 1,k) to (i , j ,k) is
assigned the tree shown in the figure.

7.6 Simultaneous alignment and phylogeny

We turn now to the problem of simultaneously aligning sequences and finding
a plausible phylogeny for them. There are two parsimony-type algorithms that
tackle this problem, the first using a character-subsitution model of gaps, the sec-
ond using affine gap penalties. Both find an optimal alignment given a tree; it is
necessary to search over trees to find the overall optimum.

Sankoff & Cedergren’s gap-substitution algorithm

Sankoff & Cedergren’s algorithm is guaranteed to find ancestral sequences, and
alignments of them and the leaf sequences, that together minimise a tree-based,
parsimony-type cost [Sankoff & Cedergren 1983]. The algorithm is, in fact, a
combination of two methods already introduced in this book (Figure 7.12). In
Chapter 6, p. 141, a dynamic programming method was described for aligning a
set of N sequences x1, x2, . . . , x N [Sankoff & Cedergren 1983; Waterman 1995].
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Replacing the max by a min (we use costs here rather than scores), the minimum
cost αi1,i2,...,iN of an alignment ending with x1

i1
, x2

i2
, . . . , x N

iN
is

αi1,i2,...,iN = min
�1+...+�N >0

{αi1−�1,i2−�2,...,iN −�N +σ (�1 · x1
i1

,�2 · x2
i2

, . . . ,�N · x N
iN

)}.
(7.6)

where �i is 0 or 1, and �i · x = x if �i = 1 and �i · x =‘-’ if �i = 0. σ is the
weighted parsimony cost for aligning a set of symbols of the extended alpha-
bet. This cost can be calculated by an upward pass through the tree, using the
weighted parsimony algorithm (p. 175), where S(a,b) is now defined not when
a,b are pairs of residues, but also when one or both is the gap symbol ‘-’.

Sankoff & Cedergren’s procedure is therefore the following: When we reach
(i1, i2, . . . , iN ) in the induction, each of the terms αi1−�1,i2−�2,...,iN −�N in (7.6), for
all 2N −1 combinations of �1, . . . ,�N , will previously have been computed, and
the calculation of σ (�1 · x1

i1
,�2 · x2

i2
, . . . ,�N · x N

iN
) can be achieved by an upward

pass of the tree, requiring of the order of N steps (one step for each edge). The
entire computation therefore requires of the order of N (2n)N steps, where n is
the length of the sequences. Unfortunately, this is too large for more than half a
dozen or so sequences of normal length (of the order of 100 residues).

Hein’s affine cost algorithm

Hein’s algorithm [Hein 1989a] uses an affine gap cost which is more realistic
than the simple substitution treatment of gaps. It is also much faster than Sankoff
& Cedergren’s algorithm in most realistic situations, fast enough in fact to al-
low a search over tree topologies for modest-sized sets of sequences. It is the
only current practical algorithm able to align sequences and explore alterna-
tive phylogenies effectively. The price paid for these very considerable gains
is that the algorithm makes a simplifying assumption in the choice of ances-
tral sequences which does not always lead to the overall most parsimonious
choices.

Suppose that we are given a tree. Recall that the algorithm for traditional par-
simony ascends the tree, assigning a list of possible residues to each node. These
residues are just those that minimise the number of substitutions along the edges
to the two daughter nodes. In this case it is possible to find the minimal number
of substitutions for the whole tree by minimising at each node. This same pro-
cedure is used in Hein’s algorithm: in the upward pass through the tree, the only
sequences that are considered at a node are those that have the minimum cost,
given the sequences at the two daughter nodes. We shall see later that, unlike tra-
ditional parsimony, this procedure is not guaranteed to find the minimum cost for
the whole tree. But first, let us see how the minimum cost sequences at each node
are determined.



7.6 Simultaneous alignment and phylogeny 183

C C A CT A

A

C

C

-
-
4

3
6
3

3
5
3

1
5
5

4
3
5

3
4
7

6
5
7

-
-
3

3
5
2

1
4
4

3
3
5

3
4
6

5
5
7

5
6
8

-
-
2

0
4
4

3
2
5

3
3
6

5
4
7

5
5
8

7
6
9

0
-
-

-
2
-

-
3
-

-
4
-

-
5
-

-
6
-

-
7
-

Figure 7.13 The dynamic programming matrix for two sequences, showing
cells with V M, V X and V Y written in this order, from top to bottom. Optimal
paths are shown as lines between the cells. Here d = 2, e = 1, and there is
a mismatch cost of 1. Note that we include costs arising from a gap in one
sequence followed by a gap in the other (eg the entry V Y = 4 in the second
cell from the left in the second row down, which arises from V X = 2 in the
cell above), even though such matches are non-optimal.

The aim is to find sequences z at a given node aligned to both of the sequences
x and y at the daughter nodes and satisfying

S(x , z)+ S(z, y) = S(x , y), (7.7)

where S here denotes the total cost for a given alignment of two sequences.
Assuming a mismatch cost of one, with zero cost otherwise, (7.7) can be sat-
isfied at any site if z shares a residue at each site with either x or y (or with both
x and y when they have the same residue). Hein’s algorithm can also be extended
to general weighted parsimony (see Exercise 7.13).

We have not yet shown that sequences z satisfying (7.7) can be found, because
we have to deal with gaps. To do this, we use the dynamic programming method
for affine gaps described in Chapter 2. Let V M(i , j), V X(i , j), V Y(i , j) denote the
minimum costs for alignments up to position i in sequence x , j in sequence y,
in the cases where (1) the i th residue in x is aligned to the j th in y, (2) the i th
residue in x is aligned to a gap in y, and (3) the j th residue in y is aligned to a gap
in x . These correspond to Viterbi costs up to the match state M(i , j), and insert
states X and Y, respectively. We write the three numbers V M, V X and V Y in the
(i , j)th cell in the dynamic programming matrix (Figure 7.13). Let the affine gap
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cost for a gap of length k be d + (k −1)e, where e ≤ d . Then the recursion is

V M(i , j) = min{V M(i −1, j −1), V X(i −1, j −1), V Y(i −1, j −1)}
+ S(xi , yj ),

V X(i , j) = min{V M(i −1, j)+d , V X(i −1, j)+ e},
V Y(i , j) = min{V M(i , j −1)+d , V Y(i , j −1)+ e}. (7.8)

Here we assume that the mismatch cost is less than 2e, which ensures that an
optimal alignment will never have a gap in one sequence immediately followed
by a gap in the other, e.g. TTAC--

TT--GG , but will prefer to match residues, e.g. TTAC
TTGG in

this example.
Let us mark all the transitions that occur on paths that give the minimal cost

(e.g. those marked in Figure 7.13). Any path that we piece together using these
transitions will give an optimal alignment of x and y. Suppose now that x and
y are the sequences at the two daughter nodes of a node n. Any path using our
marked transitions also serves to define eligible ancestral sequences at n, as fol-
lows. If a transition corresponds to a match of two residues in x and y, we choose
one of these residues for the ancestral sequence. If a transition corresponds to a
match between a gap and a residue, we choose either a gap or a residue in the
ancestral sequence.

This will yield a sequence z aligned to x and y. From the way z was con-
structed, it is clear that if, at some site, both x and y have a residue, then z shares
a residue with either x or y (or possibly both of them). Thus equal contributions
will be made to the two sides of (7.7). The same will be true when either x or y
has a gap provided we take some care with gap-opening costs. In fact, our recipe
for making ancestral sequences needs the following extra rule: If a block of con-
secutive gaps in one sequence occurs on a path, and these are aligned to a set of
residues in the other sequence, then the ancestral sequence must either skip this
entire set of residues or include them all.

For instance, given the two sequences CAC and CTCACA (see Figure 7.13),
the sequence CTC can be derived by following the lower path in the matrix, cor-
responding to the alignment CAC---

CTCACA , choosing a T in the second position, and
skipping the block of three gaps. It is a possible ancestral sequence because it
can be aligned to CAC by CTC

CAC with a cost of one for the A,T mismatch, and to
CTCACA by CTC---

CTCACA with a cost of d +2e. The sum of these two costs, d +2e+1,
is the cost of the original alignment CAC---

CTCACA . Similarly CACACA is another eligi-
ble ancestral sequence, derived by choosing the residues from the block that are
matched to the gaps. What is not allowed is to use only some of these residues.
For instance, CACAC is not an ancestral sequence. In fact, optimal alignments to
the daughter sequences are CACAC

CAC-- , with cost d + e, and CACAC-
CTCACA , with cpst d +1,

and both include gap-opening terms. The sum of both costs, 2d + e +1, exceeds
d +2e +1, the cost of the original alignment, since we are assuming d > e.
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We now formalise the idea of following paths through the dynamic program-
ming matrix by deriving a graph from this matrix. Whenever any of the three
entries of a cell of the dynamic programming matrix is used by an optimal path,
we represent it by a vertex in the graph. It is important to note that different en-
tries in the same cell need different vertices. The situation in Figure 7.13 shows
why: The two optimal paths cross in the penultimate cell, one using the M state
with cost 3, and the other using the X state with cost 4. If we switched paths in
this cell, we would lose track of whether we were opening or extending a gap
(see Altschul & Erickson [1986]).

The directed edges of the graph are the transitions that occur in an optimal
alignment. We assign residues to all these edges: if a transition in the matrix ends
in the match of two residues, then both residues are attached to the edge; if there
is a match of a residue and a gap, only that one residue is attached to the edge.
Finally, we add ‘dummy edges’ corresponding to consecutive blocks of two or
more gaps. These run from the vertex at the start of the block to that at the end of
block and are assigned no residues.

We now consider paths through this graph, running from the initial point to
the point matching the last residues in each sequence. The rule is that any path
emits the symbols on the edges it uses, choosing one of the symbols if more than
one is available. It’s easy to see that any path through the graph emits an eligible
sequence. The graph will be referred to as a sequence graph.

This construction applies to the case where each of the two daughters is a leaf
of the tree and so has a single sequence associated to it. What happens as we
ascend the tree, and the daughters can have many eligible sequences assigned to
them? Hein’s ingenious idea is to carry out exactly the same construction, but
with graphs rather than sequences as the objects to be matched in the dynamic
programming matrix.

To achieve this, we first stretch out each graph so its vertices lie in a line (mid-
dle diagram in Figure 7.14); this can always be done so that all the edges point
in the same direction. Suppose we have two graphs, G1 and G2. Again, we keep
track of the values of V M, V X and V Y in each cell. However, instead of con-
sidering transitions from the preceding residue in the sequences, we now define
‘preceding’ by the incoming edges in the graph. When these include a dummy
edge, we can skip back to the vertex at its start, and the preceding non-dummy
edge then defines a preceding vertex. Note that, because dummy edges span the
whole of a block of gaps, and because the condition that a mismatch cost is less
than 2e excludes a block in one sequence following a block in the other, there
cannot be a chain of consecutive dummy edges. Thus a combinatorial explosion
in the number of preceding nodes cannot occur.

The procedure for dummy edges can be carried out by first modifying each
sequence graph, removing all the dummy edges (marked δ in Figure 7.14) and
replacing each of them by an edge going one step back beyond the start of the



186 7 Building phylogenetic trees

C

T
A

C

C

C A,T C A C C A C A

T
A

C A,T C A C C A C A

δ

δδ

xxxxxxx

A,T

C

δδ

A

CA

δ

C
CT ACAbegin end

Figure 7.14 The sequence graph derived from the paths through the dy-
namic programming matrix in Figure 7.13. Top: the graph, with its dummy
edges (marked by a δ). Middle: the same graph, with its nodes arranged in
a line. Bottom: the dummy edges have been replaced by an edge that goes
back to the preceding vertex and emits the residues attached to that edge.

dummy edge and carrying the symbols associated to that preceding edge. The
middle and bottom graphs of Figure 7.14 show how this replacement works. Now
the transitions in the dynamic programming matrix are easily described: they are
just those obtained by following edges in the modified G1 or G2 (see Figure 7.15).

Having defined the values of V in each cell in the matrix, the optimal paths are
defined as before by backtracking, and the next sequence graph G3 is constructed.
There is one new feature. The edges in a sequence graph can have several symbols
associated to them, these being the sets Rk of the traditional parsimony algorithm.
The same procedure as for traditional parsimony governs the combining of sets
of symbols: If V M is defined from an edge in G1 and an edge in G2, and if there is
a shared symbol (i.e. if there was no mismatch cost in the path using both edges),
then only the shared symbols are attached to the derived edge in G3. If there is
no shared symbol, the derived edge acquires all the symbols from both edges.
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Figure 7.15 The dynamic programming matrix for a sequence graph, the
bottom graph in Figure 7.14, against the sequence TAC. The sequence
graph in this matrix generates possible ancestral sequences for the top node
of the tree in Figure 7.16. The values of V M, V X and V Y in a cell are deter-
mined by taking the minimum over all ‘preceding’ vertices, these being the
vertices that can be reached by an edge going back from the current vertex.
This is illustrated in the figure above for the computation of a value of V M

in a cell.

We can now carry out the recursion (7.8) on the matrix. The optimal paths
through the matrix define another graph, and so we continue, ascending the tree
until the root is reached. We can then descend the tree, reconstructing the daughter
sequences corresponding to a given ancestral sequence. To do this, we follow the
sequence of edges in each daughter graph as the ancestral sequence is traced,
choosing symbols in the daughters that are compatible with those in the ancestral
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CAC

TAC

CAC

CTCACA

CAC

5

1

Figure 7.16 Possible ancestral sequences for the leaf sequences TAC,
CAC, CTCACA, given the tree shown in the figure.

sequence. If a delete, or a succession of deletes, skips successive nodes in one of
the daughter graphs, the skipped edges must be filled in, with arbitrary choices of
symbols. For instance, in tracing the ancestral sequence CAC through the lower
path in Figure 7.13, the first three symbols CTC... of the daughter sequence
CTCACA are generated, and the last three symbols ...ACA must be added, even
though they are skipped in the ancestral path by using a dummy edge (the δ edge
of length 3 shown at the top of Figure 7.14). Possible ancestral sequences for a
tree are shown in Figure 7.16; the sequence graphs for this tree are those shown
in Figure 7.13 and Figure 7.15.

We have now described how sequences are aligned on a given tree. It is also
necessary to search through trees, for which Hein [1989b] proposes his own effi-
cient search algorithm. The entire procedure will be manageable if the sequence
graphs do not become too complicated. If we have to include most of the tran-
sitions in the dynamical programming matrix, the computation will increase in
complexity like Sankoff & Cedergren’s. The assumption is that most alignments
will have a few main routes giving the minimal cost. This will be true if the se-
quences are similar enough, for then there will be long stretches of unambiguous
matches which define a single path through the matrix.

Exercise

7.13 Hein’s algorithm can be extended to general weights S(a,b) by attaching
a set of minimal costs Sk(a) (as in the weighted parsimony algorithm)
to each edge in a sequence graph instead of the set Rk . Show that (7.7)
can be satisfied by having z share a residue with x or y provided that
S(a,a) = 0 for all a. Evaluate the minimal costs (assuming a nucleic
acid alphabet) for the sequence graphs shown in Figure 7.13, Figure 7.14
and Figure 7.15.
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G
GTT

GT

Figure 7.17 A case where Hein’s rule of for choosing optimal ancestral
sequences fails to produce the optimal overall assignment to ancestors.

Limitations of Hein’s model

Now let us return to Hein’s procedure of taking the minimal cost sequences at
each node in the upward pass. To see how this can fail to give an overall optimum
for the tree, suppose the cost for a gap of length k is 13 + 3(k − 1) and the mis-
match cost is 4 (values used by Hein in an example alignment of 5S RNAs). The
eligible ancestral sequences for G and GTT are just G and GTT themselves; each
requires a consecutive pair of gaps to one of its daughters, with cost 13+3 = 16.
The sequence GT is not an eligible ancestral sequence, since it requires single
gaps in both alignments, with a total cost of 2 × 13 = 26, i.e. G-

GT and GT-
GTT . But

suppose we have a tree in which the root branches to the ancestor of G and GTT,
and also to a third leaf with sequence GT (see Figure 7.17). Then the total tree
cost for the ineligible ancestor GT is smaller because two gaps of size one are
required in the tree in that case, as opposed to gaps of sizes one and two when
either eligible ancestor is used.

Warning B. Schwikowski has recently showed that the dummy edge construc-
tion is flawed. An alternative procedure that uses Hein’s sequence graphs but
avoids this pitfall is described in Schwikowski, B. and Vingron, M. 1997. The
deferred path heuristic for the generalized tree alignment problem. Journal of
Computational Biology 4:415-431.

7.7 Further reading

Parsimony was first formulated by Edwards & Cavalli-Sforza [1963; 1964] in the
case of continuous parameters, where it amounts to finding a minimum-length
tree joining points in Euclidean space. Counting algorithms for parsimony based
on sequence data or other discrete variables were introduced by Camin & Sokal
[1965], Eck & Dayhoff [1966], Fitch [1971] and others. The combination of the
simplicity of these algorithms and the richness of sequence data has combined to
make these methods very popular.

Parsimony is sometimes alleged to be a direct philosophical descendant of
Occam’s razor, and to be free of specific evolutionary assumptions, e.g. ‘The
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use of parsimony in phylogenetic systematics is no different from its use in any
other branch of biology or any other science, [and] does not invoke any particular
evolutionary mechanism’ [Brooks & McLennan 1991, p. 65]. For an instructive
debunking of this notion, see Edwards [1996]. See also Section 8.6 for an in-
terpretation of parsimony that relates it to probabilistic models described in this
book.

Phylogenetic distance methods were also first described by Edwards & Cavalli-
Sforza in their papers mentioned above. They proposed a least-squares match
between the observed distances and the summed lengths of a tree. Neighbour-
joining can also be given a least-squares interpretation: in this case, the observed
distances are compared with those in a simplified tree [Saitou & Nei 1987]. There
are many other distance methods besides those discussed here; to mention only
one other, that of Fitch & Margoliash [1967a] combines clustering with the dis-
tance definition of (7.3).

There are a number of mathematical results on trees with additive lengths. In
addition to Studier & Keppler’s theorem given in Section 7.8, Buneman [1971]
has shown that, when a set of distances satisfies the four-point condition (p. 173),
a tree and a set of edge lengths can be found that generate these distances as the
sum of edge lengths.

Horizontal transfer of genetic material gives an interesting twist to phylogeny.
At first sight, it prevents the use of simple tree structures, since a recombina-
tional event would seem to create a link between a sequence and its two ances-
tors and thereby give rise a loop. However, the fragments on either side of a
recombination point each have a single parent, and the genome may be described
as a concatenation of segments, each with its own tree [Hein 1993]. Recombi-
national events are likely to be particularly important in viruses and prokary-
otes, where horizontal transfer is frequent. (The recombination that occurs in
diploid ‘family trees’ is of course even more frequent, but it requires a different
kind of model, being dominated by crossing-over events with little evolution of
sequence.)

A generalisation of trees has been proposed by Bandelt & Dress [1992]. They
showed how to build networks from distance data that branch like a tree where
the evidence for a topology is strong and that generate a mesh covering regions
of ambiguity.

Useful general references for phylogeny are Waterman [1995], Swofford &
Olsen [1996]; for recent reviews see Saitou [1996] and Felsenstein [1996].

7.8 Appendix: proof of neighbour-joining theorem

For completeness, and because it is a pleasing mathematical result, we include the
proof by Studier & Keppler [1988] that leaves with minimal neighbour-joining
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Figure 7.18 Above: If the leaves i , j are not neighbours, there are at least
two nodes on the path joining them, here shown as k and l. The branch from
k that does not go to i or j is called Lk and is shown here with a pair of
neighbours, m and n, on it. The branch from l is called Ll , and has a branch
to a leaf z. Below: The path from i to y (dots) and from j to y (dashes) are
shown, giving a simple visual proof that diy +djy = di j +2dky.

distance are neighbours. This ensures that a tree with additive lengths will be
correctly reconstructed by neighbour-joining. A recent paper extends this result
to show that neighbour-joining also correctly reconstructs trees where additivity
only holds approximately [Atteson 1997].

Theorem: For a tree with additive lengths, Di j minimal implies i , j are neigh-
bouring leaves.

Proof: Suppose the smallest D is Di j , and suppose furthermore that i and j are
not neighbouring leaves. We seek a contradiction.

Since i and j are not neighbours, there must be at least two nodes on the path
connecting them (see Figure 7.18). Call these nodes k, l, and let Lk be the set of
leaves which derive from the third branch from k, i.e. not the edge towards i or
j , and let Ll be the equivalent set for l. Let m and n be a pair of neighbouring
leaves in Lk with joining node p (if no such pair exists, an alternative argument
is available; see Exercise 7.14). Let duv denote the summed edge lengths of the
path connecting any two nodes u, v. By additivity, this is the correct distance duv

when they are both leaves. For any y in Lk , it is clear that diy + djy = di j + 2dky

(see lower figure in Figure 7.18). Similarly dmy +dny = dmn +2dpy . Thus

diy +djy −dmy −dny = di j +2dky −2dpy −dmn . (7.9)
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Likewise, for z in Ll , we find

diz +djz −dmz −dnz = di j −dmn −2dpk −2dlk . (7.10)

From the definition of Di j ,

Di j − Dmn = di j −dmn − 1

N −2

( ∑
all leaves u

diu +dju −dmu −dnu

)
,

and it is easy to check from (7.9) and (7.10) that the coefficients of di j and dmn ,
summed over all leaves u in the tree, are both (N − 2) (see Exercise 7.15). Thus
the term di j −dmn cancels, and we can write

Di j − Dmn = 1

N −2


 ∑

y in Lk

(2dpy −2dky)+
∑

z in Ll

(2dpk +dlk)


+C

where C is the sum of all the extra positive terms coming from other branches on
the path between i and j besides k and l. Letting |Ll | and |Lk | denote the numbers
of nodes in Ll , Lk , respectively, and the using the fact that dpy −dky > −dpk ,

Di j − Dmn > 2dpk (|Ll |− |Lk |)/(N −2).

We must have Dmn > Di j , since Di j is the minimum, so |Ll | < |Lk |. But the
argument can be applied with the two nodes l and k reversed, so we must also
have |Lk | < |Ll |. Hence the assumption is false, and i , j are neighbouring leaves.

Exercises

7.14 If the branch from k has only a single leaf m (so it is not possible to
find a pair of neighbours in Lk), show that the presence of other nodes
besides k on the path from i to j implies Di j > Djm , contradicting the
assumption that Di j is the minimum.

7.15 Show that the term 2dpy is absent in (7.9) when y = m or y = n. Show that
this means that the term 2dpy can be included in the sum

∑
(2dpy −2dky)

in (7.11) for all y in Lk , including y = m and y = n, provided we subtract
2dpm +2dpn from the sum. Show that the term dmn then cancels, and also
check the case where y = i and y = j .
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Probabilistic approaches to phylogeny

8.1 Introduction

Our goal in this chapter is to formulate probabilistic models for phylogeny and
show how trees can be inferred from sets of sequences, either by maximum like-
lihood or by sampling methods. We also review the phylogenetic methods of
the previous chapter, and show that they often have probabilistic interpretations,
though they are not usually presented this way.

Overview of the probabilistic approach to phylogeny

The basic aim of probability-based phylogeny is to rank trees either according
to their likelihood P(data|tree), or, if we are taking a more Bayesian view, ac-
cording to their posterior probability P(tree|data). There may be subsidiary aims,
such as finding the likelihood or posterior probability of some particular taxo-
nomic feature, such as a grouping of a set of organisms on a single branch. To
achieve any of these aims, we must be able to define and compute P(x •|T , t •),
the probability of a set of data given a tree. Here the data are a set of n sequences
x j for j = 1 . . .n, which we write compactly as x •. T is a tree with n leaves
with sequence j at leaf j , and the t • are the edge lengths of the tree. To define
P(x •|T , t •) we need a model of evolution, i.e. of the mutation and selection events
that change sequences along the edges of a tree.

Let us assume that we can define a probability P(x |y, t) for an ancestral se-
quence y to evolve to a sequence x along an edge of length t . The probability of
T with a specific set of ancestors assigned to its nodes can then be calculated by
multiplying all the evolutionary probabilities, one for each edge of the tree. For
instance, for the tree shown in Figure 8.1 the probability would be

P(x1, . . . , x5|T , t •) = P(x1|x4, t1)P(x2|x4, t2)P(x3|x5, t3)P(x4|x5, t4)P(x5),

where P(x5) denotes the probability of x5 occurring at the root of the tree. In
general (apart from laboratory evolution experiments, like those of Hillis et al.
[1992]) the ancestral sequences will be unknown, and to obtain the probability
P(x1, . . . , x3|T , t •) of the known sequences for the given tree we need to sum over

193
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t4 x5

x4

x 3

x2

x1

root

t3

t2
t1

Figure 8.1 An example of a tree with three sequences.

all the possible ancestors x4, x5. This is similar to summing over all the different
paths in a HMM to obtain the probability of the observed data (see Chapter 3).

Given this model, we can seek the maximum likelihood tree, namely the tree
with topology T and edge lengths t • that maximises P(x •|T , t •). Finding this
maximum requires: (1) a search over tree topologies, with the order of assign-
ment of sequences at the leaves specified; (2) for each topology, a search over all
possible lengths of edges t •.

As we have seen (p. 165), there are (2n −3)!! rooted binary trees with n leaves,
and this number grows very large for more than half a dozen sequences. An ef-
ficient search procedure (e.g. p. 178 and Felsenstein [1981a]) is therefore re-
quired to carry out (1). Part (2), maximising the likelihood of edge lengths, can
be achieved by a variety of optimisation techniques (Section 8.3).

An alternative strategy is to search stochastically over trees by sampling from
the posterior distribution P(T , t •|x •) (Section 8.4). This has only been explored
recently, but the method is very promising.

8.2 Probabilistic models of evolution

We have not yet specified the form of P(x |y, t), the probability of a sequence
x arising from an ancestral sequence y over an edge of length t . For this we
need a model of evolution. We know that, in the course of evolution, residues
are substituted by others, that deletion and insertion of groups of residues occur,
and that there are more complex constraints imposed by structures of nucleic
acids and proteins. Later we shall consider models for deletions and insertions,
but to begin with we make some radical simplifying assumptions: that every site
of the given data sequences can be treated as independent and that deletions and
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insertions do not occur. Our sequences therefore form an ungapped alignment,
with independent evolution at each site.

Let P(b|a, t) denote the probability of a residue a having being substituted
by a residue b over an edge length t . Then our assumption implies that for two
aligned, gapless sequences x and y, P(x |y, t) = ∏

u P(xu|yu , t), where u indexes
sites in the alignment.

Let us look now at possible forms for the substitution probabilities P(b|a, t),
for residues a and b. Given a residue alphabet of size K , we can write these as a
K × K matrix that depends on t , and which we denote by S(t):

S(t) =




P(A1|A1, t) P(A2|A1, t) . . . P(AK |A1, t)
P(A1|A2, t) P(A2|A2, t) . . . P(AK |A2, t)

. . . . . . . . . . . .

P(A1|AK , t) P(A2|AK , t) . . . P(AK |AK , t)


 .

For several important families of substitution matrices, the family is multiplica-
tive, in the sense that

S(t)S(s) = S(t + s) (8.1)

for all values of the lengths s and t . This is equivalent to saying that the substitu-
tion probabilities satisfy∑

b

P(a|b, t)P(b|c,s) = P(a|c,s + t)

for all a, c, s and t . If we adopt a viewpoint in which t is regarded as a ‘time’
variable,1 then multiplicativity is a consequence of the substitution process being
Markovian and stationary, the latter meaning that the probability of substituting
a at time t by b at time s depends only on the time interval (s − t) (Exercise 8.2).

For nucleotide sequences, one model is that of Jukes & Cantor [1969]. This
assumes that the matrix, R, of rates of substitution takes the form




A C G T

A −3α α α α

C α −3α α α

G α α −3α α

T α α α −3α


, (8.2)

which means that all nucleotides undergo transitions at the same rate α. The sub-
stitution matrix for a short time S(ε) is approximately given by S(ε) � (I + Rε),
where I is the identity matrix with ones down the diagonal and zeros elsewhere.

1 For instance, t might be proportional to mutation rate × evolutionary time.
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Thus

I + Rε =




1−3αε αε αε αε

αε 1−3αε αε αε

αε αε 1−3αε αε

αε αε αε 1−3αε


 .

By multiplicativity, S(t + ε) = S(t)S(ε) � S(t)(I + Rε). We can write this as
(S(t + ε) − S(t))/ε � S(t)R, and in the limit of small ε we get S′(t) = S(t)R.
From this we can derive a substitution matrix for time t . The symmetry of the
rate matrix suggests that we try giving S(t) the following form:

S(t) =




rt st st st

st rt st st

st st rt st

st st st rt


 . (8.3)

Substituting this into S′(t) = S(t)R, we get the equations

ṙ = −3αr +3αs,

ṡ = −αs +αr ,

and we easily check that these are satisfied by

rt = 1
4

(
1+3e−4αt

)
,

st = 1
4

(
1− e−4αt

)
. (8.4)

The matrix (8.3) with these values of rt and st constitutes the Jukes–Cantor
model. Note that, when t = ∞, rt = st = 1

4 . This means that the nucleotide equi-
librium frequencies implied by the model are qA = qC = qG = qT = 1

4 .
The Jukes–Cantor model does not capture some important features of nu-

cleotide substitution. For instance, transitions, namely purine to purine or pyr-
midine to pyrimidine substitutions, are more common than transversions, which
change the type of nucleotide.2 To account for this, Kimura [1980] proposed a
model with the rate matrix




−2β −α β α β

β −2β −α β α

α β −2β −α β

β α β −2β −α


 . (8.5)

2 Thus the transitions are A ↔ G, C ↔ T, and the transversions are A ↔ T, G ↔ T, A ↔ C,
and C ↔ G



8.2 Probabilistic models of evolution 197

This can be integrated, by the same procedure we used with the Jukes–Cantor
model, to give the general time-dependent form

S(t) =




rt st ut st

st rt st ut

ut st rt st

st ut st rt


 , (8.6)

where

st = 1
4

(
1− e−4βt

)
,

ut = 1
4

(
1+ e−4βt −2e−2(α+β)t) ,

rt = 1−2st −ut .

This model, though widely used, is still far from realistic, as its equilibrium fre-
quencies are equal, qA = qC = qG = qT = 1

4 , whereas many organisms show strong
bias in their AT to GC ratio. For a model which allows for this as well as inequality
of transitions and transversions, see Hasegawa, Kishino & Yano [1985].

Turning to protein sequences, we saw in Section 2.8 that the PAM matrices of
conditional probabilities for integers n are defined by S(n) = S(1)n , i.e. by raising
the PAM1 matrix to the nth power. We can extend this to all values of t (i.e. not
just integers, but all positive real numbers), and obtain a matrix formally very
similar to those of the Jukes–Cantor and Kimura DNA models.

To see this, we diagonalize S(1). This is generally possible for “stochastic
matrices” of conditional probabilities like S(1). We can therefore write S(1) =
U D(λi )U−1, where U is a coordinate transformation and D(λi ) is the diago-
nal matrix with the eigenvalues λ1 . . .λ20 down the diagonal. These eigenval-
ues lie in the range 0 to 1, so can be written λi = exp(−µi ). Now, the powers
of S(1) take a simple form in the diagonal matrix coordinate system; for in-
stance, S(2) = S(1)S(1) = U D(λi )U−1U D(λi )U−1 = U D(λ2

i )U−1, and gener-
ally S(t) = U D(λt

i )U
−1. Thus we can write

S(t) = U




e−µ1t 0 . . . 0
0 e−µ2t . . . 0
. . . . . . . . . . . .

0 0 . . . e−µ20t


U−1.

This shows that each entry of S(t) can be expressed as a sum of exponentials: If
Ai denotes the i th amino acid, then P(Aj |Ai , t) = ∑

k uik exp(−µkt)vk j , where
uik and vk j are the entries in U and U−1, respectively.

This resembles the rate matrices for the DNA models, and we can easily see
why. If the Jukes–Cantor rate matrix is diagonalised, so R = U D(λi )U−1 for
a suitable coordinate transform U , the equation S′(t) = S(t)R becomes T ′(t) =
T (t)D, where S(t) = U T (t)U−1. But the equation T ′(t) = T (t)D is easily solved,
with the initial condition that S(0) is diagonal; in fact T (t) itself must be diagonal
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with the terms exp(λi t) down its diagonal. Since the eigenvalues are 0 and −4α,
it is easy to see that we obtain the Jukes–Cantor matrix entries, (8.4), in a way
analogous to the above derivation of the PAM matrices.

Putting t = ∞, the PAM matrices become


qA1 qA2 . . . qA20

qA1 qA2 . . . qA20

. . . . . . . . . . . .

qA1 qA2 . . . qA20


 ,

where the qAi are the equilibrium frequencies for amino acids, close to the amino
acid frequencies in the database from which Dayhoff, Schwartz & Orcutt [1978]
originally constructed their matrices.

Exercise

8.1 Show that the Jukes–Cantor and Kimura substitution matrices are multi-
plicative.

8.2 Let P(a(t2)|b(t1)) denote the probability of a residue b, present at time
t1, having been substituted by an a by time t2. Stationarity means that
we can write this as P(a|b, t2 − t1). The Markov property means that
P(a(t2)|b(t1)) = P(a(t2)|b(t1),c(t0)) if t0 < t1, i.e. that the probability of
the substitution of b by a is not influenced by the residue being c at the
earlier time t0. Show that∑

b(t)

P(a(s + t)|b(t),c(0))P(b(t)|c(0)) = P(a(s + t)|c(0)),

and deduce that multiplicativity, (8.1), holds.

8.3 Calculating the likelihood for ungapped alignments

We show here how the likelihood of a tree can be computed using the preceding
model. We begin with the case of two sequences, and then proceed to the general
case of n sequences.

The case of two sequences

Suppose we have two sequences x1 and x2. In this case there is only one tree,
namely the one with two branches and a root node which represents the hypothet-
ical common ancestor of x1 and x2 (Figure 8.2). Thus we only have to investigate
how the likelihood varies with the lengths t1 and t2.

Consider a site u. The residues at the leaves 1 and 2 are then x1
u , x2

u , respec-
tively. We assign a residue a to the root, using a different notation from the leaves
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Figure 8.2 A simple tree.

to emphasise the fact that it is a variable, and not specified by the dataset x1, x2:

P(x1
u , x2

u ,a|T , t1, t2) = qa P(x1
u |a, t1)P(x2

u |a, t2).

This is the probablity of drawing a from the root distribution (which we assume
to be the equilibrium distribution of the substitution matrix family) and of making
substitutions of a by x1

u and x2
u . Note that we include the cases where either or

both of x1
u , x2

u is the same as a. Since in general we do not know what the root
residue was, we must sum over all possible as to get the probability of x1

u , x2
u .

Formally

P(x1
u , x2

u |T , t1, t2) =
∑

a

qa P(x1
u |a, t1)P(x2

u |a, t2). (8.7)

If there are N sites, we can write the full likelihood as

P(x1, x2|T , t1, t2) =
N∏

u=1

P(x1
u , x2

u |T , t1, t2). (8.8)

Example: The likelihood of two nucleotide sequences

Suppose we have two nucleotide sequences, and for simplicity, that only two of
the nucleotides, C and G, are present. For instance, the sequences might be

CCGGCCGCGCG
CGGGCCGGCCG

What is the likelihood P(x1, x2|T , t1, t2) of these sequences, assuming the Jukes–
Cantor model?

Using the substitution probabilities (8.4), (8.7) gives the probability of C
occurring at both leaves of the tree T as:

P(C,C|T , t1, t2) = qCrt1rt2 +qGst1st2 +qAst1st2 +qTst1st2 = 1
4

(
rt1rt2 +3st1st2

)
.
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0 2 4 6 8 10t +t1 2

Figure 8.3 The log likelihood P(x1, x2|T , t1, t2) given by (8.9), with n1 =
100,n2 = 250, and with n1 = 1000,n2 = 2500. The latter curve is sharper,
as there are more data to define the maximum likelihood peak. The curves
have been shifted so their peaks superimpose.

By symmetry P(G,G|T , t1, t2) = P(C,C|T , t1, t2). Similarly,

P(C,G|T , t1, t2) = P(G,C|T , t1, t2) = 1
4

(
rt1st2 + st1rt2 +2st1st2

)
.

Substituting the values r and s gives

P(C,C|T , t1, t2) = 1
16

(
1+3e−4α(t1+t2)) ,

P(C,G|T , t1, t2) = 1
16

(
1− e−4α(t1+t2)) .

Now suppose there are n1 sites where the residues in the two sequences are iden-
tical and n2 sites where a substitution occurs. Then (8.8) gives

P(x1, x2|T , t1, t2) = 1

16n1+n2

(
1+3e−4α(t1+t2))n1 (

1− e−4α(t1+t2))n2 . (8.9)

Note that the likelihood depends only on the sum of t1 and t2. This is because the
Jukes–Cantor substitution process is time-symmetrical, so there is no information
available to specify the position of the root. The likelihood remains unchanged if
the root slides while the sum t1 + t2 remains constant. This indeterminacy of the
root will be discussed more fully on p. 203. Figure 8.3 shows an example of how
the likelihood (plotted as the log likelihood) varies with t1 + t2.

The likelihood for an arbitrary number of sequences

We can now extend these calculations to the case of n sequences. Suppose we
have a tree T with edge lengths t •. Let α(i) denote the immediate ancestral
node to i , i.e. the node at the top of the edge above i . Let x1

u . . . xn
u denote as

usual the residues at the uth site of the n sequences x1, . . . , xn . The probability
P(x1

u . . . xn
u |T , t •) of generating these residues at the n leaves of T is given by
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Figure 8.4 Labelling at a branch in a tree.

multiplying the probabilities of substitutions at all edges of the tree. Thus

P(x1
u . . . xn

u |T , t •) =
∑

an+1,an+2,...a2n−1

qa2n−1

2n−2∏
i=n+1

P(ai |aα(i), ti )
n∏

i=1

P(xi
u|aα(i), ti ) (8.10)

where the sum is over all possible assignments of residues ak to non-leaf nodes k
(these nodes being numbered n +1 to 2n −1).

This probability can be computed by working up the tree from the leaves, using
post-order traversal [Felsenstein 1981a]. Let P(Lk |a) denote the probability of all
the leaves below node k given that the residue at k is a. Then we compute P(Lk |a)
from the probabilities P(Li |b) and P(L j |c) for all b and c, where i and j are the
daughter nodes of k (Figure 8.4):

Algorithm: Felsenstein’s algorithm for likelihood

Initialisation:

Set k = 2n −1.

Recursion: Compute P(Lk |a) for all a as follows:

If k is leaf node:

Set P(Lk |a) = 1 if a = xk
u , P(Lk |a) = 0 if a �= xk

u .

If k is not a leaf node:

Compute P(Li |a), P(L j |a) for all a at the daughter nodes i , j ,

and set P(Lk |a) = ∑
b,c P(b|a, ti )P(Li |b)P(c|a, tj )P(L j |c).

Termination:

Likelihood at site u = P(x •
u |T , t •) = ∑

a P(L2n−1|a)qa . �



202 8 Probabilistic approaches to phylogeny

4

t4

1

2
3

t3t2
t1

1
2

3

t3

t2t1

Figure 8.5 A tree with three leaves (left), which can be simplified to a tri-
furcating tree (right) for the purpose of computing the likelihood.

Note the resemblance to the weighted parsimony algorithm (p. 175). We dis-
cuss this further on p. 224.

The concluding step in computing the likelihood is to use the assumption of
independence at sites to write:

P(x •|T , t •) =
N∏

u=1

P(x •
u |T , t •). (8.11)

Example: A tree with three nucleotide sequences

We extend the example on p. 199 now to a tree with three leaves (Figure 8.5,
left). The data are three nucleotide sequences composed only of Cs and Gs, for
instance:

CCGGCCGCGCG
CGGGCCGGCCG
GCCGCCGGGCC

We compute the likelihood according to the Jukes–Cantor model. As before, we
consider the sites with different assignments of residues separately. Consider the
case where C occurs at all leaves. We have

P(C,C,C|T , t1, t2, t3) = qCrt3

(
rt4rt1rt2 +3st4st1st2

)
+(qA+qG+qT)st3

(
rt4st1st2 +2st4st1st2 + st4rt1rt2

)
= 1

4rt1rt2 (rt3rt4 +3st3st4 )

+ 3
4 st1st2 (2st3st4 + st3rt4 + st4rt3 )

= 1
4

(
rt1rt2rt3+t4 +3st1st2st3+t4

)
,

where the first equation simply computes the terms in (8.10), beginning with
the equilibrium probabilities at the root, the second regroups them, and the third
follows from the multiplicativity of the Jukes–Cantor matrices (Exercise 8.3).
Once again, we find that the lengths of the edges adjoining the root, here t3 and
t4, appear only as their sum. This holds true for all leaf values, not just ‘C,C,C’;
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it is therefore true for the total likelihood, which allows us to slide the root to
node 4, thereby producing a trifurcating tree (Figure 8.5, right). Simplifying the
notation by writing t3 for the third edge (rather than t3 + t4) we can now compute
the likelihood easily, summing over all root assignments and the products of the
probabilities of the three edges:

P(x1
u , x2

u , x3
u |T , t1, t2, t3) =

∑
a

qa P(x1
u |a, t1)P(x2

u |a, t2)P(x3
u |a, t3).

There are four possible types of terms, where all residues are the same, or where
one differs from the other two; for instance:

P(C,C,C|T , t1, t2, t3) = 1
4

(
rt1rt2rt3 + st1st2st3

)
,

P(C,C,G|T , t1, t2, t3) = 1
4

(
rt1rt2st3 + st1st2rt3 +2st1st2st3

)
.

If there are n1 sites with the same residue, n2 of type CCG or GGC, n3 of type CGC
or GCG, and n4 of type GCC or CGG, then by symmetry

P(x1, x2|T , t1, t2) = 4−3(n1+n2+n3+n4)a(t1, t2, t3)n1b(t1, t2, t3)n2

× b(t1, t3, t2)n3b(t3, t2, t1)n4 (8.12)

where a(t1, t2, t3) and b(t1, t2, t3) are sums of exponentials (see Exercise 8.4). For
an illustration of this likelihood function, see Figure 8.6.

Exercises

8.3 Show that rt3rt4 +3st3st4 and 2st3st4 + st3rt4 + st4rt3 are terms arising from
the product of the Jukes–Cantor matrices for times t3 and t4, and deduce
that they can be written as rt3+t4 and st3+t4 , respectively.

8.4 Show that a(t1, t2, t3) and b(t1, t2, t3) are given by

a(t1, t2, t3) = 1+3e−4α(t1+t2) +3e−4α(t1+t3) +3e−4α(t2+t3) +6e−4α(t1+t2+t3)

and

b(t1, t2, t3) = 1+3e−4α(t1+t2) − e−4α(t1+t3) − e−4α(t2+t3) −2e−4α(t1+t2+t3)

Reversibility and independence of root position

With the parsimony method, we only need to search over unrooted tree topolo-
gies. It is much less obvious that the likelihood is independent of the position
of the root, but under certain reasonable assumptions this is true. In fact, two
assumptions suffice. One is that the substitution matrix family is multiplicative
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Figure 8.6 The likelihood function given by (8.12), for n1 = 10, n2 = 20,
n3 = 15, n4 = 17. White and the five grey levels indicate likelihood values in
the ranges separated by 0, 0.001, 0.01, 0.07, 0.3, 0.9, 1. Each square shows
the likelihood for a particular value of t3 (indicated below the square), the
two axes of the square representing t1 and t2, whose ranges are indicated in
the square at the top of the figure.

(8.1), which, as we have seen, holds for the Jukes–Cantor and PAM matrices,
amongst others. The other is that reversibility should hold. This means that

P(b|a, t)qa = P(a|b, t)qb (8.13)

for all a, b and t . It is clear from their symmetry that reversibility holds for
the Jukes–Cantor and Kimura matrices. Reversibility for the PAM matrices fol-
lows from the fact that information about the direction of evolutionary time is
discarded when the counts are being collected: a substitution from an ancestral
residue a to a descendant residue b is treated as equivalent to a substitution in the
reverse direction (see Section 2.8 and the example on the PAM family below).

To show that multiplicativity and reversibility imply that all positions of the
root give the same likelihood, suppose the two nodes below the root node 2n −1
are i and j . From the definition of P(L2n−1| •) in terms of P(Li | •) and P(L j | •) in
Felsenstein’s algorithm, we write the likelihood of the sequences x • at site u as

P(x •
u |T , t •) =

∑
a

qa P(L2n−1|a) =
∑
b,c,a

qa P(b|a, ti )P(c|a, tj )P(Li |b)P(L j |c),
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and hence, using reversibility,

P(x •
u |T , t •) =

∑
b,c

(∑
a

P(c|a, tj )P(a|b, ti )

)
qb P(Li |b)P(L j |c).

By multiplicativity, we can rewrite the inner sum as
∑

a P(c|a, tj )P(a|b, ti ) =
P(c|b, ti + tj ), which means that P is independent of the assignments a of sym-
bols to node 2n −1, and depends only on the total length of the two edges below
the root. Thus the root can be moved freely between i and j , and hence can
be moved anywhere within the tree. This is the ‘pulley principle’ of Felsenstein
[1981a]. It implies that the search for the best tree only needs to be carried out on
unrooted trees when multiplicative and reversible matrix families are being used.

Example: Reversibility of the PAM family

As remarked in Section 2.8, the counts matrix A used to construct the PAMs
is symmetric, i.e. Aab = Aba for all a, b, and since pa = ∑

b Aab/
∑

cd Acd , it
follows that the normalised matrix B satisfies

pa Bab = Aab/
∑
cd

Acd = Aba/
∑
cd

Acd = pb Bba .

Since S(1) is obtained by scaling B, this implies reversibility for t = 1. To show
reversibility of S(n) for all n, suppose we have proved it for all k less than n.
Then, applying reversibility for n −1 and 1:

pa Pn(b|a) = ∑
c pa Pn−1(c|a)P1(b|c) =

∑
c

Pn−1(a|c)pc P1(b|c)

= ∑
c Pn−1(a|c)P1(c|b)pb = Pn(a|b)pb.

Example: A non-reversible matrix family

What might a non-reversible matrix look like? Suppose that for two residues A
and B the substitution A → B occurs more often than B → A. In order for the fre-
quency of the residues to remain constant, there must be balancing substitutions
between other residues. The simplest case is where there are three residues in the
alphabet, with a cyclic substitution pattern, giving the instantaneous substitution
matrix 

 −α α 0
0 −α α

α 0 −α


 . (8.14)

This leads to a t-dependent family

S(t) =

 rt st ut

ut rt st

st ut rt


 ,
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with

rt = 1
3

(
1+2e−3αt/2 cos(

√
3αt/2)

)
,

st = 1
3

(
1− e−3αt/2 cos(

√
3αt/2)+√

3e−3αt/2 sin(
√

3αt/2)
)

,

ut = 1− rt − st .

Exercises

8.5 Show that the above family is multiplicative, has positive entries, and
substitution rates at t = 0 given by (8.14). Find its limiting distribution
and show that reversibility, i.e. (8.13), fails for all t > 0.

8.6 We have shown that reversibility allows the root to be moved to any po-
sition in the tree. What happens when the root is moved to one of the leaf
nodes?

8.4 Using the likelihood for inference

We have now reached the heart of probabilistic phylogeny. Having formulated
an evolutionary model and defined an algorithm for computing the likelihood
from this model, we need to put this machinery to work and infer phylogenetic
properties of sets of data. We now give an overview of probabilistic inference
methods, beginning with the most venerable and widely used of them, maximum
likelihood. We can also use probabilistic methods to assess the quality of the
probabilistic model and any variants we devise, but we defer discussing that till
we have seen some examples of more elaborate models (see Section 8.5).

Maximising the likelihood

One candidate for the ‘best’ tree is the tree that maximises the likelihood. Recall
that the strategy is to search over trees, and for each topology T to find the lengths
t • that maximise the likelihood P(x •

u |T , t •). The topology and the assignment of
edge lengths that give the overall maximum of this likelihood is the desired tree.

Given a small number of sequences, say two to five, it is easy to enumerate
all trees. For each tree, we can write down the likelihood explicitly as a function
of the edge lengths, and maximise it by a suitable numerical technique. This in
essence is what Kishino, Miyata & Hasegawa [1990] do, using Newton’s method
of optimisation [Press et al. 1992]. Their method is intended for maximum like-
lihood phylogeny of protein sequences, and they use PAM matrices.

For a larger number of sequences, the likelihood can be computed by Felsen-
stein’s algorithm (p. 201). Felsenstein [1981a] also gave an EM algorithm for
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finding the optimal edge lengths in this case. Alternatively, we can use a stan-
dard optimiser, such as conjugate gradients, [Press et al. 1992]. This requires the
derivatives of the likelihood with respect to the edge lengths, but this is straight-
forward to compute: we replace P(yk |yα(k), tk) wherever it occurs in (8.10) by its
derivative ∂ P(yk |yα(k), tk)/∂tk .

Even with the best optimiser, maximising the likelihood is computationally
demanding, and it is more so for protein sequences because the core computation
uses a 20×20 substitution matrix rather than a 4×4 one. To tackle large datasets
calls for another strategy; one approach is to use sampling methods.

Exercise

8.7 The maximum likelihood edge lengths can be calculated in certain simple
cases. Show that, for our example of two nucleotide sequences (p. 199),
the ML solution is given by

t1 + t2 = − 1
4α

ln
3n1 −n2

3n1 +3n2
.

Sampling from the posterior distribution

As we have seen, maximum likelihood is computationally taxing. Furthermore,
it is not clear that it is ultimately the best strategy. If we knew the prior P(T , t •),
we could use Bayes’ rule to compute the posterior probability P(T , t • | x •) by

P(T , t • | x
•) = P(x •|T , t •)P(T , t •)

P(x •)
.

The posterior provides the information we really seek, namely how probable each
phylogenetic model is, given the data.

Several authors have used Bayesian methods on small sets of data, where all
tree topologies can easily be enumerated (for example Rannala & Yang [1996]).
Recently Mau, Newton & Larget [1996] have shown how quite large sequence
sets can be handled by sampling from the posterior distribution on the space of
trees and edge lengths using the Metropolis algorithm.

To sample from the space of trees is to pick trees randomly with probabilities
given by some distribution, in this case their posterior distribution. If we have a
large number of samples, then the frequency with which some property of trees is
present in the sample converges, in the limit of a large number of samples, to the
posterior probability of that property according to the model. For instance, if a
particular tree topology is present in some fraction f of the samples, then f is an
estimate for the posterior probability of this topology. We could also determine
the probability that a given group is monophyletic, or that one branch point occurs
between two others, say, by counting the fraction of cases in which the relevant
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condition holds. Such questions cannot easily be tackled by likelihood methods,
since they require integration over variables, and likelihoods are not probability
distributions (see p. 312).

The particular sampling method used by Mau et al., the Metropolis algorithm,
is a sampling procedure that generates a sequence of trees, each from the previous
one. It assumes that a mechanism is available to generate one tree randomly given
another, by sampling from a proposal distribution. Let P1 = P(T , t •|x •) be the
posterior probability of the current tree, and P2 = P(T̃ , t̃ •|x •) that of a proposed
new tree. The Metropolis rule is that the new tree is accepted as the next item
in the sequence if P2 ≥ P1; if P2 < P1, the new tree is accepted with probability
P2/P1. Otherwise the original tree constitutes the next sample (and this repetition
of T , t •, if it occurs, is an important part of the process, since we are going to be
counting the number of samples with particular properties).3

This procedure is guaranteed to sample correctly from the posterior distribu-
tion provided that the proposal distribution is symmetrical, in the sense that the
probability of proposing T̃ , t̃ • from T , t • is the same as that of proposing T , t •
from T̃ , t̃ • (see Section 11.4).

Exercise

8.8 Consider a simplified phylogenetic space consisting of two trees T and
T̃ with probabilities P(T ) and P(T̃ ). If the proposal procedure always
selects the other tree, i.e. the one that is not the current tree, show that
the Metropolis algorithm produces a sequence where the frequencies of
T and T̃ converge to their probabilities.

A proposal distribution for phylogenetic trees

The choice of the proposal distribution is all-important in making the Metropolis
algorithm work well. If the proposed tree is merely randomly selected from the
space of all trees, its posterior probability will generally be small, and there will
be many wasted repetitions. On the other hand, if the proposed tree is too close
to the current tree, many steps will be needed to explore the space of phylogenies
adequately. The art lies in finding a way of proposing trees that are promising
variants of the current one.

Mau et al. suggested a proposal mechanism with two components, one an ad-
justment of lengths of the edges that can also bring about switches in topology
in an interesting way, and the other a reordering of the assignment of sequences
to leaves. The first uses a representation of a tree that they call a traversal pro-
file. This is a diagram completely equivalent to the original tree, but allowing

3 Note also that the Metropolis rule only uses the ratio of P1 and P2, which is fortunate,
because the denominator in Bayes’ rule can only be obtained by integrating over the space
of trees, and is generally an unknown factor.
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Figure 8.7 Above: an example of a tree with its nodes numbered in the
order of the traversal profile. Below: Reconstruction of the tree from the
traversal profile.

more convenient manipulations of the topology. In the traversal profile,4 a node
is placed at a height corresponding to the sum of the edge lengths from the root
to that node. The nodes are regularly spaced horizontally, in the order in which
they are encountered during a traversal of the tree. This traversal is defined as
follows: Beginning at the leftmost leaf, we traverse the tree depth first from left
to right, assigning numbers incrementally, and numbering nodes when we first
come to them. This ensures that, for any node with number k, all its left children
have numbers lower than k, and all its right children have numbers higher than
k. The top diagram in Figure 8.7 shows an example of a tree in which the nodes
have been numbered by their order in the traversal profile.

Given a traversal profile, we can reconstruct the tree by a procedure illustrated
in Figure 8.7. The root is taken to be the highest node (node 10 in the figure).
Edges are then drawn to the highest nodes to the left and the right of the root
(nodes 6 and 16 in the figure). Suppose now we have reached node k. The daugh-
ter nodes of k must lie within the horizontal stretch bounded by any nodes that
are higher than k; within this stretch edges are drawn, as before, to the highest

4 In Mau, Newton & Larget [1996], the nodes are connected by lines of constant slope, rather
than being equally spaced horizontally, as we have chosen to represent them.
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1 2 3 4 51 2 3 4 5

profile change branch switching

1 2 34 51 2 3 4 5

Figure 8.8 The two parts of the proposal mechanism are changes in the
height of the nodes in the profile (left), and reordering of the leaves by
switching branches (right). The former can produce changes in the topol-
ogy, as shown here. The latter does not do this; it just rearranges the existing
topology. However, the change of order of the leaves allows new topologies
to be reached through further steps of the first type.

nodes to the left and right. Thus, in the figure, the region where the right daughter
of node 6 can lie is delimited by the vertical dotted lines. The process stops when
a leaf is reached (the leaves have been marked as hollow circles in the figure).

One part of the proposal procedure of Mau et al. consists of taking the traversal
profile for the current tree and shifting the positions of nodes up and down by an
amount chosen from a uniform distribution within certain bounds. Whenever the
relative heights of nodes are switched a new topology is produced (Figure 8.8).
However, this will never allow leaves which are not adjacent in the traversal order
to be neighbours (but see Exercise 8.10). They therefore give an additional pro-
posal mechanism which achieves this. It reorders the leaves by randomly switch-
ing the direction of the branches at each node. This produces no change in the
posterior probability (so is always accepted), but will lead into a new region of
tree space. Adjusting the heights of the traversal profile does of course produce
changes in the posterior, but these changes vary continuously with the size of the
adjustments, even when there is a change in topology (Exercise 8.9). The pro-
posal mechanism behaves better in this respect than branch-swopping, which is
an intuitively obvious way of modifying trees but has the disadvantage that it is
likely to make large changes in the posterior probability.
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To define the posterior, a prior has to be chosen over trees. As there is little
reliable information available about the distribution of trees, Mau et al. assumed
a flat prior, assigning equal probabilities to all sets of edge lengths t1, . . . , t2n−1

for n sequences, for any tree topology. (Note that this does not imply that all tree
topologies have equal prior probability; see Exercise 8.11.) To ensure a normal-
isable probability distribution, they imposed an upper bound on the total edge
length from root to any leaf.5 They found that they could reproducibly identify
the most probable topologies for datasets of up to 32 sequences. Their method
seems to work best when there is a molecular clock, i.e. when the leaves in the
traversal profile are all at the same height.

Exercises

8.9 Consider the profile change shown in the two left-hand figures in Fig-
ure 8.8. Suppose the two nodes with arrows in the top figure are at heights
h1 and h2, and their heights are switched to h2 and h1. Show that the re-
sulting change in the likelihood tends to zero as h1 − h2 tends to zero.

8.10 Show that the two leaves at the extreme ends of the traversal profile can
become neighbours, but no other non-adjacent pair can.

8.11 The flat prior on edge lengths assigns a prior to any topology that is
obtained by integrating over all possible edge lengths for that topology.
This integral will be defined if, following Mau et al., we impose a bound
on the total edge length from root to any leaf; call this bound B. Con-
sider the case where there is a molecular clock, and show that the tree
with four leaves and topology ((01)(23)) has integrated prior probability
B3/3; show that this integral is B3/6 for the topology ((0(12))3). (Hint:
Define times from the three branch nodes in each tree to the present, and
integrate over these three variables.) This shows that different topologies
can have different priors. Show, however, that if one defines a labelled
history to be a specific ordering for the times of branch nodes relative to
present time (assuming a molecular clock), then all labelled histories for
four leaves have the same prior probability. Extend this to n leaves.

Other phylogenetic uses of sampling

Sampling methods have not only been used for species or gene phylogeny, but
also for inferring the history of populations from a set of present-day individuals.
Kuhner, Yamato & Felsenstein [1995] used a sampling method to pick plausible

5 The limit on edge lengths in the prior might seem an artificial constraint, but it actually has
little effect, because trees with extremely long edges generally have low likelihoods. This is
because the substitution probabilities over a long edge tend to the equilibrium frequencies,
qa ; all correlations with other sequences are therefore neglected.
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trees, T , relating the individuals of the set. Now, the prior on trees depends on
the size of the population, θ . Intuitively, this is because the larger a population
is, the further back we expect to go to find the common ancestor of any two
individuals. Thus, for each tree T , we can use the prior P(T |θ ) as a likelihood
for estimating θ . The sampling process then allows us to accumulate likelihood
data in proportion to P(data|T ), giving, in the limit of many samples, the desired
likelihood function

∫
P(data|T )P(T |θ )dT = P(data|θ ).

The proposal mechanism used by Kuhner, Yamato & Felsenstein [1995] is
closely related to that of Mau, Newton & Larget [1996]. Instead of adjusting the
heights of all nodes in a traversal profile, Kuhner et al. adjust the relative heights
of two nodes, and allow their children to be relabelled. This is therefore a local
version of the two components in the method of Mau et al.. It would be interesting
to know which mechanism samples more effectively.

The prior P(T |θ ) might seem difficult to calculate, since it involves summing
over all trees in the population that could provide possible phylogenies for the
set of present-day individuals. However, there is a remarkably simple way of
evaluating P(T |θ ), based on the idea of running time backwards and allowing
branches to coalesce [Kingman 1982a; 1982b; Hudson 1990]. For a fixed, large,
population size, the probability density of a coalescence in time turns out to be
2/θ . Imagine a horizontal line rising through the tree T , starting from the level of
the leaves. Each time a coalescence occurs, the number of edges will fall by one.
Suppose the time between the coalescence from k to (k − 1) edges is τk . Then
the probability of a coalescence in the interval dt between two of the k(k − 1)/2
pairs of edges is k(k − 1)dt/θ , so (2/θ )exp(−τkk(k − 1)/θ ) is the probability
of coalescence occurring at the end of the period τk and not before. Taking the
product over all intervals τk gives the total probability of the tree

P(T |θ ) =
(

2

θ

)n−1

exp

(
−

k=n∑
k=2

k(k −1)τk

θ

)
.

Closely related to the coalescent is a prior obtained by a simple evolutionary
model, where we think of a tree as being formed by a series of splitting events.
If there is a constant probability density, λ say, of a split occurring in a growing
edge, the splitting is said to follow a Yule process. The resulting prior on trees
has a simple form, being proportional to exp(−λ

∑
ti ), for edge lengths ti (see

Exercise 8.12). This is different from the coalescent prior because it assumes
that all the descendants of the root sequence are present at the leaves, without
omissions or extinctions whereas the coalescent prior treats the species or genes
as being picked randomly from a large pool. Which prior is more appropriate
depends on whether a taxonomist is looking at a small closely related family or a
wide-ranging selection.
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Exercises

8.12 Under a Yule process, the probability density for no split occurring dur-
ing the interval 0 to t is given by the limit of (1 − λδt)t/δt as δt → 0,
and is therefore exp(−λt) . Deduce that the Yule prior for a tree with n
leaves is proportional to exp(−λ

∑
ti ), where the ti are all edge lengths.

Following the same reasoning as in Exercise 8.11, show that the priors
for all labelled histories on four leaves are equal under the Yule prior.
Extend this to the case of n leaves.

8.13 Assuming a molecular clock, calculate the expected lengths of all the
branches of rooted trees with two, three or four leaves under the Yule
prior with splitting rate λ and the coalescent prior with population size
θ . (Hint: Consider the case of three leaves. Let the two short edges have
length s and the long edge length t . The total edge length of the tree is
then 2t + s, so the tree probability for the Yule process is proportional
to exp(−λ(2t + s)). Check that the coalescent probability for the tree is
proportional to exp(−(2t +4s)/θ ). Now compute the means of s and t for
these distributions in the standard manner, integrating over all 0 ≤ t ≤ ∞
and 0 ≤ s ≤ t .)

The bootstrap revisited

The bootstrap, p. 180, can be applied to maximum likelihood, just as to other tree
building methods. Artificial data are generated by drawing columns randomly
with replacement from the true dataset, and then the maximum likelihood tree is
found for the artificial dataset. The frequency of occurrence of some feature over
many replications of this procedure measures the confidence we have in inferring
it by maximum likelihood.

One therefore obtains information similar to that obtained by sampling from
the posterior, and in fact the two methods are related: For some phylogenetic
models, the bootstrap confidence for a feature approximates the posterior proba-
bility of that feature, assuming a flat prior over trees. To gain some intuition for
why this is so, consider the simple case of maximum likelihood estimation of the
probability of getting a head in a coin toss, on the basis of a set of data.

Example: Bootstrapping the results of a coin toss experiment

A coin is tossed N times, giving m heads (H) and n tails (T). The posterior dis-
tribution for the probability p of a head, assuming a flat prior, is given by the
Dirichlet distribution

P(p|mH,nT) = pm(1− p)n (N +1)!

m!n!
. (8.15)

A bootstrap trial starts by drawing a set of N coin tosses from the data, with
probability m/N of H, n/N of T. If there are k heads in this set, the maximum
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likelihood probability estimated from the set is pM L = k/N . Thus

P
(

pM L = k/N
) =

( m

N

)k ( n

N

)N−k
(

N

k

)
. (8.16)

For large N , we can approximate this by the distribution

P
(

pM L = p
) =

( m

N

)N p ( n

N

)N−N p
(N +1)

(
N

N p

)
(8.17)

where the factor (N +1) appears because we have replaced (N +1) terms of the
binomial expansion with a density on [0,1]. For large N we can approximate
(8.15) by a normal distribution (p. 301):

P(p|mH,nT) � (N +1)√
2π N p(1− p)

exp

(
− (m − N p)2

2N p(1− p)

)
, (8.18)

and similarly (8.17) becomes

P
(

pM L = p
) � (N +1)√

2πmn/N
exp

(
− (m − N p)2

2mn/N

)
. (8.19)

It is a straightforward exercise to show that, if N is large enough, i.e. if there
is plenty of data, these two distributions approximate one another closely (Exer-
cise 8.14).

This result can easily be extended to multinomial distributions. In phyloge-
netic examples, the probability of drawing particular leaf assignments to make
the bootstrap dataset is governed by a multinomial distribution. We consider next
a case where this distribution collapses to a binomial, and the coin tossing exam-
ple above can be directly applied.

Example: The bootstrap for a simple tree

Suppose we have two nucleotide sequences which we wish to model using a tree
with two leaves and the Jukes–Cantor substitution matrices. We can place the
root at one of the leaves, and set t to be the length of the edge connecting the two
leaves. Let ns denote the number of sites in the original data set for which the
two leaves take the same nucleotide, and let nd be the number of sites where they
differ; if there are N sites altogether, nd + ns = N . Extending the calculation in
(8.9), and assuming a flat prior on e−αt , we can write the posterior probability as

P(e−αt |data) = (1+3e−αt )ns (1− e−αt )nd /Z , (8.20)

where Z is a normalising factor from Bayes’ theorem. Suppose nXY denotes the
number of leaf assignments of type XY in the original dataset, and mXY the corre-
sponding number in a bootstrap dataset. The probability of drawing the bootstrap
dataset is given by the multinomial distribution

P(m •|n •) =
(nAA

N

)mAA (nAC
N

)mAC
. . . .

N !

mAA!mAC! . . .
. (8.21)
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Now the maximum of the likelihood for the bootstrap dataset is given by an ob-
vious extension of Exercise 8.7 as

exp(−αt M L ) = 3ms −md

3N
, (8.22)

where ms , md are the number of equal and differing leaves in the bootstrap set.
Thus t M L depends only on ms and md , and not on the individual counts mXY, and
all P(m •|n •)s given by (8.21) that have the same ms and md can be summed in
determining the frequency with which the bootstrap value t M L will occur. Sum-
ming over these terms gives

P

(
e−αt M L = 3ms −md

3N

)
=

(ns

N

)ms
(nd

N

)md
(

N

ms

)
. (8.23)

Comparing (8.20) with (8.15) and (8.16) with (8.23), and noting that (8.22) im-
plies ms = N (1 + 3exp(−αt M L ))/4 and md = 3N (1 − exp(−αt M L ))/4, we see
that the posterior for this tree approximates the bootstrap, just as for coin tossing.

Thus the bootstrap distribution can, for certain phylogenetic models, and with
enough data (large enough N ), give a good approximation to the posterior. How-
ever, the labour involved in evaluating a large number of maximum likelihood
trees makes this use of the bootstrap an unattractive alternative to sampling. The
bootstrap is probably more useful for non-probabilitistic tree building methods.
However, the relationship between the bootstrap and the posterior does give some
insight. In particular, it helps to counter objections raised by Hillis & Bull [1993].
These authors generated sample datasets from a tree and found the distribution of
the frequency with which a given tree topology was reconstructed by parsimony;
for each sample dataset they also obtained the bootstrap frequency of that topol-
ogy. They found the distribution of bootstrap frequencies was far wider than that
of the original samples. This is unsurprising, however, since sampling followed
by bootstrapping adds variance from two steps. In fact, the bootstrap distribution
in their simulations has the correct variance given the data [Efron, Halloran &
Holmes 1996], i.e. when viewed as a posterior distribution.

Exercise

8.14 Show that, for sufficiently large N , P(p|mH,nT) given by (8.18) and
P(pM L = p) given by (8.19) are either both very small or else take nearly
equal values.

8.5 Towards more realistic evolutionary models

The evolutionary models used so far have made some fairly drastic simplify-
ing assumptions (p. 194). The restriction to ungapped alignments discards useful
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phylogenetic information given by the pattern of deletions and insertions. It is
also clearly incorrect to model each site in a sequence with the same substitution
matrix, as assumed in (8.11), since there are different constraints at different sites,
imposed by structure of proteins, base pairing of RNA, and so on. To focus on
a single basic property of sites, it has long been known that substitutions occur
much more rapidly at some sites than others [Fitch & Margoliash 1967b]. We
describe first some attempts to model this behaviour by allowing variable rates of
evolution, and then turn to ways of treating gapped alignments.

Allowing different rates at different sites

The basic strategy of maximum likelihood is to pick a tree T and a set of lengths
t • and compute the likelihood over all sites, using

P(x •|T , t •) =
N∏

u=1

P(x •
u |T , t •).

Yang [1993] suggested introducing a site-dependent variable, ru , that scales all
the t • at the site u. If we knew the values of ru at each site, we could write the
likelihood as

P(x •|T , t •,ru) =
N∏

u=1

P(x •
u |T ,rut •).

Since we generally do not know the values of ru , our best strategy is to assume a
prior for them, and integrate over all values of each r . Yang [1993] used a gamma
distribution g(r ,α,α) as his prior; this has mean 1 and variance 1/α, and therefore
allows a range from a tight distribution (α large) to a broad one (α small). The
likelihood is

P(x •|T , t •,α) =
N∏

u=1

∫ ∞

0
P(x •

u |T ,r t •)g(r ,α,α)dr . (8.24)

For each fixed T , this likelihood is maximised with respect to t • and α. Using
a set of globins, Yang derived an optimal tree for four mammals, and showed
that the log likelihood decreased significantly when variable times were allowed,
compared to the fixed times at all sites used in the original methods of Felsenstein
[1981a].

The integrals in (8.24) can be evaluated analytically (they are just gamma func-
tion integrals), but the number of terms in the resulting expression grows expo-
nentially with the number of sequences, so optimisation can be computationally
slow. Yang [1994] therefore suggested an approximate method which replaces
the integral by a discrete sum. The interval (0,∞), is subdivided into m intervals
each containing equal areas of the gamma distribution g(r ,α,α). Let rk denote
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the mean of the gamma distribution in the kth interval. Then we define

P(x •|T , t •,α) =
N∏

u=1

k=m∑
k=1

P(x •
u |T ,rkt •)/m. (8.25)

Yang found m = 3,4 sufficed to give a good approximation to the continuous
version of the model. Since only m times as much computation is required as for
non-varying sites, this is a more tractable algorithm.

Here, as in the continuous model, α is estimated from the given data by max-
imising the likelihood. This may be acceptable if the data are plentiful, but for
smaller amounts of data this approach suffers from the problems encountered
with profile HMMs when estimating probabilities from counts. It may therefore
be better to infer a value of α from a large data set of trusted phylogenies.

Felsenstein & Churchill [1996] proposed an algorithm similar to Yang’s, but in
hidden Markov model format. Each position in their model corresponds to a site
in the alignment. At each position, there is a number of states, each correspond-
ing to a different rate of evolution. There are transitions between all possible
rate-states at adjacent positions. If state i is picked at site u, it contributes a term
P(x •

u |T ,ri t •) to the likelihood, ri being the rate for state i . A version of the for-
ward algorithm can be applied to give the summed probability for all possible
assignments of rates. The difference between this and the forward algorithm for
HMMs, p. 59, is (1) that a path through the model is a set of choices of rates
rather than an alignment of a sequence to the model, and (2) that the probabilities
are not emission probabilities from a state that sum to 1, but likelihoods for the
whole set of sequences at a site. Formally, however, the two algorithms are the
same, if we set el(xi ) and akl in the HMM forward algorithm to be the likelihood
at site i for rate l, and the transition probability from rate k to rate l, respectively.

The total likelihood from Felsenstein & Churchill’s hidden Markov model
would be identical to that given by Yang’s discrete model, (8.25), except that
the hidden Markov model includes the transition probabilities akl between its
states. These transition probabilities can capture any tendency for particular pat-
terns of rates to occur in successive sites. In proteins, substitutions occur more
freely at surface sites in a protein, but the pattern of rates will depend on the type
of secondary structure. In loops, we might expect a run of exposed sites, which
could be modelled by making transitions between states for fast rates more prob-
able. However, beta sheets will show an alternating pattern of buried and exposed
residues, and helices will show a rough triplet pattern. A more elaborate model
architecture would be needed to represent these structural features.

Evolutionary models with gaps

We turn now to the problem of allowing gaps in the alignment of the leaf se-
quences. Gaps can be crudely introduced by treating ‘−’ as an extra character
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in the alphabet of K residues and replacing the K × K -sized substitution matrix
for residues with a (K + 1) × (K + 1)-sized matrix that includes the gap charac-
ter. This has the usual fault of making gaps at adjacent sites independent, and
therefore not allowing for the tendency for gaps to occur in blocks.

A better model can be made by introducing delete or insert states: Allison,
Wallace & Yee [1992b] have shown how this could be carried out in princi-
ple to give affine-type gaps in phylogenies. Their approach, via minimum
description lengths, is closely related to maximum likelihood. Unfortunately,
treating affine gap penalties this way seems computationally intractable at
present.

Another approach, through a model of fragment substitution [Thorne, Kishino
& Felsenstein 1992], has the attraction of a degree of biological plausibility, but
has only been applied so far to the case of two sequences.

We describe now a type of model that does allow affine-type gap penalties to be
handled in a computationally reasonable way. A tree HMM [Mitchison & Durbin
1995] uses a profile HMM architecture, and treats paths through the model as the
objects that undergo evolutionary change [Mitchison 1998].

We assume that sequences can be aligned to a hidden Markov model with an
architecture simpler than that of the profile HMM of Krogh et al. [1994]; it has
only match and delete states, which we denote by Mk and Dk , where k is the
position in the model. Suppose a sequence y is the ancestor of a sequence x ; we
can think of these two sequences as lying at two nodes connected by an edge in
a tree with length t . Suppose both sequences have been aligned to our model, so
each follows a prescribed path through it, emitting specified residues at the match
states. Consider the segment of the model shown in Figure 8.9. Both sequences
use the match state Mk , and x emits the residue xi at Mk , and y emits yj there.
The probability of the substitution yj → xi is taken to be P(xi |yj , t), just as in
standard maximum likelihood phylogeny.

Next, consider the possibility that y uses different transitions from x , so it does
not pass through the same state sequence as x . In Figure 8.9, at position k, x goes
from match to delete states, Mk → Dk+1, whereas y goes to the next match state,
Mk → Mk+1. We assign a probability to this substitution of transitions analogous
to the substitution of emissions from yj to xi . Writing ‘MM’ for a match-to-
match transition, and ‘MD’ for a match-to-delete, we denote this probability by
P(MD|MM, t).

At position k + 1 in Figure 8.9, x makes a transition Dk+1 → Mk+2, which
we abbreviate to ‘DM’, and y makes an MM transition Mk+1 → Mk+2. The as-
sumption we make here is that x behaves independently of y wherever the two
sequences start from different states. Thus if a deletion occurs in x relative to
y, the choices it makes of DD or DM during its course are what determine the
length of the deletion, and these are assumed to be under the control of a muta-
tional process that operates independently of the sequence y. We assume that the
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Figure 8.9 A segment of the HMM, showing the paths followed by x and y.

probabilities of transitions in the independent path used by x are given by priors;
so the transition Dk+1 → Mk+2 for x has probability qDM.

We can represent both substitutions and priors for transitions in a 4 × 4 ma-
trix, corresponding to the four transitions that can occur in this particular HMM
architecture, namely MM, MD, DM and DD. However, this is not a standard sub-
stitution matrix because the probabilities in a row do not sum to one. Instead, it
breaks up into four 2 × 2 blocks, determined by the state (match or delete) that
the ancestral and descendant sequences begin their transition from:




(
P(MM|MM, t) P(MD|MM, t)
P(MM|MD, t) P(MD|MD, t)

) (
qDM qDD

qDM qDD

)
(

qMM qMD

qMM qMD

) (
P(DM|DM, t) P(DD|DM, t)
P(DM|DD, t) P(DD|DD, t)

)

.

Let us see how this works in the case of the tree HMM shown in Figure 8.9.
At position k we have terms qyj P(xi |yj , t) from emissions, qyj coming from the
root prior for y. Transitions contribute qMM P(MD|MM, t), where qMM is the
root prior for the transition MM. If it seems confusing to include priors both
in the above substitution matrix and in the expression for the tree probability,
note that they have the same origin: where an aspect of sequence behaviour is not
explained by an ancestor, we fall back on priors. Thus at position k +1, transitions
give qMMqDM, and the two prior terms arise because both sequences are here
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Figure 8.10 A segment of a tree HMM for a tree with four leaves. The paths
taken by the leaf sequences are shown as solid arrows. One possible assign-
ment of ancestral paths is shown by dotted arrows. The tree is shown below
with the numbering of its nodes (left), with the transitions that occur in the
central position of the model (centre), and with root indicated wherever the
prior is used in place of substitution probabilities (right), i.e. wherever a
parent and child sequence begin from different states.

behaving independently of their ancestors (though of course we know that x’s
ancestor is y whereas the latter’s ancestor is unspecified).

Suppose now that we have an arbitrary tree T with edge lengths t • and se-
quences x • at its leaves that are all aligned to the HMM. By analogy with the
probabilistic model for ungapped alignments (8.10), we define P(x •|T , t •) by
multiplying the substitution probabilities for all edges in T , including terms for
priors at the root. However, with the tree HMM there are two types of substitu-
tion probabilities to be multiplied, those for emissions and those for transitions.
To obtain the total probability for the ungapped model, we sum over all possible
assignments of residues to ancestral nodes at each position. With the tree HMM,
we likewise sum over all possible assignments of the relevant variables, which in
this case are both emissions and transitions. If we define a path not only by the
transitions it uses, but also by the symbols it emits, then this amounts to saying
that we sum over all paths used by ancestral sequences.

As an illustration of the computation of some of the terms in the likelihood,
see Figure 8.10. At the central position in the model, the transitions DD, DM,
MM and DM occur at leaves 1, 2, 3 and 4, respectively. These are assumed to be
given by the known alignments of these leaf sequences. The ancestral transitions
are not known, however, and have to be summed over. The dotted arrows show
one set of ancestral paths; there will be many other possible combinations. At the
central position in the model, the given set of ancestral paths implies the transition
tree shown below (centre). We can compute its probability from our transition
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matrix as

Probability of tree = qMM P(MM|MM, t6)P(MM|MMt3)

×qDM ×qDM P(DD|DM, t1)P(DM|DM.t2).

The three terms separated by product signs can be regarded as the probabilities
of subtrees created by breaks along edges. These breaks occur where there is a
change in the state that a transition starts from.

All these terms can be summed by a dynamic programming algorithm; it is
much slower than the forward algorithm for profile HMMs, however, because of
the need to keep track simultaneously of the preceding state used by a path and
the states used by its ancestral path. This imposes a computational burden that
grows exponentially with the number of sequences, and the algorithm is there-
fore only suitable for small numbers of sequences. There is, however, a good
approximation to this likelihood [Mitchison 1998] that be computed with a cost
comparable to that of the original algorithm of Felsenstein [1981a].

Evaluating different probabilistic models

One problem with developing ever more complex models is that it may not be
clear how much is gained by the added model structure. If a model M2 is more
complex than another model M1, the maximum of M2’s likelihood may be larger
than that of M1 (indeed this must generally be true when M2 is an elaboration
of M1, containing M1 as a special case). However, M2 may be a poorer model
in the sense that the likelihood is non-negligible only for a very narrow range of
parameter values. Instead of comparing the maxima of likelihoods, therefore, a
better approach is to compare the probabilities P(D|M1) and P(D|M2) obtained
by integrating over all the parameters of each model. More precisely, if M1 has
parameters θ •, with prior probabilities P(θ •), we have

P(D|M1) =
∫

P(D|M1,θ )P(θ •)dθ1 . . .dθn

and similarly for P(D|M2). The probability P(D|M) is sometimes called the
evidence for the model M given the data [MacKay 1992]. If the non-negligible
contributions to P(D|M) come from a small region of parameter space, with prior
probability Pr , this sets a bound P(D|M) < maxθ P(D|M ,θ )Pr , and P(D|M)
will be small. The natural way to compare the two models M1 and M2, taking into
account their prior probabilities P(M1) and P(M2) is to compute the posterior
probability of M1 given by

P(M1|D) = P(D|M1)P(M1)

P(D|M1)P(M1)+ P(D|M2)P(M2)
. (8.26)

An alternative method for assessing models was proposed by Goldman [1993],
following Cox [1962]. Let L̂1(D), L̂2(D) denote the maximum likelihoods of the
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data D for the models M1 and M2, respectively, each maximum being evaluated
independently of the other model (the maxima may occur at different values of
the parameters they share). Let

� = log(L̂2(D))− log(L̂1(D)).

For the reasons mentioned above, the value of � is not in itself a good indicator
of any superiority in M2. But if we now simulate datasets Di from M1, using
the values of the parameters of M1 that gave the maximum likelihood for D,
we can ask whether the distribution of values of �i for the simulated sets Di

shows the original value � to be typical (e.g. to lie within the 95% bounds of the
distribution), or to exceed almost all of the the �i . If the latter is the case, the
more complex model M2 has captured some aspect of the data that M1 cannot
mimic, and M1 can be rejected.

This method is sometimes called the parametric bootstrap, and is a more pow-
erful test than the plain bootstrap defined earlier (p. 180), and therefore more
appropriate as a significance test for probabilistic models. Goldman shows how
the parametric bootstrap can be used to compare a phylogenetic model M1 of
current interest with a very parameter-rich model, M2, that assigns probabilities
to all possible sets of residues at a site. The following example shows how the
method works in a much simpler situation, and also illustrates Bayesian model
comparison on the same data.

Example: Comparison of two substitution matrix models

Suppose there are two types of residue A and B, and that the two models for
substitution are M1, with one parameter p(

1− p p
p 1− p

)
, (8.27)

and M2 with the two parameters p1, p2(
1− p1 p1

p2 1− p2

)
. (8.28)

We first create a basic set of data, D, by sampling from M2 with parameters
p1 = 0.5, p2 = 0.4. We suppose that we have a total of N = 500 As and Bs,
randomly chosen with equal probability, and we derive residues from them using
the conditional probabilities given in matrix (8.28). We denote by nAA and nAB
the number of As and Bs, respectively, derived from an A, and by nBB and nBA the
number of Bs and As derived from a B. The values of p1 and p2 are quite close, so
we expect the data to fit not too badly to both M1 and M2; the question is whether
either of our tests recognises a potentially better fit to M2.

Given this dataset D, we determine the maximum likelihood value of p for
M1, and simulate 1000 sets of data Di from M1. For each set, we compute �i

and accumulate the distribution, shown in Figure 8.11 as the histogram. The thin
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Figure 8.11 The example of two substitution matrices given in the text. The
histogram shows the distribution of the log likelihood differences �i for
simulated data. The value of � for the original data is shown as the thin
vertical bar.

vertical bar marks the value of � for the basic dataset D. This gives us an estimate
of P(�i < �) which in this case is 0.985. This tells us that D lies outside the
95% bounds of the distribution, so M1 is rejected, and we deduce that the two-
parameter model M2 is appropriate.

If we repeated this whole experiment, beginning with sampling M2 to obtain a
new dataset D, we will get a distribution of values for P(�i < �). It is this dis-
tribution which we now compare with the distribution of Bayesian probabilities.
To obtain these, we assume a flat prior for all parameters, so

P(D|M1) =
∫

P(D|M1, p)dp

= β

∫
pnAB+nBA(1− p)nAA+nBBdp,

where β is a binomial factor shared by both P(D|M1) and P(D|M2). The corre-
sponding expression for P(D|M2) is

P(D|M2) = β

∫
pnAB

1 (1− p1)nAA pnBA
2 (1− p2)nBBdp1dp2.

These integrals can be expressed in terms of factorials; see (11.6):

P(D|M1) = β(nAB+nBA)!(nAA+nBB)!

(N +1)!
,

P(D|M2) = βnAB!nBA!nAA!nBB!

(nAB+nAA)!(nBA+nBB)!
,

from which P(M2|D) can be computed using (8.26), assuming equal prior
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Figure 8.12 Comparison of the models with one and two parameters. For
100 datasets D of size 500, the Bayesian probability P(M2|D) is plotted
against the Cox confidence value P(�i < �) estimated from the histogram
shown in Figure 8.11. The 95% confidence limit is shown as a dashed hor-
izontal line, and the value P(M2|D) = 0.5 is shown by a dashed vertical
line.

probabilities for P(M1) and P(M2). Figure 8.12 shows the distribution of values
of P(M2|D) obtained with 100 datasets D, plotted against the estimated value of
P(�i < �). For most of the points where the latter probability exceeds 0.95, so
M1 is rejected with 95% significance, we also find P(M2|D) > 0.5, indicating a
preference for M2. These tests, very different in their character, therefore show
some agreement on these particular data. However, when N , the number of data
points in D, is increased, the Bayesian method often prefers M1 when it is re-
jected by the parametric bootstrap, and the reverse tendency is seen with small
numbers of data points. The relationship between the two methods deserves to
be explored further, particularly in view of the increasing use of likelihood ratio
methods [Huelsenbeck & Rannala 1997].

8.6 Comparison of probabilistic and non-probabilistic
methods

For the remainder of this chapter, we return to the phylogenetic methods of the
previous chapter, namely parsimony and pairwise distance methods, and give
them a probabilisitic interpretation.

A probabilistic interpretation of parsimony

Suppose we are given a set of substitution probabilities P(b|a), in which we ne-
glect the dependence on the length t . We can obtain a set of substitution costs
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by setting S(a,b) = − log P(b|a). If we use these costs with weighted parsimony,
then, as Felsenstein [1981b] pointed out, the minimal cost at site u for the whole
tree T obtained by the weighted parsimony algorithm (p. 175) can be regarded
as an approximation to the likelihood. In fact, it is the Viterbi approximation to
the full probability P(x1

u , . . . , xn
u |T ) given by (8.10). Just as the full probability

sums over all paths in HMMs, whereas the Viterbi method finds the most proba-
ble path, so the probability given by (8.10) sums over all assignments of residues
to ancestral nodes whereas parsimony, by minimising the sum of the negative
probabilities − log P(b|a), finds a set of ancestral assignments that maximise
the probability. The correspondence is not complete, because the equivalent of
the probabilistic model’s root distribution is not usually included in parsimony.
However, if we assume this distribution is flat, then it contributes a constant term
which can be neglected in computing the parsimony optimum of the tree.

Not all sets of costs S(a,b) can be realised as probabilities in this way. How-
ever, the costs of traditional parsimony, i.e. 1 for any substitution and 0 for iden-
tical residues, can readily be interpreted as log probabilities. In fact, any substitu-
tion matrix with probabilities α down the diagonal and β elsewhere, with β < α,
will do. For then parsimony using S(a,a) = − log(α) and S(a,b) = − log(β), for
a �= b, will be equivalent to traditional parsimony (see Exercise 8.15).

Parsimony is an attractive method because of its speed. In fact, the main com-
putational gain of parsimony is that it does not require the optimisation of edge
lengths that maximum likelihood uses. If we interpret parsimony as the Viterbi
approximation to maximum likelihood, then it achieves this simplification by
discarding the time parameter t in P(a|b, t). This can have unfortunate conse-
quences, as the following example shows.

Example: Comparison of parsimony and ML

A simple method of testing the performance of tree-building algorithms is to
generate trees probabilistically, by sampling, and then see how often a given al-
gorithm reconstructs them correctly. The sampling process works by picking a
residue a at the root, with probability qa , then accepting a substitution to b along
the edge down to node i with probability P(b|a, ti ), and so on, working down the
tree. This generates an assignment of residues at the leaves; sequences of length
N are generated by N independent repetitions of this procedure. For an unrooted
tree, any node can be picked as a root and the procedure carried out. Provided the
generating model is reversible, the choice of node for root is irrelevant.

If the same probabilistic model is used to reconstruct the tree, then because of
its consistency, maximum likelihood should tend to reconstruct the tree correctly
in the limit of a large amount of data. The interesting question is how well other
algorithms perform at the task.

The tree with four leaves shown in Figure 8.13 has been the workhorse of
many such simulation studies. Of particular interest is the case where two sister
leaves have short edges, and the other two long edges. This case was first studied
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Figure 8.13 Top: An unrooted tree with very unequal edge lengths. Mid-
dle row: The original tree T1, with the two alternative unrooted trees (T2
and T3). Bottom row: A particular assignment of residues to the numbered
leaves, shown for topologies T1 and T2.

by Felsenstein [1978a] and Cavender [1978], who showed that parsimony gave a
wrong answer even with large amounts of data. Following Felsenstein, we assume
for simplicity that the alphabet has two characters, {A,B}, with the substitution
matrix6

(
1− p p

p 1− p

)
. (8.29)

We take p = 0.3 for leaves 1 and 3, p = 0.1 for leaves 2 and 4, and p = 0.09 for
the edge connecting the leaves. This tree is drawn in Figure 8.13.

6 This can be made into a multiplicative matrix family by putting p = 1
2 (1 − exp(−αt)), but

we do not use this here.
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There are three possible unrooted trees on four leaves (p. 165); we call the orig-
inal tree T1 and the other two possibilities T2 and T3. The tables below show the
result of 1000 test runs with various sequence lengths, N , reconstructing sampled
trees with maximum likelihood or parsimony. The columns show the number of
times that each Ti was preferred.

Reconstruction of trees by maximum likelihood:

N T1 T2 T3

20 419 339 242
100 638 204 158
500 904 61 35

2000 997 3 0

Reconstruction of trees by parsimony:

N T1 T2 T3

20 396 378 224
100 405 515 79
500 404 594 2

2000 353 646 0

Note that as N increases, T1 is increasingly preferred by maximum likelihood,
as would be expected. This is not true for parsimony, where a marked bias in
favour of T2 increases with N . To see why parsimony fails, consider the assign-
ment A, A, B, B to leaves 1,2,3 and 4 respectively (left figure of the bottom row in
Figure 8.13); this will occur quite often with the given edge lengths because sub-
stitutions are likely to occur on the long edges to leaves 3 and 4, whereas leaves
1 and 2 are close. This assignment has a parsimony cost of two mismatches in
tree T1, but needs only one mismatch in tree T2 (right figure of bottom row) if
a substitution occurs along the ‘bridge’ between nodes 5 and 6. Maximum like-
lihood is not caught out in this way. When the edges have the correct lengths,
substitution between nodes 5 and 6 is improbable because the edge is short. So
the most probable explanation for the assignment needs two substitutions in T2 as
in T1. This shows very clearly the drawbacks of the time-independence implicit
in parsimony.

The tree in this example may be regarded as somewhat pathological, since the
lengths differ considerably between terminal edges, and the tree strongly contra-
venes a molecular clock assumption. However, there are examples of trees with
five leaves that do satisfy a molecular clock, and yet are incorrectly reconstructed
by parsimony [Hendy & Penny 1989].
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Figure 8.14 The edges along the shortest path connecting the two leaves 1
and 3 are shown in bold.

Exercise

8.15 Show that finding the most parsimonious tree using the costs S(a,a) =
− log(α), S(a,b) = − log(β), for a �= b, is equivalent to traditional parsi-
mony with a mismatch cost of 1.

Maximum likelihood and pairwise distance methods

We return now to pairwise distance methods, and explore a link between them
and probabilistic modelling.

Suppose we are given a tree T with edge lengths t •, and we sample sequences
of length N at the leaves, as described on p. 225, using a multiplicative, reversible
substitution matrix. Pick two leaves i and j . It is easy to see that the sampled
sequences we get at these leaves are also samples from the ‘stripped-down’ tree
which is left when all edges are removed except those on the path connecting i
and j (see the leftmost diagram in Figure 8.14). This follows because only the
sampling steps made along the edges from the root down to i and j are relevant
to the choice of residues at i and j . Furthermore, the parts of the tree above the
top node of the stripped-down tree (node 8 in Figure 8.14) are irrelevant because
the distribution at the top node is the same as that at the root, by reversibility.

Using multiplicativity, we can sum all the edge lengths down each of the paths
from the top node to i or j . For instance, given the tree shown in Figure 8.14,
with i = 1, j = 3, multiplicativity implies

P(a1|a8, t1 + t6) =
∑
a6

P(a1|a6, t1)P(a6|a8, t6)

where we are using ak to denote a residue at node k. This implies that, given some
choice of a8, samples made along an edge of length t1 + t6 will pick residues at
leaf 1 with the same probabilities as samples made successively at node 6 and
then at leaf 1 (see central diagram in Figure 8.14).
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Reversibility implies that we can go further and ‘straighten out’ the stripped-
down tree by reversing one of its legs. For instance, given the central tree in
Figure 8.14 and a root distribution q , the probabilities of residues a1 and a3 are
the same as if a3 were picked with probability q , and a1 then picked by sampling
from the tree with one edge of length t1 + t6 + t7 + t3 (see the right-hand diagram
in Figure 8.14). This follows because∑
a8

P(a1|a8, t1 + t6)P(a3|a8, t7 + t3)qa8 =
∑
a8

P(a1|a8, t1 + t6)P(a8|a3, t3 + t7)qa3

= P(a1|a3, t1 + t6 + t3 + t7)qa3 .

For the general tree, suppose the edge lengths linking i to j are tk1 , tk2 , . . . , tkr .
Then our sampling argument shows

P(xi
u , x j

u |T , t •) = qx j
u

P(xi
u|x j

u , tk1 + tk2 + . . .+ tkr ).

Define the maximum likelihood distance[Felsenstein 1996] by

d M L
i j = argmax

t

{∏
u

qx j
u

P(xi
u|x j

u , t)

}
,

with the product taken over all sites u. Since the term qx j
u

is independent of t , we
can write this as

d M L
i j = argmax

t

{∏
u

P(xi
u|x j

u , t)

}
. (8.30)

Then, when N is large, the consistency of maximum likelihood (p. 312) implies

d M L
i j � tk1 + tk2 + . . .+ tkr . (8.31)

If the probabilistic model is correct, therefore, maximum likelihood distances
between the leaf sequences should be very close to additive, given a large amount
of data. Now we know that neighbour-joining correctly reconstructs an additive
tree, so it follows that neighbour-joining will also correctly reconstruct any tree,
if we use maximum likelihood distances derived from a multiplicative, reversible
model, and if there are plenty of data (and, of course, if the underlying proba-
bilistic model is correct). The example below shows that neighbour-joining does
indeed do as well as maximum likelihood for the tree in Figure 8.13 that parsi-
mony failed at so conspicuously.

Neighbour-joining is in general far faster than any probabilistic approach,
avoiding as it does the need to search through the space of trees, so it is tempt-
ing to think that we could discard probabilistic methods altogether. However, this
neglects the power of such methods to assess the reliability of trees, and also to
evaluate the plausibility of the model itself, using the posterior probability of the
model. Neighbour-joining, or other distance methods, should therefore be thought
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of not as a replacement for probabilistic methods, but as a means of generating
plausible trees, given such a model. The tree it provides might, for instance, pro-
vide a good starting point for a sampling procedure.

Example: Reconstruction of a tree by neighbour-joining

As an example of the successful performance of neighbour-joining, data from the
tree in Figure 8.13 were simulated as described on p. 225, using the substitution
probabilities from the matrix (8.29). Maximum likelihood distances were derived
using this same matrix, and then neighbour-joining was used to construct a tree.
The number of times this procedure yielded each of the possible three unrooted
trees is shown below:

Reconstruction of trees by neighbour-joining:

N T1 T2 T3

20 477 301 222
100 635 231 134
500 896 85 19

2000 995 5 0

Clearly neighbour-joining generates the correct tree, T1, with high reliability,
given plenty of data. There is, in fact, little reason to favour maximum likelihood
over neighbour-joining in this particular test.

We conclude this section by looking briefly at some particular cases of maxi-
mum likelihood distances. For DNA, the Jukes–Cantor model leads to a simple
distance formula, for Exercise 8.7 implies that d M L = − 1

4α
loge(1 − 4 f

3 ), where
f is the fraction of sites where nucleotides differ. The Jukes–Cantor distance is
usually expressed not in time units, but in terms of the expected number of sub-
stitutions over the length d M L . From the rate matrix (8.2), we see this number is
3αd M L = − 3

4 ln(1− 4 f
3 ).

The Kimura matrix, (8.6), also leads to a compact expression for distance.
Kimura [1980] defines Q to be the fraction of transversions, P the fraction of
transitions, in an alignment of two sequences. He then sets st = Q/2 and ut = P ,
in the notation of (8.6), from which it follows, after a little manipulation, that
αt = − 1

2 log(1−2P − Q)+ 1
4 log(1−2Q), and βt = − 1

4 log(1−2Q). From (8.5),
the expected total number K of substitutions over an edge of length t is (2β +α)t ,
so

K = (2β +α)t = − 1
2 log(1−2P − Q)− 1

4 log(1−2Q).

K is the Kimura distance. The way it is derived can be interpreted as follows:
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Write the log of the likelihood in (8.30) as∑
u

log P(xi
u|x j

u , t) = N ((1− P − Q) logrt + Q/2logst + P logut + Q/2logst ) ,

where N is the total number of aligned sites. Maximising this log likelihood is
equivalent to minimizing the relative entropy of the probabilities rt , st , ut , st oc-
curring in a row of the Kimura matrix (8.6) with respect to the frequencies of
the corresponding substitution types, 1 − P − Q, Q/2, P , Q/2. We know (Fig-
ure 11.5) that the relative entropy is minimised when these sets of probabilities
are equal, which implies Kimura’s equations st = Q/2 and ut = P .

Now, the minimum relative entropy cannot be achieved in general if we min-
imise over t alone. There may not be a value of t which satisfies both of the
preceding equations simultaneously. However, if we minimise over both t and the
ratio α/β while keeping α+β constant, then the number of unknowns is matched
to the number of equations, and Kimura’s equations can be satisfied. When the
amount of data is large, estimating α/β from the data this way may be a sound
procedure, but when comparing two sequences that are not very long, we might
prefer to include a prior for α/β. For instance, we might use a gamma function,
and define K̃ = argmaxt maxα/β{g(α/β,a,b)

∏
u P(xi

u|x j
u , t ,α,β)}, where a and

b are suitable constants, and P(xi
u|x j

u , t ,α,β) denotes the substitution probability
from the Kimura matrix.

Finally, turning to protein sequences, the PAM matrix S(t) can be used to define
the P(xi

u|x j
u , t) in (8.30). The maximum likelihood value of t cannot be expressed

analytically, but can be easily found by gradient ascent, or some more efficient
optimising technique.

Exercise

8.16 Obtain the Jukes–Cantor distance by a minimum relative entropy argu-
ment (Figure 11.5).

A probabilistic interpretation of Sankoff & Cedergren

If the scores in Sankoff & Cedergren’s algorithm are interpreted as log probabil-
ities, and if their procedure is carried out with a ‘+’ in place of a ‘max’, then
the resulting algorithm will compute the full likelihood, as pointed out by Alli-
son, Wallace & Yee [1992a]. The tree score S(�1 · x1

i1
,�2 · x2

i2
, . . . ,�N · x N

iN
) will

become the sum over all assignments at ancestral nodes, and the recursion (7.6)
will take the sum over the preceding αs and therefore sum over all possible align-
ments. Like Sankoff & Cedergren’s original algorithm, this computation is not
practical for most problems.



232 8 Probabilistic approaches to phylogeny

Interpreting Hein’s algorithm probabilistically

As remarked above (p. 224), parsimony can be regarded as the Viterbi approx-
imation to the full probability if the scores are interpreted as log P(x |y), where
the P(x |y) are substitution probabilities that don’t depend on time. If derived
this way, scores will generally take different values for different residue substi-
tutions. This means that there will usually only be one optimal alignment of two
sequences, and hence that Hein’s sequence graphs will consist of only one path.
There will, however, generally be a great many paths that are only slightly sub-
optimal. Parsimony therefore gives a poor approximation to the full probability
in this case.

If we attempt to remedy the situation by using ‘+’ instead of ‘max’, then we
have to include all paths through the dynamic programming matrix in the se-
quence graph. At the first node above the leaves, this graph has size N 2, at the
next-highest node it will have size N 3 or N 4, and so on. It is clear that we lose
all the advantage gained over the comprehensive but slow Sankoff–Cedergren
approach.

As a compromise, we could try to select near-optimal paths in the hope of
approximating the full probability while keeping the sequence graphs down to
manageable size. Such a strategy might produce a good alignment/phylogeny
algorithm, but would probably need clever heuristics for selecting the paths.

8.7 Further reading

Maximum likelihood was first applied to phylogeny by Edwards & Cavalli-Sforza
[1963; 1964], who examined the case of continuous variables, such as the size of
skeletal features of a species, or the frequency of genes in a population. They de-
scribed the evolution of these variables by a random walk combined with a Yule
process allowing bifurcations [Edwards 1970]. Thompson [1975] devised com-
putational methods for implementing this, and applied them to some examples of
interest.

An important paper by Felsenstein [1981a] showed how to carry maximum
likelihood methods over to the case of discrete characters, such as the residues
in a sequence. In this paper, Felsenstein introduced the basic algorithm for com-
puting the likelihood of trees of any size (p. 201), gave an effective procedure for
maximising this likelihood with respect to edge lengths (p. 206), and showed how
reversibility could be used to reduce the problem to unrooted trees (p. 203). This
laid the foundations for the likelihood methods most commonly used in molecu-
lar phylogeny nowadays.

In this chapter and the previous one, we have treated DNA and protein se-
quences as essentially similar types of data, apart from alphabet size. But of
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course their biological roles are very different, and this makes them suitable
for different purposes. For instance, the rapid changes in the third position in
codons allows us to explore recent evolutionary events, whereas the more con-
served regions of proteins may carry information about early speciation events in
the Earth’s history [Doolittle et al. 1996]. In many cases we should treat the DNA
and protein levels simultaneously. Goldman & Yang [1994] have shown how this
can be done by using a Markov model whose states are codons, and whose tran-
sition probabilities reflect both DNA substitution patterns and (when there is a
change in the residue coded for) amino acid properties.

The future of phylogeny seems very promising. The spectacular advance of
genome science means that vast amounts of sequence data will become available,
and it is likely that new types of sequence information will be used for phylogeny.
Already, it is clear that the presence of various repeat families can be a useful
phylogenetic marker [Shimamura et al. 1997], as can chromosomal inversions
and other genomic rearrangements [Hannenhalli et al. 1995]. For once, the forest
of data may enable us to see the trees more clearly.



9
Transformational grammars

Until now, we have treated biological sequences as one-dimensional strings of
independent, uncorrelated symbols. This assumption is computationally conve-
nient but not structurally realistic. The three-dimensional folding of proteins and
nucleic acids involves extensive physical interactions between residues that are
not adjacent in primary sequence. Can probabilistic models of proteins and nu-
cleic acid sequences be developed that allow for longer range interactions? Can
we compute efficiently with such models? In this chapter, we will step back from
models of particular sequence problems and address these more theoretical is-
sues. We will see how many of the methods described in previous chapters fit
into a more general view of modelling sequences

A general theory for modelling strings of symbols has been developed by com-
putational linguists [Chomsky 1956; 1959]. This theory is known as the Chomsky
hierarchy of transformational grammars. In the Chomsky hierarchy, most of the
models we have used so far in this book are the lowest of four types of model of
increasing complexity and descriptive power. Transformational grammars were
developed in an attempt to understand the structure of natural languages. They
became important in theoretical computer science [Hopcroft & Ullman 1979;
Gersting 1993] because computer languages, unlike natural languages, can be
precisely specified as formal grammars. Recently, transformational grammars
have been applied to sequence analysis problems in molecular biology [Searls
1992; Dong & Searls 1994; Rosenblueth et al. 1996].

An example of the application of grammar theory to higher-order structure
in biological sequence analysis is the use of stochastic context-free grammars
(SCFGs) in RNA secondary structure analysis [Eddy & Durbin 1994; Sakak-
ibara et al. 1994; Grate 1995; Lefebvre 1995; 1996]. Although many sequence
alignment methods in computational molecular biology are implicitly stochastic
regular grammars, they have a long history of their own and can live in happy
ignorance of the Chomsky hierarchy. In contrast, the application of SCFGs to
probabilistic modelling of RNA secondary structure is a more recent develop-
ment, and the jargon of RNA SCFGs remains very close to its roots in computa-
tional linguistics. We need to understand the basics of computational linguistics
to understand RNA SCFGs. The main purpose of this chapter is to set the stage
for applying SCFG-based probabilistic modelling to RNA secondary structure

234
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problems. We start with an overview of transformational grammars in their non-
probabilistic form. We then introduce stochastic grammars as a formalised sys-
tem for full probabilistic modelling of sequences with long-range correlations and
constraints. We conclude by giving generalised alignment algorithms for stochas-
tic context-free grammars, of which the RNA models of the next chapter are a
subset.

9.1 Transformational grammars

Though nonsensical, ‘colourless green ideas sleep furiously’ is a grammatically
correct English sentence. Most English speakers (except those who have read
Chomsky) have never before seen this sentence or even any of its combinations of
adjacent words. Nonetheless, they will recognise it, parse its grammar correctly,
and speak it with the correct intonation of an English sentence.

Chomsky was interested in how a brain or a computer program could algo-
rithmically determine whether a novel sentence was grammatical or not. He con-
structed finite formal machines called ‘grammars’ which recursively enumerate
an infinite number of sentences that belong to a language. For the question ‘does
the language contain this sentence?’ grammar theory substitutes ‘can the gram-
mar generate this sentence?’ The first question is intractable (the set of possi-
ble sentences is infinite) but the second question can be practically answered for
many useful forms of grammars. How well this works depends on how well the
grammar models the constraints on the language; i.e. how many grammatical sen-
tences there are that the grammar fails to generate, and how many ungrammatical
sentences the grammar generates erroneously.

Transformational grammars are sometimes called generative grammars. One
speaks in terms of generating sequence even if the primary use of the model
is for recognising, scoring, and/or parsing strings. In Chapter 3, we described
hidden Markov models as generative probabilistic models that ‘emit’ sequences.
Whether a given sequence belonged to a family or not was inferred by calculating
the probability that the sequence would be generated by a hidden Markov model
of the family. When a hidden Markov modeller speaks of generating sequences,
biologists sometimes find this concept confusing. Obviously biological evolution
generated the sequences, not an HMM. The terms ‘generation’ and ‘emission’
are part of a convenient formalism that is largely due to Chomsky.

Definition of a transformational grammar

A transformational grammar consists of a number of symbols and a number of
rewriting rules α → β (also called productions) where α and β are both strings
of symbols. There are two kinds of symbols: abstract nonterminal symbols and
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terminal symbols that actually appear in an observed string. The left-hand side
α contains at least one nonterminal, which in general is transformed into a new
string of terminals and/or nonterminals on the right-hand side of the production.
If we were modelling sentences, the terminals might be words; if we were mod-
elling protein sequences, the terminals might be amino acid symbols. We will
use lower-case letters to represent terminals and upper-case letters to represent
nonterminals.

The easiest way to see how a transformational grammar works is by example.
We will use a two-letter terminal alphabet {a,b} and a single nonterminal S. A
special blank terminal symbol ε is used to end the process. Here is a transforma-
tional grammar that generates any string of as and bs:

S → aS, S → bS, S → ε.

To generate a string of as and bs, we carry out a series of transformations
according to the grammar’s rules starting from some initial string. By convention,
we usually start from a special start nonterminal S (which in this case is our
only nonterminal). An applicable production is chosen which has the string S
on its left-hand side, and S is replaced by the string on the right-hand side of
that production. The process of choosing a substring and rewriting it in place
according to one of the allowed rewriting rules continues until the string consists
entirely of terminals and no further rewritings are possible. The succession of
strings that result from this process is called a derivation from the grammar. An
example derivation of our simple example grammar is:

S ⇒ aS ⇒ abS ⇒ abbS ⇒ abb.

For convenience, we will usually specify multiple possible productions using
an abbreviated representation like S → aS | bS | ε, where the symbol | indicates
‘or’. In this example, we would have three choices of what to transform S into.

When transformational grammars are used for a sequence analysis problem, we
often have a particular sequence in mind. The question is whether the sequence
‘matches’ (could be generated by) the grammar. We work backwards to determine
whether a derivation exists for the string. If a derivation exists, then the string
is a valid member of the language modelled by the grammar. Finding a valid
derivation for a given sequence is called parsing, and in this context, a derivation
is called a parse of the sequence. We can think of a parse as an alignment of the
grammar and the sequence. Just as a Viterbi alignment of a sequence to an HMM
is an assignment of sequence positions to HMM states, so a parse of a sequence
with a grammar is essentially an assignment of sequence positions to grammar
nonterminals.
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The Chomsky hierarchy

Chomsky [1959] described four sorts of restrictions on a grammar’s rewriting
rules. The resulting four classes of grammar fall into a hierarchy known as the
Chomsky hierarchy of transformational grammars. In the following examples,
we use W to represent any nonterminal, a to represent any terminal, α and γ to
represent any string of nonterminals and/or terminals including the null string,
and β to represent any string of nonterminals and/or terminals not including the
null string.

regular grammars Only production rules of the form W → aW or W → a are
allowed.

context-free grammars Any production rule of the form W → β is allowed.
The left-hand side of the production rule must consist of just one nonter-
minal but the right-hand side can be any string.

context-sensitive grammars Productions are of the form α1Wα2 → α1βα2. The
allowed transformations of nonterminal W are dependent on its con-
text α1 and α2. It is provably equivalent to require that the right-hand
side contains at least as many symbols as the left-hand side; context-
sensitive grammar productions never shrink [Chomsky 1959]. This al-
lows context-sensitive productions of the form AB → B A, for instance.

unrestricted (phrase structure) grammars Any production rule of the form
α1Wα2 → γ is allowed.

regular

context-free

context-sensitive

unrestricted

Figure 9.1 The Chomsky hierarchy of transformational grammars, nested
according to the increasing restrictions placed on the production rules
in the grammar. In terms of allowed productions, regular grammars are
the simplest and most restricted grammars, and therefore the easiest to
parse. However, the regular grammars also have the least power to describe
‘structural’ constraints on strings.

Automata

In computer science, each grammar has a corresponding abstract computational
device called an automaton. Grammars are described as generative models, while
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automata are usually described as parsers that accept or reject a given sequence.
We will find automata useful here for two limited purposes. First, automata are
often intuitively more easy to describe and understand than their equivalent gram-
mars. In particular, finite state automata have a nice graphical representation
that is easier to understand than a laborious enumeration of a regular grammar’s
rewriting rules. Secondly, automata give a more concrete idea of how we might
recognise a sequence using a formal grammar.

Grammar Parsing automaton

regular grammars finite state automaton
context-free grammars push-down automaton
context-sensitive grammars linear bounded automaton
unrestricted grammars Turing machine

Table 9.1. Parser abstractions associated with the hierarchy of grammars.

9.2 Regular grammars

All the production rules in a regular grammar are of the form W → aW or
W → a, where W and a represent any nonterminal or terminal in the grammar,
respectively. We will also sometimes allow an additional production of W → ε

for terminating derivations, where ε is the null string.1 Essentially, regular gram-
mars generate sequence from left to right. Regular grammars cannot efficiently
describe long-range correlations between the terminal symbols. They are ‘pri-
mary sequence’ models.2

Example: An odd regular grammar

The first grammar in this chapter was a regular grammar that generated any string
consisting of as and bs: a rather boring language. Regular grammars are capable
of more interesting and sometimes surprising behaviour. Here’s an example of a
regular grammar that generates only strings of as and bs that have an odd number

1 The rule W → ε is a ‘shrinking’ production. The right side is shorter than the left. Techni-
cally, this makes it an unrestricted grammar rule. However, it can be proved that a regular
grammar can always be expanded to absorb the ε. For instance, the nearly regular grammar
S → aS | bS | ε is the same as the regular grammar S → aS | bS | a | b. ε productions are not
a serious problem for either regular grammar or context-free grammar parsing algorithms,
but they do present some technical difficulties in proofs.

2 We may also have right-to-left grammars with productions only of the form W → W x or
W → x . These are also regular grammars. Allowing both W → W x and W → xW produc-
tions in the same grammar gives a context-free grammar.
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of as [Searls 1992]:

start from S,
S → aT | bS,
T → aS | bT | ε.

Whenever a string contains an odd number of as, the derivation is in nontermi-
nal T ; when it has an even number of as, it is in nonterminal S. Since it can only
terminate from nonterminal T , it only generates strings with odd numbers of as.

Finite state automata

The parsing automaton corresponding to a regular grammar is a finite state au-
tomaton. We saw finite state automata used in Chapter 2 as a general model of
pairwise alignment algorithms. We now consider them more generally. A finite
state automaton is a device which reads one symbol at a time from an input string.
The symbol may be accepted, in which case the automaton enters a new state; or
the symbol may not be accepted, in which case the automaton halts and rejects
the string. If the automaton reaches a final ‘accepting’ state, the input string has
been successfully recognised and parsed by the automaton.

A finite state automaton is a model composed of a number of states, and the
states are interconnected by state transitions. The states and state transitions cor-
respond to the nonterminals and productions of the equivalent regular grammar.
Finite state automata are often drawn in abstract form with circles representing
states and arrows for transitions.

Example: FMR-1 triplet repeat region

The human FMR-1 gene sequence contains a triplet repeat region in which the se-
quence CGG is repeated a number of times. The number of triplets is highly vari-
able between individuals, and increased copy number is associated with fragile X
syndrome, a genetic disease that causes mental retardation and other symptoms
in one out of 2000 children. The finite state automaton shown in Figure 9.2 com-
pactly models the CGG repeat region of FMR-1 by allowing a cyclic transition
back into a new CGG.

To check if a sequence matches this description of the FMR-1 CGG repeat, the
sequence is fed to the automaton one symbol at a time. If the first symbol is a
G, the automaton enters state 1; otherwise it quits and rejects the sequence. If the
automaton is in state 1 and it reads a C, it successfully moves to state 2, and so
on, until the automaton successfully recognises the sequence by reaching the end
state E with no symbols left to examine.

The finite state automaton will match any string from the ‘language’ that con-
tains the strings GCGCGGCTG, GCGCGGCGGCTG, GCGCGGCGG
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... GCG CGG CGG CGG CGG CGG CGG CGG CGG
CGG CGG AGG CGG CGG CGG CGG CGG CGG CGG
CGG CGG AGG CGG CGG CGG CGG CGG CGG CGG
CGG CGG CTG ...

(a)  Human FMR-1 mRNA sequence, fragment

(b)

S 1 3 4 5 6 7 82
g c g c g g c t g

a

c

Figure 9.2 (a) The sequence of the FMR-1 triplet repeat region, from GEN-
BANK HSFMR1A, accession X69962. Two variant AGG triplets in the repeat
are underlined. (b) A finite state automaton that recognises FMR-1 triplet
repeat regions with any number of triplets. Note the presence of a transition
that accepts the variant AGG triplets.

CGGCTG, ad infinitum for any number of copies of CGG. A regular grammar
that is equivalent to this finite state automaton is:

S → gW1 W5 → gW6

W1 → cW2 W6 → cW7 | aW4 | cW4

W2 → gW3 W7 → tW8

W3 → cW4 W8 → g
W4 → gW5

Moore vs. Mealy machines

In the FMR-1 automaton of Figure 9.2, terminal symbols are associated with the
transitions in the automaton. Finite automata that accept on transitions are called
Mealy machines. In contrast, in the hidden Markov models of Chapter 3, we asso-
ciated terminal symbols with states, and separated symbol emission events from
state transition events. Finite automata which accept on states are called Moore
machines. The two types of machines are interconvertible. For example, we could
label state 1 in the FMR-1 automaton with a G, and have the state, rather than the
transition into the state, accept the G. The grammar production corresponding to
state 1 in the FMR-1 automaton is S → gW1 in the Mealy machine, but could be
written as S → Ŵ1, Ŵ1 → gW1 in a Moore machine, where Ŵ1 is an added in-
termediate nonterminal. (Since the two forms are equivalent, we need not be too
concerned that the rule S → Ŵ1 in the Moore machine is not a strictly conforming
regular grammar rule.)
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Deterministic vs. nondeterministic automata

The FMR-1 automaton is an example of a nondeterministic finite automaton.
When the automaton is in state 6 and the next input symbol is a C, the automaton
can accept the C by moving either to state 4 or state 7. In a deterministic finite
automaton, no more than one accepting transition is possible for any state and
any input symbol. It has been proven that any nondeterministic finite automaton
can be converted to a deterministic finite automaton.

Parsing with deterministic finite state automata is extremely efficient. Deter-
ministic finite automaton algorithms operate at the heart of the fast BLAST database
search programs [Altschul et al. 1990]. Nondeterministic finite automaton pars-
ing algorithms must check all the alternative paths before rejecting a sequence,
but can still be made efficient. The UNIX text pattern-matching utilities in pro-
grams such as GREP, SED, AWK, and VI implement highly efficient nondetermin-
istic finite automata; UNIX ‘regular expressions’ are equivalent to regular gram-
mars.

Exercises

9.1 Convert the FMR-1 automaton in Figure 9.2 to a Moore machine in
which each state accepts a particular symbol, instead of each transition
accepting a particular symbol.

9.2 Convert the FMR-1 automaton to a deterministic automaton.

PROSITE patterns

An excellent example of a biological application of regular grammars is the
PROSITE database compiled by Amos Bairoch and his colleagues in Geneva
[Bairoch, Bucher & Hofmann 1997]. A PROSITE entry includes a sequence pat-
tern for a highly conserved signature motif shared by all or almost all of the
members of a protein family. Unlike methods which assign scores to alignments,
PROSITE patterns either match a sequence or don’t; they are regular grammars
that are matched to sequences using finite state automata.

A PROSITE pattern consists of a string of pattern elements separated by dashes
and terminated by a period. In a pattern element, a letter indicates the single-
letter code for one of the amino acids; square brackets indicate that any one of
the enclosed residues can occur; curly brackets indicate that anything but one of
the enclosed residues can occur; and an x indicates that any residue can occur
at this position. Lengths or ranges of lengths are given in parentheses, such as
-x(4)- to match a spacer of four residues of any type and -x(2,4)- to match
a spacer of two, three, or four residues of any type. Figure 9.3 shows an example
of one of the 1029 PROSITE patterns in the February 1995 release of the PROSITE

database.
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[RK]-G-{EDRKHPCG}-[AGSCI]-[FY]-[LIVA]-x-[FYM].

RNP-1 motif

RU1A_HUMAN
SXLF_DROME
ROC_HUMAN
ELAV_DROME

S R S L K M R G Q A F V I F K E V S S A T
K L T G R P R G V A F V R Y N K R E E A Q
V G C S V H K G F A F V Q Y V N E R N A R
G N D T Q T K G V G F I R F D K R E E A T

(a)

(b)

Figure 9.3 (a) Part of a multiple sequence alignment showing the highly
conserved ‘RNP-1’ sequence motif of a major family of RNA binding pro-
teins. (b) The RNP-1 PROSITE pattern PS00030.

Any PROSITE pattern is a regular grammar, and can be matched with a nonde-
terministic finite automaton. The syntax of PROSITE patterns is close to standard
regular expression syntax. Some popular PROSITE pattern searching implemen-
tations use UNIX GREP implementations as their search engine by first converting
the PROSITE pattern to a UNIX regular expression, which GREP then builds an
automaton for.

Example: A PROSITE pattern in regular grammar form

A regular grammar that corresponds to the PROSITE RNP-1 pattern in Figure 9.3
is as follows. We use a starting nonterminal S and eight nonterminals W1, . . . ,
W8 corresponding to the eight positions of the conserved motif. For brevity, some
of the productions are written with brackets as in the PROSITE description: for
instance, [ac]W means aW | cW .

S → r W1 | kW1

W1 → gW2

W2 → [a f ilmnqstvwy]W3

W3 → [agsci]W4

W4 → f W5 | yW5

W5 → lW6 | iW6 | vW6 | aW6

W6 → [acde f ghiklmnpqrstvwy]W7

W7 → f | y | m

Exercise

9.3 The PROSITE pattern for a C2H2 zinc finger, an important DNA bind-
ing protein motif, is C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-
x(3,5)-H. Draw a finite automaton that accepts this pattern.
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What a regular grammar can’t do

Two classic examples [Chomsky 1956] of languages L that regular grammars
cannot describe arise when:

(i) L contains all the strings of the form aa, bb, abba, baab, abaaba, etc.
that read the same forwards as backwards (a palindrome language).

(ii) L contains all the strings of the form aa, abab, aabaab that consist of
two identical halves (a copy language).

Regular grammars can generate palindromic strings as part of their language.
The point is that a regular grammar cannot efficiently generate only palindromes,
and hence cannot distinguish a correct palindrome from a non-palindrome. De-
scribing more and more specific constraints on the grammatical strings in a lan-
guage requires grammars more complex than regular grammars.

Regular language: a b aaa b

Copy language: aaaa bb

Palindrome language: aaaa bb

Figure 9.4 Unlike regular languages, palindrome and copy languages have
correlations between distant positions. Lines indicate correlated positions
in strings from the palindrome and the copy language.

As shown in Figure 9.4, the interactions in palindrome languages are nested,
i.e. the lines of the interactions do not cross; in the copy languages, crossing
interactions can occur. This distinction is important in determining the type of
grammar that generates each language.

9.3 Context-free grammars

The palindrome languages are dealt with by the next level in Chomsky’s hierar-
chy, the context-free grammars (CFGs). Obviously the problem of parsing ‘Doc,
note. I dissent. A fast never prevents a fatness. I diet on cod.’3 arises rarely in
computational biology. The reason to look carefully at the context-free grammars
is that RNA secondary structure is a kind of palindrome language, as illustrated

3 A palindrome credited to Peter Hilton, a member of the British cryptography team that
cracked the German Enigma code in World War II.
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in the example below. RNA secondary structure presents a problem in which the
sequence may not matter as long as strong base pair correlations are maintained
between certain nested pairs of positions.

The context-free grammars permit additional rules that allow the grammar to
create nested, long-distance pairwise correlations between terminal symbols. The
left side of a production rule must still be a single nonterminal, but the right side
of a production rule can be any combination of terminals and nonterminals. The
right side can therefore generate a correlated base pair from a single nonterminal,
unlike regular grammar productions which must generate a symbol pair indepen-
dently from two different nonterminals. An example of a CFG that can generate
a palindrome language would be:

S → aSa | bSb | aa | bb.

A derivation of the palindrome ‘aabaabaa’ from this CFG is:

S ⇒ aSa ⇒ aaSaa ⇒ aabSbaa ⇒ aabaabaa.

Whereas regular grammars generate strings from left to right, context-free gram-
mars can generate strings from outside in. Only nested correlations can be cap-
tured because of this outside-in generation. The crossing correlations of the copy
language (Figure 9.4) violate this nesting constraint, so copy languages are not
context-free languages.

Example: A context-free grammar for an RNA stem loop

In the picture below, seq1 and seq2 can fold into the same RNA secondary struc-
ture despite having different sequences because they share the same pattern of
base pairs (A-U and C-G). Seq3, though identical in sequence to the first half of
seq2 and the second half of seq1, cannot fold into a similar structure. The consen-
sus RNA secondary structure imposes a set of nested pairwise constraints like a
palindrome language, except that the correlated pairs are complementary instead
of identical.

C A G G A A A C U G seq1
G C U G C A A A G C seq2
G C U G C A A C U G seq3

x

seq1 seq2 seq3

G
G
A

C
A
A

A U
C G

U
G
C

A
A
A

C G
G C

x

x

x

U
G
C

C
A
A

C U
G G
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A CFG that models RNA stem loops with three base pairs and a GCAA or GAAA
loop like seq1 and seq2 would be:

S → aW1u | cW1g | gW1c | uW1a,
W1 → aW2u | cW2g | gW2c | uW2a,
W2 → aW3u | cW3g | gW3c | uW3a,
W3 → gaaa | gcaa.

Exercises

9.4 Write derivations for seq1 and seq2 using the context-free grammar in
the example above.

9.5 Write a regular grammar that generates seq1 and seq2 but not seq3 in the
example above.

9.6 Consider the complete language generated by the CFG in the example
above. Describe a regular grammar that generates exactly the same lan-
guage. Does describing this sequence family with a regular grammar
seem like a good idea?

Parse trees

An alignment of a context-free grammar to a sequence (i.e. a parse) has an elegant
representation called a parse tree. The root of the tree is the start nonterminal S.
Leaves are the terminal symbols in the sequence. Internal nodes are nonterminals.
The children of an internal node are the productions of that nonterminal, in left-
to-right order.

S

c a g g a a a c u g g g u g c a a a c c

S

W1

W2

W3

S

W1

W2

W3

G C
G C
U
G
C

A
A
A

C G
A U
G
G
A

C
A
A

5' 3'
(a) (b)

Figure 9.5 (a) A parse tree for CAGGAAACUGGGUGCAAACC and the
stem-loop grammar, extended with a production rule S → SS to make a
more interesting tree. (b) The RNA secondary structure for the same se-
quence, which corresponds closely to the parse tree representation.
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A subtree is a fragment of a parse tree rooted at an internal node. Any sub-
tree derives a contiguous segment of the observed sequence. This property is
important. It allows algorithms to build optimal parse trees for a sequence by re-
cursively building larger and larger optimal parse subtrees for larger and larger
subsequences. An example of a parse tree for a CFG and a small RNA is shown
in Figure 9.5.

Example: Parse tree for a PROSITE pattern

Regular grammars are a subset of the context-free grammars. Therefore, align-
ments of regular grammars to sequences can also be represented as parse trees.
Figure 9.6 shows a parse tree for the regular grammar of the RNP-1 PROSITE

pattern in Figure 9.3. The correspondence between alignments and parse trees
should be clear.

S

W1

W2

W3

W4

W5

W6

W7

r g q a f v i f

Figure 9.6 Parse tree for the RNP-1 motif RGQAFVIF using the regular
grammar from page 242. Regular grammars are linear special cases of the
context-free grammars, and hence the parse tree for a regular grammar is
essentially just a standard linear alignment of the grammar nonterminals
onto sequence terminals.

Push-down automata

The parsing automaton for CFGs is called a push-down automaton. Whereas fi-
nite state automata required no memory except for keeping track of the current
state, a push-down automaton keeps a limited memory of symbols in the form of
a push-down stack.4

A push-down automaton parses a sequence from left to right according to the
following algorithm. The automaton’s stack is initialised by pushing the start

4 A push-down stack is an array or list which is accessed last in, first out. Elements are
‘pushed’ onto and ‘popped’ off of the ‘top’ of the stack, like a stack of plates.
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nonterminal onto it. The following steps are then iterated until no input symbols
remain. If the stack is empty when no input symbols remain then the sequence
has been successfully parsed.

Algorithm: Parsing with a push-down automaton

Pop a symbol off the stack.
If the popped symbol is a nonterminal:

- Peek ahead in the input from the current position and choose a valid
production for the nonterminal. For a deterministic push-down au-
tomaton there is at most one possible choice. For a nondeterministic
automaton, all possible choices need to be evaluated individually. If
there is no valid production, terminate and reject the sequence.

- Push the right side of the chosen production rule onto the stack,
rightmost symbols first.

If the popped symbol is a terminal:
- Compare it to the current symbol of the input. If it matches, move

the automaton to the right on the input (the input symbol is ac-
cepted). If it does not match, terminate and reject the sequence. �

Push-down automata are not efficient recognisers for nondeterministic context-
free grammars. All series of valid automaton moves must be tried exhaustively
until either the input string is successfully accepted or no more series of moves
remain to be tried. Although it is possible to use this brute-force algorithm to
recognise strings with many not-too-complex nondeterministic CFGs, there is po-
tentially a combinatorial explosion of different derivations that need to be tested.
Later in the chapter, we will describe the more sophisticated, polynomial time
Cocke–Younger–Kasami (CYK) parsing algorithm for context-free grammars.

Example: Parsing an RNA stem loop with a push-down automaton

Consider parsing the sequence GCCGCAAGGC using the context-free grammar
of a three base pair RNA stem loop from page 245. Below are shown the series
of operations that occur on the automaton’s stack while parsing the sequence.
The position of the automaton on the input (left column) is shown by a box.
The symbols in the push-down stack are shown (middle column) with the top of
the stack to the left. Based on the current position in the input and the current
stack, the next automaton operations are described (right column). For brevity,
nonterminals are denoted by their numbers, so that 1 is used for W1, etc.
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Input string Stack Automaton operation on stack and input

G CCGCAAGGC S Pop S. Peek at input; produce S → g1c.
G CCGCAAGGC g1c Pop g. Accept g; move right on input.
G C CGCAAGGC 1c Pop 1. Peek at input; produce 1 → c2g.
G C CGCAAGGC c2gc Pop c. Accept c; move right on input.
GC C GCAAGGC 2gc Pop 2. Peek at input; produce 2 → c3g.
GC C GCAAGGC c3ggc Pop c. Accept c; move right on input.
GCC G CAAGGC 3ggc Pop 3. Peek at input; produce 3 → gcaa.
GCC G CAAGGC gcaaggc Pop g. Accept g; move right on input.

... (several acceptances)
GCCGCAAGG C c Pop c. Accept c; move right on input.

GCCGCAAGGC - Stack empty. Input string empty. Accept.

Exercise

9.7 Modify the push-down automaton parsing algorithm so that it randomly
generates one of the possible valid sequences in a context-free grammar’s
language.

9.4 Context-sensitive grammars

Though at first sight the copy language appears no more complex than the palin-
drome language, copy languages are not context-free languages. In general, copy
languages require context-sensitive grammars. A context-sensitive grammar that
generates even our simple example of a copy language is complicated. Consider,
for example, the copy language consisting of strings like cc, a cc a, aba cc aba,
bbab cc bbab; i.e. all strings consisting of two copies of a string of as and bs,
with a pair of cs between them. A context-sensitive grammar that generates this
language is:

initialisation:
S → CW

nonterminal generation:
W → AÂW | B B̂W | C

nonterminal reordering:
ÂB → B Â
ÂA → AÂ
B̂ A → AB̂
B̂ B → B B̂

terminal generation:
C A → aC
C B → bC
ÂC → Ca
B̂C → Cb

termination:
CC → cc
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We have seven different nonterminals, S, A, Â, B, B̂, C , and W . A and Â are
destined to generate an a symbol (and likewise B and B̂ are destined to gen-
erate a b symbol, and C is destined to generate a c). A and B nonterminals
generate the left half of the string, and Â and B̂ generate the right half of the
string.

The context-sensitive grammar does not directly generate the crossing pairwise
interactions between symbols in a copy language. Instead the W nonterminal
generates them as pairs with uncrossed interactions, then the grammar reorders
the nonterminals appropriately by examining their local context. The reorder-
ing rules swap nonterminals, moving the hat nonterminals rightwards past the
non-hat nonterminals. Since any production rule can be used any time its left
hand side appears during a derivation, the grammar is carefully constructed so
as to not start generating terminal symbols until the nonterminals are properly
ordered.

An example derivation of the string aabccaab from this grammar would be:

S ⇒ CW ⇒ C AÂW ⇒ C AÂAÂW ⇒ C AÂAÂB B̂W ⇒ C AÂAÂB B̂C
⇒ C AAÂ ÂB B̂C ⇒ C AAÂB ÂB̂C ⇒ C AAB Â ÂB̂C ⇒ C AAB Â ÂCb
⇒ C AAB ÂCab ⇒ C AABCaab ⇒ aC ABCaab ⇒ aaC BCaab
⇒ aabCCaab ⇒ aabccaab.

The parsing automaton for a context-sensitive grammar is a linear bounded au-
tomaton. A linear bounded automaton is a mechanism for systematically working
backwards through all possible derivations of the observed string until either a
derivation reaches the starting nonterminal, or all possible derivations have been
exhausted without finding a valid one. Because a context-sensitive grammar is
restricted so that the left side of a production rule cannot be longer than the right
side, there must be a finite number of possible derivations to examine. No inter-
mediate in the derivation can be longer than the observed string itself. Computer
science textbooks describe a linear bounded automaton as an abstract ‘tape’ of
linear memory and a read/write head; the term ‘bounded’ refers to the knowl-
edge that the amount of tape required is guaranteed to be less than or equal to the
length of the observed string. Nonetheless, the number of possible derivations is
exponentially large. No general polynomial-time algorithms for parsing context-
sensitive grammars are known to exist. This intractability is a serious concern in
considering any practical context-sensitive grammar applications. Approximate
algorithms, such as simulated annealing, must be used instead.

Unrestricted grammars and Turing machines

An unrestricted grammar is a transformational grammar in which the left and
right sides of the production rules can be any combination of symbols. The equiv-
alent parsing automaton is a Turing machine. There is no general algorithm that
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is guaranteed to determine whether a string has a valid derivation from an un-
restricted grammar in less than infinite time. Intuitively this is because produc-
tions can shrink to fewer symbols on the right-hand side. The intermediate strings
in working backwards through possible Turing machine derivations can grow
longer than the input, and thus the number of possible derivations can grow with-
out bound. In contrast, the number of intermediate strings in a context-sensitive
grammar derivation must be finite because the intermediate strings on the linear
bounded automaton’s tape can only get smaller as the automaton works back-
wards towards possible solutions. The properties of Turing machines are of great
theoretical interest in computer science, but the lack of any parsing algorithm
that is guaranteed to halt makes unrestricted grammars unappealing for practical
applications, except perhaps for more limited special cases of these grammars.
Many problems which could be formulated as unrestricted grammars are instead
formulated as optimisation problems and ‘parsing’ is done by (for instance) sim-
ulated annealing in a non-exact way, as discussed above for context-sensitive
grammars.

9.5 Stochastic grammars

Careful consideration of PROSITE patterns reveals a drawback in using simple fi-
nite automata for computational biology. As more sequences are determined and
the family grows, it gets increasingly difficult to create a specific pattern. Ex-
ceptions to the rules of the pattern may occur at any position. For instance, the
RNP-1 motif of another RNA binding protein, the SRP55 protein SR55_DROME
which is involved in mRNA splicing in fruit flies, has the sequence NGYGFVEF.
The first N fails to match the PROSITE pattern, which requires an R or a K at this
position. The pattern has to be modified to allow N. As exceptions accumulate
and the pattern is loosened, the specificity of the pattern degrades. As a result,
it may have so little information content that it matches unrelated, random se-
quences. For some diverse protein families, it has proved impossible to produce
a discriminative PROSITE pattern. The logical solution is to allow the exceptions,
but instead of considering all possibilities equal, give the exceptions less score
than a strong match to the consensus. This idea leads to stochastic (probabilistic)
regular grammars like sequence ‘profiles’ (Chapter 5) and hidden Markov models
(Chapter 3).

Any of the grammars in the Chomsky hierarchy can be used in a stochastic
form as a basis for a probabilistic modelling system for sequences. A stochas-
tic grammar model θ generates different strings x with probabilities P(x | θ ),
whereas non-stochastic grammars either generate a string x or not.

In a stochastic regular grammar or stochastic context-free grammar, the sum
of the probabilities of all the possible productions from any given nonterminal
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is 1. The resulting stochastic grammar defines a probability distribution over se-
quences x , i.e.

∑
x P(x |θ ) = 1. For example, in the first production rule of our

PROSITE example, S → r W1 | kW1, a stochastic regular grammar might assign
probabilities of 0.5 for the productions:

S →
(0.5)

r W1, S →
(0.5)

kW1.

The stochastic regular grammar can then admit exceptions without grossly de-
grading the recognition of more convincing motifs, by giving the exceptions low
but non-zero probabilities. For example, the non-consensus N in the first position
of the RNP-1 motif of SR55_DROME might be modelled with production rules
like:

S →
(0.45)

r W1, S →
(0.45)

kW1, S →
(0.10)

nW1.

If the production rules allow a probability for all possible symbols (any of the
twenty amino acids) and the grammar is designed in such a way that it can gener-
ate sequences of any length, then the language specified by a stochastic grammar
includes all possible strings, not just a subset of them. A stochastic grammar
can therefore be used to specify a probability distribution over all of an infinite
sequence space.

Stochastic context-sensitive or unrestricted grammars

We will not explore stochastic context-sensitive or stochastic unrestricted gram-
mars in any detail, as we are unaware of any practical applications of these in
computational biology. However, we should note here that production rules for
the stochastic versions of context-sensitive and unrestricted grammars must be
formulated more carefully than the description we have just given of regular
grammars and context-free grammars. A nonterminal W may have different pro-
duction rules in different contexts and the contexts are not necessarily unique.
Consider for example the context-sensitive grammar S → aW , S → bW , bW →
bb, W → a, W → b with probabilities p1, . . . , p5. The language generated by this
grammar is {aa,ab,ba,bb} with probabilities {p1 p4, p1 p5, p2 p4, (p2 p3 + p2 p5)}.
It can readily be shown algebraically that simply requiring that the productions
for S and W sum to one, i.e. p1 + p2 = 1 and p3 + p4 + p5 = 1, does not give
a probability distribution over the language except for the special cases where
p1 = 0 or p3 = 0. This problem can be solved by first rearranging the gram-
mar so that the context of a nonterminal uniquely determines a set of possible
production rules and no nonterminal ever has a choice between more than one
form of left-hand side. Then, setting the probabilities for transforming a non-
terminal in a given context to sum to one leads to a stochastic grammar. For
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example, the above grammar can be changed to S → aW , S → bW , bW → bb,
bW → ba, aW → aa, and aW → ab with probabilities p1, . . . , p6, where now
the conditions p1 + p2 = 1, p3 + p4 = 1, p5 + p6 = 1 give a proper stochastic
grammar.

Hidden Markov models are stochastic regular grammars

Hidden Markov models are equivalent to stochastic regular grammars. The only
difference is that the two kinds of model are traditionally represented differently.
HMMs are normally described as Moore machines which emit symbols on a state,
independent of transitions. Stochastic regular grammar productions correspond to
Mealy machines which emit a terminal on transition to a new nonterminal (i.e.
productions are of the form W1 → aW2). As we saw previously in this chapter,
Moore and Mealy machines are interchangeable. For instance, any HMM state
which makes N transitions to new states that each emit one of M symbols can
also be modelled by a set of N M stochastic regular grammar productions. Thus,
the algorithms for aligning, scoring, and training stochastic regular grammars are
the same algorithms we used for hidden Markov models (Chapter 3).

Exercises

9.8 G-U pairs are accepted in base paired RNA stems but occur with lower
frequency than G-C and A-U Watson–Crick pairs. Make the RNA stem
loop context-free grammar from page 245 into a stochastic context-free
grammar, allowing G-U pairs in the stem with half the probability of a
Watson-Crick pair.

9.9 Extend the push-down automaton algorithm from page 247 to gener-
ate sequences from a stochastic context-free grammar according to their
probability. (Note: This gives an efficient algorithm for sampling se-
quences from any SCFG, including the more complex RNA SCFGs in
the next chapter.)

9.10 Consider a simple HMM that models two kinds of base composition in
DNA. The model has two states fully interconnected by four state transi-
tions. State 1 emits CG-rich sequence with probabilities (pa , pc, pg, pt ) =
{0.1,0.4,0.4,0.1} and state 2 emits AT-rich sequence with probabilities
(pa , pc, pg, pt ) = {0.3,0.2,0.2,0.3}. (a) Draw this HMM. (b) Set the tran-
sition probabilities so that the expected length of a run of state 1s is 1000
bases, and the expected length of a run of state 2s is 100 bases. (c) Give
the same model in stochastic regular grammar form with terminals, non-
terminals, and production rules with their associated probabilities.
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9.6 Stochastic context-free grammars for sequence
modelling

We can now write down stochastic context-free grammars as models of sequences.
However, writing down a stochastic grammar is only the first step in creating a
useful probabilistic modelling system for a sequence analysis problem. As with
HMMs, we must also have algorithms to address the following three problems:

(i) Calculate an optimal alignment of a sequence to a parameterised stochas-
tic grammar. (The alignment problem.)

(ii) Calculate the probability of a sequence given a parameterised stochastic
grammar. (The scoring problem.)

(iii) Given a set of example sequences/structures, estimate optimal probabil-
ity parameters for an unparameterised stochastic grammar. (The training
problem.)

In Chapter 3, we saw solutions to each problem for hidden Markov models
(and hence for stochastic regular grammars). The Viterbi algorithm solves the
alignment problem. The forward pass of the forward–backward algorithm solves
the scoring problem. The forward–backward algorithm is used in Baum–Welch
expectation maximisation to address the training problem. Analogous dynamic
programming algorithms also exist for stochastic context-free grammars.

Normal forms for stochastic context-free grammars

CFGs can have an unlimited variety of symbol strings on the right-hand side of
their rewriting rules. To express a general CFG parsing algorithm, it is very useful
to adopt a restricted ‘normal form’ for the rewriting rules. One such normal form
is Chomsky normal form. Chomsky normal form requires that all CFG production
rules are of the form Wv → Wy Wz or Wv → a. Any CFG can be recast into Chom-
sky normal form by expanding a non-conforming rewriting rule into a series of
normal form productions from additional nonterminals. A parsing algorithm that
applies to CFGs in Chomsky normal form is therefore generally applicable to any
CFG. For example, the production rule S → aSa from our palindrome CFG on
page (244) could be expanded to S → W1W2, W1 → a, W2 → SW1 in Chomsky
normal form.

Exercises

9.11 Convert the production rule W → aW bW to Chomsky normal form. If
the probability of the original production is p, show the probabilities for
the productions in your normal form version.
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9.12 Convert the production rules W3 → gaaa | gcaa from the RNA stem
model grammar on page 245 to Chomsky normal form. Assuming that
W3 → gaaa has probability p1 and W3 → gcaa has probability p2 =
1 − p1, assign probabilities to your normal form productions. Show that
your normal form version correctly assigns probabilities p1 and p2 for
GAAA and GCAA loops, respectively.

The inside algorithm

The inside–outside algorithm for SCFGs in Chomsky normal form [Lari & Young
1990] is the natural counterpart of the forward–backward algorithm for HMMs
(Chapter 3). The inside algorithm calculates the probability (score) of a sequence
given an SCFG, just as the forward algorithm is used for HMMs. A best path
variant of the inside algorithm, the Cocke–Younger–Kasami (CYK) algorithm,
finds the maximum probability alignment of the SCFG to the sequence, just as
the Viterbi algorithm is used for HMMs. Inside–outside is a recursive dynamic
programming algorithm like forward–backward, but the computational complex-
ity of inside–outside is substantially greater.

v

y z

i k+1 j L1 k

Figure 9.7 Illustration of the iteration step of the inside calculation of
α(i , j ,v), the probability of the parse subtree rooted at state v for the sub-
sequence from i to j . This is calculated recursively by summing parse sub-
trees for states y and z and smaller subsequences i to k and k +1 to j , for
all y, z, and k, weighted by the transition probability v → yz.

Let us define some notation. Consider a Chomsky normal form SCFG with M
different nonterminals W = W1, . . . , WM . The start nonterminal is W1. Let v, y
and z be indices for nonterminals Wv, Wy , and Wz . Production rules are of the
form Wv → Wy Wz and Wv → a (where a is a possible symbol in the terminal
alphabet). Let the probability parameters for these productions be called tv(y, z)
and ev(a), respectively (for transition and emission). The sequence x has L sym-
bols, indexed by x1, . . . , xL . Let i , j and k be indices for symbols xi , xj and xk in
the sequence x .
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The inside algorithm calculates the probability α(i , j ,v) of a parse subtree
rooted at nonterminal Wv for subsequence xi , . . . , xj for all i , j and v [Lari &
Young 1990]. The calculation requires an L × L × M three-dimensional dynamic
programming matrix. The calculation starts with subsequences of length 1 (i =
j), then does subsequences of length 2, and works outwards recursively on longer
and longer subsequences until a probability of a parse tree has been determined
for the complete parse tree rooted at the start nonterminal. A schematic illustra-
tion of the recursive nature of the algorithm is given in Figure 9.7. Formally, the
inside algorithm is:

Algorithm: Inside

Initialisation: for i = 1 to L , v = 1 to M :
α(i , i ,v) = ev(xi ).

Iteration: for i = L −1 down to 1, j = i +1 to L , v = 1 to M :

α(i , j ,v) = ∑M
y=1

∑M
z=1

∑ j−1
k=i α(i ,k, y)α(k +1, j , z)tv(y, z).

Termination:
P(x |θ ) = α(1, L ,1). �

The inside algorithm thus calculates the probability (score) of a sequence with
an SCFG. The memory complexity of the inside algorithm is O(L2 M), as is
apparent from the three indices for α. The time complexity of the algorithm
is O(L3 M3), as is apparent from the recursive loops over three sequence po-
sition indices i , j , k and three grammar nonterminal indices v, y
and z.

The outside algorithm

The outside algorithm calculates a probability called β(i , j ,v) of a complete parse
tree rooted at the start nonterminal for the complete sequence x , excluding all
parse subtrees for the subsequence xi , . . . , xj rooted at nonterminal Wv for all i , j
and v [Lari & Young 1990]. Like the inside algorithm, the calculation is done in
an L × L × M three-dimensional matrix. Calculating outside β(i , j ,v) probabili-
ties requires the results α(i , j ,v) from a previous inside calculation. The outside
algorithm starts from the largest excluded subsequence x1, . . . , xL and recursively
works its way inward. A schematic illustration of the outside algorithm is given
in Figure 9.8. Formally, the algorithm is:
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Algorithm: Outside

Initialisation:
β(1, L ,1) = 1;
β(1, L ,v) = 0 for v = 2 to M .

Iteration: for s = L −1 to 1, j = s to L , v = 1 to M , setting i = j − s +1:

β(i , j ,v) = ∑
y,z

∑i−1
k=1 α(k, i −1, z)β(k, j , y)ty(z,v)

+∑
y,z

∑L
k= j+1 α( j +1,k, z)β(i ,k, y)ty(v, z).

Termination:

P(x |θ ) = ∑M
v=1 β(i , i ,v)ev(xi ) for any i . �

v

y

z

i j L1 k i-1

S

v

y

z

i j L1 k

S

j+1

(a)

(b)

Figure 9.8 Illustration of the recursive calculation of β(i , j ,v), the summed
probabilities of all parse trees excluding subtrees rooted at nonterminal v

that generate the subsequence i , j (open circles). Diagram (a) corresponds
to the first part of the outside iteration equation for the contributions to
β(i , j ,v) of combining the outside value for nonterminal y and subsequence
1, . . . ,k −1, j +1, . . . , L, the inside value for nonterminal z filling in the sub-
sequence k, . . . , i −1, and the transition probability for y → zv. Diagram (b)
corresponds to the second part of the iteration equation, which combines the
outside probability for nonterminal y on the excluded subsequence i , . . . ,k,
the inside probability for state z filling in the subsequence j +1, . . . ,k, and
the transition probability for y → vz.
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Parameter re-estimation by expectation maximisation

The inside variables α and the outside variables β can be used to re-estimate
the probability parameters of an SCFG by expectation maximisation much as we
used the forward and backward variables in HMM training by EM [Lari & Young
1990]. The expected number of times that state v is used in a derivation is

c(v) = 1

P(x |θ )

L∑
i=1

L∑
j=i

α(i , j ,v)β(i , j ,v).

This can be further expanded to find the expected number of times that Wv is
occupied and then production rule Wv → Wy Wz is used:

c(v → yz) = 1

P(x |θ )

L−1∑
i=1

L∑
j=i+1

j−1∑
k=i

β(i , j ,v)α(i ,k, y)α(k +1, j , z)tv(y, z).

It then follows that the EM re-estimation equation for the probabilities of the
production rules Wv → Wy Wz is

t̂v(y, z) = c(v → yz)

c(v)

=
∑L−1

i=1

∑L
j=i+1

∑ j−1
k=i β(i , j ,v)α(i ,k, y)α(k +1, j , z)tv(y, z)∑L
i=1

∑L
j=i α(i , j ,v)β(i , j ,v)

.

Similar equations hold for the other production rules Wv → a, giving

êv(a) = c(v → a)

c(v)
=

∑
i |xi =a β(i , i ,v)ev(a)∑L

i=1

∑L
j=i α(i , j ,v)β(i , j ,v)

.

Extension of these re-estimation equations from a single observed sequence x
to the case of multiple independent observed sequences is straightforward. Ex-
pected counts are simply summed over all sequences.

The CYK alignment algorithm

The remaining problem is to find an optimal parse tree (alignment) for the
sequence. This is solved with the Cocke–Younger–Kasami (CYK) algorithm, a
variant of the inside algorithm with max operations replacing the sums.5 It cal-
culates a variable γ (i , j ,v) which ultimately leads to log P(x , π̂ |θ ), where π̂ is

5 As originally described by Cocke, Younger and Kasami independently, the CYK algorithm
is an exact match algorithm for nonstochastic CFGs. Our use of the name ‘CYK algorithm’
for the SCFG parsing algorithm is thus a bit imprecise, but we are not aware of any other
name for the SCFG form of the algorithm in the literature.
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the most probable parse tree. We also keep a traceback ‘variable’ τ (i , j ,v) which
is a triplet of numbers (y, z,k) that we need for tracing back through the three-
dimensional dynamic programming matrix and recovering the optimal alignment.
Formally, the matrix fill stage of the algorithm is:

Algorithm: CYK

Initialisation: for i = 1 to L , v = 1 to M :
γ (i , i ,v) = logev(xi );
τ (i , i ,v) = (0,0,0).

Iteration: for i = L −1 down to 1, j = i +1 to L , v = 1 to M :
γ (i , j ,v) = maxy,z maxk=i ... j−1

{γ (i ,k, y)+γ (k +1, j , z)+ log tv(y, z)} ;
τ (i , j ,v) = argmax(y,z,k),k=i ... j−1

{γ (i ,k, y)+γ (k +1, j , z)+ log tv(y, z)} .

Termination:
log P(x , π̂ |θ ) = γ (1, L ,1). �

This is followed by a traceback to recover the best alignment which is done by
pushing and popping triplets (i , j ,v) on and off a push-down stack:

Algorithm: CYK traceback

Initialisation:
Push (1, L ,1) on the stack.

Iteration:
Pop (i , j ,v).
(y, z,k) = τ (i , j ,v).
If τ (i , j ,v) = (0,0,0) (implying i = j), attach xi as the child of v;
else:

Attach y, z to parse tree as children of v.
Push (k +1, j , z).
Push (i ,k, y). �

Just as the Viterbi alignment algorithm can be used as an approximation to
the EM training algorithm for HMMs, CYK can be used as an approximation of
inside–outside training. Instead of calculating expected numbers of counts prob-
abilistically using inside–outside, we calculate optimal CYK alignments for the
training sequences and then count the transitions and emissions that occur in
those alignments.
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Summary of SCFG algorithms

Using inside–outside and CYK algorithms, SCFGs can be used as a full proba-
bilistic modelling system just as we have used HMMs. The following table sum-
marises the properties of SCFG algorithms compared to their HMM counterparts:

Goal HMM algorithm SCFG algorithm

optimal alignment Viterbi CYK
P(x |θ ) forward inside
EM parameter estimation forward–backward inside–outside
memory complexity: O(L M) O(L2 M)
time complexity: O(L M2) O(L3 M3)

The computational complexity of SCFG algorithms appears intimidating, but
much of it results from the generality of the algorithm. More restricted SCFGs
have faster algorithms. RNA SCFG algorithms in the next chapter are O(L3 M)
in time. This is still bad, but much better than O(L3 M3).

It is sometimes said that the inside–outside algorithm can only be applied to
SCFGs in Chomsky normal form, implying that SCFGs must first be laboriously
converted to Chomsky normal form before any parsing can be done. This is true
only for a pedantic definition of the inside–outside algorithm. The inside–outside
algorithm is given for Chomsky normal form SCFGs solely for purposes of gen-
erality and notational convenience (recall that any SCFG, however complicated
its productions may be, can be rewritten to Chomsky normal form). Essentially
identical algorithms follow for other SCFG ‘normal forms’ that restrict the right-
hand side of productions. We will see natural alternatives to Chomsky normal
form for RNA modelling in the next chapter.

9.7 Further reading

Our description of formal language theory in this chapter is not rigorous. Readers
interested in more detail should consult texts such as Harrison’s [1978] Introduc-
tion to Formal Language Theory or Hopcroft & Ullman’s [1979] Introduction
to Automata Theory, Languages, and Computation. Both texts give substantial
detail about nonstochastic context-free grammars, push-down automata, and fast
CFG parsing algorithms, since these are important in the design of computer lan-
guages and efficient language compilers. Gene Myers [1995] has also written on
the topic of context-free grammar parsing algorithms.

Our description of SCFG algorithms is based on the work of Lari & Young
[1990;1991] in the field of speech recognition.
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Transformational grammar theory has been applied to formalised descriptions
of biological problems other than sequence analysis with varying degrees of
usefulness. These problems include modelling of metabolic pathways [Collado-
Vides 1989; 1991] and of developmental pathways [Lindenmayer 1968]. Addi-
tionally, there are other ‘linguistic’ approaches in computational sequence analy-
sis which are based on k-tuple (‘word’) frequencies rather than transformational
grammar theory [Brendel, Beckmann & Trifonov 1986; Pesole, Attimonelli &
Saccone 1994; Pietrokovski, Hirshon & Trifonov 1990].
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RNA structure analysis

Many interesting RNAs conserve a secondary structure of base-pairing interac-
tions more than they conserve their sequence. This makes RNA sequence analysis
more complicated and difficult than protein or DNA sequence analysis. RNA sec-
ondary structure problems are a natural application for probabilistic models based
on the stochastic context-free grammars introduced in Chapter 9. In this chapter,
we will examine two RNA analysis problems of biological interest.

The first problem is RNA secondary structure prediction for a single sequence.
We will outline two well-known dynamic programming algorithms for RNA sec-
ondary structure prediction, the Nussinov and the Zuker algorithms. Then we
will use RNA secondary structure prediction as an introductory example for the
use of SCFGs for RNA analysis, by developing a small SCFG that implements a
probabilistic version of the Nussinov algorithm.

The second is a related set of problems, having to do with the analysis of
multiple alignments of families of related RNAs. Like Chapter 5, where profile
HMMs were used for both multiple alignment and for database searching, we de-
velop RNA structure profiles called ‘covariance models’ (CMs) for dealing with
RNA multiple alignments with secondary structure constraints included. Covari-
ance models are used for both RNA multiple alignment and database searches.
Consensus structure prediction from RNA multiple alignments, a process called
comparative RNA sequence analysis, is also somewhat automated by RNA co-
variance model training algorithms.

As you read this chapter, bear in mind that SCFG-based RNA analysis meth-
ods are not widely known or used. All of the SCFG methods we describe are
in their infancy and have considerable problems with computational complexity.
Improved SCFG methods for RNA analysis might be around the corner. Here,
we try to give the fundamentals of SCFG-based probabilistic methods for RNA
analysis without getting mired in details that may soon change. At the least, RNA
SCFGs provide us with a pedagogical counterpoint to profile HMMs. We will see
how much of the same probabilistic machinery developed for HMMs also applies
to a different and more complex class of model.

261
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10.1 RNA

To many people, RNA is merely the passive intermediary messenger between
DNA genes and the protein translation machinery. Messenger RNA is often de-
scribed as a linear, unstructured sequence, uninteresting but for the protein amino
acid sequence that it encodes. However, many non-coding RNAs exist which
adopt sophisticated three-dimensional structures, and some even catalyse bio-
chemical reactions. Since the startling discovery of catalytic RNAs in the early
1980s [Cech & Bass 1986], a number of interesting new structural and catalytic
RNAs have been discovered. More recently, novel RNAs have been invented
using in vitro evolution technologies to screen repertoires of random RNA se-
quences for new catalysts and new specific ligands [Gold et al. 1995].

The discovery of RNA catalysis revived a notion now widely known as the
‘RNA world’ hypothesis for the origin of life [Gilbert 1986; Gesteland & Atkins
1993]. The RNA world hypothesis posits a primordial world before DNA gen-
omes and protein catalysts when RNA genomes were replicated by RNA cata-
lysts. It is sometimes argued that many modern structural and catalytic RNAs
are ‘molecular fossils’ that have been handed down in evolutionary time from an
extinct RNA world.

Structural and catalytic RNAs are also important in the molecular biology of
modern organisms. The peptidyl transferase activity of ribosomes is thought to
be catalysed by ribosomal RNA [Noller, Hoffarth & Zimniak 1992]. RNA splic-
ing (removal of introns from eukaryotic pre-mRNA transcripts) is catalysed by
a complex RNA/protein machine (the spliceosome) which contains five major
species of small nuclear RNAs [Baserga & Steitz 1993]. The signal recognition
particle that is involved in translocating proteins across the plasma membrane
is an RNA/protein complex [Larsen & Zwieb 1993]. Proper ribosomal RNA
processing and modification require a host of small nucleolar RNAs [Maxwell
& Fournier 1995]. In messenger RNA transcripts, RNA structure (particularly
in 5′ and 3′ untranslated regions) is used in a variety of ways to effect post-
transcriptional genetic regulation. Known post-transcriptional regulatory mecha-
nisms include alternative mRNA splicing control [McKeown 1992], modulation
of translational efficiency [Melefors & Hentze 1993] and regulation of mRNA
stability [Peltz & Jacobson 1992].

Terminology of RNA secondary structure

RNA is a polymer of four different nucleotide subunits. The four nucleotides are
abbreviated A, C, G and U, for adenine, cytosine, guanine and uracil. In DNA,
thymine (T) replaces uracil.
G-C and A-U form hydrogen bonded base pairs and are said to be comple-

mentary. G-C pairs form three hydrogen bonds and tend to be more stable than
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Figure 10.1 The RNA secondary structure of signal recognition particle
(SRP) RNA from the dog, Canis familiaris.

A-U pairs, which form only two. Base pairs are approximately coplanar and are
almost always stacked onto other base pairs in an RNA structure. Contiguous
stacked base pairs are called stems. In three-dimensional space, RNA stems gen-
erally form a regular (A-form) double helix. Unlike DNA, RNA is typically pro-
duced as a single stranded molecule which then folds intramolecularly to form a
number of short base-paired stems. This base-paired structure is called the sec-
ondary structure of the RNA. RNA secondary structures are typically represented
by two-dimensional pictures like the one shown in Figure 10.1.

The elements of an RNA secondary structure are named as shown in Fig-
ure 10.2. Single stranded subsequences bounded by base pairs are called loops. A
loop at the end of a stem is called a hairpin loop. Simple substructures consisting
of a simple stem and loop are called stem loops or hairpins (because the structure
resembles a hairpin when drawn). Single stranded bases occurring within a stem
are called a bulge or bulge loop if the single stranded bases are on only one side
of the stem, or an interior loop if there are single stranded bases interrupting both
sides of a stem. Finally, there are multi-branched loops from which three or more
stems radiate.

In addition to canonical A-U and G-C base pairs, non-canonical pairs also
occur in RNA secondary structure. The most common non-canonical pair is the
G-U pair, which is almost as thermodynamically favourable as Watson–Crick
pairs. Other pairs form as well. Non-canonical pairs distort regular A-form RNA
helices. These distortions seem to be a favoured target of proteins specialised for
recognising RNA.
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Figure 10.2 The fundamental elements of RNA secondary structure are in-
dicated for a hypothetical example.
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Figure 10.3 Base pairs between a loop and positions outside the enclos-
ing stem are called a pseudoknot (left). Another representation of the same
pseudoknot is shown on the right. In three-dimensional space, the two stems
can stack coaxially and mimic a contiguous A-form helix. This particular
example is an artificially selected RNA inhibitor of the human immunodefi-
ciency virus reverse transcriptase [Tuerk, MacDougal & Gold 1992].

Base pairs almost always occur in a nested fashion in RNA secondary structure.
Informally, this means that if we draw arcs over an RNA sequence connecting the
base pairs, none of the arcs need to cross each other. More formally, a base pair
between positions i and j and a base pair between positions i ′ and j ′ are nested if
and only if i < i ′ < j ′ < j or i ′ < i < j < j ′. (Recall that this is the condition met
by the constraints on palindrome languages in Chapter 9 – this is why context-
free grammars apply to RNA secondary structure.) When non-nested base pairs
occur, they are called pseudoknots. An example of a pseudoknot is given in
Figure 10.3.
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None of the dynamic programming algorithms that we describe can deal with
pseudoknots, including the Zuker and Nussinov RNA folding algorithms as well
as SCFG algorithms. We saw in the previous chapter that describing the cross-
ing interactions of pseudoknots in full generality would require context-sensitive
grammars. Since pseudoknots occur in many important RNAs, we are ignoring
biologically important information. Fortunately, the total number of pseudoknot-
ted base pairs is typically small compared to the number of base pairs in nested
secondary structure. For example, one authoritative secondary structure model of
E. coli SSU rRNA indicates 447 Watson–Crick and G-U base pairs supported by
comparative sequence analysis, only eight of which are in non-nested pseudoknot
interactions [Gutell 1993]. For many purposes, including database searching for
RNA homologues, it is usually acceptable to sacrifice the information in pseudo-
knots in return for efficient dynamic programming algorithms. For other purposes
such as three-dimensional structure prediction, pseudoknots must be considered
and the same sacrifice cannot be made.

RNA sequence evolution is constrained by structure

It is relatively common to find examples of homologous RNAs that have a com-
mon secondary structure without sharing significant sequence similarity. Drastic
changes in sequence can often be tolerated as long as compensatory mutations
maintain base-pairing complementarity. It would be advantageous to be able to
search for conserved secondary structure in addition to conserved sequence when
searching databases for homologous RNAs.

N
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Figure 10.4 The consensus binding site for R17 phage coat protein. N, Y
and R are standard ‘degenerate’ symbols for multiple possible nucleotides.
N indicates {A,C,G,U}, Y indicates {C,U} and R indicates {A,G}. N’
indicates a complementary base pairing to N.

The structure shown in Figure 10.4 is the consensus RNA binding site for the
coat protein of the bacterial RNA virus R17 [Witherell, Gott & Uhlenbeck 1991].
R17 coat protein binds this site and represses translation of its replicase as part of
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the normal timing of an R17 lytic cycle. Only four primary sequence positions are
specified in the consensus, and two of them are degenerate. If we were interested
in searching a nucleotide sequence for occurrences of consensus R17 coat protein
binding sites, it would be useless to use a standard sequence alignment method.

How useless? It is instructive to extract some rules of thumb from Shannon in-
formation theory. In information theoretic terms, a consensus base pair conveys
as much information as a conserved base. The information (relative entropy) con-
tributed by a completely conserved base (px = 1) is

∑
x px log2

px
fx

= 2 bits (as-

suming equiprobable initial expected base frequencies, fx = 1
4 ). Similarly, the

degenerate R and Y in Figure 10.4 each convey 1 bit of information, and the
N is worth 0. The information contributed by a Watson–Crick base pair of any
sequence is also 2 bits, since

∑
x

∑
y pxy log2

pxy

fxy
= 2 (again assuming that our

initial expectation is equiprobable, fxy = 1
16 , and that the observed Watson–Crick

pairs occur equiprobably, pAU = pCG = pGC = pU A = 1
4 ).

Considering only primary sequence conservation, the R17 consensus therefore
conveys 6 bits of information. We expect to find a match to it by chance every
64 (26) nucleotides. Adding the seven base pairs to the consensus description
adds 14 bits of information, bringing the information content up to 20 bits, and
reducing the chance of finding a spurious match to once in every million (220)
nucleotides. If we search for NNNNNNNRNNANYANNNNNNN in the genome of
the related bacteriophage MS2 (GENBANK MS2CG; the R17 genome is not in the
database), we find 38 matches in the 3569 bp genome, 37 of which are spurious.
If we repeat the search while requiring the seven base pairs, we find just a single
match at the authentic coat protein binding site.

The above search was done with an RNA pattern-matching program similar
to the program RNAMOT [Gautheret, Major & Cedergren 1990]. The program
searches for deterministic (non-stochastic) motifs but with secondary structure
constraints as extra terms. It works fine for small, well-defined patterns but is
somewhat insensitive and problematic for finding matches to less well conserved
structures. Currently, the prevailing wisdom for more sensitive, more statisti-
cally based RNA database searches is that one must write a carefully customised
program for each RNA structure of interest [Dandekar & Hentze 1995]. Sev-
eral such programs exist for finding transfer RNA genes [Fichant & Burks 1991;
Pavesi et al. 1994; Lowe & Eddy 1997], and one exists for finding catalytic group
I introns [Lisacek, Diaz & Michel 1994]. However, as the number of different in-
teresting RNAs grows, this is an increasingly unsatisfactory state of affairs.

Inferring structure by comparative sequence analysis

The same base-pair induced sequence constraints that make database search-
ing hard make consensus RNA secondary structure prediction relatively
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easy – relative to protein structure prediction, at least. In a structurally correct
multiple alignment of RNAs, conserved base pairs are often revealed by the
presence of frequent correlated compensatory mutations. Despite being a theo-
retical structure prediction method, RNA secondary structure prediction by this
process of comparative sequence analysis is considered to be the most reliable
means of determining an RNA secondary structure, short of solving a three-
dimensional crystal or NMR structure. The accepted consensus structures
of most well-studied RNAs have been derived by comparative analysis
[Woese & Pace 1993] (Figure 10.5).

G C
N N'
C
U
U

G
G

C
seq1
seq2
seq3

G C C U U C G G G C
G A C U U C G G U C
G G C U U C G G C C

Figure 10.5 Comparative sequence analysis recognises that the two boxed
positions in this example of a multiple alignment (left) are covarying to
maintain Watson–Crick complementarity. This covariation implies a base
pair, leading to a consensus secondary structure prediction (right).

Comparative analysis is a painstaking art. Inferring the correct structure by
comparative analysis requires knowing a structurally correct multiple alignment,
but inferring a structurally correct multiple alignment requires knowing the cor-
rect structure. A structure is ‘solved’ by an iterative refinement process of guess-
ing the structure based on the current best guess of the multiple alignment, then
realigning based on the new guess at the structure. The sequences to be compared
must be sufficiently similar that they can be initially aligned by primary sequence
identity alone to start the process, but they must be sufficiently dissimilar that a
number of covarying substitutions can be detected.

A quantitative measure of pairwise sequence covariation comes from informa-
tion theory [Chiu & Kolodziejczak 1991; Gutell et al. 1992]. The mutual infor-
mation Mi j between two aligned columns i and j is given by

Mi j =
∑
xi ,xj

fxi xj log2

fxi xj

fxi fxj

. (10.1)

fxi is the frequency of one of the four bases (A,C,G,U) observed in column
i . fxi xj is the joint (pairwise) frequency of one of the sixteen possible base pairs
observed in columns i and j . Mi j measures how much the joint frequency dis-
tribution deviates from the distribution that is expected if the two columns vary
independently. For the four-letter RNA alphabet, Mi j varies between 0 and 2 bits.
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Mi j is maximal if i and j individually appear completely random ( fi = f j =
0.25), but i and j are perfectly correlated, for instance in a Watson–Crick base
pair.

Intuitively, Mi j tells us how much information we get about the identity of
the residue in one position if we are told the identity of the residue in the other
position. In the case of a base pair with no sequence constraints, we get 2 bits
of information: for instance, if we are told that i is a G, our uncertainty about j
collapses from four possibilities to just one (C) so we gain 2 bits of information. If
i and j are uncorrelated, the mutual information is zero. If either i or j are highly
conserved positions, we also get little or no mutual information: if a position does
not vary, we do not learn anything more about it by knowing the identity of its
partner.

Figure 10.6 shows a contour plot of Mi j values calculated from a multiple
alignment of 1415 tRNA sequences. The four base-paired stems of the clover-
leaf structure are readily apparent. The D and TψCG stems, which are rela-
tively highly conserved in primary sequence, are somewhat less apparent than
the anticodon and acceptor stems which are extremely variable in primary
sequence.

Exercise

10.1 The mutual information calculation in (10.1) requires counting frequen-
cies of all sixteen different base pairs. This has the advantage that it
makes no assumptions about Watson–Crick base pairing, so mutual in-
formation can be detected between covarying non-canonical pairs like
A-A and G-G pairs. On the other hand, the calculation requires a large
number of aligned sequences to obtain reasonable frequencies for sixteen
possibilities. Write down an alternative information theoretic measure of
base-pairing correlation that considers only two classes of i , j identities
instead of all sixteen: Watson–Crick and G-U pairs grouped in one class,
and all other pairs grouped in the other. Compare the properties of this
calculation to the Mi j calculation both for small numbers of sequences
and in the limit of infinite data.

10.2 RNA secondary structure prediction

Suppose we wish to predict the secondary structure of a single RNA. Many
plausible secondary structures can be drawn for a sequence. The number in-
creases exponentially with sequence length. An RNA only 200 bases long has
over 1050 possible base-paired structures. We must distinguish the biologically



10.2 RNA secondary structure prediction 269

2

1.5

1

0.5

0
70 60 50 40 30 20 10position j

m
ut

ua
l i

nf
or

m
at

io
n 

(b
its

)

10
20

30
40

50
60

70

position i

U A
U A
A U
G U
G C
C G
G C

A
C
C
A

A U
G C
A U
C G
C G

C

G

U

A

G

C

U

A

G

C

G

C

A

U

G

C

C

G

U
A

G

G

U U C

C U A

A A

A
A

C
U
G

U
G

U G A

G G A A
CUG
G

5

10

15

20

25

30

35

40

45

55

6065

70

75

yeast tRNA-Phe

3'

5'

acceptor stem

T CG stem

D stem

anticodon stem

Figure 10.6 A mutual information plot of a tRNA alignment (top) shows
four strong diagonals of covarying positions, corresponding to the four
stems of the tRNA cloverleaf structure (bottom; the secondary structure
of yeast phenylalanine tRNA is shown). Dashed lines indicate some of the
additional tertiary contacts observed in the yeast tRNA-Phe crystal struc-
ture. Some of these tertiary contacts produce correlated pairs which can be
seen weakly in the mutual information plot.
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Figure 10.7 The Nussinov algorithm looks at four ways in which the best
RNA structure for a subsequence i , j can be made by adding i and/or j
onto already calculated optimal structures for smaller subsequences. Pseu-
doknots are not considered.

correct structure from all the incorrect structures. We need both a function that
assigns the correct structure the highest score, and an algorithm for evaluating the
scores of all possible structures.

Base pair maximisation and the Nussinov folding algorithm

One approach might be to find the structure with the most base pairs. Nussinov
introduced an efficient dynamic programming algorithm for this problem [Nussi-
nov et al. 1978]. Although this criterion is too simplistic to give accurate structure
predictions, the example is instructive because the mechanics of the Nussinov al-
gorithm are the same as those of the more sophisticated energy minimisation
folding algorithms and of probabilistic SCFG-based algorithms.

The Nussinov calculation is recursive. It calculates the best structure for small
subsequences, and works its way outwards to larger and larger subsequences. The
key idea of the recursive calculation is that there are only four possible ways of
getting the best structure for i , j from the best structures of the smaller subse-
quences (Figure 10.7):

(1) add unpaired position i onto best structure for subsequence i +1, j ;
(2) add unpaired position j onto best structure for subsequence i , j −1;
(3) add i , j pair onto best structure found for subsequence i +1, j −1;
(4) combine two optimal substructures i ,k and k +1, j .

More formally, the Nussinov RNA folding algorithm is as follows. We are
given a sequence x of length L with symbols x1, . . . , xL . Let δ(i , j) = 1 if xi and
xj are a complementary base pair; else δ(i , j) = 0. We will recursively calculate
scores γ (i , j) which are the maximal number of base pairs that can be formed for
subsequence xi , . . . , xj .
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Algorithm: Nussinov RNA folding, fill stage

Initialisation:
γ (i , i −1) = 0 for i = 2 to L;

γ (i , i) = 0 for i = 1 to L .

Recursion: starting with all subsequences of length 2, to length L:

γ (i , j) = max




γ (i +1, j),
γ (i , j −1),
γ (i +1, j −1)+ δ(i , j),
maxi<k< j

[
γ (i ,k)+γ (k +1, j)

]
. �

Figure 10.8 shows an example of a Nussinov matrix fill in operation.
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Figure 10.8 The matrix fill stage of the Nussinov folding algorithm is
shown for an example sequence GGGAAAUCC. (a) The initialised half-
diagonal matrix. (b) The matrix after scores for subsequences of length two
have been calculated. (c) An example of two different optimal substructures
for the same subsequence. For the subsequence AAAU, either the A at i and
the U at j can be paired (diagonal path) or i can be added to a substructure
that already pairs the A at i + 1 to the U at j (vertical path). (d) The final
matrix. The value in the upper right indicates that the maximally paired
structure has three base pairs.
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The value of γ (1, L) is the number of base pairs in the maximally base-paired
structure. There are often a number of alternative structures with the same number
of base pairs. To find one of these maximally base-paired structures, we trace back
through the values we calculated in the dynamic programming matrix, beginning
from γ (1, L). In pseudocode, the traceback algorithm is:

Algorithm: Nussinov RNA folding, traceback stage

Initialisation: Push (1, L) onto stack.
Recursion: Repeat until stack is empty:

- pop (i , j).
- if i >= j continue;

else if γ (i +1, j) = γ (i , j) push (i +1, j);
else if γ (i , j −1) = γ (i , j) push (i , j −1);
else if γ (i +1, j −1)+ δi , j = γ (i , j):

- record i , j base pair.
- push (i +1, j −1).

else for k = i +1 to j −1: if γ (i ,k)+γ (k +1, j) = γ (i , j):
- push (k +1, j).
- push (i ,k).
- break. �
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Figure 10.9 The traceback stage of the Nussinov folding algorithm is
shown for the filled matrix from Figure 10.8. An optimal traceback path
is indicated with circles. The optimal structure corresponding to this path
is shown at right.

The traceback is linear in time and memory. The fill step is the limiting step
as it is O(L2) in memory and O(L3) in time. An example traceback is shown
in Figure 10.9. The traceback in Figure 10.9 is unbranched, so the need for the
pushdown stack in the traceback algorithm is not apparent. The pushdown stack
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becomes important when bifurcated structures are traced back. The stack remem-
bers one side of the the bifurcation while the other side is traced back, reminiscent
of the push-down automata in Chapter 9.

Exercises

10.2 The traceback algorithm given above does not actually produce the struc-
ture shown in Figure 10.9. What alternative optimal structure containing
three base pairs does it recover instead? Are there other optimal struc-
tures? Modify the traceback algorithm so it finds a different optimal
structure.

10.3 As we have given it, the Nussinov algorithm can produce nonsensical
‘base pairs’ between adjacent complementary residues, with a physically
improbable loop length of zero (for example, you should have seen one
such structure in the preceding exercise) Modify the Nussinov folding
algorithm so that hairpin loops must have a minimum length of h. Give
the new recursion equations for the fill and traceback.

10.4 Show that the Nussinov folding algorithm can be trivially extended to
find a maximally scoring structure where a base pair between residues
a and b gets a score s(a,b). (For instance, we might set s(G,C) = 3 and
s(A,U) = 2 to better reflect the increased thermodynamic stability of GC
pairs.)

An SCFG version of the Nussinov algorithm

The Nussinov algorithm is fundamentally similar to the SCFG algorithms in
Chapter 9. As an example of how SCFGs apply to RNA secondary structure anal-
ysis, consider the following production rules of a simple RNA folding SCFG:

S → aS | cS | gS | uS (i unpaired),
S → Sa | Sc | Sg | Su ( j unpaired),
S → aSu | cSg | gSc | uSa (i , j pair),
S → SS (bifurcation),
S → ε (termination).

(10.2)

The SCFG has a single nonterminal S and 14 production rules with associ-
ated probability parameters. For now, assume that the probability parameters are
known. The maximum probability parse of a sequence with this SCFG is an as-
signment of sequence positions to productions. Because the productions corre-
spond to secondary structure elements (base pairs and single-stranded bases), the
maximum probability parse is equivalent to the maximum probability secondary
structure. If base pair productions have relatively high probability, the SCFG will
favour parses which tend to maximise the number of base pairs in the structure.
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Although the production rules for the SCFG are not in Chomsky normal form,
a CYK parsing algorithm is readily written that finds the maximum probabil-
ity secondary structure. Alternatively, we could convert the SCFG to Chomsky
normal form and apply the algorithms in Chapter 9. Although the Chomsky nor-
mal form approach is attractive in its generality, specific algorithms for specific
SCFGs are typically more efficient. The adapted CYK algorithm is as follows.
Let the probability parameters of the SCFG productions be denoted by p(aS),
p(aSu), etc.

Algorithm: CYK for Nussinov-style RNA SCFG

Initialisation:
γ (i , i −1) = −∞ for i = 2 to L;

γ (i , i) = max

{
log p(xi S)
log p(Sxi )

for i = 1 to L .

Recursion: for i = L −1 down to 1, j = i +1 to L:

γ (i , j) = max




γ (i +1, j)+ log p(xi S);
γ (i , j −1)+ log p(Sxj );
γ (i +1, j −1)+ log p(xi Sxj );
maxi<k< j γ (i ,k)+γ (k +1, j)+ log p(SS). �

When this is done, γ (1, L) is the log likelihood log P(x , π̂ |θ ) of the optimal
structure π̂ given the SCFG model θ . The traceback to find the structure corre-
sponding to that best score is either performed analogously to the traceback in the
Nussinov algorithm, or by keeping additional traceback pointers in the fill stage
analogous to the CYK algorithm description in Chapter 9.

The principal difference between this and the original Nussinov algorithm is
that the SCFG description is a probabilistic model. We gain access to several
well-principled options for optimising the parameters of the model. We can set
the SCFG’s parameters by subjective estimation of the relevant probabilities, or
by estimating parameters by counting state transitions in known RNA structures
and converting the counts to probabilities. We can even learn probabilities from
example RNAs of unknown structure using expectation maximisation (EM) and
inside–outside training to iteratively infer both the structures and the parameters
(i.e. the structures are the hidden data in the EM algorithm). Once we have written
down the SCFG as a full probabilistic model of the RNA folding problem, we
can ‘turn the crank’, applying all the probabilistic machinery we have learned in
previous chapters almost by rote.

Like the Nussinov algorithm, this small SCFG is a good starting example but
it is too simple to be an accurate RNA folder. It does not consider important
structural features like preferences for certain loop lengths nor preferences for
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certain nearest neighbours in the structure caused by stacking interactions be-
tween neighbouring base pairs in a stem.

Exercises

10.5 Write down a traceback algorithm for determining the best RNA sec-
ondary structure after the above algorithm has completed.

10.6 Devise an SCFG which uses different nonterminals to model bulge loops,
hairpin loops, multifurcation loops and single strands.

Energy minimisation and the Zuker folding algorithm

RNA folding is dictated by biophysics rather than by counting and maximising
the number of base pairs. The most sophisticated secondary structure prediction
method for single RNAs is the Zuker algorithm, an energy minimisation algo-
rithm which assumes that the correct structure is the one with the lowest equilib-
rium free energy (�G) [Zuker & Stiegler 1981; Zuker 1989a].

The �G of an RNA secondary structure is approximated as the sum of individ-
ual contributions from loops, base pairs and other secondary structure elements.
An important difference from the simpler Nussinov calculation is that the en-
ergies of stems are calculated by adding stacking contributions for the interface
between neighbouring base pairs instead of individual contributions for each pair.
In other words, the energy of a stem of n base pairs is the sum of n −1 base stack-
ing terms instead of n base pair terms. This produces a better fit to experimentally
observed �G values for RNA structures but it complicates the dynamic program-
ming algorithm. Tables of �G parameters for RNA structure prediction have
been fitted to the results of experimental thermodynamic studies of small model
RNAs [Freier et al. 1986; Turner et al. 1987]. They include parameters for stack-
ing, hairpin loop lengths, bulge loop lengths, interior loop lengths, multi-branch
loop lengths, single dangling nucleotides and terminal mismatches on stems.

An example of the prediction of the �G of an RNA structure is given in Fig-
ure 10.10. Single base bulges are assumed not to disrupt stacking in the stem, so
a stacking term is included in the example in the figure. Longer bulges, which are
assumed to disrupt stacking, get no added stacking term. The hairpin loop energy
is the sum of two terms: a loop destabilisation energy dependent only on the loop
length, and a terminal mismatch energy dependent on the closing base pair and
the first and last bases of the stem. The energies used in Figure 10.10 are from
the older ‘Freier rules’ [Freier et al. 1986] at 37◦C.1

The minimum energy structure can be calculated recursively by a dynamic
programming algorithm (assuming no pseudoknots), very similar to how the

1 Currently the most up-to-date parameters are available on the Web from
http://www.bioinfo.rpi.edu/∼zukerm/rna/energy/.
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Figure 10.10 An example �G calculation for an RNA stem loop (the wild
type R17 coat protein binding site).

maximum base-paired structure was calculated above. The principal difference
is that because of the stacking parameters, two matrices (called V and W ) are
kept instead of one. W (i , j) is the energy of the best structure on i , j . V (i , j) is
the energy of the best structure on i , j given that i , j are paired. The algorithm
can then keep track of stacking interactions by adding new base pairs only onto
the V matrix. Conceptually this two-state calculation is very similar to the use of
extra insert states in pairwise dynamic programming alignment with affine gap
costs (Chapter 2) to keep track of insert extensions. For a complete description of
the Zuker algorithm, see Zuker & Stiegler [1981].

We could write down a SCFG that followed similar rules. The simplest stack-
ing production rule would be, for instance, cV g → cgV cg for producing a GC
pair in a stem after (stacked on) a CG, using V as a base pair generating nonter-
minal (as in the Zuker V matrix). With the CG terminals on the left as context for
the production of the GC, this is technically a context-sensitive production, so we
can’t use such rules as the basis for a SCFG. However, we can convert to context-
free productions by using four different nonterminals V au , V cg, V gc, V ua , and us-
ing right-hand sides of the form → gV gcc to produce a G-C pair, for instance
– the nonterminal identity V gc ‘remembers’ that a G-C pair was just generated.
(In other words, all we are doing is making the model a higher order Markov
process.) The probability of a production V cg → gV gcc, for instance, would be
the probability of a C-G pair stacked on a G-C pair.2 Other details of the Zuker
algorithm and its two matrices V and W could be incorporated similarly into an
analogous full probabilistic model with two nonterminals V and W (expanded
for nearest neighbour context). CYK and inside–outside algorithms for an SCFG

2 Since only one nonterminal is possible for a given xi , xj pair and the other three have zero
probability, the four nonterminals behave as one for the purposes of memory and time com-
plexity in parsing algorithms.
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version of the Zuker algorithm have the same algorithmic complexity as the Zuker
algorithm itself.

Suboptimal RNA folding

The original Zuker algorithm finds only the optimal structure. The biologically
correct structure is often not the calculated optimal structure, but rather a struc-
ture within a few percent (i.e. within the error bars) of the calculated minimum
energy. It was a significant advance when an efficient suboptimal folding algo-
rithm was introduced. The Zuker suboptimal folding algorithm [Zuker 1989b] is
similar to running the CYK algorithm in both the inside and outside directions.
One matrix (exactly the CYK algorithm) finds the �G of the best structure for
all subsequences i , j with i , j paired, and a second matrix (effectively an outside
CYK algorithm) finds the best structure for the sequence with i , j paired and the
subsequence i +1, j −1 excluded.3 The sum of the two numbers for a given i , j is
the �G of the optimal structure that uses the pair i , j . The suboptimal folding al-
gorithm then samples a base pair i , j ‘randomly’ according to its �G, then traces
back in both the inside and outside matrices to find the optimal structure that uses
that base pair. (It is therefore more correct to say that the algorithm samples one
base pair suboptimally. The rest of the structure is the optimal structure given
that base pair.)

SCFG versions of RNA folding algorithms can also sample structures accord-
ing to their likelihood by a probabilistic traceback of the inside matrix, analogous
to the way in which suboptimal profile HMM alignments were sampled from a
forward matrix in Chapter 6.

Base pair confidence estimates

Partition function calculations for calculating the probabilities of particular base
pairs or structures were introduced for energy minimisation folding algorithms by
McCaskill [1990]. The McCaskill algorithm converts �Gs to probabilities using
the Gibbs–Boltzmann equation and sums probabilities of all structures instead of
choosing the single minimum energy structure. The sum of the probabilities of
all structures containing a base pair i , j divided by the sum over all structures is
interpreted as a confidence estimate in the pair i , j .

From the SCFG viewpoint, the McCaskill algorithm is fundamentally an inside–
outside algorithm, compared to the Zuker algorithm which is fundamentally a

3 Zuker actually doubles the sequence, treats it as circular, and calculates the energy of the
best structure on j , . . . , L/1, . . . , i . For circular RNAs, this gives the same result as the out-
side algorithm. For linear RNAs, the Zuker algorithm must handle the non-existent junction
between the 3′ and 5′ end as a special case. The outside algorithm might be less complicated
to implement.
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CYK algorithm. The estimation of base pair confidences for an SCFG is con-
ceptually similar to the estimation of pairwise alignment confidences that we de-
scribed for pair HMMs in Chapter 4.

Exercises

10.7 Write down the inside algorithm, outside algorithm, and inside–outside
re-estimation equations for the Nussinov-style RNA folding SCFG in
equation (10.2).

10.8 By analogy to profile HMM suboptimal alignment sampling, give an al-
gorithm for sampling structures probabilistically from your inside ma-
trix.

10.9 Show how to use your inside and outside variables to calculate the proba-
bility that positions i , j are base-paired, summed over all structures. The
functional form of the answer will be analogous to your inside–outside
re-estimation equations.

10.3 Covariance models: SCFG-based RNA profiles

Suppose we have a family of related RNAs – transfer RNAs or group I catalytic
introns, perhaps – which share a common consensus secondary structure as well
as some primary sequence motifs, and we want to search a sequence database
for homologous RNAs. In Chapter 5, we used HMM-based profiles to model the
consensus of protein and DNA sequence families, but we showed in Chapter 9
that HMMs are primary structure models that cannot deal effectively with RNA
secondary structure constraints. In this section, we describe SCFG-based RNA
structure profiles called ‘covariance models’ (CMs) which are the SCFG ana-
logue of profile HMMs. Whereas profile HMMs specify a repetitive linear HMM
architecture well suited for modelling multiple sequence alignments, CMs spec-
ify a repetitive tree-like SCFG architecture suited for modelling consensus RNA
secondary structures.

Although we follow here the ‘covariance model’ approach developed in Eddy
& Durbin [1994], these same general ideas and algorithms are shared by com-
parable SCFG-based RNA models independently developed at the same time by
Sakakibara and coworkers [1994].

CMs are detailed and fairly complex probabilistic models. We first set the stage
by looking in an intuitive way at more simple models of small RNA alignments.

SCFG models of ungapped RNA alignments

Figure 10.11 shows an example RNA consensus structure and an ungapped
multiple alignment of an RNA family that fit the consensus. To describe this
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Figure 10.11 The consensus structure of an example RNA family with no
insertions or deletions is shown at the top. Five example sequences from
different organisms that adopt the same structure are shown in the multiple
alignment below the structure. Base-paired positions in the alignment are
boxed and base-paired partners are connected by lines. The last line in the
alignment is a structure consensus representation in the format we use for
annotating RNA structural alignments [Konings & Hogeweg 1989].

multiple alignment with an SCFG-based model, we need several different types
of nonterminals to generate different types of secondary structure and sequence
elements.

Base-paired columns are modelled by pairwise emitting nonterminals that gen-
erate both bases in the pair. Single-stranded columns are modelled by leftwise
emitting nonterminals wherever possible. For bulges and interior loops on the 3′

side of a stem, rightwise emitting nonterminals are sometimes needed. Bifurca-
tion nonterminals are used to split into multiple stems and multi-branch loops.
We define a special start nonterminal that acts as the initial nonterminal and as
the immediate children produced from a bifurcation.4 We also define a special
end nonterminal that generates ε with probability 1 and terminates a derivation.
The production rules for these states are summarised as follows, using W as a
generic nonterminal to represent any of the six states:

4 It is not necessary to bifurcate to start nonterminals, but this will simplify a number of subse-
quent algorithms. One reason for this is that we could sever the bifurcation-start connection
and treat each branch of the structure as an independent SCFG model of an independent
RNA domain.
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P → aW b pairwise (16 pair emission probabilities),
L → aW leftwise (4 singlet emission probabilities),
R → Wa rightwise (4 singlet emission probabilities),
B → SS bifurcation (probability 1),
S → W start (probability 1),
E → ε end (probability 1).

The structure in Figure 10.11 can now be reduced to an SCFG, as shown in
detail below. For clarity, only one of the possible productions is shown for each
nonterminal (the production corresponding to the one used in the structure and
the human sequence in Figure 10.11). Pairwise productions would have 16 to-
tal productions and production probabilities for 16 possible pairs; leftwise and
rightwise productions would have 4.

S1 → L2 . . .

L2 → aL3 . . .

L3 → aB4 . . .

B4 → S5S15

Stem 1

S5 → P6

P6 → g P7c . . .

P7 → a R8u . . .

R8 → P9a . . .

P9 → cL10g . . .

L10 → uL11 . . .

L11 → uL12 . . .

L12 → cL13 . . .

L13 → gE14 . . .

E14 → ε

Stem 2

S15 → L16

L16 → u P17 . . .

P17 → g P18c . . .

P18 → gL19c . . .

L19 → cP20 . . .

P20 → gL21c . . .

L21 → aL22 . . .

L22 → cL23 . . .

L23 → aE24 . . .

E24 → ε

The model has an important property: its nonterminals are connected in a tree.
The structure of the SCFG tree exactly mirrors the structure of the RNA and the
structure of its parse trees. (This is not a necessary property of SCFGs; it was not
shared by the RNA folding SCFG we saw earlier, for instance.) This allows us
to adopt a convenient graphical representation of the SCFG that intuitively and
compactly reflects the structure of the RNA family being modelled. It is clear
from the grammar above that even simple RNA SCFGs can be very tedious to
write in production rule form. A graphical representation of the same SCFG is
shown in Figure 10.12.

The model has a total of 24 nonterminals, modelling a 24 nucleotide RNA
alignment. The numbers do not have to be exactly the same but the number
of nonterminals in the model will scale roughly linearly with the length of the
alignment. One nonterminal is needed for each pair, one nonterminal for each
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Figure 10.12 A graphical representation of the ungapped RNA SCFG ex-
ample is shown on the left. Boxes labelled P represent 16 pairwise produc-
tion probabilities; boxes labelled L and R represent 4 leftwise and rightwise
production rules, respectively; boxes labelled S, B and E represent start, bi-
furcation and end nonterminals, respectively. The RNA consensus structure
is redrawn (middle) to correspond more closely to the tree structure of the
SCFG. A parse tree is shown for this structure (right) in which the RNA
nucleotides are assigned to states in the SCFG.

single-stranded nucleotide, and an assortment of B, S and E nonterminals com-
plete the model.

There is one important difference between the list of production rules and the
graphical model in Figure 10.12. SCFGs typically emit symbols on transitions
(i.e. W1 → aW2b, emitting symbols and moving to a new nonterminal simulta-
neously). We can also choose to separate transition from emission and emit sym-
bols on states independently of the preceding state transition. This distinction be-
tween emit-on-transition (Mealy machines) and emit-on-state (Moore machines)
was discussed in Chapter 9. Moore machines have been favoured for most of the
HMMs we have described, including profile HMMs. In covariance models, as an
SCFG-based extension of the profile HMM ideas in Chapter 5, we also use an
emit-on-state formalism. Likewise, we will usually refer to CM nonterminals as
‘states’. Thus, our ungapped SCFG in Figure 10.12 has 16 emission probabilities
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per pairwise state and 4 emission probabilities per leftwise or rightwise state, and
all the state transition probabilities are 1 (there are no alternative paths through
the ungapped model). The transition probabilities will become more interesting
when we develop models which allow insertion and deletion.

There is some ambiguity in mapping the RNA structural alignment to the
SCFG. Hairpin loops, for instance, could instead be generated right-to-left by
rightwise states. We arbitrarily chose leftwise states where possible, leftwise
states being the most similar to our previous treatment of profile HMMs.

The model in Figure 10.12 is a reasonable model of the RNA family in Fig-
ure 10.11 as long as no insertions and deletions occur. The model is compara-
ble to an HMM composed only of match states without insert/delete states. We
could use it as a full probabilistic model for RNA database searching.5 How-
ever, we would probably miss many homologous structures; allowing insertions
and deletions is important for modelling most real RNA structures. We turn now
to covariance models, which expand the ungapped SCFG example into a model
which tolerates insertions and deletions much like a match-state-only HMM (i.e.
ungapped weight matrix) was expanded by insert and delete states into a profile
HMM.

Exercise

10.10 Rewrite the list of production rules from the ungapped RNA model such
that symbols are emitted independent of the previous state like an HMM.
This is the formal stochastic transformational grammar that corresponds
to the graphical SCFG representation in Figure 10.12.

Design of covariance models

The design goals for a CM are straightforward, but meeting these goals is not.
First, a CM is built around a consensus RNA structure tree exactly like the tree
we discussed above for ungapped RNA models. Secondly, a CM allows an in-
sertion or deletion of any length at any position in the alignment. CMs use the
same strategy that profile HMMs use for dealing with insertions and deletions
relative to the consensus. Recall that profile HMMs repetitively use a set of three
states (match, insert, delete) to model each position in a multiple alignment. A
profile HMM can be thought of as a stereotyped expansion of an ungapped con-
sensus model: every match state in the ungapped model is expanded to a match,
delete and insert state in the profile HMM. Similarly, a CM expands an ungapped
consensus model into a stereotyped pattern of individual states. We refer to the
repetitive unit of model structure as a node. Profile HMMs are a linear string of

5 If we used this SCFG for RNA analysis, using the inside–outside and CYK algorithms for
alignment would be overkill. With no gaps, only a single alignment is possible. Ungapped
RNA motifs can be scored against a probabilistic model in O(L) time.
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a single type of three-state node. CMs are a branched tree of nodes, where there
are different types of nodes with different numbers of states.

Leftwise nodes for single-stranded consensus positions expand like HMM
nodes into match, insert and delete states, as do rightwise singlet nodes. Thus,
leftwise nodes become a triplet of states ML, IL and D, and rightwise nodes be-
come a triplet of states MR, IR and D.

When pairwise nodes expand, they have several insertion and deletion possi-
bilities that they must take into account. A deletion may remove both bases in the
base pair or solely the 5′ or 3′ partner, leaving the remaining unpaired partner as
a bulge. Insertions in the base-paired stem may occur on the 5′ side of the pair,
the 3′ side, or both. CMs expand a pairwise node into six states: an MP state, a
D state (for complete deletion of the base pair), ML and MR states (for a single-
base deletion that removes the 3′ or 5′ base, respectively), and IL and IR states
that allow insertions on the 5′ or 3′ side of the pair, respectively.

The root start node is expanded to a start state S and insert states for either the 5′

or 3′ side, IL and IR. The left child start node under a bifurcation is expanded just
to a single S state. The right child start node under a bifurcation is expanded to
an S state and an insert-left IL state. This arrangement of the insert states assures
that an insertion in any position is unambiguously assigned.6

Bifurcation nodes and end nodes in the consensus tree simply become B and E
states in the CM.

States are then connected by state transitions. As with profile HMMs, states
connect to all insert states in the current node and all non-insert states in the
next node. Insert states have a state transition to themselves to allow insertions of
more than one base. In pairwise nodes, IL connects to IR but not vice versa, so
that insertions are unambiguously assigned to a single path through the model.
This connectivity of state transitions is summarised graphically in Figure 10.13.

The complete CM is a directed graph of states, organised according to an un-
derlying consensus tree. The ‘main line’ of the CM is exactly the consensus tree,
but the CM also allows paths through alternative states that handle deletions and
insertions.

This is only one possible design for an RNA structure profile. Insertions in
stems are often base-paired instead of single-stranded (i.e. stem lengths vary).
Therefore we could choose to include a pairwise-insertion (IP) state in pairwise
nodes. We could remove the ML and MR states from the pairwise node and in-
stead model deletions of a single base in a pair (which leave a bulge) as a complete
deletion followed by an insertion of the bulge with the IL or IR state. A sophis-
ticated design might even try to model the fact that long insertions in RNA are
often structured. Given infinite computing resources, we could imagine replacing

6 Another possible arrangement would be S, IR for the left child and S for the right child; we
use the chosen arrangement because of the decision to default to profile HMM-like leftwise
generation when we have a choice.
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Figure 10.13 The states of a CM (small boxes) are grouped according to
the nodes of a consensus RNA structure tree (large boxes). The example here
is strictly hypothetical, solely designed to put all eight types of CM nodes in
the same picture. State transitions are indicated by arrows. The ‘main line’
consensus path is indicated by thick arrows. This main line is exactly the
consensus tree itself. Jagged lines at the bottom indicate more nodes in the
model that are not shown.

each insert state with a generalised SCFG RNA folding model like the one we
described in the first section.

Construction of a CM from an RNA alignment

Given an RNA sequence alignment, annotation of the consensus secondary struc-
ture, and annotation of which columns should be considered to be insertions and
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which should be considered to be consensus columns, a CM can be precisely
defined and readily constructed. Using the structure annotation on the non-insert
columns of the alignment, a consensus structure tree is first constructed. The
nodes of that tree are then filled with CM states, and states are connected by state
transitions as discussed above. Based on this assignment of alignment columns to
tree nodes, individual symbols can be assigned to individual CM states and each
sequence in the alignment can be assigned a unique CM parse tree. Emission and
transition events in these parse trees are counted. These observed counts are used
to estimate symbol emission and state transition probabilities for the CM in the
usual fashion, usually by incorporating a Dirichlet or mixture Dirichlet prior and
doing mean posterior estimation. Because the CM structure directly mirrors the
consensus RNA structure, this procedure is unambiguous and very fast.

If consensus columns are not annotated, a simple heuristic can be used to do
the assignment, such as calling any column with more than 50% gap symbols
to be an insert column. If the consensus structure is unknown, this is a harder
problem; we discuss it in more detail later in the chapter.

Thus, we can build CMs from structure-annotated RNA multiple sequence
alignments. We now turn to a description of the alignment algorithms we need
for searching databases, constructing new structure-based alignments, or training
CMs from initially unaligned and unstructured sequences.

CM alignment algorithms

We gave general SCFG algorithms in Chapter 9 which apply to Chomsky normal
form SCFGs, but as we discussed previously, it would be tedious to use Chomsky
normal form SCFGs for RNA analysis. Chomsky normal form does not permit
pairwise productions like W → cWg. We will therefore give a set of analogous
alignment algorithms specific to CMs.

Notation

A CM is composed of M different states (nonterminals) denoted by W1, . . . , WM .
Let v, y and z be indices for states Wv, Wy and Wz . There are seven types of
states labelled P, L, R, D, S, B and E, for Pairwise emitting, Leftwise (5′) emit-
ting, Rightwise (3′) emitting, Delete, Start, Bifurcation and End states, respec-
tively. W1 is the (root) start state for the whole CM. There is usually more than
one end state since CMs are usually multi-branched models reflecting multi-
branched RNA secondary structures. The seven state types are associated with
symbol emission and state transition probabilities as shown in Table 10.1.

We define numbers �L
v and �R

v which are the number of symbols emitted
to the left and right by the state v. This simplifies the description of the algo-
rithms. We used a similar simplifying notation in the description of the Sankoff–
Cedergren N -dimensional dynamic programming algorithm in Chapter 6.
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State (sv) Production �L
v �R

v Emission Transition

P Wv → xi Wy xj 1 1 ev(xi , xj ) tv(y)
L Wv → xi Wy 1 0 ev(xi ) tv(y)
R Wv → Wy xj 0 1 ev(xj ) tv(y)
D Wv → Wy 0 0 1 tv(y)
S Wv → Wy 0 0 1 tv(y)
B Wv → Wy Wz 0 0 1 1
E Wv → ε 0 0 1 1

Table 10.1. The seven state types of a covariance model.

For notational and implementational convenience, each state in a CM also car-
ries additional pieces of information. Let sv be the state type, taking its value from
P, L, R, D, S, B, or E, indicating one of the seven possible forms of production
rule. Let Cv be the children of the state, represented by the list of one or more
indices y for the states Wy that Wv can make a state transition to. Let Pv be the
parents of the state, represented by the list of one or more indices y for the states
Wy that make a state transition to Wv.

Bifurcation (B) states are handled specially in a CM. A bifurcation state Wv

always transits with probability 1 to two S states Wy and Wz , for only one choice
of y and z. The children list Cv for a B state is a pair (y, z) for the two S children.
The parent list Py and Pz for both S state children is {v}, as only Wv transits to
these states. This single choice for a bifurcation transition is very unlike Chomsky
normal form, which is almost entirely described by a probabilistic choice among
all y and z for bifurcation rules Wv → Wy Wz . In RNA models, bifurcation states
are only needed to describe multi-branch loops or multiple stems that occur in
the structure. The bulk of the model consists of P, L and R states. The restriction
on bifurcations greatly reduces the computational complexity of CM algorithms.

Start (S) and Delete (D) states are treated identically in alignment algorithms.
The only difference between them is structural. Start states only occur as the
immediate children of bifurcations or as the root state W1. Delete states occur
within P, L and R nodes of the CM.

There are three additional restrictions on CMs. First, each state may only use
one type of production rule (sv refers to both state and production type). Sec-
ondly, as in profile HMMs, states are not fully interconnected; the number of
connected states in Cv is a constant that does not depend on the number of states
M . This further reduces the complexity of the alignment algorithms compared
to Chomsky normal form SCFGs. Lastly, we impose a final important restric-
tion. States are numbered such that y > v for all y ∈ Cv, except for insert states,
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where y ≥ v for all y ∈ Cv. This condition is important for the non-emitting states
(S, D, B), guaranteeing that there are no non-emitting cycles. Similar restrictions
on delete states were described for HMMs (Chapter 3).

Let us now walk through the important algorithms for manipulating RNA co-
variance models.

Scoring: inside algorithm

We are given an observed RNA sequence x , composed of L individual symbols
x1, . . . , xi , . . . , xj , . . . , xL . Consider first the scoring problem of calculating the like-
lihood P(x |θ ) of the sequence given a covariance model θ , summed over all pos-
sible structures for x . This probability is calculated with the inside algorithm.

The inside algorithm recursively fills a three-dimensional dynamic program-
ming matrix with values αv(i , j). αv(i , j) is the summed probability of all parse
subtrees rooted at state v for the subsequence xi , . . . , xj . αv(i + 1, i) is the prob-
ability for null subsequences of length zero; it must be included as a boundary
condition because of the presence of non-emitting D, S and B states. For no-
tational convenience, we will use ev(xi , xj ) for all emission probabilities: for L
states ev(xi , xj ) = ev(xi ), for R states ev(xi , xj ) = ev(xj ), and for non-emitting
states ev(xi , xj ) = 1.

Algorithm: Inside for CMs

Initialisation: for j = 0 to L , v = M to 1 :

αv( j +1, j) =




sv = E : 1;

sv ∈ S,D :
∑
y∈Cv

tv(y)αy( j +1, j);

sv = B : αy( j +1, j)αz( j +1, j);
sv ∈ P,L,R : 0.

Recursion: for j = 1 to L , i = j to 1, v = M to 1 :

αv(i , j) =




sv = E : 0;
sv = P, j = i : 0;

sv = B :
j∑

k=i−1

αy(i ,k)αz(k +1, j);

otherwise :

ev(xi , xj )
∑
y∈Cv

tv(y)αy(i +�L
v , j −�R

v ).
�

When complete, the probability P(x |θ ) is in α1(1, L). If there are b bifurcation
states and a other states (M = a +b), the order of complexity of the algorithm is
O(L2 M) in memory and O(aM L2 +bM L3) in time.
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Outside algorithm for CMs

For the next section on inside–outside parameter estimation, we need the outside
algorithm. The outside algorithm calculates values βv(i , j) which are the prob-
ability of all parse trees rooted at state v that generate the complete sequence
x excluding the subsequence xi , . . . , xj . The outside algorithm requires calculat-
ing inside α terms first.7 After initialising all the cells of the three-dimensional
dynamic programming matrix to zero, the outside algorithm is:

Algorithm: Outside for CMs

Initialisation:
β1(1, L) = 1.

Recursion: for i = 1 to L +1, j = L to i −1, v = 2 to M :

βv(i , j) =




for sv = S,Pv = y,Cy = {v, z} :
L∑

k= j

βy(i ,k)αz( j +1,k);

for sv = S,Pv = y,Cy = {z,v} :
i∑

k=1

βy(k, j)αz(k, i −1);

for sv ∈ P,L,R,D,B,E :∑
y∈Pv

ey(xi−�L
y

, xj+�R
y

)ty(v)βy(i −�L
y , j +�R

y ).
�

The memory and time complexities of the outside algorithm are identical to
those of the inside algorithm.

Inside–outside expectation maximisation for CM parameters

If the structure of the model is known (i.e. the consensus RNA structure for the
family is known) but the probability parameters are unknown, the probability
parameters can be estimated from unaligned example RNAs using an expecta-
tion maximisation algorithm called the inside–outside algorithm. In practice, this
algorithm would rarely be used. Almost all RNA consensus structures are de-
rived from a multiple sequence alignment by comparative sequence analysis, and
we described previously how a structure-annotated multiple sequence alignment
can be immediately turned into a parameterised CM. However, we give the CM
version of the inside–outside algorithm for completeness’ sake. We can imagine
situations in which a consensus structure is arrived at by other means. Also, we
might not wish to assume that the multiple alignment is entirely correct, in which

7 Actually only αv for sv = S need to be kept from the inside pass. This is useful if memory is
limiting.



10.3 Covariance models: SCFG-based RNA profiles 289

case we might not want to directly use the count data from the alignment, making
the inside–outside algorithm more appropriate.

The probability of using state v at i , j in a derivation of a sequence x is
1

P(x |θ)αv(i , j)βv(i , j). By summing these terms in various directions, we can ob-
tain a number of useful probabilities or expected counts, including the expected
counts we need for EM re-estimation of the emission and transition probability
parameters, just as we did for Chomsky normal form SCFGs.

The expected number of times that state v is used for a single sequence x is

c(v used) = 1

P(x |θ )

L+1∑
i=1

L∑
j=i−1

αv(i , j)βv(i , j).

The expected number of times that a state transition tv(y) is used for a single
sequence x is

c(v → y used) = 1

P(x |θ )

L+1∑
i=1

L∑
j=i−1

βv(i , j)ev(xi , xj )tv(y)αy(i +�L
v , j −�R

v ).

When N independent observed sequences x1, . . . , xh , . . . , x N are used for train-
ing instead of a single observed sequence x , as is usually the case for training a
model from a family of RNA sequences, the expected counts are summed over
the individual sequences using inside and outside variables αh and βh calculated
for each sequence:

c(v → y used) =
N∑

h=1

1

P(xh|θ )

L+1∑
i=1

L∑
j=i−1

βh
v (i , j)ev(xh

i , xh
j )tv(y)αh

y (i +�L
v , j −�R

v ).

Thus, the inside–outside EM re-estimation equation for a CM transition prob-
ability from state v to state y given N training sequences x1, . . . , x N is8

t̂v(y) =
∑N

h=1
1

P(xh |θ)

∑L+1
i=1

∑L
j=i−1 βh

v (i , j)ev(xh
i , xh

j )tv(y)αh
y (i +�L

v , j −�R
v )∑N

h=1
1

P(xh |θ)

∑L+1
i=1

∑L
j=i−1 αh

v (i , j)βh
v (i , j)

.

Similar arguments lead to inside–outside re-estimation equations for CM emis-
sion probabilities for state v, where the expression δ() is 1 if the condition in the
parentheses is true, and 0 if the condition is false:

8 Transition probabilities for B states are 1 by definition, so we do not need to re-estimate
them.
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for sv = P :

êv(a,b) =
∑N

h=1
1

P(xh |θ)

∑L
i=1

∑L
j=i δ(xh

i , xh
j = a,b)βh

v (i , j)αh
v (i , j)∑N

h=1
1

P(xh |θ)

∑L
i=1

∑L
j=i β

h
v (i , j)αh

v (i , j)
;

for sv = L :

êv(a) =
∑N

h=1
1

P(xh |θ)

∑L
i=1

∑L
j=i δ(xh

i = a)βh
v (i , j)αh

v (i , j)∑N
h=1

1
P(xh |θ)

∑L
i=1

∑L
j=i β

h
v (i , j)αh

v (i , j)
;

for sv = R :

êv(a) =
∑N

h=1
1

P(xh |θ)

∑L
i=1

∑L
j=i δ(xh

j = a)βh
v (i , j)αh

v (i , j)∑N
h=1

1
P(xh |θ)

∑L
i=1

∑L
j=i β

h
v (i , j)αh

v (i , j)
.

The inside–outside product can also be used to estimate other quantities of
interest. For instance, the probability that xi and xj are base-paired in a single
sequence x by any pairwise production is

P(xi , xj paired) = 1

P(x |θ )

∑
v|sv=P

αv(i , j)βv(i , j).

Database searching: the CYK algorithm

Suppose we are given a very long sequence (a complete genome, for instance) and
our task is to find one or more subsequences that match the RNA model. The al-
gorithms we have given are well suited for global alignment, but ill suited to local
alignment of one or more subsequences to a CM. Clearly we don’t want the time
and memory requirements of a database search algorithm to scale as the square
or cube of the database sequence’s length L . By limiting the length of the longest
aligned subsequence to a constant D and by employing a transformation of the
dynamic programming matrix coordinate system, we can implement an efficient
CYK (or inside, or outside) algorithm for sequence database searching. The dy-
namic programming matrix is indexed by v, j ,d instead of v, i , j , where d is the
length of the subsequence i , . . . , j (d = j − i +1) and d ≤ D. Figure 10.14 shows
how this altered coordinate system makes it straightforward to iteratively calcu-
late a row of scores of the best alignments for subsequences of lengths 0, . . . , D
ending at sequence position j .

A standard CYK algorithm for SCFG alignment returns the log of the proba-
bility P(S, π̂ |θ ) of the sequence S and the best parse π̂ given the model θ . This
score is strongly a function of the length of the aligned sequence, potentially
making it difficult to choose the best matching subsequence among overlapping
subsequences of different lengths in a database search. As discussed for HMMs,
a nice solution to this problem is to calculate log-odds scores relative to a ‘null’
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Figure 10.14 (a) One level of a standard CYK dynamic programming ma-
trix is shown for a database sequence of L = 10, indexed by start position
i and end position j . (There are M different levels like this in the three-
dimensional matrix, one per state in the model.) The parts of the matrix
that need to be calculated if the maximum matching subsequence length is
limited to D = 5 are shown in white. The order of calculation of the matrix
cells is shown with arrows for a search algorithm that sweeps across the
database sequence (i.e. increasing j). (b) An alternative coordinate system
for the same CYK calculation indexed by end position j and subsequence
length d, where d = j − i + 1. It is easier to implement a smoothly scan-
ning CYK database search algorithm with memory requirements that are
independent of L in this coordinate system since the matrix in (b) is D × L
rather than L × L.

model of random sequences. If the random model is an independent identically
distributed model in which the likelihood of the sequence under the null hypoth-
esis is the product of individual residue frequencies fa , then, analogous to HMM
alignment scoring, log probability emission terms can be replaced by log-odds
base pair or singlet nucleotide scores to make the CYK algorithm yield log-odds
scores directly.9 In the algorithm below, we use the notation log ê to indicate a
log-odds emission score instead of a log probability loge:

for sv = P : log êv(a,b) = log(ev(a,b)/ fa fb);
for sv = L : log êv(a,b) = log(ev(a)/ fa);
for sv = R : log êv(a,b) = log(ev(b)/ fb).

The CYK database search algorithm is as follows:

9 To be a full probabilistic model, the random model would also have to specify a length
distribution, but this term can usually be ignored.
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Algorithm: CYK for CM database search

Initialisation: for j = 0 to L , v = M to 1 :

γv( j ,0) =




for sv = E :
0;

for sv ∈ D,S :
maxy∈Cv

[
γy( j ,0)+ log tv(y)

]
;

for sv = B,Cv = (y, z) :
γy( j ,0)+γz( j ,0);

otherwise :
−∞.

Recursion: for j = 1 to L , d = 1 to D (and d ≤ j), v = M to 1 :

γv( j ,d) =




for sv = E :
−∞;

for sv = P and d < 2 :
−∞;

for sv = B,Cv = (y, z) :
max0≤k≤d

[
γy( j − k,d − k)+γz( j ,k)

]
;

otherwise :
maxy∈Cv

[
γy( j −�R

v ,d −�L
v −�R

v )+ log tv(y)
]

+ log êv(xi , xj ). �

In Figure 10.15, the key steps of the recursion in this algorithm are illustrated
graphically.

A few further implementation details are important. Instead of initialising all
L rows, it is better to commingle the initialisation and iteration steps and move
along one row j at a time, first initialising γv( j ,0) and then calculating γv( j ,d)
for d = 1, . . . , D. (Since the initialisation calculations for subsequences of length
0 are independent of the sequence, γv(0,0) only needs to be calculated once for
all v and these values can be copied for initialising subsequent γv( j ,0).) In the
above algorithm and Figure 10.15, it is apparent that all the scores in row j are
dependent only on scores in rows j and j − 1, except for bifurcation (B) states.
Bifurcation states are in turn only dependent on start state scores for the previous
D rows, since B states bifurcate to two S states in the definition of a CM structure.
Thus only D + 1 rows of S state scores and two rows of scores for other states
need to be stored in memory.

The scores γ0( j ,d) in row j are the log-odds scores of complete alignments
to the model (i.e. for a parse tree starting from the root state, v = 0) ending at
position j . As shown in Figure 10.16, the start point of the match i can be cal-
culated from d: i = j − d + 1. That is, obtaining the start point of the alignment
does not require a traceback of the dynamic programming matrix. After finding
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Figure 10.15 The steps of the CYK database searching algorithm recur-
sion are shown for four different state types. Only one level of the three-
dimensional dynamic programming matrix is shown. For example, in the
upper left, the value of the cell marked v, γv( j ,d), depends on one or more
possible cells marked y, γy( j ,d − 1), for the different states y that state v

connects to. This is shown in a different way to the right of the dynamic
programming matrix, by showing that if v generates a single residue left-
wise, then the parse subtree rooted at state v for the subsequence of length
d that ends at j is constructed by adding to subtrees for y, j ,d −1. The cal-
culations for R (upper right) and P (lower left) states are analogous. The
calculation when v is a bifurcation (B) state depends on choosing the best
bifurcation point. One such point is shown by two cells marked y and z in
the dynamic programming matrix; the set of all other such connected cells
is shown in grey.

a high-scoring γ0( j ,d), a CYK search algorithm can immediately report not just
the score but also the start position i and end position j of the subsequence that
gives this high score.

An implementation might choose to report all hits above a certain score thresh-
old. However, a high-scoring alignment has ‘shadows’, alignments with minor
differences in start and end point which will also score well. It is better to report
non-overlapping hits above a threshold. A simple score post-processing algo-
rithm which is compatible with scanning unlimited amounts of sequence with a
constant memory requirement is as follows. After calculating a row j , the best
score γ0( j ,d) for a d in row j is determined. If it is greater than the report-
ing threshold, it is stored in a list; if it overlaps with a previous hit in the list,
the lower-scoring hit is discarded; any hit in the list whose end point j is less
than the current minimum start point, j − D, is reported as a non-overlapping
match.
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Figure 10.16 A small example showing two non-overlapping hits in a CYK
database search matrix. The two hits (from positions 5 to 10 and 13 to 19)
are shown schematically as boxes to the left of the matrix. The high-scoring
matrix entries γ0( j ,d) are shown in black. The volumes of the matrix which
must be in memory to reconstruct the complete alignments are shown in
grey. The grey triangle also indicates how the coordinates of a cell ( j ,d)
determine the start point i of each match even if the complete matrix is not
kept in memory. Only one level of the three-dimensional matrix is shown for
simplicity.

The time complexity of the CYK search algorithm is O(Ma L D + Mb L D2) for
a model of Ma non-bifurcation states and Mb bifurcation states, a database of
length L residues, and a maximum match size of D residues. The memory com-
plexity is O(Ma D + Mb D2). Computation time scales linearly with increasing
database size, and the memory required is independent of the database size.

Exercise

10.11 The same alternative matrix coordinate system can be applied to the in-
side or outside algorithms. Compared to CYK, the inside algorithm has
the advantage that it sums over the probabilities of all possible structures
and alignments for the subsequences, yet it is no more computationally
complex than the CYK version. Give the inside algorithm for searching
for local subsequence matches of no greater than length D.

Structural alignment: CYK algorithm with traceback

Since most of the matrix is discarded in the interest of memory efficiency, trace-
backs cannot be done as we have described the search algorithm above.
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Therefore, alignments cannot be recovered; only scores and start and end po-
sitions can be recovered. At the expense of memory, the algorithm is readily
modified to trace back and recover the optimum SCFG parse tree for a match-
ing subsequence. Because the structure of a CM reflects the consensus secondary
structure of an RNA, a CM parse tree represents both an optimal alignment to
the model and an optimal secondary structure prediction. Assignments to P (pair-
wise) states in the parse tree indicate predicted base pairs.

CYK tracebacks can be implemented either with a second matrix of traceback
pointers or by reconstructing the score calculations, as discussed for other dy-
namic programming algorithms in Chapter 2. All D +1 rows of either traceback
pointers or scores must be in memory to guarantee that a hit can be traced back. If
the overlap-processing algorithm above is used, then 2D +1 complete rows must
be kept in memory, since it takes D additional rows before a hit is determined
to be non-overlapping with a later hit. If both scores and alignments are desired,
it is reasonably efficient to implement both a local CYK search algorithm and a
global CYK alignment algorithm with tracebacks, and to simply do two passes:
first a local search pass to find the matching subsequences, and a second pass to
optimally align each of these subsequences one at a time to the model in a global
alignment mode with tracebacks.

The traceback starts from γ0( j ,d) for a high-scoring subsequence of length d
ending at j and works back. For a global rather than local alignment with respect
to the sequence, the traceback starts from γ0(L , L). The process is fundamen-
tally the same as that used to recover HMM dynamic programming tracebacks or
SCFG tracebacks from the simpler RNA models earlier in the chapter, so we will
not give full details.

Exercise

10.12 Modify the CYK algorithm so that it keeps traceback information in each
cell to assist in recovering the optimal parse tree. What is the minimum
information that needs to be kept for tracing back from a bifurcation
state? What is the minimum information that needs to be kept for tracing
back from any other state?

‘Automated’ comparative sequence analysis using CMs

Suppose we are given a set of unaligned RNA sequences and the consensus sec-
ondary structure is unknown. Combined multiple RNA alignment and consensus
secondary structure prediction is the domain of comparative sequence analysis,
which remains largely a manual process. We have given the inside–outside train-
ing algorithm, but it presupposes that we already know the structure of the model
and hence the consensus structure of the RNA family. We have also given al-
gorithms for constructing a CM from a multiple alignment without necessarily
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knowing the consensus structure. We now describe how these two ideas can be
combined into an automated comparative sequence analysis algorithm.

The basic idea is to iterate between two steps: (a) build an optimal (or nearly
optimal) CM structure given the current alignment; and (b) build an optimal mul-
tiple alignment given the current CM.

For (a), several approaches are possible for finding a consensus structure given
an RNA multiple alignment. A heuristic approach directly inspired by compar-
ative sequence analysis methods was used by Eddy & Durbin [1994]. Mutual
information terms Mi , j are first calculated for all pairs of aligned columns. A
dynamic programming folding algorithm (essentially the Nussinov algorithm) is
then used to find the structure tree which maximises the sum of the Mi , j terms.
The fill stage of this algorithm for finding the maximum sum Si , j is as follows:

Si , j = max




Si+1, j column i unpaired;
Si , j−1 column j unpaired;
Si+1, j−1 + Mi , j columns i , j paired;
maxi<k< j Si ,k + Sk+1, j bifurcation.

A traceback of this matrix then yields the consensus structure tree, which is
expanded to a CM. The advantage of this method is that by using mutual infor-
mation terms, only base pairs which are best supported by comparative analysis
are paired. One disadvantage of the method is that it overpairs, because Mi , j ≥ 0
and thus Si , j usually increases slightly even from adding a spurious pair. A sec-
ond disadvantage is that because it looks only for covariation, highly conserved
structures or domains with little sequence variation may be mis-predicted.

The consensus structure is then imposed on each aligned sequence to find indi-
vidual parse trees, transition and emission counts are collected from these parse
trees, and counts are converted to probability parameters in the usual fashion.

There also exists a rigorous CM construction algorithm for taking an unanno-
tated RNA multiple sequence alignment and simultaneously deriving an optimal
(maximum a posteriori) CM structure and its parameters [S. R. Eddy, unpub-
lished]. This algorithm is an extension of the MAP construction algorithm for
profile HMMs described in Chapter 5.

For (b), constructing an optimal multiple alignment given the current model,
we apply the CYK alignment algorithm to each sequence. As with HMMs, a
multiple alignment of the sequences is implied by the set of their individual align-
ments to a common model.

This is akin to an EM algorithm except that the CYK algorithm is used in place
of inside–outside at the expectation step, and a model construction algorithm
(which simultaneously re-estimates both the structure and the parameters of the
model, rather than just the parameters) is used at the maximisation step.

The training algorithm works almost exactly like a human comparative se-
quence analyst works. In some cases, it even produces the same answer. Starting
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from a guess at the alignment of initially unaligned sequences (either random or
perhaps a sequence-based alignment), the algorithm makes an initial guess at the
structure, realigns all the sequences according to that guess, and makes a new
guess at the structure, iteratively converging on a consistent solution. It works
well for this on ideal datasets, such as an example of 100 transfer RNA sequences
used in Eddy & Durbin [1994].

However, few real datasets are so ideal. To work, the algorithm requires a large
number of small RNA sequences; there must be sufficient primary sequence di-
vergence that covariations reveal the majority of the base pairs; the consensus
secondary structure must be highly conserved; and the sequences must be glob-
ally instead of just locally alignable. Moreover, the algorithm is prone to local
optima, but is already so compute-intensive that the more demanding simulated
annealing methods described for profile HMMs (Chapter 5) are unattractive. Al-
though these are all just technical limitations to be overcome, it must be said
that the automated comparative analysis aspect of SCFG-based analysis methods
remains mostly of theoretical rather than practical interest. The most practical ap-
plication of covariance model methods is in database searching for homologous
RNA structures, as described in the next section.

An example of a practical application of CM algorithms

In order to get a better picture of how all this theory applies to a practical sequence
analysis problem, it is worth looking at a real application of covariance models.

The largest gene family in most genomes is not a protein gene family but a
family of structural RNA genes, transfer RNAs (tRNAs). For example, there are
274 tRNA genes in the yeast Saccharomyces cerevisiae, and about 1500 different
tRNA genes in the human genome. A number of programs have been developed
which find tRNA genes in genomic sequences. These tRNA detection programs
are usually part of any large-scale genome annotation project. The false positive
rate of these carefully hand-tuned programs is generally on the order of 0.2–0.4
false predictions per megabase of DNA [Fichant & Burks 1991; Pavesi et al.
1994]. This false positive rate is acceptable for small genomes like that of yeast
(14 Mb), but in the 3000 Mb human genome, such a program would produce
around a thousand false positives, meaning that a large fraction of the tRNA gene
predictions would be wrong.

Transfer RNAs are an ideal candidate for testing covariance model methods.
They are short (usually 75–95 residues); they have relatively little shared primary
sequence identity but a highly conserved ‘cloverleaf’ secondary structure; and
thousands of tRNA sequences are available for training a statistical model.

A multiple alignment consisting of 1415 tRNA sequences from a variety of
organisms, including organellar and viral tRNAs, was the starting point for con-
structing a tRNA covariance model [Steinberg, Misch & Sprinzl 1993].
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Thirty-eight sequences included short introns in the anticodon loop, so that the
trained model would be ‘aware’ that many eukaryotic tRNA genes have short in-
trons. A number of longer introns (usually catalytic group I and group II introns)
in various positions were excluded from the alignment, since they were judged to
be too long to be worth searching for with this algorithm.

A model was constructed directly from this alignment using annotation of the
accepted consensus secondary structure. Computation time for model construc-
tion was negligible. The resulting model had 285 states. These were grouped into
72 nodes in the consensus model: 3 bifurcation, 28 pairwise, 33 leftwise, 1 right-
wise and 7 starts. The 28 pairwise nodes correspond to 28 consensus base pairs
in the four helices of the tRNA cloverleaf and the variable arm helix.

An implementation of the CYK database scanning algorithm (COVELS in the
COVE program suite) searched DNA at 20 residues/second on an SGI Indigo2
R4400 workstation when restricted to a maximum match length of D = 150
[Eddy & Durbin 1994]. The search matrix required about 500K of RAM. The
CPU time for the tRNA search was therefore much more limiting than the mem-
ory requirement. A parallelised implementation of the algorithm on a MasPar
multiprocessor accelerated the search to about 2000 residues/second, but the use
of specialised hardware was not deemed practical.

A hybrid program called TRNASCAN-SE was therefore written which used
two different existing tRNA detection programs as fast pre-filters [Lowe & Eddy
1997]. Candidate tRNAs proposed by one or both of these programs were matched
in a second step against the tRNA CM, and statistically significant hits (≥ 20 bits
of log-odds score) were reported as tRNAs. Table 10.2 summarises the perfor-
mance of this hybrid program compared to other tRNA detection programs and
to covariance models alone.

Speed True pos. False pos.
Program (bp/sec) (%) (per Mb)

TRNASCAN 1.3 [Fichant & Burks 1991] 400 95.1 0.37
POL3SCAN [Pavesi et al. 1994] 373 000 88.8 0.23
CM alone [Eddy & Durbin 1994] 20 99.8 <0.002
TRNASCAN-SE [Lowe & Eddy 1997] 30 000 99.5 <0.000 07

Table 10.2. Comparison of tRNA gene detection methods.

The (mostly) automatic CM based approach of TRNASCAN-SE allowed greatly
improved specificity and slightly greater sensitivity than the two manually tuned
methods. The expected number of false positive tRNAs in the 3000 Mb human
genome was decreased from over a thousand to less than one.
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In addition to sensitivity and specificity, another advantage of the CM approach
is its generality – a model can be constructed of any RNA sequence alignment. In
TRNASCAN-SE, for instance, a specialised additional model was easily built from
an alignment of selenocysteine tRNAs (which differ from most tRNAs in several
respects), enabling the program to detect these variant genes.

The principal disadvantages of CM methods for RNA sequence analysis are the
high memory and CPU time requirements. In TRNASCAN-SE, the time problem
was overcome by using other existing programs as fast pre-filters. However, this
approach is not general, since such programs are not available for most other
RNA families. Better algorithms and/or better computers will be needed to apply
CM methods to larger RNAs.

10.4 Further reading

A variety of other algorithms have been applied to the single sequence RNA
structure prediction problem besides dynamic programming algorithms, includ-
ing genetic algorithms [Shapiro & Wu 1996; van Batenburg, Gultyaev & Pleij
1995], constraint satisfaction algorithms, and Monte Carlo sampling algorithms
[Abrahams et al. 1990; Gultyaev 1991]. Many of these algorithms attempt to
predict pseudoknots in addition to canonical secondary structure. RNA pseudo-
knots continue to be a nettling issue in algorithm development for RNA structure
modelling. In general, none of these algorithms guarantees finding an optimal
pseudoknotted structure. A notable exception is the graph theoretic maximum
weighted matching algorithm of Cary & Stormo [1995]. Brown & Wilson [1995]
describe an SCFG-based approach to pseudoknot modelling using an intersection
of separate SCFG models of the pseudoknot and the rest of the structure.

The accuracy of single sequence secondary structure prediction algorithms
has been systematically compared to the results of manual comparative analy-
sis [Fields & Gutell 1996; Konings & Gutell 1995]. The utility of representing
and comparing RNA structures using trees has been recognised for some time [?;
?]. There is an interesting literature on ‘RNA structure space’, using theoreti-
cal approaches and computer modelling to address questions of how secondary
structure constrains the evolution and function of RNAs [Schuster et al. 1994;
Schuster 1995].

SCFG-based methods for modelling RNA structure families and multiple align-
ments were introduced by Eddy & Durbin [1994] and by Sakakibara, Haussler
and coworkers at UC Santa Cruz [Sakakibara et al. 1994]. Comparable algorithms
were developed by Lefebvre [1995; 1996]. Corpet & Michot [1994] described a
non-probabilistic RNA structure alignment algorithm with some similarities to
the SCFG algorithms.



11
Background on probability

To make our book more self-contained, we have included a last chapter that gath-
ers together the probabilistic ideas and methods we use. The various sections of
this chapter are fairly independent, and can be dipped into as the reader wishes.
Some parts are more mathematically technical than the rest of the book.

11.1 Probability distributions

We introduce here various probability distributions used throughout the book.
When the outcomes we wish to assign probabilities to belong to a finite set X ,
a probability distribution is simply an assignment of a probability px to each
outcome x in X . For instance, the probability distribution of outcomes of rolling
a fair die would be px = 1/6 for the six outcomes x = 1, . . . ,6.

If we have a continuous variable x , like the weight of an object, then the prob-
ability that that variable takes a specific value, e.g. that the weight is exactly 1
pound, is zero. But the probability that x takes a value in some interval, P(x0 ≤
x ≤ x1) say, can be well defined and positive. As the width of the interval tends
to zero, we may be able to write P(x − δx/2 ≤ x ≤ x + δx/2) = f (x)δx , where
f (x) is a function called a probability density, or just density. The probability
of an interval can then be derived by integration: P(x0 ≤ x ≤ x1) = ∫ x1

x0
f (x)dx .

A density must satisfy f (x) ≥ 0, for all x , and
∫ ∞
−∞ f (x)dx = 1. But note that

we can have f (x) > 1. For instance, the density f (x) = 10 for 0 ≤ x ≤ 0.1 and
f (x) = 0 elsewhere is well defined.

The binomial distribution

The first distribution we consider is perhaps the simplest and most familiar: the
binomial distribution. It is defined on a finite set consisting of all the possible
results of N tries of an experiment with a binary outcome, ‘0’ or ‘1’. If p is the
probability of getting a ‘1’ and 1 − p that of getting a ‘0’, the probability that k
out of the N tries yield a ‘1’ is

P(k ‘1’s out of N ) =
(

N

k

)
pk(1− p)N−k , (11.1)

300
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where
(N

k

)
denotes the number of ways of choosing k objects from N , that is

N !/((N −k)!k!), and the factorial function is defined for non-negative integers as
n! = n(n −1) · · ·1, and 0! = 1.

The mean m and variance σ 2 of any distribution P are defined by m = ∑
k P(k)

and σ 2 = ∑
(k − m)2 P(k). The positive square root of the variance, σ , is called

the standard deviation. For the binomial distribution

m =
N∑

k=1

k

(
N

k

)
pk(1− p)N−k

and

σ 2 =
N∑

k=1

(k −m)2

(
N

k

)
pk(1− p)N−k

We can show (Exercise 11.1) that m = N p and σ 2 = N p(1− p).

Exercise

11.1 Calculate the mean and variance of the binomial distribution. (Hint: To
find m, differentiate the binomial expansion (p +q)N = ∑N

0

(N
k

)
pkq N−k

with respect to p and set q = 1 − p. For the variance, carry out two
differentiations with respect to p.)

The Gaussian distribution

Consider next what happens as we let N → ∞. Both the mean and the variance
increase linearly with N , but we can rescale to give fixed mean and variance,
defining the new variable u by u = (k − m)/σ = (k − N p)/

√
N p(1− p). It is a

classic result [Keeping 1995] that, in the limit of a large number of events, a bi-
nomial distribution becomes a Gaussian (see Figure 11.1), and with the rescaling
the density is

f (u) = 1√
2π

exp(−u2/2). (11.2)

This can be regarded as a special case of the central limit theorem, which states
that the distribution of a sum of N independent random variables, normalised to
the same mean and variance, tends to a Gaussian as N → ∞. If a single variable
takes values ‘0’ or ‘1’ with probabilities 1− p and p, respectively, the distribution
of the sum of N copies of this is P(k) = P(X1 + . . .+ X N ≤ k), and is precisely
the binomial considered above.

The multinomial distribution

The generalisation of the binomial distribution to the case where the experi-
ments have K independent outcomes with probabilities θi , i = 1, . . . , K , is the
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Figure 11.1 The limit for large N of a binomial tends to a Gaussian. In this
case N = 40 and p = 1/4 in (11.1).

multinomial distribution. The probability of getting ni occurrences of outcome i
is given by

P(n|θ ) = M−1(n)
K∏

i=1

θ
ni
i . (11.3)

Here we condition the probability on the parameters θ of the distribution, which
is a natural thing to do in a Bayesian framework, because then the parameters are
themselves random variables. In a classical statistics framework the probability
of n could, for instance, have been denoted by Pθ (n). The normalising constant
only depends on the total number of outcomes observed,

∑
k nk . For fixed

∑
k nk

it is

M(n) = n1! ·n2! · · ·nK !

(
∑

k nk)!
=

∏
i ni !

(
∑

k nk)!
. (11.4)

For K = 2 the multinomial distribution reduces to the binomial distribution.

Example: Rolling a die

The outcome of rolling a die N times is described by a multinomial. The prob-
abilities of each of the six outcomes are called θ1, . . . ,θ6. For a fair die where
θ1 = . . . = θ6 = 1/6 the probability of rolling it a dozen times and getting each
outcome twice is

12!

2!6

(
1

6

)12

= 3.4×10−3.
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The Dirichlet distribution

In Bayesian statistics we need distributions over probability parameters to use as
prior distributions. A natural choice for a density over probabilities is the Dirich-
let distribution:

D(θ |α) = Z−1(α)
K∏

i=1

θ
αi −1
i δ

( K∑
i=1

θi −1
)

. (11.5)

Here α = α1, . . . ,αK , with αi > 0, are constants specifying the Dirichlet distri-
bution, and the θi satisfy 0 ≤ θi ≤ 1 and sum to 1, this being indicated by the
delta function term δ(

∑
i θi − 1). The algebraic expression for the θi is the same

as for a multinomial distribution. Instead of normalising over the numbers ni of
occurrences of outcomes, however, we normalise over all possible values of the
θi . To put this another way, the multinomial is a distribution over its exponents
ni , whereas the Dirichlet is a distribution over the numbers θi that are exponen-
tiated. The two distributions are said to be conjugate distributions [Casella &
Berger 1990], and their close formal relationship leads to a harmonious interplay
in many estimation problems.

The normalising factor Z for the Dirichlet defined in (11.5) can be expressed
in terms of the gamma function: [Berger 1985]

Z (α) =
∫ K∏

i=1

θ
αi −1
i δ

(∑
i

θi −1
)

dθ =
∏

i �(αi )

�(
∑

i αi )
. (11.6)

The gamma function is a generalisation of the factorial function to real values.
For integers �(n) = (n −1)!. For any positive real number x ,

�(x +1) = x�(x). (11.7)

It can be shown that the mean of the Dirichlet distribution is equal to the nor-
malised parameters, i.e. the mean of θi is αi/

∑
k αk . For instance, the three distri-

butions shown in Figure 11.2 all have the same mean (1/8,1/4,5/8), even though
the αs for the top right figure are 10 times larger than those for the top left. Note
that larger αs produce a tighter distribution. Note also that when some αi < 1 the
distribution is peaked at zero for the corresponding θi , as shown in the bottom
left figure.

For two variables (K = 2) the Dirichlet distribution reduces to the more widely
known beta distribution, and the normalising constant is the beta function.

Example: The dice factory

Consider again our example from Chapters 1 and 3 of a probabilistic model of a
possibly loaded die with probability parameters θ = θ1, . . . ,θ6. Sampling proba-
bility vectors θ from a Dirichlet parameterised by α = α1, . . . ,α6 is like a ‘dice
factory’ that produces different dice with different θ [MacKay & Peto 1995].
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θ1

θ2

θ3

Figure 11.2 Examples of three-dimensional Dirichlet distributions, each
shown by sampling 10000 points, i.e. by choosing points θ with probability
D(θ |α). The values of α used are (1,2,5) in the top left figure, (10,20,50)
top right and (0.1,0.2,0.5) bottom left. The probabilities θ are displayed as
the slice through 3D space (θ1,θ2,θ3) where

∑
θi = 1; see the bottom right

figure. A point (θ1,θ2,θ3) is mapped to ((θ2 − θ1)/
√

3,θ3) in the plane.

Suppose dice factory A has all six αi set to 10, and dice factory B has all αi set
to 2. On average, both factories produce fair dice; the average of θi is 1

6 in both
cases. But if we find a loaded die with θ6 = 0.5,θ1 = . . . = θ5 = 0.1, it is much
more likely to have been produced by dice factory B:

D(θ |αA) = �(60)

(�(10))6
(0.1)5(10−1)(0.5)10−1 = 0.119,

D(θ |αB) = �(12)

(�(2))6
(0.1)5(2−1)(0.5)2−1 = 199.6.

The factory with the higher α parameters produces a tighter distribution in
favour of fair dice. The sum

∑
αi is inversely proportional to the variance of the

Dirichlet. (Don’t be alarmed by the Dirichlet density having a value of 199.6;
recall that the values of continuous probability densities at any point may be
greater than one.)
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Figure 11.3 Gamma distributions g(x ,α,β) for α = β = 1.0, α = β = 6.0
and α = 2.0,β = 1.0.

A factory that produced almost perfectly fair dice would have very high but
equal αi . A factory that produced variably unreliable dice that are still fair on
average would have low but equal αi .

The gamma distribution

The gamma distribution g(x ,α,β) is given by

g(x ,α,β) = e−βx xα−1βα

�(α)
,

and is defined for 0 < x ,α,β < ∞. Its mean is α/β and variance α/β2. β is
simply a scale parameter.

The gamma distribution is conjugate to the Poisson, f (n) = e−p pn/n!, which
gives the probability of seeing n events over some interval, when there is a prob-
ability p of an individual event occurring in that interval. Since the number of
events in an interval is a rate, the gamma distribution is appropriate for modelling
probabilities of rates, just as the Dirichlet is appropriate as a prior for emission
probabilities when its conjugate, the multinomial, is used to assign probabilities
to counts (p. 320). The gamma distribution has been used to model the rate of
evolution at different sites in DNA sequences (p. 216).

The extreme value distribution

Suppose we take N samples from the density g(x). The probability that the largest
amongst them is less than x is G(x)N , where G(x) = ∫ x

−∞ g(u)du. The density
for the largest value of the set of N is given by differentiating this with respect
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to x , giving Ng(x)G(x)N−1. The limit for large N of Ng(x)G(x)N−1 is called
the extreme value density (EVD) for g(x). It has a wide variety of practical uses,
from modelling the breaking-point of a chain (which is determined by the weakest
link), to assessing the significance of the maximum score from a set of alignments
(see Chapter 2).

Let us compute the EVD when g(x) is the exponential density g(x) = αe−αx .
Integrating gives G(x) = 1 − e−αx . Choosing y so that e−αy = 1/N , and writing
z = x − y, we find

Ng(x)G(x)N−1 = Nαe−αx (1− e−αx )N−1 = αe−αz(1− e−αz/N )N−1

→ αe−αz exp(−e−αz) for N → ∞,

where we used the well-known limit (1− X/N )N → e−X for N → ∞.1 The cu-
mulative probability (the probability that the extreme value is ≤ x) is exp(−e−αz),
and is called a Gumbel distribution [Gumbel 1958]. The above density often gives
a good approximation to the distribution of extreme values for moderate values
of N . With the exponential density, Figure 11.4 shows that the maximum of a
sample of size 10 gives a close approximation to the EVD.

It is a surprising fact that the Gumbel distribution is the EVD for a variety
of underlying densities g(x); it holds when g(x) is a Gaussian too, for instance.
More generally, an EVD must have the form exp(− f (aN x +bN )), where aN and
bN are constants depending on N and f (x) is either an exponential e−x or |x |−λ

for some positive constant λ (see Waterman [1995] for a more precise statement
of this theorem).

11.2 Entropy

Some of the terminology used in the book is borrowed from information theory
(see e.g. Cover & Thomas [1991]). Information theory has strong connections to
probabilistic modelling.

An entropy is a measure of the average uncertainty of an outcome. Given a
random variable X with probabilities P(xi ) for discrete set of K events x1, . . . , xK ,
the Shannon entropy is defined by

H (X ) = −
∑

i

P(xi ) log P(xi ). (11.8)

In this definition, P(xi ) log P(xi ) is taken to be zero if P(xi ) = 0. Normally we
assume that log is the natural logarithm (sometimes written ln). However, it is

1 There is one delicate point in the above argument. We have to take care that e−αz cannot
grow rapidly with N , and so invalidate the limit (1− e−αz/N )N → exp(−e−αz). To be more
precise, one has to show that the probability of large values of e−αz according to the distri-
bution Ng(x)G(x)N−1 becomes vanishingly small.
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Figure 11.4 Approximations to the extreme value distribution obtained by
sampling N points from the distribution e−x on 0 ≤ x < ∞, and then taking
the maximum. From the top left to bottom right, N = 1,2,10,100.

common to use the logarithm base 2 (called log2), in which case the unit of en-
tropy is a ‘bit’. All logarithms are proportional, e.g. log2(x) = loge(x)/ loge(2),
so theoretically it does not matter which logarithm is used. Often we talk about
the entropy of the probability distribution P , H (P), instead of H (X ).

The entropy is maximised when all the P(xi ) are equal (P(xi ) = 1/K ) and we
are maximally uncertain about the outcome of a random sample. The maximum
is then −∑

i
1
K log 1

K = log K . If we are certain of the outcome of a sample from
the distribution, i.e. P(xk) = 1 for one k and the other P(xi ) = 0, the entropy is
zero.

Entropy also arises as the expected score of the sequences generated by certain
probabilistic models when the score is defined to be the log probability. Suppose,
for instance, that the probability of residue a in some position in a sequence
is pa . Then there is a probability pa of score log pa , and the expected score is∑

a pa log pa , namely the negative entropy. The same is true (see Exercise 11.2)
when the model defines the probabilities at a set of independent sites.

If you are told the outcome of an event, the uncertainty is reduced from H to
zero, because you have gained information. Therefore entropy is often equated
with information. This can be confusing; it leads to the quite counterintuitive
view that the more random something is (the higher the entropy), the more in-
formation it has. It is not confusing if we think of information as a difference in
entropy. More generally information content or just information is a measure of
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a reduction in uncertainty after some ‘message’ is received; hence, the difference
between the entropy before and the entropy after the message:

I (X ) = Hbefore − Hafter. (11.9)

The uncertainty is not always reduced to zero; there may be noise on the com-
munications channel, for instance, and we may remain somewhat uncertain of
the outcome, in which case Hafter is positive and the information is less than the
original entropy.

In information theory it is often assumed that the probability distributions
are known exactly. In many applications, however, the true distributions are not
known, and therefore entropies are calculated from the frequencies of events
rather than the true distributions; see Examples below.

Example: Entropy of random DNA

If each symbol (A, C, G, or T) of a DNA sequence occurs equiprobably (pa =
1/4) then the entropy per DNA symbol is −∑

a pa log2 pa = 2 bits.
We can think of the entropy as the number of binary yes/no questions needed

to discover the outcome. For example, for random DNA, we need two questions:
‘purine or pyrimidine?’ followed by ‘A or G?’ if the answer is ‘purine’, and ‘C or
T?’ otherwise.

Example: Information content of a conserved position

Information content can be used to measure the degree of conservation at a site
in a DNA or protein sequence alignment. Say we expect a DNA sequence to be
random (pa = 0.25; Hbefore = 2 bits), but we observe that a particular position in
a number of related sequences is always an A or a G with pA = 0.7 and pG = 0.3.
Thus Hafter = −0.7 log2 0.7−0.3 log2 0.3 = 0.88 bits. The information content of
this position is said to be 2−0.88 = 1.12 bits. The more conserved the position,
the higher the information content.

Notice, however, that the information content can be negative if the observed
distribution has a higher entropy (is more ‘random’) than expected. For finding
unusual patterns it is therefore better to measure the difference between the dis-
tributions by the relative entropy described below.

Exercise

11.2 Assume a model in which pi (a) is the probability of amino acid a oc-
curring in the i th position of a sequence of length l. The amino acids
are considered independent. What is the probability P(x) of a particular
sequence x = x1, . . . , xl? Show that the average of the log of the proba-
bility is the negative entropy

∑
P(x) log P(x), where the sum is over all

possible sequences x of length l.
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Figure 11.5 Proof that the relative entropy (11.10) is always positive
or zero if P(xi ) = Q(xi ) for all i . From this graph is can be seen that
log(x) ≤ x − 1 with equality only if x = 1. It follows that −H (P||Q) =∑

i P(xi ) log(Q(xi )/P(xi )) ≤ ∑
i P(xi )(Q(xi )/P(xi )−1) = 0, with equal-

ity holding only if, for each i , Q(xi ) = P(xi ).

Relative entropy and mutual information

We return to the definition of different types of entropy. For two distributions P
and Q the relative entropy (also known as the Kullback–Leibler ‘distance’) is
defined by

H (P||Q) =
∑

i

P(xi ) log
P(xi )

Q(xi )
. (11.10)

Information content and relative entropy are the same if the Q is a uniform ‘back-
ground distribution’ (Q(xi ) = 1

K ) that represents a completely naive initial state
for Hbefore. The two terms are sometimes used interchangeably.

Relative entropy has the property that it is always greater than or equal to zero.
It is easy to show that H (P||Q) ≥ 0 with equality if and only if P(xi ) = Q(xi ) for
all i (see Figure 11.5). It is often useful to think of the relative entropy H (P||Q)
as a distance between the probability distributions P and Q. However, it is not
symmetric, H (P||Q) �= H (Q||P), and it does not fulfil the formal requirements
of a proper mathematical distance measure.

The relative entropy often arises as the expected score in models where the
score is defined as the log-odds, i.e. P(data|M)/P(data|R), where M is the mo-
del, and R is a null model. If pa is the probability of residue a in some position in
a sequence according to M , and qa its probability according to R, then the score
for residue a is log(pa/qa), and the expected score is

∑
a pa log(pa/qa), which is

the relative entropy.
Another important entropy measure is the mutual information. Two random

variables X and Y are independent if P(X ,Y ) = P(X )P(Y ). It is interesting to



310 11 Background on probability

know how independent they are, and that can be measured by the relative entropy
‘distance’ between the distributions P(X ,Y ) and P(X )P(Y ),

M(X ;Y ) =
∑
i , j

P(xi , yj ) log
P(xi , yj )

P(xi )P(yj )
, (11.11)

where the possible values for X and Y are {xi } and {yj }. This is the mutual infor-
mation. M(X ;Y ) can be interpreted as the amount of information that we acquire
about outcome X when we are told outcome Y .

The mutual information is maximal when X and Y always covary. If for in-
stance all pairs except AT, TA, GC, and CG have probability zero for two po-
sitions i and j in some aligned DNA sequences, there is maximal covariation.
For this situation we will always have P(xi , yj ) = P(xi ) = P(yj ) or P(xi , yj ) = 0,
and therefore M = −∑

i P(xi ) log P(xi ). This is the entropy of X (or Y ), so it is
maximal for a uniform distribution, and the maximum is log K (assuming that X
and Y have the same number, K , of possible outcomes). The maximum mutual
information for DNA sequences is therefore log2 4 = 2 bits.

In Figure 10.6 the mutual information (calculated from frequencies) between
every pair of columns in an RNA alignment is shown.

Example: Acceptor sites

Relative entropy is useful for finding unusual patterns in biological sequences. To
illustrate this we extracted 757 acceptor sites from a database with human genes.
The acceptor site is the splice site at the 3’ end of the intron where the intron
is spliced out to make the messenger RNA. The last two bases of the intron are
almost always AG, and in this dataset they all are. We only took acceptor sites of
introns occurring between two codons, i.e. not splicing in the middle of a codon.
We extracted 30 bases upstream of the splice site and 20 bases downstream. In
Figure 11.6 you see a small arbitrary sample of the sequences.

At each position i the frequency pi (a) of the four nucleotides was found, and
the relative entropy

∑
a pi (a) log2[pi (a)/qa] calculated, where qa is the overall

distribution of the four nucleotides in the sequences. We plot this in Figure 11.6.
At the AG consensus the relative entropy is very high (equal to − log2(qA) and
− log2(qG) respectively). There is an interesting structure in the relative entropy
upstream of the site with a minimum just two bases before the AG. There is a
weak periodic signal (barely visible) of the relative entropy in the coding region,
which is due to the different base composition in the three reading frames. See
Brunak, Engelbrecht & Knudsen [1991] and Hebsgaard et al. [1996] for more
discussion of information in splice sites, and Schneider & Stephens [1990] for
colourful ways of displaying various entropy measures.

To see if the neighbouring positions are independent, the mutual information
between the columns was calculated. For two neighbouring columns (say i and
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Example sequences
CTTCTCAAATAACTGTGCCTCTCCCTCCAGATTCTCAACCTAACAACTGA
CTGCTCACCGACGAACGACATTTTCCACAGGAGCCGACCTGCCTACAGAC
GGTTCCCTCTTGGCTTCCATGTCCTGACAGGTGGATGAAGACTACATCCA
ACTAACTCTCCTCCTCGTGTGTCTCCCCAGCCCGTGTCCCAGCCCACCCA
TTGATAACATGACATTTTCCTTTTCTACAGAATGAAACAGTAGAAGTCAT
TCTACCGTCCCTTTCCCACACACTCTGCAGAAGGTGGTGTTGTCTTCTGG
CTTTTTTCTCTCCTATGTGCATCCCCCCAGGAGCTGGCTGAATATGAATA
GCTAATAGCTTGCTTATTTATTTAACATAGGGCTTCCGTTACAAGATGAG
AATTTAGTTTTATTCCCATGTGACCTGCAGGTAAATGAAGAAGGCAGTGA
ACTCTGCTCACTGTCACTTTGCTCCCACAGCGTCCGCTCTGCAATGGCAG
ACCTCCTAACGTTGTTGGGTTTCTTTGCAGAACTTTGCTGCCCAGATGGC
GTAAACCCCTCATTTTCTGTTCCGATGCAGGGCCCCATGGGACCTCGAGG
AGAAGTGACATTTTTCCTATATGTTGACAGGGTGGTGACTTCACACGCCA
CTGGTGTGAGGACCTGCCTCTCTTTTCAAGGGTGAACCTGGTATTGCTGG
ACCTTGGGCACTGTGTTCCTTTGTTTCTAGCACTGGCAGATCCCCCTGAG
TTTTGTTATGCAATTATTGTTTTCTTACAGGGCCCTCTACTAAAGAAGGA
GCATCACCTGTCAGCTCCCTGTGTCCACAGGCTCTGCAGCGGCTCAGGGA

Figure 11.6 Plots of relative entropy and mutual information for acceptor
sites. Below is shown a sample of the sequences. Note the peak in relative
entropy and dip in mutual information at the conserved AG.

i + 1) the frequency of pairs pi (a,b) was found by counting how many times
a occurred in column i and b occurred in column i + 1. From this the mutual
information

∑
a,b pi (a,b) log2[pi (a,b)/pi (a)pi+1(b)] was calculated, and is also

plotted in Figure 11.6.
Notice that the mutual information is zero at the AG consensus: knowing that

the first is A conveys no information about the next position, because it is al-
ways a G. The mutual information around the acceptor site is much less than the
maximum of 2 bits, but it is non-zero, and it shows that there are correlations be-
tween neighbouring positions. This is true in most DNA. A clear periodic pattern
is seen for the coding region, showing that the nucleotides are dependent in the
three reading frames.



312 11 Background on probability

Exercises

11.3 Prove the above assertion about the equivalence of information content
and relative entropy when q is uniform.

11.4 Show that M(X ;Y ) = M(Y ; X ).
11.5 Show that M(X ;Y ) = H (X ) + H (Y ) − H (Y , X ), where H (Y , X ) is the

entropy of the joint distribution P(X ,Y ).

11.3 Inference

Probabilistic models are the main focus of this book. A model can be anything
from a simple distribution to a complex stochastic grammar with many implicit
probability distributions. Once the type of model is chosen, the parameters of the
model have to be inferred from data. For instance, we may model the outcome of
rolling a die with a multinomial distribution. Suppose the number of observations
yielding i is ni (i = 1, . . . ,6). We do not know if it is a fair die, so we need to
estimate the parameters of the multinomial distribution, i.e. the probability θi of
getting i in a throw of the die. Here, we consider the different strategies that
might be used for inference in general. For more background, see Ripley [1996]
and MacKay [1992].

Maximum likelihood

Let us suppose, then, that we wish to infer parameters θ = {θi } for a model M
from a set of data D. The most obvious strategy is to maximise P(D|θ , M) over
all possible θ . This is called the maximum likelihood criterion. Formally we write

θML = argmax
θ

P(D|θ , M). (11.12)

Generally speaking, when we treat P(x |y) as a function of x we refer to it as a
probability; when we treat it as a function of y we call it a likelihood. Note that a
likelihood is not a probability distribution or density, but simply a function of the
variable y.

Maximum likelihood has some desirable properties. For instance, it is con-
sistent, in the sense that the parameter value θ0 used to generate the dataset
will also, in the limit of a large amount of data, be the value that maximises
the likelihood. To see this, suppose there are K observable outcomes ω1, . . . ,ωK

of the model M (e.g. the 4n possible assignments of nucleotides at a site in an
aligned set of sequences). Then the frequency ni/

∑
nk of occurrences of ωi will

tend to P(ωi |θ0, M) as the amount of data increases (see Exercise 11.6). Hence
the log likelihood for parameter θ , given by

∑
i (ni/

∑
nk) log P(ωi |θ , M) tends

to
∑

i P(ωi |θ0, M) log P(ωi |θ , M). The positivity of relative entropy implies that
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∑
i P(ωi |θ0, M) log P(ωi |θ0, M) ≥ ∑

i P(ωi |θ0, M) log P(ωi |θ , M), for all θ . Thus
the likelihood is maximised by θ0.

A drawback of maximum likelihood is that it can give poor results when the
data are scanty; we would be wiser then to rely on more prior knowledge. Con-
sider the dice example and assume we want to estimate the multinomial param-
eters from, say, three different rolls of the dice. It is shown on p. 320 that the
maximum likelihood estimate of θi is ni/

∑
nk , i.e. it is 0 for at least three of the

parameters. This is obviously a bad estimate for most dice, and we would like a
way to incorporate the prior knowledge that we expect all the parameters to be
quite close to 1/6.

Exercise

11.6 The weak law of large numbers says that the mean of a sample of size
N differs from the true mean by an amount d or more with probability
σ 2/(Nd2), where σ 2 is the variance of the distribution. Show that this
implies that ni/

∑
nk tends to P(ωi ) as

∑
nk → ∞, where ni is the fre-

quency of occurrence of ωi .

The posterior probability distribution

The way to introduce prior knowledge is to use Bayes’ theorem. Suppose there is
a probability distribution over the parameters θ . Conditioning throughout on M
gives the following version of Bayes’ theorem:

P(θ |D, M) = P(D|θ , M)P(θ |M)

P(D|M)
. (11.13)

The prior P(θ |M) has to be chosen in some reasonable manner, and that is the
art of Bayesian estimation. This freedom to choose a prior has made Bayesian
statistics controversial at times, but we believe it is a very convenient framework
for incorporating prior (biological) knowledge into statistical estimation.

P(θ |D, M) is the posterior probability for the parameters, given the data and
the model. The posterior can be used for inference in various ways. We can sam-
ple from it (see Section 11.4), and thereby locate regions of high probability for
the model parameters. In Section 8.4 we show how this can be done for prob-
abilistic models of phylogeny. If we want a specific set of parameter values for
the model, we might be guided by analogy with ML and choose the maximum a
posteriori probability (MAP) estimate,

θMAP = argmax
θ

P(D|θ , M)P(θ |M). (11.14)
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Note that we ignore the data prior P(D|M), because it does not depend on the
parameters θ and thus the maximum point θMAP is independent of it. Another
possibility is to take the posterior mean estimator (PME), which chooses the
average of all parameter sets weighted by the posterior:

θPME =
∫

θ P(θ |n)dθ . (11.15)

The integral is over all valid probability vectors, i.e. all those that sum to one.
In the following we will derive the PME for a multinomial distribution with a
certain prior.

Both MAP and PME estimators are considered a little suspicious, because a
non-linear transformation of the parameters usually changes the result. In tech-
nical terms they are not equivariant [Ripley 1996]. To see what’s going on, we
need to consider the effects of change of variables on densities.

Change of variables

Given a density f (x), suppose there is a change of variable x = φ(y). Then we
can define a density g(y) by g(y) = f (φ(y))

∣∣φ′(y)
∣∣. The derivative of φ, φ′(y), is

there because the interval δx corresponds to an interval δyφ′(y) under the trans-
form φ, so the amount of the f density that is swept out under φ is propor-
tional to this derivative; taking the derivative’s absolute value ensures that the
density is positive. This definition produces a correctly normalised density be-
cause

∫
g(y)dy = ∫

f (φ(y))
∣∣φ′(y)

∣∣dy = ∫
f (x)dx = 1, f being a density. We

write the transformation rule formally as

g(y) = f (φ(y))
∣∣φ′(y)

∣∣ . (11.16)

The function f (φ(y)) clearly has the same maximum as f (x). When we multiply
by

∣∣φ′(y)
∣∣, however, this maximum may shift (see Exercise 11.7). Now, the pos-

terior P(θ |D, M) is a density, so the peak chosen by MAP can likewise change
under a transformation. A similar argument shows that the PME can change under
a coordinate transformation.

In contrast, the likelihood P(D|θ , M) does not transform like a density; it is
simply a function of θ and a change of coordinates leaves the peak unchanged,
just as the peak of f (φ(y)) remains the same as that of f (x) [Edwards 1992].

Exercise

11.7 Let f (x) = 2(1 − x) be a density on [0,1]. Show how this transforms to
a density on y under x = y2. Show that the peak and the PME of the
density both shift under this transformation.
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11.4 Sampling

Given probabilities P(xi ) defined on the members xi of a finite set X , to sample
from this set means to pick elements xi randomly with probability P(xi ).

The basic practical tool for sampling is a function derived from a computer’s
pseudo-random number generator (i.e. the function called rand[], or something
similar), that picks numbers randomly from the interval [0,1] with the uniform
density. Let us call this function rand[0,1]. Using it, we can choose elements
xi with frequency P(xi ). We set y = rand[0,1], and then choose our element xi

by finding that i for which P(x1) + . . . + P(xi−1) < rand[0,1] < P(x1) + . . . +
P(xi−1)+ P(xi ). Clearly, the probability of rand[] lying in this range is P(xi ), so
xi is picked with the correct probability.

It is actually not easy to produce random numbers with a computer. The stan-
dard function for pseudo-random numbers is usually very primitive, and will not
be good enough for some applications. For example, the standard rand[] func-
tion on many UNIX computers returns an integer between 0 and 215 −1, and one
would expect to obtain ‘random’ bits (0 or 1) with this function by taking the
value returned modulo 2. However, this gives a sequence where 0 and 1 alternate,
which is clearly not random at all. On most systems there are other (and better)
functions to choose from. See for instance Press et al. [1992] for a discussion of
random number generators.

Sampling by transformation from a uniform distribution

The concept of sampling applies also to densities: Given a density f , to sample
from it is to pick elements x from the space on which f is defined so that the
probability of picking a point in an arbitrarily small region δR round the point x
is f (x)δR. Sampling of densities can be accomplished by using pseudo-random
numbers that sample from the uniform density on [0,1], and applying a change
of variables that changes the density appropriately.

The theory of this goes as follows: Suppose we are given a density f (x), and a
map x = φ(y). From (11.16) we know that g(y) = f (φ(y))φ′(y). If f is uniform,
we have g(y) = φ′(y), so φ can be obtained by integration, φ(y) = ∫ y

b g(u)du,
where b is some suitable lower bound. However, we want to pick points in x
using a good pseudo-random number generator, and then map them to y. For
this, we require the inverse function to φ, namely y = φ−1(x).

Suppose for instance that we want to sample from a Gaussian. We define the
cumulative Gaussian map φ(y) = ∫ y

−∞ e−u2/2/
√

2πdu, and let y = φ−1(x). We
could make a look-up table to evaluate the inverse cumulative Gaussian function,
but this is rather clumsy, and some other approach may be more convenient (e.g.
Exercise 11.10).
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The transformation method also applies more generally to functions of K vari-
ables, but then (11.16) must be replaced by

g(y1, . . . , yK ) = f (φ1(y1, . . . , yK ), . . . ,φK (y1, . . . , yK )) |J (φ)| , (11.17)

where J (φ) is the Jacobian, whose (i , j)-th entry is ∂φi/∂yj [Feller 1971].

Exercises

11.8 Show that the function g(y) = αλλyλ−1/(αλ + yλ)2 is a density on 0 ≤
y < ∞. Show that picking x uniformly from (0,1) and mapping x to
y = α( x

1−x )1/λ samples from g(y).
11.9 Define a mapping φ from the variables (u,w) to (x , y) by x = uw, y =

(1−u)w. Show that J (φ) = w, where J is the Jacobean.
11.10 (Calculus needed!) Suppose we pick two random numbers x and y in

the range [0,1] and map (x , y) to the sample point cos(2πx)
√

log(1/y2).
Prove that this samples correctly from a Gaussian. This is called the Box–
Muller method [Press et al. 1992].

Sampling from a Dirichlet by rejection

We consider now the problem of sampling from a Dirichlet, which illustrates
some important principles. Suppose first that we can sample from the gamma
distribution g(x ,α,1)

g(x ,α,1) = e−x xα−1/�(α)

for 0 < x < ∞ (see p. 305). If we take sampled values x1 and x2 from two gamma
distributions with parameters α1 and α2, respectively, then we can define a pair
(u,v) with u +v = 1, by setting u = x1/(x1 + x2), v = x2/(x1 + x2); equivalently,
we can set x1 = uw, x2 = (1 − u)w and integrate over w. Using (11.17) and the
results of Exercise 11.9, the distribution D(u,v) of pairs (u,v) is given by

D(u,v) =
∫ ∞

0 δ(u +v −1)e−uw(uw)α1−1e−vw(vw)α2−1wdw

�(α1)�(α2)

= uα1−1vα2−1δ(u +v −1)

�(α1)�(α2)

∫ ∞

0
e−wwα1+α2−1dw

= uα1−1vα2−1δ(u +v −1)
�(α1 +α2)

�(α1)�(α2)
= D(u,v|α1,α2), (11.18)

where D(u,v|α1,α2) is the Dirichlet distribution with parameters α1,α2. In other
words, to sample from a Dirichlet distribution of two variables (a beta distribu-
tion), we sample from two gamma distributions, whose exponents are those of the
components of the Dirichlet in question, and then normalise the sampled numbers
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Figure 11.7 Rejection sampling: We wish to sample from a gamma distri-
bution g(x ,α,1) (continuous line). It is possible to sample from the func-
tion f given by (11.19) (‘+’ signs), whose value always exceeds that of
the gamma distribution. Having sampled a point x from f , this point is
accepted with a probability equal to the ratio of the gamma distribution and
f at that point, i.e. with probability g(x ,α,1)/ f (x). The left figure shows f
with α = 5, λ = 3, the right with α = 5, λ = 1.

to give probabilities. This elegant result extends to Dirichlets of any number of
variables (Exercise 11.11).

We can sample from a Dirichlet, therefore, if we know how to sample from a
gamma distribution. Now we can show (Exercise 11.12) that g(x ,α,1) ≤ f (x),
where

f (x) = 4e−ααλ+αxλ−1

�(α)(αλ + xλ)2
, (11.19)

and λ = √
2α −1. It follows that, if rand[0,1] truly samples uniformly between

0 and 1, then P(rand[0,1] < g(x ,α,1)/ f (x)) = g(x ,α,1)/ f (x). Thus if we first
sample from the distribution f , picking a point x with probability f (x), and ac-
cept x if rand[0,1] < g(x ,α,1)/ f (x), then

P(x) = f (x)P(rand[0,1] < g(x ,α,1)/ f (x)) = g(x ,α,1).

So this two-stage procedure enables us to sample from the gamma distribution.
It remains only to show how to sample from f . But Exercise 11.8 shows that
choosing u from [0,1] by rand[0,1] and defining x = α(u/1−u)1/λ is equivalent
to sampling from f . For more details of the material in this section, and also for
the appropriate procedure in the case where 0 < α < 1, see Law & Kelton [1991].
Figure 11.2 was generated using this method.

This is an example of rejection sampling, the distribution g being obtained
by ‘trimming down’ from the distribution f , which is analytically tractable and
always larger than g. This only works well if f (x) is a good approximation to
g(x ,α,1); if it is not, the rejection rate will be high. The function f gives a good
approximation to g(x ,α,1) over the range where both functions are large, i.e.
where they will be most frequently sampled from. The choice of λ is in fact
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optimal for this purpose. For instance, with α = 5 and λ = √
2α −1 = 3, only 14%

of points are rejected (Figure 11.7, left figure), whereas with λ = 1 (Figure 11.7,
right figure), 65% are rejected.

Exercises

11.11 Show that (11.18) can be extended to the case of K gamma distribu-
tions, i.e. that sampling from g(x ,αi ,1), for i = 1, . . . , K , then averaging,
is equivalent to sampling from the Dirichlet D(θ1, . . . ,θK |α1, . . . ,αK ).
(Hint: Show that the Jacobian of the map xi = uiw, for i ≤ K − 1, and
xK = (1−∑

ui )w is equal to wK−1.)
11.12 Prove that g(x ,α,1) ≤ f (x), for all x and α > 1 and 1 ≤ λ ≤ √

2α −1,
where f (x) is defined by (11.19). What happens when λ >

√
2α −1?

Sampling with the Metropolis algorithm

We often want to sample from a probabilistic model, where the analytic methods
that underlie the transformation method or rejection sampling are not available.
One possible approach then is to use a Markov chain defined on the space X of
outcomes [Neal 1996]. We assume here that X is finite, although the ideas carry
over to continuous variables and densities.

Given a point x , a chain specifies a probability τ (y|x) for the transition x → y
to a point y. If we can sample from the distribution τ (y|x), i.e. given x can pick
a y with probability τ (y|x), then we can generate a sequence {yi } where each yi

is picked by sampling from the distribution τ (y|yi−1).
Suppose now that we can find a τ satisfying

P(x)τ (y|x) = P(y)τ (x |y). (11.20)

This is called the condition of detailed balance. It turns out that detailed balance
implies

1

N
lim

N→∞C(yi = x) = P(x), (11.21)

for all points x , where C(yi = x) is the number of times yi = x in the sequence of
length N . We can therefore approximate P as closely as we like by taking long
enough sequences of {yi } sampled using τ . This statement needs to be qualified:
Clearly, the chain needs to be able to reach every point y from any other point x ;
in other words, there must be a sequence of transitions that can go from x to y,
for any x and y.

If we have a transition process τ that satisfies (11.20), therefore, the sequences
it generates will sample P correctly. But can we find such a process? A method
that achieves this is the Metropolis algorithm. It has two parts:

(1) A symmetric proposal mechanism. Given a point x , this selects a point y
with probability F(y|x). Symmetry means that F(y|x) = F(x |y).
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(2) An acceptance mechanism that accepts the proposed y with probability
min(1, P(y)/P(x)). In other words, a point y with larger posterior probability
than the current x is always accepted, and one with lower probability is accepted
randomly with probability P(y)/P(x).

To see that this satisfies (11.20) note that, for x �= y,

P(x)τ (y|x) = P(x)F(y|x)min(1, P(y)/P(x))

= F(y|x)min(P(x), P(y))

= F(x |y)min(P(y), P(x))

= P(y)τ (x |y).

Here we used the symmetry of the proposal mechanism to replace F(y|x) in the
second line by F(x |y) in the third.

Gibbs sampling

When we have a probabilistic model of many variables, it may often be possible to
sample from the distribution obtained by keeping all variables fixed except one,
i.e. the conditional distribution. Gibbs sampling exploits this idea. It works by
choosing points from the conditional distribution P(xi |x1, . . . , xi−1, xi+1, . . . , xN )
for each i , cycling repeatedly through i = 1, . . . , N .

To show that this samples correctly from P , it is enough to prove detailed
balance. This means that

P(x1, . . . , xn)P(x̃i |x1, . . . , xi−1, xi+1, . . . , xn)

= P(x1, . . . , xi−1, x̃i , xi+1, . . . , xn)P(xi |x1, . . . , xi−1, xi+1, . . . , xn).

But we can rewrite this as

P(x1, . . . , xn)P(x1, . . . , xi−1, x̃i , xi+1, . . . xn)/P(x1, . . . , xi−1, xi+1, . . . , xn)

= P(x1, . . . , xi−1, x̃i , xi+1, . . . , xn)P(x1, . . . , xn)/P(x1, . . . , xi−1, xi+1, . . . , xn),

which makes the equality obvious. Provided that the process doesn’t get stuck in
some subset of the parameter space, i.e. provided it is ergodic, Gibbs sampling
will inevitably converge to P .

The kind of situation in which Gibbs sampling can get stuck is where there are
two pieces of density which do not overlap along any of the coordinate directions,
e.g. in the 2D case where half the density lies in the region [0,1] × [0,1] and the
other half in the region [2,3]× [2,3]. Note that if there were even a small overlap,
e.g. if half the density were uniform on [0,1] × [0,1] and the other half uniform
on [0.99,1.99]× [0.99,1.99], then sampling would pass between the two regions,
albeit making the transition between regions quite infrequently.
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Exercise

11.13 What is the expected number of samples within one region, in the pre-
ceding example, before a cross-over occurs into the other?

11.5 Estimation of probabilities from counts

Above we used the example of rolling a die. We needed to estimate the parameters
of a multinomial from data: rolls of the die. The same abstract situation occurs
frequently in sequence analysis, but with the number of rolls ni with outcome i
now meaning something different. For instance, ni might be the number of times
amino acid i occurs in a column of a multiple alignment.

Assume that the observations can be expressed as counts ni for outcome i
(i = 1, . . . , K ) and we want to estimate the probabilities θi for the underlying
multinomial distribution. If we have plenty of data, it is natural to use the ob-
served frequencies, θi = ni/N , as the estimated probabilities. Here N = ∑

i ni .
This is the maximum likelihood solution, θML

i . The proof that this is so goes as
follows.

We want to show that P(n|θML) > P(n|θ ) for any θ �= θML. This is equivalent
to showing that log[P(n|θML)/P(n|θ )] > 0, if we only consider probability pa-
rameters yielding a non-zero probability. Using equation (11.3) and the definition
of θML, this becomes

log
P(n|θML)

P(n|θ )
= log

∏
i (θ

ML
i )ni∏

i θ
ni
i

=
∑

i

ni log
θML

i

θi

= N
∑

i

θML
i log

θML
i

θi
> 0.

The last inequality follows from the fact that the relative entropy (11.10) is
always positive except when the two distributions are identical. This concludes
the proof.

If data are scarce, it is not so clear what is the best estimate. If, for instance, we
only have a total of two counts both on the same residue, the maximum likelihood
estimate would give zero probability to all other residues. In this case, we would
like to assign some probability to the other residues and not rely entirely on so
few observations. Since there are no more observations, these probabilities must
be determined from prior knowledge. This can be done via Bayesian statistics,
and we will now derive the posterior mean estimator for θ .

As the prior we choose the Dirichlet distribution (11.5) with parameters α.
We can then calculate the posterior (11.13) for the multinomial distribution with
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observations n:

P(θ |n) = P(n|θ )D(θ |α)

P(n)
.

For ease of notation, we have dropped the conditioning on the model M as
compared to (11.13), and consider all probabilities implicitly conditioned on the
model. Inserting the multinomial distribution (11.3) for P(n|θ ) and the expres-
sion (11.5) for D(θ |α) yields

P(θ |n) = 1

P(n)Z (α)M(n)

∏
i

θ
ni +αi −1
i = Z (n +α)

P(n)Z (α)M(n)
D(θ |n +α).

In the last step
∏

i θ
ni +αi −1
i was recognised as being proportional to the Dirich-

let distribution with parameters n + α. Here n + α means the set of parameters
{ni +αi } (vector addition). Fortunately we do not have to get involved with gamma
functions in order to finish the calculation, because we know that both P(θ |n) and
D(θ |n +α) are properly normalised probability distributions over θ . This means
that all the prefactors must cancel and

P(θ |n) = D(θ |n +α). (11.22)

We see that the posterior is itself a Dirichlet distribution like the prior, but of
course with different parameters. The observation that the above prefactor is one
gives us a little corollary, which will be useful later:

P(n) = Z (n +α)

Z (α)M(n)
. (11.23)

Now, we only need to perform an integral in order to find the posterior mean
estimator. From the definition (11.15),

θPME
i =

∫
θiD(θ |n +α)dθ = Z−1(n +α)

∫
θi

∏
k

θ
nk+αk−1
k dθ . (11.24)

We can bring θi inside the product giving θ
ni +αi
i as the i th term. Then we see that

the integral is exactly of the form (11.6). We can therefore write

θPME
i = Z (n +α + δi )

Z (n +α)

= ni +αi

N + A
, (11.25)

where A = ∑
i αi , and δi is a vector whose i th component is one and all its other

components zero. Here we have used the property (11.7) of the gamma function,
i.e. �(x + 1) = x�(x); this allows us to cancel all terms except ni + αi in the
numerator and N + A in the denominator.

This result should be compared to the ML estimate θML. If we think of the αs
as extra observations added to the real ones, this is precisely the ML estimate!
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The αs are like pseudocounts added to the real counts. This makes the Dirichlet
regulariser very intuitive, and we can in a sense forget all about Bayesian statis-
tics and think in terms of pseudocounts. It is fairly obvious how to use these
pseudocounts: if it is known a priori that a certain residue, say number i , is very
common, we should give it a high pseudocount αi , and if residue j is generally
rare, we should give it a low pseudocount.

It is important to note the self-regulating property of the pseudocount regu-
lariser. If there are many observations, i.e. the ns are much larger than the αs,
then the estimate is essentially equal to the ML estimate. On the other hand, if
there are very few observations, the regulariser would dominate and give an esti-
mate close to the normalised αs, θi � αi/A. So typically we would choose the αs
so that they are equal to the overall distribution of residues after normalisation.

Mixtures of Dirichlets

It is not easy to express all the prior knowledge about proteins in a single Dirichlet
distribution; to achieve that it is natural to use several different Dirichlet distribu-
tions. We might for instance have a Dirichlet well suited to exposed amino acids,
one for buried ones and so forth. In statistical terms this can be expressed as a
mixture distribution. Assume we have m Dirichlet distributions characterised by
parameter vectors α1, . . . ,αm . A mixture prior expresses the idea that any proba-
bility vector θ belongs to one of the components of the mixture D(θ |αk) with a
probability qk . Formally:

P(θ |α1, . . . ,αm) =
∑

k

qkD(θ |αk), (11.26)

where qk are called the mixture coefficients. The mixture coefficients have to be
positive and sum to one in order for the mixture to be a proper probability dis-
tribution. (Mixtures can be formed from any types of distributions in this way.)
Whereas this probability was called P(θ ) in the previous section, we are here con-
ditioning on the αs, which was implicit before. This turns out to be convenient,
because we can then use probabilities like P(α1|n) below. We can then also iden-
tify qk as the prior probability qk = P(αk) of each of the mixture coefficients.

For a given mixture, i.e. for fixed α parameters and mixture coefficients, it is
straightforward to calculate the posterior probabilities using the results from the
previous section. From the definition of conditional probabilities, we have

P(θ |n) =
∑

k

P(θ |αk ,n)P(αk |n)

=
∑

k

P(αk |n)D(θ |n +αk),

where we used the expression for the posterior (11.22). To compute the term
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P(αk |n), note that by Bayes’ theorem we have

P(αk |n) = qk P(n|αk)∑
l ql P(n|αl)

,

using qk = P(αk). The probability P(n|αk) is given by (11.23) (remember that
P(n) in the previous section was implicitly conditioned on the Dirichlet parame-
ters, so it is P(n|αk)), and we get

P(αk |n) = qk Z (n +αk)/Z (αk)∑
l ql Z (n +αl)/Z (αl)

. (11.27)

The final integration to obtain θPME can be done using the results (11.24) and
(11.25) from the previous section, and yields

θPME
i =

∑
k

P(αk |n)
ni +αk

i

N + A
. (11.28)

The estimate using a mixture of Dirichlets is similar to using a single one: you
just average the estimate based on each component of the mixture. However, the
weight (11.27) with which they are averaged in the mixture is new. This weight
is a little hard to understand intuitively, but it gives a high weight to mixture
components with a high probability for the sample.

Estimating the prior

For more details of the ideas presented in the preceding section, see Brown et
al. [1993] and Sjölander et al. [1996]. These authors used Dirichlet mixtures to
model the distribution of column counts. They obtained the prior by estimating
the mixture components and the mixture coefficients from a large dataset, i.e. a
large set of count vectors.

The estimation is done as follows: The mixture defines a probability for each
count vector in the database, n1, . . . ,nM ,

P(nl |α1, . . . ,αm ;q1, . . . ,qm) =
∫

P(nl |θ )P(θ |α1, . . . ,αm ;q1, . . . ,qm)dθ . (11.29)

If the count vectors are considered independent, the total likelihood of the mix-
ture is

P(data|mixture) =
M∏

l=1

P(nl |α1, . . . ,αm ;q1, . . . ,qm). (11.30)

This probability can be maximised by gradient descent or some other method of
continuous optimisation.
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At this point the reader is probably asking ‘Why use ML estimation instead
of these wonderful Bayesian approaches I just learned?’ To do this you just need
a prior on the parameters of the first level of priors. You can put priors on prior
parameters forever. At some point you have to settle for a prior you invented or
one estimated by ML or some other non-Bayesian method.

11.6 The EM algorithm

The expectation maximisation (EM) algorithm is a general algorithm for ML es-
timation with ‘missing data’ [Dempster, Laird & Rubin 1977]. The Baum–Welch
algorithm for estimating hidden Markov model probabilities is a special case of
the EM algorithm. For HMMs the missing data are the unknown states, since we
only know the observations and not the sequence of states producing them.

Assume some statistical model is determined by parameters θ . The observed
quantities are called x , and the probability of x is determined by some missing
data y. For the HMM that we will treat below, θ is the set of all model parameters
a and e, and y represents the path through the model. The aim is to find the model
that maximises the log likelihood

log P(x |θ ) = log
∑

y

P(x , y|θ ).

Here and in the following x means all the observations whether there is one or
more sequences. To return to the notation with all sequences shown explicitly
requires an extra sum over sequences in all the following formulae.

Assume now that we have a valid model, θ t . We want to estimate a new and
better model, θ t+1. Using P(x , y|θ ) = P(y|x ,θ )P(x |θ ), we can write the log like-
lihood as

log P(x |θ ) = log P(x , y|θ )− log P(y|x ,θ ).

Multiplying this with P(y|x ,θ t ) and summing over y yields

log P(x |θ ) =
∑

y

P(y|x ,θ t ) log P(x , y|θ )−
∑

y

P(y|x ,θ t ) log P(y|x ,θ ).

The first term on the right we will call Q(θ |θ t ),

Q(θ |θ t ) =
∑

y

P(y|x ,θ t ) log P(x , y|θ ). (11.31)

We want log P(x |θ ) to be larger than log P(x |θ t ), so the difference should be
positive. Using the two equations above we can write the difference

log P(x |θ )− log P(x |θ t ) =
Q(θ |θ t )− Q(θ t |θ t )+

∑
y

P(y|x ,θ t ) log
P(y|x ,θ t )

P(y|x ,θ )
.
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The last term is the relative entropy (11.10) of P(y|x ,θ t ) relative to P(y|x ,θ ), so
it is always non-negative, so

log P(x |θ )− log P(x |θ t ) ≥ Q(θ |θ t )− Q(θ t |θ t ) (11.32)

with equality only if θ = θ t , or if P(y|x ,θ t ) = P(y|x ,θ ) for some other θ �= θ t .
Choosing

θ t+1 = argmax
θ

Q(θ |θ t ) (11.33)

will always make the difference positive and thus the likelihood of the new model
larger than the likelihood of θ t . Of course, if a maximum has already been reached,
θ t+1 = θ t , and the likelihood will not change.

The function Q in (11.31) is an average of log P(x , y|θ ) over the distribution
of y obtained with the current set of parameters θ t . This can often be expressed
analytically as a function of θ in which the constants are expectation values in
the old model. This will be more concrete when we go through the derivation for
HMMs shortly. The EM algorithm is usually formulated like this:

Algorithm: Expectation maximisation

E-step: Calculate the Q function (11.31).
M-step: Maximise Q(θ |θ t ) with respect to θ . �

We saw above that the likelihood increases in each iteration, so the procedure
will always reach a local (or maybe global) maximum asymptotically as t →
∞. For many models, such as HMMs, both of these steps can be carried out
analytically. If the second step cannot be carried out exactly, we can use some
numerical optimisation technique to maximise Q. In fact, it is not necessary to
maximise it; it is enough to make Q(θ t+1|θ t ) larger than Q(θ t |θ t ). Algorithms
that increase Q – without necessarily maximising it – are called generalised EM
(GEM) algorithms [Dempster, Laird & Rubin 1977]. Other generalisations of the
EM idea can be found in Meng & Rubin [1992] and Neal & Hinton [1993].

EM explanation of the Baum–Welch algorithm

For the HMM we shall now sketch the derivation of the EM steps which forms
the Baum–Welch algorithm described in Chapter 3, p. 64. In this case we want to
maximise the likelihood

log P(x |θ ) =
∑
π

log P(x ,π |θ ),

so the ‘missing data’ are the state paths π . Then Q (11.31) is given by

Q(θ |θ t ) =
∑
π

P(π |x ,θ t ) log P(x ,π |θ ). (11.34)
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For a given path each parameter in the model will appear some number of times
in P(x ,π |θ ) given by the product (3.6). If it is a transition probability we will
call this number Akl(π ) and for the emission probabilities Ek(b,π ), i.e. Ek(b,π )
is the number of times character b is observed in state k for path π (it depends on
the observation sequence, which we do not show explicitly). Then we can write
(3.6) as

P(x ,π |θ ) =
M∏

k=1

∏
b

[ek(b)]Ek (b,π )
M∏

k=0

M∏
l=1

a Akl (π )
kl ,

where the first product is over all characters b in the alphabet. After taking the
logarithm, (11.34) can now be written as

Q(θ |θ t ) =
∑
π

P(π |x ,θ t )×
[

M∑
k=1

∑
b

Ek(b,π ) logek(b)+
M∑

k=0

M∑
l=1

Akl(π ) logakl

]
. (11.35)

We observe that the expected values Akl and Ek(b) as defined in (3.20) and (3.21)
on p. 64 for the Baum–Welch algorithm can be written as expectations of Akl(π )
and Ek(b,π ) with respect to P(π |x ,θ t ):

Ek(b) =
∑
π

P(π |x ,θ t )Ek(b,π ) and Akl =
∑
π

P(π |x ,θ t )Akl(π ).

Doing the sum over π first in (11.35) therefore gives

Q(θ |θ t ) =
M∑

k=1

∑
b

Ek(b) logek(b)+
M∑

k=0

M∑
l=1

Akl logakl . (11.36)

Finally, we have to show that (3.18) maximises (11.36). Let us first look at the
A term. The difference between this term for a0

i j = Ai j∑
k Aik

and for any other ai j is

M∑
k=0

M∑
l=1

Akl log
a0

kl

akl
=

M∑
k=0

(∑
l ′

Akl ′

)
M∑

l=1

a0
kl log

a0
kl

akl
.

The last expression is the relative entropy (11.10), and thus it is larger than zero
unless akl = a0

kl . This proves that the maximum is at a0
kl . Exactly the same proce-

dure can be used for the E term.
For the HMM the E-step of the EM algorithm consists of calculating the ex-

pectations Ek(b) and Akl . This is done by the forward–backward procedure as
described in Chapter 3. This completely determines the Q function, and the max-
imum is expressed directly in terms of these numbers. Therefore the M-step just
consists of plugging Ek(b) and Akl into the re-estimation formulae for ek(b) and
akl given in (3.18).
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scoring, 13–18
significance of scores, 36–42
using hidden Markov models, 81–100

palindrome languages, 243
PAM matrices, see substitution matrices
paralogues, 163
parameter estimation, 312–315

Bayesian, 8, 313
conditional maximum likelihood, 68
discriminative, 68
for hidden Markov models, 62–69

Viterbi training, 66
when the paths are known, 63
when the paths are unknown, 64

for profile HMMs, 108–109, 116–123
maximum a posteriori, 8, 313
maximum likelihood, 5, 10, 312
maximum mutual information, 68
posterior mean, 9, 314
probabilities from counts, 116–123,

320–323
parse trees, 245–246
parsimony, 174–180, 224–228

weighted, 174
parsing, for transformational grammars, 236
partition function, 155, 277
path, 55

most probable, 56
Pfam, 134
phase-type distribution, 71
phrase structure grammars, 237
phylogeny

alignment and phylogeny, 181–189,
217–221

binary trees, 163–166
bootstrap, 213–215
comparing models, 221–232
counting trees, 164–166
distance methods, 166–173, 228–231
evolutionary models, 194–198, 215–221
labelled history, 211
maximum likelihood, 194, 206–215,

228–231
non-probabilistic methods, 161–192
parsimony, 174–180, 224–228
probabilistic methods, 193–233

inference, 206–213
likelihood, 198–206
sampling, 194, 207, 228

reversibility, 203, 229
PME, see posterior mean estimate
population history, 211
position specific score matrix, 103, 133
post-order traversal, 175
posterior decoding, 60
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posterior mean estimate, 9, 314
probabilities from counts, 320

posterior probability, 6
of alignment, 89

posterior state probabilities, 59
prior probability

definition of, 7
Dirichlet, see separate entry
estimating the prior, 323
uninformative, 8

probabilistic models, 4
probability density, 300
probability distributions, 300–306

beta distribution, 303
binomial distribution, 300
Dirichlet distribution, 9, 303–305
Erlang distribution, 71
exponential distribution, 306
extreme value distribution, 39–40,

305–306
gamma distribution, 305
Gaussian distribution, 127, 301
geometric distribution, 17, 70
multinomial distribution, 301
negative binomial distribution, 70
phase-type distribution, 71

probability theory, 300–326
productions, for transformational grammars,

235
profile alignment, 147
profile HMMs, 101–134

adding noise during estimation, 156
avoiding local maxima, 154
Baum–Welch algorithm, 153
derived from multiple alignment,

106–110
estimation from unaligned sequences,

150
for multiple alignments, 150–159
for non-global alignments, 114–116
for searching, 109
forward algorithm, 111
gaps, 104
initial model, 153
model construction, 123, 158, 159
model surgery, 159
parameter estimation, see separate entry
Pfam, 134

relation to non-probabilistic profiles, 106
relation to pairwise alignments, 106
simulated annealing, 156
Viterbi algorithm, 110

profiles, 102, 106, 133
history, 133
structural, 133

progressive alignment methods, 145
PROSITE, 134, 241–242
protein secondary structure, 80
pseudo-random number generator, 315
pseudocounts, 9, 109, 140, 322

Laplace’s rule, 109
pseudoknots, 264, 299
PSSM, see position specific score matrix
push-down automata, 238, 246–248
push-down stack, 246

R17 phage coat protein, RNA binding site,
265

random numbers, 315
random sequence model, 5, 14, 84
regular grammars, 237–243

limitations of, 243
stochastic, see stochastic regular grammars

rejection sampling, 317
relative entropy, 24, 309
repeat alignment, 25–26
reversibility, 203, 229
rewriting rules, 235
RNA, 261–299

base stacking, 263, 275
catalytic, 262
covariance models, see covariance models
evolution, 265–266
functions of, 262
modelling a family, 278–299
multiple alignment, 135, 136
pseudoknots, 264, 299
RNA world hypothesis, 262
secondary structure, 243, 262–265
secondary structure prediction, 268–278

base pair confidence estimates, 277–278
energy minimization algorithms,

275–278
SCFG algorithm, 273–275
suboptimal folding, 277
thermodynamic parameters for, 275

RNAMOT, 266
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RNP-1 consensus, 241
rooted trees, 163, 173

sampling, 315–320
by rejection, 317
by transformation from a uniform

distribution, 315
from a Dirichlet, 316
Gibbs sampling, 319
Metropolis algorithm, 318
of alignments, 90–92

Sankoff & Cedergren’s algorithm, 181
a probabilistic interpretation, 231

scaling of probabilities, 79
SCFG, see stochastic context-free grammars
scoring matrix, see substitution matrices
sequence alignment, 2
sequence graph, 185
sequence similarity, 2
sequence weights, 125–133, 140

derived from a tree, 126
maximum discrimination, 130
maximum entropy, 131
root weights from Gaussian parameters,

127
Voronoi weights, 129

Shannon entropy, 140, 306
signal recognition particle RNA, 263
silent state, 50, 71
similarity, amino acid, 12
simulated annealing, 155, 159

use for HMMs, 156
Smith–Waterman algorithm, 22–25, see also

local alignment
speech recognition, 47
SSEARCH, 41
state, 49
state path, see path
stochastic context-free grammars, 253–259

CYK algorithm, 257–258
expectation-maximisation, 257
for the Nussinov algorithm, 273–275
inside algorithm, 254–255
normal forms, 253–254, 259
outside algorithm, 255–256

stochastic context-sensitive grammars,
251–252

stochastic regular grammars, 250
equivalent to hidden Markov models, 252

stochastic unrestricted grammars,
251–252

suboptimal alignment, 90–92
substitution matrices, 2, 14–16,

194–198
BLOSUM, 44, 140
definition, 15
entropy, 120
mixtures, 118
PAM, 42–44, 140
PAM matrices, 197
parameter estimation for, 42–45

substitutions, in alignments, 13
sum of pairs score, 140

problem, 141
surgery, 159

target frequencies, 15
terminals, for transformational grammars,

236
traceback, 21
training set, 5
transfer RNA, 297
transformational grammars, 234–260

context-free, see context-free grammars
context-sensitive, see context-sensitive

grammars
definition, 235
phrase structure, 237
regular, see regular grammars
stochastic, 250–253
unrestricted, see unrestricted

grammars
transition probabilities, 49
transmembrane proteins, 7
traversal profile, 208
tree HMM, 218–221
trees, see phylogeny
triplet repeat, 239
tRNAscan-SE, 298
Turing machines, 238, 249

ultrametric distances, 169
underflow error, 78
unrestricted grammars, 237

stochastic, see stochastic unrestricted
grammars

unrooted trees, 163
UPGMA algorithm, 167–170
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Viterbi algorithm, 56–58
for pair HMMs, 83–86
for profile HMMs, 110

Viterbi training, 66
Voronoi weights, 129

Waterman–Eggert algorithm, 25, 92
weak law of large numbers, 313
weight matrix, see position specific score

matrix

weights
of cats and cows, 128
of sequences, see sequence

weights

Yule process, 212

Z-score, 112
zinc finger, 242
Zuker algorithm, 275–278
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