
1

Syllabus
S.Y.B.Sc. (IT)

SEMESTER - III, PAPER - II
COMPUTER GRAPHIC

Unit I

Introduction Computer Graphics and Primitive Algorithms:
Introduction to Image and Objects, Image Representation, Basic
Graphics Pipeline, Bitmap and Vector-Based Graphics,
Applications of Computer Graphics, Display Devices, Cathode Ray
Tubes, Raster-Scan Display, Random-Scan Display, Flat Panel
Display, Input Technology, Coordinate System Overview,

Scan-Conversion of graphics primitives: Scan-Conversion of a
Lines (Digital Differential Analyzer Algorithm, Bresenham's Line-
Drawing Algorithm, Scan-Conversion of Circle and Ellipse
(Bresenham's Method of Circle Drawing, Midpoint Circle Algorithm),
Drawing Ellipses and Other Conics.

Unit II
Two Dimensional Transformation: Introduction to
transformations, Transformation Matrix, Types of Transformations
in Two-Dimensional Graphics: Identity Transformation, Scaling,
Reflection, Shear Transformations, Rotation, Translation, Rotation
about an Arbitrary Point, Combined Transformation, Homogeneous
Coordinates, 2D Transformations using Homogeneous Coordinates

Unit III
Three-dimensional transformations, Objects in Homogeneous
Coordinates; Three-Dimensional Transformations: Scaling,
Translation, Rotation, Shear Transformations, Reflection, World
Coordinates and Viewing Coordinates, Projection, Parallel
Projection, Perspective Projection.

Unit IV
Viewing and Solid Area Scan-Conversion : Introduction to viewing
and clipping, viewing Transformation in Two Dimensions,
Introduction to Clipping, Two-Dimensional Clipping, Point Clipping,
Line Clipping, Introduction to a Polygon Clipping, Viewing and
Clipping in Three Dimensions, Three-Dimensional Viewing
Transformations, Text Clipping

Introduction to Solid Area Scan-Conversion, Inside - Outside Test,
Winding Number Method and Coherence Property, Polygon Filling,
Seed Fill Algorithm, Scan-Lino Algorithm, Priority Algorithm, Scan
Conversion of Character, Aliasing, Anti-Aliasing, Halftoning,
Thresholding and Dithering

2

Unit V
Introduction to curves, Curve Continuity, Conic Curves, Piecewise
Curve Design, Parametric Curve Design, Spline Curve
Representation, Bezier Curves, B-Spline Curves, Fractals and its
applications.

Surface Design : Bilinear Surfaces, Ruled Surfaces, Developable
Surfaces, Coons Patch, Sweep Surfaces, Surface of Revolution,
Quadric Surfaces, Constructive Solid Geometry, Bezier Surfaces,
B-Spline Surfaces, Subdivision Surfaces.

Visible Surfaces : Introduction to visible and hidden surfaces,
Coherence for visibility, Extents and Bounding Volumes, Back Face
Culling, Painter’s Algorithm, Z-Buffer Algorithm, Floating Horizon
Algorithm, Roberts Algorithm.

Unit VI
Object Rendering : Introduction Object-Rendering, Light Modeling
Techniques, illumination Model, Shading, Flat Shading, Polygon
Mesh Shading, Gaurand Shading Model, Phong Shading,
Transparency Effect, Shadows, Texture and Object
Representation, Ray Tracing, Ray Casting, Radiosity, Color
Models.

Introduction to animation, Key-Frame Animation, Construction of an
Animation Sequence, Motion Control Methods, Procedural
Animation, Key-Frame Animation vs. Procedural Animation,
Introduction to Morphing, Three-Dimensional Morphing.

Books :
Computer Graphics, R. K. Maurya, John Wiley.
Mathematical elements of Computer Graphics, David F. Rogers, J.
Alan Adams, Tata McGraw-Hill.
Procedural elements of Computer Graphics, David F. Rogers, Tata
McGraw-Hill.

Reference:
Computer Graphics, Donald Hearn and M. Pauline Baker, Prentice
Hall of India.
Computer Graphics, Steven Harrington, McGraw-Hill.
Computer Graphics Principles and Practice, J.D. Foley, A Van
Dam, S. K. Feiner and R. L. Phillips, Addision Wesley.
Principles of Interactive Computer Graphics, William M. Newman,
Robert F. Sproull, Tata McGraw-Hill.
Introduction to Computer Graphics, J.D. Foley, A. Van Dam, S. K.
Feiner, J.F. Hughes and R.L. Phillips, Addision Wesley.

3

Practical (Suggested) :
Should contain at least 10 programs developed using C++. Some
sample practical are listed below.
1. Write a program with menu option to input the line coordinates

from the user to generate a line using Bresenham’s method
and DDA algorithm. Compare the lines for their values on the
line.

2. Develop a program to generate a complete circle based on.

a) Bresenham’s circle algorithm

b) Midpoint Circle Algorithm

3. Implement the Bresenham’s / DDA algorithm for drawing line
(programmer is expected to shift the origin to the center of the
screen and divide the screen into required quadrants)

4. Write a program to implement a stretch band effect. (A user
will click on the screen and drag the mouse / arrow keys over
the screen coordinates. The line should be updated like
rubber-band and on the right-click gets fixed).

5. Write program to perform the following 2D and 3D
transformations on the given input figure

a) Rotate through

b) Reflection

c) Scaling

d) Translation

6. Write a program to demonstrate shear transformation in
different directions on a unit square situated at the origin.

7. Develop a program to clip a line using Cohen-Sutherland line

clipping algorithm between 1 1 2 2, ,X Y X Y against a window

 min min max max, ,X Y X Y .

8. Write a program to implement polygon filling.

9. Write a program to generate a 2D/3D fractal figures (Sierpinski
triangle, Cantor set, tree etc).

10. Write a program to draw Bezier and B-Spline Curves with
interactive user inputs for control polygon defining the shape
of the curve.

11. Write a program to demonstrate 2D animation such as clock
simulation or rising sun.

12. Write a program to implement the bouncing ball inside a
defined rectangular window.

4

1

COMPUTER GRAPHICS -
FUNDAMENTALS

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Introduction to Image and Objects

1.3 Image Representation

1.4 Basic Graphics Pipeline

1.5 Bitmap and Vector-Based Graphics

1.6 Applications of Computer Graphics

1.7 Display Devices

1.7.1 Cathode Ray Tubes

1.7.2 Raster-Scan Display

1.7.3 Random-Scan Display

1.7.4 Flat Panel Display

1.8 Input Technology

1.9 Coordinate System Overview

1.10 Let us sum up

1.4 References and Suggested Reading

1.5 Exercise

1.0OBJECTIVES

The objective of this chapter is
 To understand the basics of computer graphics.
 To be aware of applications of computer graphics.
 To know the elements of computer graphics.

1.1 INTRODUCTION

Computer graphics involves display, manipulation and
storage of pictures and experimental data for proper visualization
using a computer. It provides methods for producing images and
animations (sequence of images). It deals with the hardware as
well as software support for generating images.

5

Basically, there are four major operations that we perform in
computer graphics:

 Imaging: refers to the representation of 2D images.
 Modeling: refers to the representation of 3D images.
 Rendering: refers to the generation of 2D images from 3D

models.

Animation: refers to the simulation of sequence of images over
time.

1.2 INTRODUCTION TO IMAGE AND OBJECTS

An image is basically representation of a real world object on
a computer. Itcan be an actual picture display, a stored page in a
video memory, or a source code generated by a program.
Mathematically, an image is a two - dimensional array of data with
intensity or a color value at each element of the array.

Objects are real world entities defined in three – dimensional
world coordinates. In computer graphics we deal with both 2D and
3D descriptions of an object. We also study the algorithms and
procedures for generation and manipulation of objects and images
in computer graphics.

Check your Progress:
1. Define image and object.
2. How an image is represented mathematically?

1.3 IMAGE REPRESENTATION

Image representation is the approximations of the real world
displayed in a computer. A picture in computer graphics is
represented as a collection of discrete picture elements termed as
pixels. A pixel is the smallest element of picture or object that can
be represented on the screen of a device like computer.

6

Check your progress:
1. Define pixel.

1.4 BASIC GRAPHIC PIPELINE

In computer graphics, the graphics pipeline refers to a series
of interconnected stages through which data and commands
related to a scene go through during rendering process.

It takes us from the mathematical description of an object to
its representation on the device.

The figure shown below illustrates a 3D graphic pipeline.

Figure 1.1: A 3D graphic pipeline

7

The real world objects are represented in world coordinate
system. It is then projected onto a view plane. The projection is
done from the viewpoint of the position of a camera or eye. There is
an associated camera coordinate system whose z axis specifies
the view direction when viewed from the viewpoint. The infinite
volume swept by the rays emerging from the viewpoint and passing
through the window is called as view volume or view pyramid.
Clipping planes (near and far) are used to limit the output of the
object.

The mapping of an object to a graphic device requires the
transformation of view plane coordinates to physical device
coordinates. There are two steps involved in this process.

(i) The window to a viewport transformation. The viewport is
basically a sub – rectangle of a fixed rectangle known as
logical screen.

(ii) The transformation of logical screen coordinates to physical
device coordinates.

Figure : Sequence of transformation in viewing pipeline

Figure 1.2: 2D coordinate system to physical device
coordinates transformation.

The figures above depict the graphic pipeline and the 2D
coordinate transformation to physical device coordinates.

Representation
of 3D world

objects

Clip against
view volume

Transform to
physical device
coordinates

Transform to
viewport

Project to view
plane

Transform into
camera

coordinates

Clip against
window

Transform to
physical device

coordinates

Transport to
viewport

Representation
of 2D world

objects

8

Check your Progress:
1. Differentiate between world coordinates system and camera

coordinate system.
2. Define view volume.

1.5 BITMAP AND VECTOR – BASED GRAPHICS

Computer graphics can be classified into two categories:
Raster or Bitmap graphics and Vector graphics.

Bitmap graphics:
 It is pixel based graphics.
 The position and color information about the image are

stored in pixels arranged in grid pattern.
 The Image size is determined on the basis of image

resolution.
 These images cannot be scaled easily.
 Bitmap images are used to represent photorealistic images

which involve complex color variations.

Figure 1.3
(a) An arrow image (b) magnified arrow image with pixel grid

The above figure shows a bitmap arrow image in its actual
size and magnified image with pixel grid.

Vector graphics:
 The images in vector graphics are basically mathematically

based images.
 Vector based images have smooth edges and therefore used to

create curves and shapes.

9

Figure 1.4
(a) A rose image (b) vector description of leaf of rose

 These images are appropriate for precise illustrations but not
good for photorealistic images.

 These images are easily scalable due to their mathematical
structure. Figure 1.4(a) and (b) shows a rose image and vector
description of leaf of rose.

Figure 1.5 (a) A bitmap image (b) a vector image

The above figure shows a bitmap and vector image of the letter A.

Check your Progress:
1. Which graphic system is better for photorealistic images?
2. In which graphic system images are easily scalable?

10

1.6 APPLICATIONS OF COMPUTER GRAPHICS

Computer graphics finds its application in various areas; some of
the important areas are discussed below:

 Computer-Aided Design: In engineering and architectural
systems, the products are modeled using computer graphics
commonly referred as CAD (Computer Aided Design).

In many design applications like automobiles, aircraft,
spacecraft, etc., objects are modeled in a wireframe outline that
helps the designer to observe the overall shape and internal
features of the objects.

CAD applications are also used in computer animations. The
motion of an object can be simulated using CAD.

 Presentation graphics: In applications like summarizing of
data of financial, statistical, mathematical, scientific and
economic research reports, presentation graphics are used. It
increases the understanding using visual tools like bar charts,
line graphs, pie charts and other displays.

 Computer Art: A variety of computer methods are available for
artists for designing and specifying motions of an object. The
object can be painted electronically on a graphic tablet using
stylus with different brush strokes, brush widths and colors. The
artists can also use combination of 3D modeling packages,
texture mapping, drawing programs and CAD software to paint
and visualize any object.

 Entertainment: In making motion pictures, music videos and
television shows, computer graphics methods are widely used.
Graphics objects can be combined with live actions or can be
used with image processing techniques to transform one object
to another (morphing).

 Education and training: Computer graphics can make us
understand the functioning of a system in a better way. In
physical systems, biological systems, population trends, etc.,
models makes it easier to understand.

In some training systems, graphical models with simulations
help a trainee to train in virtual reality environment. For
example, practice session or training of ship captains, aircraft
pilots, air traffic control personnel.

11

 Visualization: For analyzing scientific, engineering, medical
and business data or behavior where we have to deal with large
amount of information, it is very tedious and ineffective process
to determine trends and relationships among them. But if it is
converted into visual form, it becomes easier to understand.
This process is termed as visualization.

 Image processing: Image processing provides us techniques
to modify or interpret existing images. One can improve picture
quality through image processing techniques and can also be
used for machine perception of visual information in robotics.

In medical applications, image processing techniques can be
applied for image enhancements and is been widely used for
CT (Computer X-ray Tomography) and PET (Position Emission
Tomography) images.

 Graphical User Interface: GUI commonly used these days to
make a software package more interactive. There are multiple
window system, icons, menus, which allows a computer setup
to be utilized more efficiently.

Check your progress:

1. Fill in the blanks

(a) GUI stands for.................

(b) provides us techniques to modify or interpret existing
images.

2. Explain how computer graphics are useful in entertainment
industry.

1.7 DISPLAY DEVICES

There are various types of displays like CRT, LCD and
Plasma. We will discuss each of these three in brief.

12

 CRT (Cathode Ray Tube) is one of the mostly used display
technology. In CRT, a beam of electrons emitted by an electron
gun strikes on specified positions on phosphor coated screen
after passing through focusing and deflecting systems.

Figure 1.6 : Elements of CRT

 LCD Display: LCD stands for Liquid Crystal Display
o Organic molecules that remain in crystalline structure without

external force, but re-aligns themselves like liquid under
external force

o So LCDs realigns themselves to EM field and changes their own
polarizations

Figure 1.7 : LCD display

13

o There are two types of LCD displays:

o Active Matrix LCD:
 Electric field is retained by a capacitor so that the crystal

remains in a constant state.
 Transistor switches are used to transfer charge into the

capacitors during scanning.
 The capacitors can hold the charge for significantly longer than

the refresh period
 Crisp display with no shadows.
 More expensive to produce.

o Passive matrix LCD:
 LCD slowly transit between states.
 In scanned displays, with a large number of pixels, the

percentage of the time that LCDs are excited is very small.
 Crystals spend most of their time in intermediate states, being

neither "On" or "Off".
 These displays are not very sharp and are prone to ghosting.

 Plasma display:

Figure1.8 (showing the basic structure of plasma display)

o These are basically fluorescent tubes.
o High- voltage discharge excites gas mixture (He, Xe), upon

relaxation UV light is emitted, UV light excites phosphors.
o Some of its features are
 Large view angle
 Large format display
 Less efficient than CRT, more power
 Large pixels: 1mm (0.2 mm for CRT)
 Phosphors depletion

 In CRT monitors there are two techniques of displaying images.

14

o Raster scan displays: A rectangular array of points or dots.In a
raster scan system, the electron beam is swept across the
screen, one row at a time from top to bottom.As the electron
beam moves across each row, the beam intensity is turned on
and off to create a pattern of illuminated spots. See the figure
below.

Figure 1.9 : Raster scan display

 Horizontal retrace: The return to the left of the screen, after
refreshing each scan line.

 Vertical retrace: At the end of each frame (displayed in 1/80th
to 1/60th of a second) the electron beam returns to the top left
corner of the screen to begin the next frame.

Figure 1.10 (showing horizontal and vertical retrace)

15

 Random scan display: Random scan display is the use of
geometrical primitives such as points, lines, curves, and
polygons, which are all based upon mathematical equation. In a
random scan display, a CRT has the electron beam directed
only to the parts of the screen where a picture is to be drawn.
Random scan monitors draw a picture one line at a time. See
the figure below.

Figure 1.11: Random Scan display

o Refresh rate depends on the number of lines to be displayed.

o Picture definition is now stored as a line-drawing commands an
area of memory referred to as refresh display file.

o To display a picture, the system cycle through the set of
commands in the display file, drawing each component line in
turn.

o Random scan displays are designed to draw all the component
lines of a picture 30 to 60 times each second.

o Random scan displays have higher resolution than raster
systems.

There are some parameters or properties related to graphic
displays like CRT:

 Persistence: In case of CRT, persistence refers to the property
of a phosphor defining its life time, i.e., how long they continue
to emit light after the CRT beam is removed.

 Resolution: The maximum number of points that can be
displayed without overlap on a CRT is referred to as the
resolution. In other words, it is the number of points per unit
length that can be plotted horizontally and vertically.

16

 Aspect ratio: It is the ratio of the number of vertical points to
the number of horizontal points necessary to produce equal-
length lines in both directions on the screen.

 Frame buffer: Frame buffer also known as refresh buffer is the
memory area that holds the set of intensity values for all the
screen points.

 Pixel: It refers a point on the screen. It is also known as pel and
is shortened form of ‘picture element’.

 Bitmap or pixmap: A frame buffer is said to be bitmap on a
black and white system with one bit per pixel. For systems with
multiple bits per pixel, the frame buffer is referred to as pixmap.

 Graphical images - used to add emphasis, direct attention,
illustrate concepts, and provide background content. Two types
of graphics:

o Draw-type graphics or vector graphics – represent an image as
a geometric shape

o Bitmap graphics – represents the image as an array of dots,
called pixels

 Three basic elements for drawing in graphics are:

o Point: A point marks a position in space. In pure geometric
terms, a point is a pair of x, y coordinates. It has no mass at all.
Graphically, however, a point takes form as a dot, a visible
mark. A point can be an insignificant fleck of matter or a
concentrated locus of power. It can penetrate like a bullet,
pierce like a nail, or pucker like a kiss. A mass of points
becomes texture, shape, or plane. Tiny points of varying size
create shades of gray.

o Line: A line is an infinite series of points. Understood
geometrically, a line has length, but no breadth. A line is the
connection between two points, or it is the path of a moving
point. A line can be a positive mark or a negative gap. Lines
appear at the edges of objects and where two planes meet.
Graphically, lines exist in many weights; the thickness and
texture as well as the path of the mark determine its visual
presence. Lines are drawn with a pen, pencil, brush, mouse, or
digital code. They can be straight or curved, continuous or
broken. When a line reaches a certain thickness, it becomes a
plane. Lines multiply to describe volumes, planes, and textures.

o Plane: A plane is a flat surface extending in height and width. A
plane is the path of a moving line; it is a line with breadth. A line
closes to become a shape, a bounded plane. Shapes are

17

planes with edges. In vector–based software, every shape
consists of line and fill. A plane can be parallel to the picture
surface, or it can skew and recede into space. Ceilings, walls,
floors, and windows are physical planes. A plane can be solid or
perforated, opaque or transparent, textured or smooth.

Check your progress:
1. Explain different display technologies.
2. Differentiate between Raster scan and Random scan display.

1.8 INPUT TECHNOLOGY

There are different techniques for information input in
graphical system. The input can be in the form of text, graphic or
sound. Some of the commonly used input technologies are
discussed below.

1.8.1Touch Screens
A touch screen device allows a user to operate a touch

sensitive device by simply touching the display screen. The input
can be given by a finger or passive objects like stylus. There are
three components of a touch screen device: a touch sensor, a
controller and a software driver.

A touch sensor is a touch sensitive clear glass panel. A
controller is a small PC card which establishes the connection
between a touch sensor and the PC. The software driver is a
software that allows the touch screen to work together with the PC.
The touch screen technology can be implemented in various ways
like resistive, surface acoustic, capacitive, infrared, strain gauge,
optical imaging, dispersive signal technology, acoustic pulse
recognition and frustrated total internal reflection.

1.8.2Light pen
A light pen is pen shaped pointing device which is connected

to a visual display unit. It has light sensitive tip which detects the
light from the screen when placed against it which enables a
computer to locate the position of the pen on the screen. Users can

18

point to the image displayed on the screen and also can draw any
object on the screen similar to touch screen with more accuracy.

1.8.3 Graphic tablets
Graphic tablets allow a user to draw hand draw images and

graphics in the similar way as is drawn with a pencil and paper.

It consists of a flat surface upon which the user can draw or
trace an image with the help of a provided stylus. The image is
generally displayed on the computer monitor instead of appearing
on the tablet itself.

Check your Progress:
1. Name different types of touch screen technologies.
2. Differentiate between light pen and graphic tablet.

1.9 COORDINATE SYSTEM OVERVIEW

To define positions of points in space one requires a
coordinate system. It is way of determining the position of a point
by defining a set of numbers called as coordinates. There are
different coordinate systems for representing an object in 2D or 3D.

1.9.1 Cartesian coordinate system
It is also known as rectangular coordinate system and can

be of two or three dimensions. A point in Cartesian coordinate
system can be defined by specifying two numbers, called as x –
coordinate and the y – coordinate of that point.

19

.

Figure 1.12: Cartesian coordinate system

In the above figure, there are two points (2, 3) and (3, 2) are
specified in Cartesian coordinate system

1.9.2 Polar coordinate system
In polar coordinate system, the position of a point is defined by
specifying the distance (radius) from a fixed point called as origin
and the angle between the line joining the point and the origin and
the polar axis (horizontal line passing through the origin).

Figure 1.13: Polar coordinate system

The above figure shows a point (r, θ) in polar coordinates.

20

Check your Progress:

Fill in the blanks
1. The position of a point is defined by specifying the distance

(radius) from a fixed point called as ……….

2. A point in Cartesian coordinate system can be defined by
specifying two numbers, called as …….. and the ………… of
that point.

Answers: 1. Origin
2. x - coordinate, y – coordinate.

1.10 LET US SUM UP

We learnt about computer graphics, its application in
different areas. We studied various display and input technologies.
We also studied basic graphic pipeline, bitmap and vector based
graphics. Then we learnt the elements of computer graphics in
which came to know about the terms like persistence, resolution,
aspect ratio, frame buffer, pixel and bitmap. Finally we studied
about the coordinate system.

1.11 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.

(2) Procedural elements of Computer Graphics, David F. Rogers,
Tata McGraw Hill.

(3) Computer Graphics, Rajesh K. Maurya, Wiley - India

1.12 EXERCISE

1. What are the major operations that we perform on Computer
Graphics?

2. Define some of the applications of Computer Graphics.

21

3. Define graphic pipeline and the process involved in it.

4. Differentiate between bitmap and vector based graphics.

5. Define the following terms:
a. Persistence
b. Aspect ratio
c. Frame buffer
d. Resolution
e. Pixel

6. Define horizontal and vertical retrace.

22

2

SCAN CONVERSION OF GRAPHICS
PRIMITIVES

Unit Structure

2.0 Objectives

2.1 Introduction

2.2Scan-Conversion of a Lines

2.3Scan- Conversion of Circle and Ellipse

2.3.1 Digital Differential Analyzer Algorithm

2.3.2 Bresenham's Line-Drawing Algorithm

2.4Drawing Ellipses and Other Conics

2.4.1 Bresenham's Method of Circle Drawing

2.4.2 Midpoint Circle Algorithm

2.5Drawing Ellipses and Other Conics

2.6Let us sum up

2.7References and Suggested Reading

2.8Exercise

2.0 OBJECTIVES

The objective of this chapter is
 To understand the basic idea of scan conversion techniques.
 To understand the algorithms for scan conversion of line,

circle and other conics.

2.1 INTRODUCTION

Scan conversion or rasterization is the process of converting
the primitives from its geometric definition into a set of pixels that
make the primitive in image space. This technique is used to draw
shapes like line, circle, ellipse, etc. on the screen. Some of them
are discussed below

23

2.2 SCAN – CONVERSION OF LINES

 A straight line can be represented by a slope intercept equation
as

where m represents the slope of the line and b as the y
intercept.

 If two endpoints of the line are specified at positions (x1,y1) and
(x2,y2), the values of the slope m and intercept b can be
determined as

 If ∆x and ∆y are the intervals corresponding to x and y
respectively for a line, then for given interval ∆x, we can
calculate ∆y.

Similarly for given interval ∆y, ∆x can be calculated as

 For lines with magnitude |m| < 1, ∆x can be set proportional to a
small horizontal deflection and the corresponding horizontal
deflection is et proportional to ∆y and can be calculated as

 For lines with |m|>1, ∆y can be set proportional to small vertical
deflection and corresponding ∆x which is set proportional to

horizontal deflection is calculated using

The following shows line drawn between points (x1, y1) and (x2, y2).

Figure 2.1 : A line representation in Cartesian coordinate
system

24

2.2.1 Digital Differential Analyzer (DDA) Algorithm

 Sampling of the line at unit interval is carried out in one
coordinate and corresponding integer value for the other
coordinate is calculated.

 If the slope is less than or equal to 1(|m| ≤ 1), the coordinate x
is sampled at unit intervals (∆x = 1) and each successive values
of y is computed as

where k varies from 1 to the end point value taking integer
values only. The value of y calculated is rounded off to the
nearest integer value.

 For slope greater than 1 (|m| > 1), the roles of y and x are
reversed, i.e., y is sampled at unit intervals (∆y = 1) and
corresponding x values are calculated as

 For negative value slopes, we follow the same procedure as
above, only the sampling unit ∆x and ∆y becomes ‘-1’ and

Pseudocode for DDA algorithm is as follows
LineDDA(Xa, Ya, Xb, Yb) // to draw a line from (Xa, Ya) to
(Xb, Yb)

{
Set dx = Xb - Xa, dy = Yb - Ya;
Set steps = dx;
SetX = Xa, Y = Ya;
int c = 0;
Call PutPixel(Xa, ya);
For (i=0; i <steps; i++)

{
X = X + 1;

c = c + dy; // update the fractional part
If (c > dx)

{ // (that is, the fractional part is greater than 1
now

Y = y +1; // carry the overflowed integer over
c = c - dx // update the fractional part

Call PutPixel(X, Y);
}
}

}

25

2.2.2 Bresenham’s Line Drawing Algorithm

This line drawing algorithm proposed by Bresenham, is an
accurate and efficient raster-line generating algorithm using only
incremental integer calculations.

For lines |m| ≤ 1, the Bresenham’s line drawing algorithm

I. Read the end points of the line and store left point in (x0, y0)

II. Plot (x0, y0), the first point.

III. Calculate constants ∆x, ∆y, 2∆y and 2∆y - 2∆x, and obtain a
decision parameter p0

IV. Perform the following test for each xk, starting at k = 0 if pk<
0, then next plotting point is (xk+1, yk) and

Otherwise, the next point to plot is (xk+1, yk+1) and

V. Repeat step 4 ∆x times.
For a line with positive slope more than 1, the roles of the x

and y directions are interchanged.

Check your progress:

1. Fill in the blanks

(a)of the line at unit interval is carried out in one coordinate
and corresponding integer value for the other coordinate is
calculated.

(b) Bresenham's line drawing algorithm is an accurate and efficient
raster-line generating algorithm using onlycalculations.

2. Compare DDA and Bresenham's line drawing algorithm.

Answers: 1(a) sampling (b) incremental integer

.

26

2.3 SCAN – CONVERSION OF CIRCLE AND ELLIPSE

A circle with centre (xc, yc) and radius r can be represented in
equation form in three ways

 Analytical representation: r2 = (x – xc)
2 + (y – yc)

2

 Implicit representation : (x – xc)
2 + (y – yc)

2 – r2 = 0
 Parametric representation: x = xc + r cosθ

y = yc +ysinθ
A circle is symmetrical in nature. Eight – way symmetry can be
used by reflecting each point about each 45o axis. The points
obtained in this case are given below with illustration by figure.

P1 = (x, y) P5 = (-x, -y)
P2 = (y, x) P6 = (-y, -x)
P3 = (-y, x) P7 = (y, -x)
P4 = (-x, y) P8 = (x, -y)

Figure 2.2 : Eight way symmetry of a circle

3.1 Bresenham’s circle drawing algorithm
Let us define a procedure Bresenham_Circle (Xc,Yc, R) procedure
for Bresenham’s circle drawing algorithm for circle of radius R and
centre (Xc, Yc)
Bresenham_Circle (Xc,Yc, R)
{

Set X = 0;
Set Y= R;
Set D = 3 – 2R;
While (X < Y)

{
Call Draw_Circle (Xc, Yc, X, Y);
X=X+1;
If (D < 0)
{ D = D + 4X + 6; }
Else

{
Y = Y – 1;
D = D + 4(X – Y) + 10;

27

}
Call Draw_Circle (Xc, Yc, X, Y);
}

}
Draw_Circle (Xc, Yc, X, Y)

{
Call PutPixel (Xc + X, Yc, +Y);
Call PutPixel (Xc – X, Yc, +Y);
Call PutPixel (Xc + X, Yc, – Y);
Call PutPixel (Xc – X, Yc, – Y);
Call PutPixel (Xc + Y, Yc, + X);
Call PutPixel (Xc – Y ,Yc, – X);
Call PutPixel (Xc + Y, Yc, – X);
Call PutPixel (Xc – Y, Yc, – X);

}

2.3.2Midpoint circle drawing algorithm
This algorithm uses the implicit function of the circle in the following
way
f (x, y) = (x – xc)

2 + (y – yc)
2 – r2

here f (x, y) < 0 means (x, y) is inside the circle
f (x, y) = 0 means (x, y) is on the circle
f (x, y) > 0 means (x, y) is outside the circle
The algorithm now follows as

Midpoint_Circle(Xc, Yc, R)
{

Set X = 0;
Set Y = R;
Set P = 1 – R;
While (X < Y)

{
Call Draw_Circle(Xc, Yc, X, Y);
X = X + 1;
If (P < 0)
{P = P + 2X + 6; }
Else

{
Y = Y – 1;
P = P + 2 (X – Y) + 1;

}
Call Draw_Circle(Xc, Yc, X, Y);

}
}

2.3.3 Midpoint Ellipse Algorithm
This is a modified form of midpoint circle algorithm for drawing
ellipse. The general equation of an ellipse in implicit form is
f (x, y) = b2x2 + a2y2 – a2b2 = 0

28

Now the algorithm for ellipse follows as
MidPoint_Ellipse(Xc, Yc, Rx, Ry)

{
/* Xc and Yc here denotes the x coordinate and y
coordinate of the center of the ellipse and Rx and Ry
are the x-radius and y-radius of the ellipse
respectively */
Set Sx = Rx * Rx;
Set Sy = Ry * Ry;
Set X = 0;
Set Y = Ry;
Set Px = 0;
Set Py = 2 * Sx * Y;
Call Draw_Ellipse (Xc, Yc, X, Y);
Set P = Sy – (Sx * Ry) + (0.25 * Sx);/* First Region*/
While (Px<Py)

{
X = X + 1;
Px = Px + 2 * Sy;
If (P < 0)

{P = P + Sy + Px;}
Else

{
Y = Y – 1;
Py = Py – 2 * Sx;
P = P + Sy + Px – Py;

}
Call Draw_Ellipse (Xc, Yc, X, Y);

}
P = Sy * (X + 0.5)2 + Sx * (Y – 1)2 – Sx * Sy;

/*Second Region*/
While (Y > 0)

{
Y = Y – 1;
Py = Py – 2 * Sx;
If (P > 0)

{P = P + Sx – Py;}
Else

{
X = X + 1;
Px = Px + 2 * Sy;
P = P + Sx – Py + Px;

}
Call Draw_Ellipse (Xc, Yc, X, Y);

}
}

Draw_Ellipse (Xc, Yc, X, Y)
{

29

Call PutPixel (Xc + X, Yc + Y);
Call PutPixel (Xc – X, Yc + Y);
Call PutPixel (Xc + X, Yc – Y);
Call PutPixel (Xc – X, Yc – Y);

}

Check your progress:
1. Give three representations of circle, also give their equations.
2. Fill in the blanks

In midpoint circle drawing algorithm if
f (x, y) < 0 means (x, y) isthe circle
f (x, y) = 0 means (x, y) isthe circle
f (x, y) > 0 means (x, y) isthe circle
Answers: 2. inside, on, outside

2.4 DRAWING ELLIPSES AND OTHER CONICS

The equation of an ellipse with center at the origin is given as

Using standard parameterization, we can generate points on it as

Differentiating the standard ellipse equation we get

Now the DDA algorithm for circle can be applied to draw the ellipse.
Similarly a conic can be defined by the equation

If starting pixel on the conic is given, the adjacent pixel can be
determined similar to the circle drawing algorithm.

30

Check your Progress:
1. Write down the equation of a standard ellipse.
2. Which scan conversion technique can be applied to draw an

ellipse?

2.5 LET US SUM UP

We learnt about the scan conversion technique and how it is
used to represent line, circle and ellipse. The DDA and
Bresenham’s line drawing algorithm were discussed. We then
learnt Bresenham’s and Midpoint circle drawing algorithm. Midpoint
ellipse drawing algorithm was also illustrated. Finally we learnt
about drawing ellipse and other conics.

2.6 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.
(4) Procedural elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
(5) Computer Graphics, Rajesh K. Maurya, Wiley – India.

2.7 EXERCISE

7. Describe scan conversion?
8. Explain briefly the DDA line drawing algorithm.
9. Explain the Bresenham’s line drawing algorithm with

example.
10. Discuss scan conversion of circle with Bresenham’s and

midpoint circle algorithms.
11.Explain how ellipse and other conics can be drawn using

scan conversion technique.

31

3

TWO DIMENSIONAL
TRANSFORMATIONS I

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Introduction to transformations

3.3 Transformation Matrix

3.4 Types of Transformations in Two-Dimensional Graphics

3.5 Identity Transformation

3.6 Scaling

3.7 Reflection

3.8 Shear Transformations

3.9 Let us sum up

3.10 References and Suggested Reading

3.11 Exercise

3.0 OBJECTIVES

The objective of this chapter is
 To understand the basics of 2D transformations.
 To understand transformation matrix and types of 2D

transformations.
 To understand two dimensional Identity transformations.
 To understand 2D Scaling and Reflection transformations.
 To understand Shear transformations in 2D.

3.1 INTRODUCTION

Transformations are one of the fundamental operations
that are performed in computer graphics. It is often required when
object is defined in one coordinate system and is needed to
observe in some other coordinate system. Transformations are also
useful in animation. In the coming sections we will see different
types of transformation and their mathematical form.

32

3.2 INTRODUCTION TO TRANSFORMATIONS

In computer graphics we often require to transform the coordinates
of an object (position, orientation and size). One can view object
transformation in two complementary ways:

(i) Geometric transformation: Object transformation takes place
in relatively stationary coordinate system or background.

(ii) Coordinate transformation: In this view point, coordinate
system is transformed instead of object.

On the basis of preservation, there are three classes of
transformation

 Rigid body: Preserves distance and angle. Example –
translation and rotation

 Conformal: Preserves angles. Example- translation, rotation
and uniform scaling

 Affine: Preserves parallelism, means lines remains lines.
Example- translation, rotation, scaling, shear and reflection

In general there are four attributes of an object that may be
transformed

(i) Position(translation)
(ii) Size(scaling)
(iii) Orientation(rotation)
(iv)Shapes(shear)

Check your progress:
1. Differentiate between geometrical and coordinate transformation.
2. Fill in the blanks

(a) Rigid body transformation preserves...........
(b) Conformal transformation preserves............
(c) Affine transformation preserves...............

Answers: 2(a) distance and angle (b) angles (c) parallelism

3.3 TRANSFORMATION MATRIX

Transformation matrix is a basic tool for transformation.
A matrix with n m dimensions is multiplied with the coordinate of

objects. Usually 3 3 or 4 4 matrices are used for transformation.

For example consider the following matrix for rotation operation

33

We will be using transformation matrix to demonstrate
various translation operations in the subsequent sections.

Check your progress:
1. Write down transfomation matrix for rotation operation at angle

.

2. Obtain transformation matrix for 600rotation.

Answer: 1.

2.

3.4TYPES OF TRANSFORMATION IN TWO –
DIMENSIONAL GRAPHICS

In 2D transformations, only planar coordinates are used.
For this purpose a 2x2 transformation matrix is utilized. In general,
2D transformation includes following types of transformations:
I. Identity transformation
II. Scaling
III. Reflection
IV. Shear transformation
V. Rotation
VI. Translation

3.5 IDENTITY TRANSFORMATION

In identity transformation, each point is mapped onto itself.
There is no change in the source image on applying identity
transformation. Suppose T is the transformation matrix for identity
transformation which operates on a point P (x, y) which produces
point P’ (x’, y’), then

P’(x’, y’) =[x’ y’]
= [P] [T]

34

= [x y]

=[x y]
We can see that on applying identity transformation we

obtain the same points. Here the identity transformation is

[T] =

The identity transformation matrix is basically anxn matrix
with ones on the main diagonal and zeros for other values.

Check your progress:
Fill in the blanks

1. In identity transformation, each point is mapped onto …….
2. The identity transformation matrix is basically anxn matrix

with …… on the main diagonal and ……. for other values.

Answers: 1. Itself
2. ones, zeros.

3.6 SCALING

This transforms changes the size of the object. We
perform this operation by multiplying scaling factors sx and sy to the
original coordinate values (x, y) to obtain scaled new coordinates
(x’, y’).

x'= x. sx y'= y. sy

In matrix form it can be represented as

For same sx and sy, the scaling is called as uniform scaling.
For different sx and sy , the scaling is called as differential scaling.

Check your Progress:
Fill in the blanks

1. Scaling changes the ……… of the object.
2. For same sx and sy, the scaling is called as ………. Scaling.

Answers: 1. Size.
2. uniform.

3.7REFLECTION

In reflection transformation, the mirror image of an object
is formed. In two dimensions, it is achieved through rotating the
object by 180 degrees about an axis known as axis of reflection
lying in a plane. We can choose any plane of reflection in xy plane
or perpendicular to xy plane.

35

For example, reflection about x axis (y = 0) plane can be
done with the transformation matrix

Figure 3.1 : Reflection transformation about x axis

A reflection about y axis (x = 0) is shown in the figure below
which can be done by following transformation matrix.

Figure 3.2 : Reflection about y axis

Check Your Progress:Fill in the blanks
1. In reflection transformation,

the ……… image of an object is formed.
2. 2D reflection transformation

can be achieved through rotating the object by …….degrees.

Answers: 1. Mirror
2. 180.

36

3.8 SHEAR TRANSFORMATIONS

An object can be considered to be composed of different
layers. In shear transformation, the shape of the object is distorted
by producing the sliding effect of layers over each other. There are
two general shearing transformations, one which shift coordinates
of x axis and the other that shifts y coordinate values.

The transformation matrix for producing shear relative to x axis is

producing transformations
x' = x + shx.y, y' = y

whereshx is a shear parameter which can take any real number
value. The figure below demonstrates this transformation

Figure 3.3 : 2D shear transformation

Check your Progress:
Fill in the blanks
1. In shear transformation, the shape of the object is distorted by

producing the ……. effect of layers.

2. The shear parameter can take any ………number value.

Answers:
1. sliding
2. real

3.9 LET US SUM UP

We learnt about the basics of two dimensional
transformations. We studied about transformation matrix and
various types of transformations in 2D. Then we learnt about
identity transformations, scaling and reflection transformations in
two dimensions. Finally we understood the 2D shear
transformation.

37

3.10 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.
(6) Procedural elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
(7) Computer Graphics, Rajesh K. Maurya, Wiley – India.

3.11 EXERCISE

1. Explain transformation and its importance.
2. Describe using transformation matrix, following 2D

transformations
(i) Translation (ii) Scaling (iii) Reflection

3. Scale a triangle with respect to the origin, with vertices at original
coordinates (10,20), (10,10), (20,10) by sx=2, sy=1.5.

4. What is the importance of homogenous coordinates?

5. Explain two dimensional shear transformations.

6. Obtain the transformation matrix for reflection along diagonal line
(y = x axis).

Answers: 3. (20,30), (20,15), and (40,15)

38

4

TWO DIMENSIONAL
TRANSFORMATIONS II

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Rotation

4.3 Translation

4.4 Rotation about an Arbitrary Point

4.5 Combined Transformation

4.6 Homogeneous Coordinates

4.7 2D Transformations using Homogeneous Coordinates

4.8 Let us sum up

4.9 References and Suggested Reading

4.10 Exercise

4.0 OBJECTIVES

The objective of this chapter is
 To understand 2D rotation transformation.
 To understand 2D translation transformations.
 To understand two dimensional combined transformations.
 To understand homogenous coordinates and 2D

transformation using homogenous coordinates.
 To understand Shear transformations in 2D.

4.1 INTRODUCTION

This chapter is the extension of the previous chapter in
which we will discuss the rotation transformation about origin and
about any arbitrary point. We will also learn about the translation
transformation in which the position of an object changes. The
homogenous coordinates and 2D transformation using
homogenous coordinates will also be explained.

39

4.2 ROTATION

In rotation transformation, an object is repositioned
along a circular path in the xy plane. The rotation is performed with
certain angle θ, known as rotation angle. Rotation can be
performed in two ways: about origin or about an arbitrary point
called as rotation point or pivot point.

Rotation about origin: The pivot point here is the origin. We can
obtain transformation equations for rotating a point (x, y) through an
angleθ to obtain final point as (x’, y’) with the help of figure as

x' = x cosθ – y sinθ
y' = x sinθ + y cosθ

(x, y)
r

r

(x , y)¢ ¢

q

q

Figure 4.1 : Rotation about origin

The transformation matrix for rotation can be written as

Hence, the rotation transformation in matrix form can be
represented as 1 1(x , y)

P' = R.P

Check your progress:

1. Find the new equation of line in new coordinates (x’, y’) resulting
from rotation of 900. [use line equation y = mx + c].

Answer: 1. y' = (-1/m)x – c/m.

40

4.3 TRANSLATION

The repositioning of the coordinates of an object along a
straight line path is called as translation. The translation
transformation is done by adding translation distance tx and ty to the
original coordinate position (x, y) to obtain new position (x’, y’).

x'= x + tx, y'= y + ty
The pair (tx, ty) is called as translation vector or shift vector.
In the matrix form, it can be written as

P' = P + T , where

, ,

The figure below shows the translation of an object. Here
coordinate points defining the object are translated and then it is
reconstructed.

0

5

10

5 10 15 20

(a)

(b)

x

y

0

5

10

5 10 15 20 x

y

Figure 4.2 : 2D translation transformation

41

Check your Progress:

1. Translate a triangle with vertices at original coordinates (10, 20),
(10,10), (20,10) by tx=5, ty=10.

Answer:
1. (15, 30), (15, 20), and (25, 20)

4.4ROTATION ABOUT AN ARBITRARY POINT

It is often required in many applications to rotate an object
about an arbitrary point rather than the origin. Rotation about an
arbitrary pivot point (xr, yr) is shown in the figure below

(x, y)
r r

(x , y)¢ ¢

q
q

1 1(x , y)

Figure 4.3 : Rotation about an arbitrary point

The corresponding equation obtained will be
x' = xt + (x – xt) cosθ – (y – yt) sinθ
y' = yt + (x – xt) sinθ + (y – yt) cosθ

We can see the difference between this rotation
transformation from the previous one .This one contains the
additive terms as well as the multiplicative factors on the coordinate
values.

Let us understand the rotation about an arbitrary point
through an example. Suppose we have to rotate a triangle ABC by
90 degree about a point (1, -1). The coordinates of the triangle are
A (4, 0), B (8, 3) and C (6, 2).

42

The triangle ABC can be represented in matrix as

The point about which the triangle has to be rotated be P
= (-1, 1) and the rotation matrix for 90 degree rotation is

Now we can perform the rotation operation in three steps.
In first step we will have to translate the arbitrary point to the origin.

Let A’B’C’ be the new coordinates obtained after translation
operation.

Now the second step is to rotate the object. Let A’’B’’C’’ be new
coordinates after applying rotation operation to A’B’C’, then

In third step we translate back the coordinates

The coordinates A’’’B’’’C’’’ is the required result.

Check your progress:

1. What are the steps involved in rotating an object about an
arbitrary point?

2. What is the difference between transformation about origin and
rotation about an arbitrary point?

43

4.5 COMBINED TRANSFORMATION

A sequence of transformation is said to be as composite
or combined transformations can be represented by product of
matrices. The product is obtained by multiplying the transformation
matrices in order from right to left.

For example, two successive translations applied to position
P to obtain P’ is calculated as

P' = {T (tx2, ty2). T (tx1, ty1)}. P

The expanded form of the multiplication of translation vectors of
above equation can be written as

T (tx2, ty2). T (tx1, ty1) = T (tx1 + tx2, ty1 + ty2)

Check your progress:
1. Explain Combined transformation with an example.

4.6HOMOGENOUS COORDINATES

Representing 2D coordinates in terms of vectors with two
components turns out to be rather awkward when it comes to carry
out manipulations in computer graphics. Homogenous coordinates
allow us to treat all transformation in the same way, as matrix
multiplications. The consequence is that our 2-vectors become
extended to 3-vectors, with a resulting increase in storage and
processing.

Homogenous coordinates means that we represent a
point (x, y) by the extended triplet (x, y, w). In general w should be
non-zero. The normalized homogenous coordinates are given by
(x/w, y/w, 1) where (x/w, y/w) are the Cartesian coordinates at the
point. Note in homogenous coordinates (x, y, w) is the same as

44

(x/w, y/w, 1) as is (ax; ay; aw) where a can be any real number.
Points with w=0 are called points at infinity, and are not frequently
used.

Check your progress:
1. What is the significance of homogenous coordinates?

4.7 2D TRANSFORMATIONS USING HOMOGENOUS
COORDINATES

The homogenous coordinates for transformations are as follows:
For translation

For rotation

For scaling

Check your progress:

1. Obtain translation matrix for tx=2, ty=3 in homogenous
coordinate system.

2. Obtain scaling matrix for sx=sy=2 in homogenous coordinate
system.

45

Answers: 1.

2.

4.8 LET US SUM UP

We learnt the basics of transformation and its use. Then we
studied two dimensional transformation and its types which were
translation, scaling, rotation, reflection and shear. The
transformation matrix corresponding to each transformation
operation was also studied. Homogenous coordinate system and its
importance were also discussed.

4.9 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.
(8) Procedural elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
(9) Computer Graphics, Rajesh K. Maurya, Wiley – India.

4.10 EXERCISE

12.Find the new coordinates of the point (2, -4) after the rotation of
300.

13.Rotate a triangle about the origin with vertices at original
coordinates (10, 20), (10, 10), (20, 10) by 30 degrees.

14.Show that successive rotations in two dimensions are additive.

15.Obtain a matrix for two dimensional rotation transformation by
an angle θ in clockwise direction.

16.Obtain the transformation matrix to reflect a point A (x, y) about
the line y = mx + c.

Answers: 1. (√3+2, 1-2√3)
2. (-1.34, 22.32), (3.6, 13.66), and (12.32, 18.66)

46

5

THREE DIMENSIONAL
TRANSFORMATIONS I

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Objects in Homogeneous Coordinates

5.3 Transformation Matrix

5.4 Three-Dimensional Transformations

5.5 Scaling

5.6 Translation

5.7 Rotation

5.8 Shear Transformations

5.9 Reflection

5.10 Let us sum up

5.11 References and Suggested Reading

5.12 Exercise

5.0 OBJECTIVES

The objective of this chapter is
 To understand the Objects in Homogeneous Coordinates
 To understand the transformation matrix for 3D transformation.
 To understand the basics of three- dimensional

transformations
 To understand the 3D scaling transformation.
 To understand 3D translation and rotation transformations.
 To understand 3D shear and reflection transformations.

5.1 INTRODUCTION

In two dimensions there are two perpendicular axes labeled
x and y. A coordinate system in three dimensions consists similarly
of three perpendicular axes labeled x, y and z. The third axis makes
the transformation operations different from two dimensions which
will be discussed in this chapter.

47

5.2 OBJECTS IN HOMOGENOUS COORDINATES

Homogeneous coordinates enables us to perform certain
standard operations on points in Euclidean (XYZ) space by means
of matrix multiplications. In Cartesian coordinate system, a point is
represented by list ofn points, where n is the dimension of the
space. The homogeneous coordinates corresponding to the same
point require n+1 coordinates. Thus the two-dimensional point (x, y)
becomes (x, y, 1) in homogeneous coordinates, and the three-
dimensional point (x, y, z) becomes (x, y, z, 1). The same concept
can be applied to higher dimensions. For example, Homogeneous
coordinates in a seven-dimensional Euclidean space have eight
coordinates.

In combined transformation, a translation matrix can be
combined with a translation matrix, a scaling matrix with a scaling
matrix and similarly a rotation matrix with a rotation matrix. The
scaling matrices and rotation matrices can also be combined as
both of them are 3x3 matrices. If we want to combine a translation
matrix with a scaling matrix and/or a rotation matrix, we will first
have to change the translation matrix in homogenous coordinate
system.

Further in three dimensional, for uniform transformation we
need to add a component to the vectors and increase the
dimension of the transformation matrices. This for components
representation is known as homogenous coordinate representation.

5.3THREE DIMENSIONAL TRANSFORMATIONS

The transformations procedure in three dimensions is similar
to transformations in two dimensions.
 3D Affine Transformation:

A coordinate transformation of the form:
x' = axx x + axy y + axz z + bx ,
y' = ayx x + ayy y + ayz z + by ,
z' = azx x + azy y + azz z + bz ,

is called a 3D affine transformation. It can also be
represented by transformation matrix as given below

11000

'

'

'

z

y

x

baaa

baaa

baaa

w

z

y

x

zzzzyzx

yyzyyyx

xxzxyxx

48

o Translation, scaling, shearing, rotation (or any combinations
of them) are examples affine transformations.

o Lines and planes are preserved.

o Parallelism of lines and planes are also preserved, but not
angles and length.

 Object transformation:
Objects can be transformed using 2D and 3D transformation
techniques

 Line: Lines can be transformed by transforming the end
points.

 Plane (described by 3-points):It can be transformed by
transforming the 3-points.

 Plane (described by a point and normal): Point is
transformed as usual. Special treatment is needed for
transforming normal.

Check your progress:
1. Explain 3D affine transformation.
2. Explain object transformation.

5.4 SCALING

Scaling transformation changes the dimension of a 3D object
determined by scale factors in all three directions.

x' = x. sx y' = y. sy z' = z. sz

The transformation matrix and scaling through it

49

Check your Progress:
1. Explain the scaling process in three dimension.
2. Derive scaling matrix with sx=sy=2 and sz=1.

Answer: 2.

5.5 TRANSLATION

The three dimensional object displaced from its original
position can be represented as

x' = x + tx, y' = y + ty, z' = z + tz

The 3D translation by transformation matrix can be represented as

or P' = T . P

Check your Progress:

1. Write down the matrix for three dimensional translation
transformation.

2. Obtain 3D translation transformation matrix for tx=4, ty=3, tz=2.

Answer: 2.

50

5.6 ROTATION

Rotations in three dimensions require specification of axis of
rotation apart from prescription of the rotation angle. Rotation
operation can be performed with respect to any axis. The following
transformation matrix corresponds to the rotation about z axis.

Similarly transformation matrices for rotation about x and y axes are

Figure 5.1: The three axes

The above figure illustrates the rotation about the three axes.

Properties of Rotation matrix:
 Determinant of the rotation matrix is 1.
 Columns and rows are mutually orthogonal unit vectors, i.e.,

orthonormal (inverse of any matrix is equal to transpose of
that matrix).

 Product of any pair of rotation (orthonormal) matrices is also
orthonormal.

51

Check your progress:
1. Explain three dimensional rotation transformation.
2. Derive the three dimensional rotation matrix about y axis with

rotation angle 90 degrees.

Answer: 2.

5.7 SHEAR TRANSFORMATIONS

Three dimensional shear transformation is similar to the
two dimensional shear transformation. It produces the slanting
effect to the image in a given direction of x, y or z. The shear
transformation in x direction maintains y and z coordinates but
produces change in x coordinate. It causes tilt left or right effect
depending on the x – shear value. In the similar fashion y – shear
and z – shear transformation produces slanting effect in the y and z
direction respectively. The matrix for three dimensional shear
transform is given by

Check your Progress:
1. Explain shear transformation in three dimension.
2. Obtain 3D shearing transformation matrix for a=c=2, b=d=3,

e=f=1.

Answer: 2.

52

5.8 REFLECTION

The reflection transformation of a three dimensional object
is performed with respect to a reflection axis or reflection plane in
which the object is basically rotated by 180 degree. The following
matrix corresponds to transformation matrix for reflection with
respect xy plane

Check your Progress:
1. Explain reflection transformation.

5.9 LET US SUM UP

We learnt about the homogenous coordinates and its
significance. We studied about three dimensional transformations.
Then we learnt three dimensional scaling, rotation and translation
transformation. Then we studied about shear and reflection
transformation.

5.10 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.
(10) Procedural elements of Computer Graphics, David F.

Rogers, Tata McGraw Hill.
(11) Computer Graphics, Rajesh K. Maurya, Wiley – India.

5.11 EXERCISE

17.Find the translation matrix for tx = 2, ty = 2, tz = 4.
18.Obtain scaling matrix for sx = 2, sy = 3 and sz = 1
19.Obtain rotation matrix for θ = 450 along z axis.
20.Find the rotation matrix for θ = 300 about x axis.

53

21.Explain the significance of homogenous coordinates in three
dimensional transformation.

Answers: 1.

2.

3.

4.

54

6

THREE DIMENSIONAL
TRANSFORMATIONS II

Unit Structure
6.0 Objectives
6.1 Introduction
6.2 World Coordinates and Viewing Coordinates
6.3 Projection
6.4 Parallel Projection
6.5 Perspective Projection
6.6 Let us sum up
6.7 References and Suggested Reading
6.8 Exercise

6.0 OBJECTIVES

The objective of this chapter is to understand
 World Coordinates and Viewing Coordinates
 Projection transformation – Parallel projections and

perspective projection

6.1 INTRODUCTION

Projections help us to represent a three dimensional object
into two dimensional plane. It is basically mapping of a point onto
its image in the view plane or projection plane. There are different
types of projection techniques. In this chapter we are going to
discuss the basic idea of projection.

6.2 WORLD COORDINATES AND VIEWING
COORDINATES

Objects in general are said to be specified by the coordinate
system known as world coordinate system (WCS). Sometimes it
is required to select a portion of the scene in which the objects are
placed. This portion is captured by a rectangular area whose edges
are parallel to the axes of the WCS and is known as window.

55

 In simple words, a window refers to the area of a picture that is
to be viewed.

 The area of the display device to which the window is mapped is
known as viewport.

 The mapping of a part of scene specified by WCS to device
coordinates is called as viewing transformation.

 The process of conversion of WCS coordinates of an object to
normalized device coordinates is referred as window-to-viewport
mapping.

Figure 6.1 : Window to viewport mapping

 Normalised device coordinates:

o Normalised device coordinates are the co-ordinates of
the device expressed in normalised form.

o The normalised device co-ordinates are thus the
coordinates used to express the display space.

o The co-ordinates are thus expressed in terms of their relative
position on the display.

o Conventionally (0, 0) is at the bottom left hand corner of the
display and (1, 1) is the top right corner of the display.

o Useful as they are device-independent.

56

Figure 6.2: World coordinates and normalized device
coordinate

Check your progress:
1. A rectangular area whose edges are parallel to the axes of the

WCS and is known as.............

2. Define normalised device coordinates.

Answers: 1. window

6.3 PROJECTION

Projection is the process of representing a 3D object onto a
2D screen. It is basically a mapping of any point P (x, y, z) to its
image P (x’, y’, z’) onto a plane called as projection plane. The
projection transformation can be broadly classified into two
categories: Parallel and Perspective projections.

6.4 PARALLEL PROJECTION

In parallel projections the lines of projection are parallel both
in reality and in the projection plane. The orthographic projection is
one of the most widely used parallel projections.

Orthographic projection: Orthographic projection utilizes
perpendicular projectors from the object to a plane of projection to
generate a system of drawing views.

 These projections are used to describe the design and features
of an object.

 It is one of the parallel projection form, all the projection lines
are orthogonal to the projection plane.

57

Figure 6.3: Projection plane and projection lines in orthogonal
projection

 It is often used to generate the front, top and side views of an
object.

Figure 6.4: Views in orthographic projection

 It is widely used in engineering and architectural drawings.
 Orthographic projection that displays more than one face of an

object is known as axonometric orthographic projections.

 Axonometric projections use projection planes that are not
normal to a principal axis. On the basis of projection plane
normal N = (dx, dy, dz) subclasses are
o Isometric: | dx | = | dy | = | dz | i.e. N makes equal angles

with all principal axes.

58

Figure 6.5: Axonometric projection

o Dimetric : | dx | = | dy |
o Trimetric : | dx | ≠ | dy | ≠ | dz |

Check your Progress:
1. Define axonometric projections.
2. Differentiate between isometric, dimetric and trimetric

projections.

6.5 PERSPECTIVE PROJECTION

This projection method borrows idea from the artists who
uses the principle of perspective drawing of three dimensional
objects and scenes. The center of projection can be said analogous
to the eye of the artist and the plane containing the canvas can be
considered as view plane. Perspective projection is used to model
3D objects on 2D plane. It is done by projecting 3D points along the
lines that pass through the single viewpoint until they strike an
image plane.

 Frustum view volume: It specifies everything that can be seen
with the camera or eye. It is defined by left plane, right plane,
top plane, bottom plane, front (near) plane and back (far) plane.

59

The following figure illustrates perspective projection

Figure 6.6: Perspective projection

 Center of projection: When a 3D scene is projected
towards a single point, the point is called as center of
projection. Vanishing points parallel to one of the principal
axis is known as principal vanishing point. Projection from
3D to 2D is defined by straight projection rays (projectors)
emanating from the center of projection, passing through
each point of the object, and intersecting the projection
plane to form a projection.

Figure 6.7: Perspective projection illustrating center of
projection , projectors and projection plane

 Perspective foreshortening: It is the term used for the illusion
in which the object or length appears smaller as the distance
from the center of projection increases.

 Vanishing points: One more feature of perspective drawing is
that sometimes a certain set of parallel lines appear to meet at a
point. These points are known as vanishing points.

60

Figure 6.8: Vanishing point

 Principle vanishing point: If a set of lines are parallel to one of
the three axes, the vanishing point is called an axis vanishing
point (Principal Vanishing Point). There are at most 3 such
points, corresponding to the number of axes cut by the
projection plane

o One-point:
 One principle axis cut by projection plane
 One axis vanishing point

o Two-point:
 Two principle axes cut by projection plane
 Two axis vanishing points

o Three-point:
 Three principle axes cut by projection plane
 Three axis vanishing points

The following figure shows the three types of principle vanishing
points

(a) One point (b) Two point (c) Three point

Figure 6.9 : Types of vanishing points

x

y

z

z-axis vanishing point

61

 View confusion: Objects behind the center of projection are
projected upside down and backward onto the view plane.

 Topological distortion: A line segment joining a point which
lies in front of the viewer to a point in back of the viewer is
projected to a broken line of infinite extent.

Check your progress:
1. Define centre of projection.
2. What is the term used for the illusion in which the object or

length appears smaller as the distance from the center of
projection increases?

Answer: 2. Perspective foreshortening

6.6 LET US SUM UP

In this chapter we learnt about world coordinate system and
view coordinates. We then learnt the fundamental definition of
projection. Orthographic projection with its application was
discussed in short. We then learnt perspective projection and terms
associated with it.

6.7 REFERENCES AND SUGGESTED READING

(1) Computer Graphics, Donald Hearn, M P. Baker, PHI.
(12) Procedural elements of Computer Graphics, David F.

Rogers, Tata McGraw Hill.
(13) Computer Graphics, Rajesh K. Maurya, Wiley – India.

6.8 EXERCISE

1. Explain world coordinate system.
2. Define viewing coordinates.
3. Explain orthographic projection with its applications.
4. What is topological distortion?
5. Describe perspective projection and explain perspective
foreshortening and vanishing points.

62

7

VIEWING AND SOLID AREA SCAN-
CONVERSION

Unit Structure:

7.0 Objectives
7.1 Introduction to viewing and clipping
7.2 Viewing Transformation in Two Dimensions
7.3 Introduction to Clipping:

7.3.1 Point Clipping
7.3.2 Line Clipping

7.4 Introduction to a Polygon Clipping
7.5 Viewing and Clipping in Three Dimensions
7.6 Three-Dimensional Viewing Transformations
7.7 Text Clipping
7.8 Let us sum up

7.9 References and Suggested Reading

7.10 Exercise

7.0 OBJECTIVES

The objective of this chapter is

 To understand the basics of concept of viewing transformations.
 To understand point clipping, line clipping and polygon clipping
 To understand the concept of text clipping.

7.1 INTRODUCTION TO VIEWING AND CLIPPING

Windowing and clipping
A “picture” is a “scene” consists of different objects.

The individual objects are represented by coordinates called
as “model” or “local” or ”master” coordinates.

The objects are fitted together to create a picture, using co-
ordinates called a word coordinate (WCS).

63

The created “picture” can be displayed on the output device
using “physical device coordinates” (PDCS).

The mapping of the pictures elements from “WCS” to
“PDCS” is called a viewing transformation.

Defination: a finite region selected in world coordinates is called as
‘window ’ and a finite region on which the window is mapped, on
the output device is called a ‘view point’.

Viewing Pipeline

MC
PDCS

WCS DC

VCS nVCS

Fig. 7.1 Viewing Pipeline

Check your Progress:
1. What is PDCS?

2. Define window.

objects

Pictures Mapping Fitting

Ready to display

Displayed

64

7.2 VIEWING TRANSFORMATION IN TWO
DIMENSIONS

Viewing Transformation / a complete mapping from window to
view point.

Window

ywmax

ywmin

Xwmin xwmax

View port

yvmax

yvmin

Xvmin xvmax

Let W in window defined

by the lines:

x= xwmin, x=xwmax,

y=ywmin, y=ywmax

Then the aspect ratio for

w defined by,

aw= (xwamx –xwmin) /

(ywmax- ywmin)

similarly for a view port

say V we have,

av= (xvmax-xvmin) /

(yvmax- yvmin)

Fig. 7.2 Window and Viewpoint

7.3 INTRODUCTION TO CLIPPING

The process which divides the given picture into two parts :
visible and Invisible and allows to discard the invisible part is known
as clipping. For clipping we need reference window called as
clipping window.

(Xmax,Ymax)

(Xmin, Ymin)

Fig. 7.3 Window

7.3.1 POINT CLIPPING

Discard the points which lie outside the boundary of the clipping
window. Where,
Xmin ≤ X ≤ Xmax and
Ymin ≤ Y ≤Ymax

W
V

65

(Xmax, Ymax)

(Xmin, Ymin)

Clipping Window

(Xmax, Ymax)

(Xmin, Ymin)

Before Clipping

(Xmax, Ymax)

(Xmin, Ymin)

After Clipping

Fig. 7.4

7.3.2 LINE CLIPPING

Discard the part of lines which lie outside the boundary of the
window.

We require:

1. To identify the point of intersection of the line and window.
2. The portion in which it is to be clipped.

The lines are divided into three categories.
a) Invisible
b) Visible
c) Partially Visible [Clipping Candidates]

To clip we give 4- bit code representation defined by

Bit 1 Bit 2 Bit 3 Bit 4

Ymax Ymin Xmax Xmin

Fig. 7.5
Where, Bits take the volume either 0 or 1 and
Here, we divide the area containing the window as follows. Where,
the coding is like this, Bit value = 1 if point lies outside the boundary
OR

= 0 if point lies inside the boundary.
(Xmin ≤ X ≤ Xmax and Ymin ≤ Y ≤Ymax)

66

Bit 1 tells you the position of
the point related to Y=Ymax

Bit 2 tells you the position of
the point related to Y=Ymin

Bit 3 tells you the position of
the point related to X=Xmax

Bit 4 tells you the position of
the point related to X=Xmin

Fig. 7.6 Bit Code Representation

Rules for the visibility of the line:
1. If both the end points have bit code 0000 the line is visible.
2. If atleast one of the end point in non zero and

a) The logical “AND”ing is 0000 then the line is Partially Visible
b) If the logical “AND”ing isnon-zero then line is Not Visible.

Cohen-Sutherland Line Clipping Algorithm
For each line:
1. Assign codes to the endpoints
2. Accept if both codes are 0000, display line
3. Perform bitwise AND of codes
4. Reject if result is not 0000, return
5. Choose an endpoint outside the clipping rectangle
6. Test its code to determine which clip edge was crossed and find

the intersection of the line and that clip edge (test the edges in a
consistent order)

7. Replace endpoint (selected above) with intersection point
8. Repeat

(Xmax, Ymax)

(Xmin, Ymin)

Clipping Window

(Xmax, Ymax)

(Xmin, Ymin)

Before Clipping

(Xmax, Ymax)

(Xmin, Ymin)

After Clipping

Fig. 7.7

67

Check your Progress :

Fill in the blanks

1. For clipping we need reference window called as
__________window.

2. While clipping lines are divided into three categories invisible,
visible and________ visible.

7.4 INTRODUCTION TO A POLYGON CLIPPING

Polygon Clipping

Sutherland Hodgman Polygon Clipping algorithm
1. The polygon is stored by its vertices and edges, say v1, v2, v3

,……vn and e1, e2, e3,…. en.
2. Polygon is clipped by a window we need 4 clippers.

Left clipper , Right Clipper, Bottom Clipper, Top Clipper
3. After clipping we get a different set of vertices say v1’ , v2’ , v3’

,…… vn’

4. Redraw the polygon by joining the vertices v1’ , v2’ , v3’ ,……
vn’ appropriately.

Algorithm:

1. Read v1, v2, v3 ,……vn coordinates of polygon.
2. Readcliping window. (Xmin, Ymin)(Xmax, Ymax)
3. For every edge do {
4. Compare the vertices of each edge of the polygon with the plane

taken as the clipping plane.
5. Save the resulting intersections and vertices in the new list } //

according to the possible relationships between the edge and
the clipping boundary.

6. Draw the resulting polygon.

The output of the algorithm is a list of polygon vertices all of
which are on the visible side of the clipping plane.

Here, the intersection of the polygon with the clipping plane
is a line so every edge is individually compare with the clipping
plane. This is achieved by considering two vertices of each edge
which lies around the clipping boundary or plane. This results in 4
possible relationships between the edge and the clipping plane.

1st possibility:
If the 1st vertex of an edge lies outside the window boundary

and the 2nd vertex lies inside the window boundary.

68

Here, point of intersection of the edge with the window
boundaryand the second vertex are added to the putput vertex list
(V1, v2)→(V1’, v2)

V1
V1’ V2

Fig. 7.8

2nd possibility:
If both the vertices of an edge are inside of the window

boundary only the second vertex is added to the vertex list

Fig. 7.9

3rd possibility:
If the 1st vertex is inside the window and 2nd vertex is outside

only the intersection point is add to the output vertex list.

V1
V2’ V2 v3’ v4

V3

Fig. 7.10

4th possibility:
If both vertices are outside the window nothing is added to

the vertex list.

Once all vertices are processed for one clipped boundary
then the output list of vertices is clipped against the next window
boundary going through above 4 possibilities. We have to consider
the following points.

1) The visibility of the point. We apply inside-outside test.
2) Finding intersection of the edge with the clipping plane.

69

7.5 VIEWING AND CLIPPING IN THREE DIMENSIONS

We extend rays from the viewer’s position through the
corners of the viewing window; we define a volume that represents
all objects seen by the eye. This viewing volume is shown in the left
diagram of Figure. Anything outside the volume will not be visible in
the window. When we apply the perspective projection, objects
further away from the viewer become smaller, and objects in front
of the window appear larger. Logically, this is identical to “warping”
the viewing pyramid into a viewing rectangular solid in which the
sides of the viewing box are parallel. For example, the cube shown
in the left viewing volume becomes warped to the non-parallel
object shown on the right. Now, the process of clipping becomes
much simpler.

Clipping in 3D is similar to clipping in 2D. Everything outside
of the canonical window that is not visible to the user is removed
prior to display. Objects that are inside are retained, and objects
that cross the window boundary need to be modified, or “clipped” to
the portion that is visible. This is where the effect of the perspective
transformation shown in Figure simplifies the process.

Fig. 7.11 Fig. 7.12

If we were clipping to the sides of the pyramid as shown on
the left, the calculations would be substantially more complex than
the 2D clipping operations previously described. However, after the
perspective transformation, clipping to the edges of the window is
identical to clipping to the edges of the 2D window. The same
algorithms can be used looking at the x and y coordinates of the
points to clip.

To complicate matters, however, we have the added
capability in 3D of defining clipping planes that are parallel to the
viewing window, but at different depths from the viewer. These are
often referred to as “near” and “far” clipping planes as shown in
Figure. The concept is that objects that are too close to the viewer,
or too far away, are not visible and should not be considered. In
addition, without clipping against the near clipping plane, you would
see objects that were behind the camera! If it were a simple matter

70

of culling objects based on their depths and clipping those that fell
between the two planes, it would be no problem. However, the
complexity arises when objects cross the boundaries of the near
and far planes similar to when objects cross the edges of the
windows. The objects need to be “clipped” to the far and near
planes as well as to the edges of the window.

Fig. 7.13 Fig. 7.14

7.6 THREE-DIMENSIONAL VIEWING
TRANSFORMATIONS

3D Viewing Transformation :

The basic idea of the 3D viewing transformation is similar to
the 2D viewing transformation. That is, a viewing window is defined
in world space that specifies how the viewer is viewing the scene. A
corresponding view port is defined in screen space, and a mapping
is defined to transform points from world space to screen space
based on these specifications. The view port portion of the
transformation is the same as the 2D case. Specification of the
window, however, requires additional information and results in a
more complex mapping to be defined. Defining a viewing window in
world space coordinates is exactly like it sounds; sufficient
information needs to be provided to define a rectangular window at
some location and orientation. The usual viewing parameters that
are specified are: Eye Point the position of the viewer in world
space.

Look Point the point that the eye is looking at View Distance
the distance that the window is from the eye Window Size the
height and width of the window in world space coordinates Up
Vector which direction represents “up” to the viewer, this parameter
is sometimes specified as an angle of rotation about the viewing
axis These parameters are illustrated in Figure.

71

Fig.7.15

The Eye Point to the Look Point forms a viewing vector that
is perpendicular to the viewing window. If you want to define a
window that is not perpendicular to the viewing axis, additional
parameters need to be specified. The Viewing Distance specifies
how far the window is from the viewer. Note from the reading on
projections, that this distance will affect the perspective calculation.
The window size is straightforward. The Up Vector determines the
rotation of the window about the viewing vector. From the viewer’s
point of view, the window is the screen. To draw points at their
proper position on the screen, we need to define a transformation
that converts points defined in world space to points defined in
screen space. This transformation is the same as the
transformation that positions the window so that it lies on the XY
plane centered about the origin of world space.

The process of transforming the window, using the specified
parameters, to the origin, aligned with the XY plane can be broken
into the following steps:

1. Compute the center of the window and translate it to the origin

2. Perform two rotations about the X and Y axes to put the window
in the XY plane

3. Use the Up Vector to rotate the window about the Z axis and
align it with the positive Y axis

4. Use the Window Height and Width to scale the window to the
canonical size

These four steps can be combined into a single
transformation matrix that can be applied to all points in world
space. After the transformation, points are ready for final projection,
clipping, and drawing to the screen. The perspective transformation

72

occurs after points have been transformed through the viewing
transformation. The perspective and view port transformations will
not be repeated here.

7.7 TEXT CLIPPING

• Depends on methods used to generate characters & the
requirements of a particular application

• Methods or processing character strings relative to a window
boundary,
• All-or-none string clipping strategy
• All or none character clipping strategy
• Clip the components of individual characters

All-or-none string clipping strategy
• Simplest method, fastest text clipping
• All string - inside clip window, keep it, and otherwise discard.
• Bounding rectangle considered around the text pattern
• If bounding position of rectangle overlap with window

boundaries, string is rejected.

Before Clipping After Clipping

Text clipping using a bounding rectangle about the entire string

Fig. 7.16

All or none character clipping strategy :

• Discard or reject an entire character string that overlaps a
window boundary i.e, discard those characters that are not
completely inside the window.

• Compare boundary limits of individual characters with the
window.

• Any character which is outside or overlapping the window
boundary are clipped.

73

Before Clipping After Clipping

Text clipping using a bounding rectangle about individual
characters

Fig. 7.17

Clip the components of individual characters :
• Treat characters same as lines
• If individual char overlaps a clip window boundary, clip off the

parts of the character that are outside the window

Before Clipping After Clipping

Text clipping is performed on the components of individual
characters.

Fig. 7.18

74

Check your Progress:
True or False.

1. The perspective and viewport transformations will not be
repeated in3D Viewing Transformation.

2. In Sutherland Hodgman Polygon Clipping algorithm polygon is
clipped by a window we need 4 clippers.

3. To check the visibility of the point, we apply inside-outside test.

7.8 LET US SUM UP

 Point clipping, line clipping, polygon clipping and text clipping
are types of the clipping.

 Normally window and view points are ‘rectangular’ shaped.
 The viewing transformation is also called as windowing

transformation.
 Discarding and removing the invisible region of object from the

given window is known as clipping.

7. 9 REFERENCES AND SUGGESTED READING

 Computer Graphics, Donald Hearn, M P. Baker, PHI.
 Procedural elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
 Computer Graphics, Amarendra Sinha, A. Udai,, Tata McGraw

Hill.
 Computer Graphics,A. P. Godase, Technical Publications Pune.

7.10 EXERCISE

1. What is point clipping?
2. Explain Cohen-Sutherland Line clipping algorithm.
3. Explain the polygon clipping algorithm.
4. Write a short note on text clipping.
5. Define: window, View point.

75

8

INTRODUCTION TO SOLID AREA SCAN-
CONVERSION

Unit Structure:

8.0 Objectives
8.1 Introduction
8.2 Inside–Outside Test
8.3 Winding Number Method and Coherence Property
8.4 Polygon Filling and Seed Fill Algorithm
8.5 Scan-Line Algorithm
8.6 Priority Algorithm
8.7 Scan Conversion of Character
8.8 Aliasing, Anti-Aliasing, Half toning
8.9 Thresholding and Dithering
8.10 Let us sum up
8.11 References and Suggested Reading
8.12 Exercise

8.0 OBJECTIVE

The objective of this chapter is
 To understand polygon filling techniques and algorithms.
 To understand scan conversion of characters.
 To understand concepts of anti-alising, half toning, thresholding

and diathering.

8.1 INTRODUCTION

To perform the scan conversion or to fill the polygon, we
need the pixels inside the polygon as well as those on the
boundary. The pixels which are inside the polygon can be
determined by using the following two test: Inside outside test and
Winding number test.

8.2 INSIDE–OUTSIDE TEST

1. Inside outside test (Even- Odd Test)

We assume that the vertex list for the polygon is already
stored and proceed as follows.

76

1. Draw any point outside the range Xmin and Xmax and Ymin and
Ymax. Draw a scanline through P upto a point A under study

(Xmax, Ymax)

P

(Xmin, Ymin)
Fig. 8.1

2. If this scan line
i) Does not pass through any of the vertices then its contribution is

equal to the number of times it intersects the edges of the
polygon. Say C if

a) C is odd then A lies inside the polygon.
b) C is even then it lies outside the polygon.

ii) If it passes through any of the vertices then the contribution of
this intersection say V is,

a) Taken as 2 or even. If the other points of the two edges lie on
one side of the scan line.

b) Ttaken as 1 if the other end points of the 2 edges lie on the
opposite sides of the scan- line.

c) Here will be total contribution is C + V.

Remark : Here, the points on the boundary are taken care of by
calling the procedure for polygon generation.

8.2 WINDING NUMBER METHOD AND COHERENCE
PROPERTY

Winding number algorithm :

This is used for non- overlapping regions and polygons only.

Steps:
1. Take a point A within the range (0,0) to (Xmax, Ymax) Joint it

to any point Q outside this range.

2. Give directions to all the edges in anticlockwise direction.

3. Check whether Q passing through any of the vertices. If so
ignored the position of Q. choose a new Q so that AQ does not
pass through any of the vertices but passes through only edges.

A

77

(Xmax, Ymax) AQ is passing through edges.

Q

(0,0)

w=0
Subtract 1 from w, if crosses
edge moves from left to right:
w= 0-1= -1
w is non zero so A lies inside
the polygon.

4. Initialize winding number w=0. Observe the edges intersecting
AQ and

1) Add 1 to w if cross edge moves from right to left
2) Subtract 1 from w, if crosses edge moves from left to right.

5. If final count of w is zero
1) A lies outside the polygon
2) Non zero, A lies inside the polygon.
3) Illuminate the interior position till all the pixels in the above set

range are painted.

8.3 POLYGON FILLING AND SEED FILL ALGORITHM

Polygon filling algorithm

There are two types of polygon filling algorithm.
1. Scan conversion polygon filling algorithm
2. Seed filling algorithms

Besides these algorithms we can use
a) Boundary fill algorithms and
b) Flood fill algorithm

Seed Fill

To fill a polygon we start with a seed and point the
neighboring points till the boundary of the polygon is reached. If
boundary pixels are not reaching pixels are illuminated one by one
and the process is continuing until the boundary points are
reached. Here, at every step we need check the boundary. Hence,
this algorithm is called “boundary fill algorithm”.

To find the neighboring pixels we can use either a 4
connected or 8 connected region filling algorithm.

A

78

The algorithm is recursive one and can be given as follows:

Here, we specify the parameters, fore-color by F and back-
color by B

4 Neighbors are:
N4={ (X+1,Y), (X-1,Y),
(X,Y+1), (X,Y-1) }

Fig. 8.3 Neighboring Pixels

Seed pixel (x,y)
Seed_Fill (x, y, F, B)// 4 connected approach
{
//Seed= getpixel (x,y);
If (getpixel(x,y)!= B && getpixel(x,y)!= F)
{
putpixel (x,y,F);
Seed_Fill (x-1, y, F, B);
Seed_Fill (x+1, y, F, B);
Seed_Fill (x, y-1, F, B);
Seed_Fill (x, y+1, F, B);
}
}
getpixel (): is a procedure which gives the color of the specified
pixel.
putpixel(): is a procedure which draws the pixel with the specified
color.
B : is the boundary color.

Drawbacks: in Seed Fill algorithm we have 2 drawbacks.
1. If some inside pixels are already painted with color F then the

recursive branch terminates leaving further internal pixels
unfilled.

2. The procedure required stacking of neighboring pixels. If the
polygon is too large the stack space may became insufficient for
all the neighboring pixels.

79

To remove the above drawbacks we use the second
approach. Scan Line Filling algorithm.

Check your Progress:
True or False
1. In winding number test directions to all the edges in

anticlockwise direction
2. Seed fill algorithm fails if polygon is large.
3. In inside outside test if C (count) is odd then A lies inside the

polygon.

8.4 SCAN-LINE ALGORITHM

Scan Line Algorithm.

In scanline filling algorithm, we take the intersection of each
scanline with the edges of the polygon.

Steps :

1. Read n
2. Read (xi,yi) for all i=1,2,3……n
3. Read edges and store it in the array E which will be sorted

accordingly to y axies.
4. Xmin=a; xmax=b; ymin=c; ymax=d
5. Take intersection
6. Take the scanline y=c and scan from x=a to x=b
7. Find the intersecting edges of E with y=c by comparing the y

coordinate of the end points with y=c
8. Activate those edges
9. Scan through the line y=c and compute the next x position by

appling the formulation
Xk+1= xk +1/m
Check whether the point (Xk+1,, Yk) is inside or outside the
polygon, by inside outside procedure. If the point (Xk+1,, Yk) is
inside , paint it.

10. Repeat the procedure from Yc to Yd i.e. y=c to y=d.

80

c

d

Scan line

Fig. 8.4

Here, all the pixels inside the polygon can be painted without
leaving any of the neighboring pixels. If the point of intersection of
an edge and the scanline is a vertex, we shorten one of the edges.
So that it will be contributed to the intersection is 1. If the endpoint
of the two edges are on one side of the scan line and the
contribution will be 2 if the other points are on the opposite side of
the scanline.

The scan line filling algorithm can be applied for the curve
closed boundary as follows:

1. Determine the pixels position along the curve boundary by using
any of the incrementing methods

2. Filling the pixels by scanning through a scanline which spans
between the boundary points. If the shape to be filled is regular
geometrical figure like circle, ellipses etc. use symmetric
property of geometrical figure to reduce boundary point
calculations.

8.5 PRIORITY ALGORITHM

In the context of computer graphics, priority fill is a Hidden
Line/Surface Removal algorithm which establishes a priority list
based upon the depth of parts of an object, so that the parts
farthest from the viewer are rendered first.

The algorithm continues in reverse priority, just as an artist
would create a painting starting with the background, then elements
or objects at an intermediate distance would be added and finally
those objects in the foreground. Priority fill is also known as
the Painter's algorithm

81

8.6 SCAN CONVERSION OF CHARACTER

Meanings:

 Glyph: In information technology, a glyph (pronounced GLIPH;
from a Greek word meaning carving) is a graphic symbol that
provides the appearance or form a character. A glyph can be an
alphabetic or numeric font or some other symbol that pictures an
encoded character.

 Contour: A line drawn on a map connecting points of equal
height or an outline especially of curving or irregular figure:
SHAPE

Character fonts, such as letters and digits, are the building
blocks of textural content of an image presented in variety of styles
and attributes. Character fonts on raster scanned display devices
are usually represented by arrays of bits that are displayed as a
matrix of black and white dots. Value for Black - 0 and White - 1.

There are three basic kinds of computer font file data
formats:
 Bitmap font consists of a series of dots or pixels, representing

the image of each glyph in each face and size.

 Outline fonts use Bezier curves, drawing instructions and
mathematical formulas to describe each glyph, which make the
character outline scalable to any size.

 Stroke fonts use a series of specified lines and additional
informational information to define the profile, size and shape of
a line in a specific face and size, which together describe the
appearance of the glyph.

A scan conversion is essentially the job of coloring inside the
character outlines contained in the font; scan converter is able to
maintain the continuity of character bitmaps by performing dropout
control. Dropouts occur when the space within the outlines
becomes so narrow that pixel centers are missed.

The process of a scan conversion consists of four steps:
1. Measurement: The outline of the character is traversed point by

point and contour by contour in order to find the maximum and
minimum coordinate values of the outline. In addition, the
amount of workspace memory that will be needed to perform
steps 2 and 3 is calculated.

2. Rendering: Every contour is broken into lines and splines.
Calculations are made to find the point at which each line or
spline intersects with scan lines. The intersections for each
scanline are scaled from left to right.

82

3. Filling: Using the sorted intersections, runs of pixels are set for
each scan line of the bitmap from top to bottom.

4. Dropout control: If dropout control is enabled, the intersection list
is checked again looking for dropouts. If various criteria are met,
it is decided which dropout pixel to set, and then it is set. The
dropout control requires scanning in the vertical as well as the
horizontal directions.

Check your Progress:

Fill in the blanks.
1. Priority fill is also known as the__________ algorithm
2. If the endpoint of the two edges are on one side of the scan line

and the contribution will be _________.

8.7 ALIASING, ANTI-ALIASING, HALF TONING

Aliasing:
Aliasing is the distortion of information due to low- frequency

sampling. Low- frequency sampling results in highly periodic
images being rendered incorrectly. For example, a fence or building
might appear as a few broad stripes rather than many individual
smaller stripes.

Anti-Aliasing:
Anti-aliasing is the process of blurring sharp edges in

pictures to get rid of the jagged edges on lines. After an image is
rendered, some applications automatically anti-alias images. The
program looks for edges in an image, and then blurs adjacent
pixels to produce a smoother edge. In order to anti-alias an image
when rendering, the computer has to take samples smaller than a
pixel in order to figure out exactly where to blur and where not to.

A large atmark
rendered without
antialiasing

Antialiasing smoothes
out the jaggies.

Fig. 8.5
Half Toning :

Many hardcopy devices are bi-level: they produce just two
intensity levels. Then to expand the range of available intensities
there is Halftoning or clustered-dot ordered dither

83

It make the most use of the spatial integration that our
eyes perform. If we view a very small area from a sufficiently large
viewing distance, our eyes average fine detail within the small area
and record only the overall intensity of the area.

In halftoning approximation, we have two different cases.
First when the image array being shown is smaller than the display
device’s pixel array. In this case multiple display pixels can be used
for one image pixel. And second when the image array has the
same size of display device arrays

xample of a 2×2 dither pattern

Fig. 8.6

8.8 THRESHOLDING AND DITHERING

Dithering is the process of converting an image with a certain bit
depth to one with a lower bit depth. For example: Original image
Dithered to 256 colors

When an application dithers an image, it converts colors that
it cannot display into patterns of two or more colors that closely
resemble the original. You can see that in the B&W image. Patterns
of different intensities of black and white pixels are converted
represent different shades of gray.

Thresholding is a process where an image gets divided in two
different colors i.e. Black and White. This kind of image is also
called as binary image, since it is divided in to two colors Black – 0
and White – 1. In this process one or more than one thresholding
points get decided and then the gray level values in the given
image are get adjusted accordingly.
Example : Thresholding point 4

1 0 7 0 0 7

4 6 2 0 7 0

7 5 3 7 7 0

84

The Original Image

3x3 image . 3bit image. L= 2bit

size =23 = 8
Gray values L= 0 to 7
Lmin (Black) - 0
Lmax (White) - 7

Threhold Image

If color(Gray Value) <=
T ---- 0 (Lmin)
Else
If color(Gray Value) >
T ---- 7(Lmax)

Check your Progress:
1. Define: Thresholding.
2. What is anti- alising?
3. Explain Half Toning.

8.9 LET US SUM UP

 The pixels which are inside the polygon can be determined by
using the following two test: Inside outside test and Winding
number test.

 The scan line filling algorithm can be applied for the curve
closed boundary

 Priority fill is also known as the Painter's algorithm

 Anti-aliasing is the process of blurring sharp edges in pictures to
get rid of the jagged edges on lines

 Dithering is the process of converting an image with a certain bit
depth to one with a lower bit depth.

 Thresholding is a process where an image gets divided in two
different colors

8.10 REFERENCES AND SUGGESTED READING

 Procedural elements of Computer Graphics, David F. Rogers,
Tata McGraw Hill.

85

 Computer Graphics, ISRD Group, Tata McGraw Hill.

 Computer Graphics, Amarendra Sinha, A. Udai,, Tata McGraw
Hill.

 Computer Graphics,A. P. Godase, Technical Publications Pune.

 Computer Graphics, Donald Hearn, M P. Baker, PHI.

8.11 EXERCISE

1. What are the polygon filling techniques? Explain any one.
2. Write a short note on Scan conversion of character.
3. Explain Inside- Outside test.
4. Define: Aliasing, Anti- Aliasing.
5. Write a short note on Thresholding and Dithering.

86

9

INTRODUCTION TO CURVES

Unit Structure:

9.0 Objective

9.1 Introduction

9.2 Curve Continuity

9.3 Conic Curves

9.4 Piecewise Curve Design

9.5 Parametric Curve Design

9.6 Spline Curve Representation

9.7 Bezier Curves

9.8 B-Spline Curves

9.9 Difference between Bezier Curves and B-Spline Curves

9.10 Fractals and its applications.

9.11 Let us sum up

9.12 References and Suggested Reading

9.13 Exercise

9.0 OBJECTIVE

The objective of this chapter is
 To understand concept of curve and different types of curves.
 To understand difference between Bezier and B- Spline curves.
 To understand concept of fractals and its branches and different

application areas.

9.1 INTRODUCTION

Curves (and surfaces) are specified by the user in terms of
points and are constructed in an interactive process. Here, are few
points which we have to consider since we are going to learn about
curves: Control Points, Multi valued, Axis Independent, Global or
Local Curve Control, Diminishing variation and versatility, Order of
continuity, Parametric function, Blending functions.

87

Fractal was coined in 1975, by mathematician Benoit
Mandelbrot to describe an intricate looking set of curves, many of
which were never seen before the advent of computers, because of
its ability to perform quickly massive calculations. Fractals are
figures with an infinite amount of detail. When magnified, they don’t
become more simple, but remain as complex as they were without
magnification

9.2 CURVE CONTINUITY

A breakpoint is where two curve segments meet within a
piecewise curve. The continuity of a curve at a breakpoint
describes how those curves meet at the breakpoint.

There are four possible types of continuity:

No continuity: It means the curves do not meet at all.

C0continuity : Here, it may be a sharp point where they meet.

C1continuity: The curves have identical tangents at the breakpoint
and the curves join smoothly. C2continuity: The curves have
identical curvature at the breakpoint and curvature continuity
implies both tangential and positional continuity.

Fig. 9.1 Fig. 9.2 Fig. 9.3

9.3 CONIC CURVES

Both circles and ellipses are special cases of a class of
curves known as conics. Conics are distinguished by second-
degree discriminating functions of the form:

 2 2,f x y Ax Bxy Cy Dx Ey F

The values of the constants, A, B, C, D, E, and F determines
the type of curve as follows:

88

2 4 0B AC circle if (A = C and B = 0), ellipse otherwise
2 4 0B AC line if (A = B = C = 0), parabola otherwise
2 4 0B AC hyperbola

To make things confusing, mathematicians often refer to the
term B2 - 4AC as the conic discriminate. Here we will stick to the
computer graphics definition of a discriminant as a function that
partitions interior and exterior half-spaces.

Curves of this form arise frequently in physical simulations,
such as plotting the path of a projectile shot from a canon under the
influence of gravity (a parabola), or the near collision of like-
charged particles (hyperbolas).

Conics, like circles posses symmetry, but not nearly to the
same extent. A circle is a very special case of conic, it is so special
that it is often considered a non-generic conic. Typically a conic will
have only one (parabola) or two (ellipse or hyperbola) symmetric
axes.

In order to compute the slope at each point we'll need to find
derivatives of the discriminating equation:

,
2

,
2

f x y
Ax By D

x

f x y
Bx Cy E

x

Using these equations we can compute the instantaneous
slope at every point on the conic curve.

9.4 PIECEWISE CURVE DESIGN

The order of the curve determines the minimum number of
control points necessary to define the curve. You must have at
least order control points to define a curve. To make curves with
more than order control points, you can join two or more curve
segments into a piecewise curve

89

Fig. 9.4

Check your Progress:

Fill in the blanks.
1. __________ and ellipses are special cases of a class of curves

known as conics .

2. To make curves with more than order control points, you can
join two or more curve segments into a _________________.

9.5 PARAMETRIC CURVE DESIGN

A parametric curve that lies in a plane is defined by two
functions, x(t) and y(t), which use the independent parameter t. x(t)
and y(t) are coordinate functions, since their values represent the
coordinates of points on the curve. As t varies, the coordinates (x(t),
y(t)) sweep out the curve. As an example consider the two
functions:
x(t) = sin(t)
y(t) = cos(t)
As t varies from zero to 360, a circle is swept out by (x(t), y(t)).

90

Fig. 9.5 Fig. 9.6

9.6 SPLINE CURVE REPRESENTATION

A spline curve is a mathematical representation for which it
is easy to build an interface that will allow a user to design and
control the shape of complex curves and surfaces. The general
approach is that the user enters a sequence of points, and a curve
is constructed whose shape closely follows this sequence. The
points are called control points. A curve that actually passes
through each control point is called an interpolating curve; a curve
that passes near to the control points but not necessarily through
them is called an approximating curve.

Fig. 9.7

91

9.7 BEZIER CURVES

Bezier curve
Bezier curve section can be fitted to any number of control

points. The number of control points to be approximated and their
relative position determine the degree of the Bezier polynomial. A
Bezier curve can be specified with boundary conditions, with
blending function. Suppose we are given n+1 control point
positions: Pk =(Xk,Yk,Zk) with k varing from 0 to n. these
coordinate points can be blended to produce the following position
vector P(u) , which describes the path of an approximating Bezier
polynomial function between P0 and Pn.
P(u)= ∑n

k=0 Pk BEZk ,n(u) ……….. 0≤u≤1.

The Bernstein polynomials:
BEZk ,n(u) =C(n,k) uk (1-u)
C(n,k)= binomial coefficients.
C(n,k)=n!/ k! (n-k)!
BEZk ,n(u) = (1-u) BEZk ,n-1(u) +u BEZk-1 ,n-1(u) ……….. n› k≥ 1

X(u)= ∑n
k=0 Xk BEZk ,n(u)

Y(u)= ∑n
k=0 Yk BEZk ,n(u)

3 points : Generate a parabola
4 points : A cubic curve
3 collinear control
points :

Generate a straight line segment

Why use?

1. Easy to implement
2. Reasonably powerful in curve design.
3. Efficient methods for determining coordinate positions along a

Bezier curve can be set up using recursive calculations.
C(n,k)=((n-k+1)/k) C (n,k-1) ………… n≥k
.

Properties:

1. Bezier curves are always passes through the first and last
control points.

2. The slop at the beginning of the curve is along the line joining
the first two control points and the slop at the end of the curve is
along the line joining the last two end points.

3. It lies within the convex hull of the control points.

Cubic Bezier Curves.

It gives reasonable design flexibility while avoiding the
increased calculations needed with higher order polynomials.

92

BEZ0 ,3(u) = (1-u)3

BEZ1,3(u) = 3u(1-u)2

BEZ2,3(u) = 3u2(1-u)
BEZ3,3(u) = u3

At u=0 and u=1 only non zero blending function is BEZ0,3

and BEZ3,3 respectively. Thus, the cubic curve will always pass
through control points P0 and P3

The BEZ1,3 and BEZ2,3 influence the shape of the curve at
intermediate values of parameter u, so that the resulting curve
tends toward points p1 and p2. BEZ1,3 is max at u=1/3
BEZ2,3 is max at u=2/3.

Bezier curves do not allow for local control of the curve
shape. If we reposition any one of the control points, the entire
curve will be affected.

9.8 B-SPLINE CURVES

B-splines are not used very often in 2D graphics software
but are used quite extensively in 3D modeling software. They have
an advantage over Bezier curves in that they are smoother and
easier to control. B-splines consist entirely of smooth curves, but
sharp corners can be introduced by joining two spline curve
segments. The continuous curve of a b-spline is defined by control
points.

The equation for k-order B-spline with n+1 control

points 0 1, , ... nP P P is , 1 10, ,i k i k ni
P t n N t P t t t .

In a B-spline each control point is associated with a basis
function Ni,k which is given by the recurrence relations B-spline
basis functions as like as Bezier ones are
nonnegative 0ikN and have "partition of unity"

property 0, 1, 1, 1n N t t t ti ni k k therefore ,0 1i kN

As since 0ikN for jt t or j kt t therefore a control

point Pi influences the curve only for ti < t < ti+k.

The main properties of B-splines
 composed of (n-k+2) Bezier curves of k-order joined Ck-

2 continuously at knot values (t0 , t1 , ... , tn+k)
 each point affected by k control points
 each control point affected k segments
 inside convex hull
 affine invarianc

93

 uniform B-splines don't interpolate deBoor control
points (P0 , P1 , ... , Pn)

Check your Progress:
True or False.
1. Bezier curve is easy to implement.
2. The continuous curve of a b-spline is defined by control points.

9.9 DIFFERENCE BETWEEN BEZIER CURVES AND B-
SPLINE CURVES

Bezier Curve B-Spline Curve

Bezier curves do not need knots To construct B-splines one
needs to specify knots

Bezier curve automatically
clams its endpoints.

B-Splines do not interpolate any
of its control points.

Bezier curve basis functions are
easier to compute.

B-Spline curve requires more
computations

Table 9.1

9.10 FRACTALS AND ITS APPLICATIONS

Introduction:

Fractal Geometry has found its applications not only
animations or film industries, creating beautiful natural objects , but
also in Biological study, Medicines, Telecommunications, Fluid
Mechanics, Image Compression, Fractal Music etc.

“Art is the creation of mind, an idea. A painting, a piece of
music or a sculpture is only the embodiment of that idea. The idea
that nature and mathematics are inextricably linked can be very
well proved by using fractal geometry in Computer Graphics.
Natural objects can be realistically described by fractal geometry
methods.

Fractals can be seen as mysterious expressions of beauty
representing exquisite preordained shapes that mimic the universe.
Art and science will eventually be seen to be as closely connected
as arms to the body. Both are vital elements of order and its
discovery. But when art is seen as the ability to do, make, apply, or
portray in way that withstands the test of time, its connection with
science becomes clearer.

94

Applications of Fractal Geometry:

Nature:
Fractals have become immensely popular for describing and

creatin natural objects like mountains, clouds, flames, etc. that
cannot be described in terms of mathematical geometry using
triangles or squares. In Computer Graphics, modeling techniques
generally assume that an object is a collection of lines or polygons
or that it can be described by higher order polynomials e.g. Bezier
or B-Spline curves. While these techniques efficiently model solid
objects like cars, roads, houses etc. they are not well adapted to
representation of natural object features like terrains, snow, smoke,
etc.

Fig.9.8 The Fractal Fern

The Fractal Fern
The "fractal fern" is generated
completely by fractals. This is
not a digital photograph - it is
completely computer-
generated.

Animations & movies:
The application of fractal has mostly been in the field of

animations, motion pictures and visualizations. E.g.: Real popular
application is in form of Imaginary Landscapes of outer space in
STAR TREK, STAR WARS. Here UCLA mathematicians along with
Hollywood filmmakers used the 3D fractals beautifully and created
landscapes which looked very real; but were non-existent. Fractal
images are used as an alternative to costly elaborate sets to
produce fantasy landscapes.

Bacteria Cultures:
Some of the most amazing applications of fractals can be

found in such distant areas as the shapes of bacteria cultures. A
bacteria culture is all bacteria that originated from a single ancestor
and are living in the same place. When a culture is growing, it
spreads outwards in different directions from the place where the
original organism was placed. Just like plants the spreading
bacteria can branch and form patterns which turn out to be fractal.
The spreading of bacteria can be modeled by fractals such as the
diffusion fractals, because bacteria spread similarly to nonliving
materials.

95

Biological systems:
Fractal and chaos phenomena specific to non-linear systems

are widely observed in biological systems. A study has been
established an analytical method based on fractals and chaos
theory for two patterns: the dendrite pattern of cells during
development in the cerebellum and the firing pattern of intercellular
potential. Variation in the development of the dendrite stage was
evaluated with fractal dimension, enabling the high order seen
there to be quantized

Origin of Fractals:

With the aid of computer graphics, Mandelbrot who then
worked at IBM's Watson Research Center was able to show how
Julia's work is a source of some of the most beautiful fractals
known today. By iterating a simple equation and mapping this
equation in the complex plane, Mandelbrot discovered the fractal
named after his name, Mandelbrot Set. He has been initially
responsible for extending the theory and graphics representation of
iterated functions as a special class of new geometry as “Fractal
Geometry”.

The fact that any small part of the coast will look similar to
the whole thing was first noted by Benoit Mandelbrot. He called
shapes like this fractals. In nature, you can find them everywhere.
Any tree branch, when magnified, looks like the entire tree. Any
rock from a mountain looks like the entire mountain. The theory of
fractals was first developed to study nature. Now it is used in a
variety of other applications. And, of course, beauty is what makes
them popular! And now fractal geometry is providing us with a new
perspective to view the world, creating real life landscapes, to data
compression, music etc.

Advantages of using Fractal Geometry:

Fractal was coined in 1975, by mathematician Benoit
Mandelbrot to describe an intricate looking set of curves, many of
which were never seen before the advent of computers, because of
its ability to perform quickly massive calculations.

Fractals are figures with an infinite amount of detail. When
magnified, they don’t become more simple, but remain as complex
as they were without magnification.

The modeling and rendering time required is minimal
compared with traditional methods. In this respect our new
approach is comparable to the old one, though it’s slower for large,
complex scenes.

96

L-system can be considered as a compression of the film with a
factor typically bigger than one million. In general, a production
system needs not to build up a 3D database to the complete
environment. It can directly draw objects during the interpretation of
a symbolic environment string.

In the case of fractals, few properties are:
 a fine structure,
 too much irregularity to be described in traditional geometric

language, both locally and globally,
 some form of self-similarity, perhaps approximate or statistical,
 a "fractal dimension"(somehow defined) which is greater than its

topological dimension, and
 A simple definition, perhaps recursive.

Classification of IFS and complex fractals:

Fig. 9.9

The term “fractal” was introduced for characterizing spatial or
temporal phenomena that are continuous but not differentiable
(Mandelbrot, 1975).

Fractal is defined as a rough or fragmented geometric shape
that can be sub-divided into parts, each of which is (at least
approximately) a reduced size copy of the whole. Mathematically, a
fractal is defined as a set of points whose fractal dimension
exceeds its topological dimension (Mandelbrot, 1983).

In general, the dimension of a fractal is typically a non-
integer or a fraction, meaning its dimension is not a whole number
and its formation is by an iteration (or recursive) process, and

97

hence has non integer complexity. When a fractal is magnified, it is
infinitely complex. Moreover, upon magnification of a fractal, it can
be found that subsets of the fractal resemble the whole fractal, i.e.
self-similar.

There are two types of fractal geometries – iterative function
system (IFS) fractal and complex fractal. The classification of these
two types of fractals is shown in Classification of IFS and
complex fractals. In general, an IFS fractal is a family of specified
mappings that map the whole onto the parts and the iteration of
these mapping will result in convergence to an invariant set. There
are numerous literatures about IFS and readers can find the details
from them (Moran, 1946; Williams, 1971; Hutchinson, 1981;
Barnsley and Demko, 1985; Barnsley, 1988).

Fractal geometry and fractal dimension:

Fractal dimension is a measure of how ‘complicated’ a self-
similar figure is. In a rough sense, it measures ‘how many points’ lie
in a given set. A plane is ‘larger’ than a line. Somehow, though,
fractal dimension captures the notion of ‘how large a set is’.

Fractal geometry can be considered as an extension of
Euclidean geometry.

Conventionally, we consider integer dimensions which are
exponents of length, i.e. surface = length2 or volume = length3. The
exponent is the dimension. Fractal geometry allows for there to be
measures which change in a non-integer or fractional way when the
unit of measurements changes. The governing exponent D is called
fractal dimension.

Fractal object has a property that more fine structure is
revealed as the object is magnified, similarly like morphological
complexity means that more fine structure (increased resolution
and detail) is revealed with increasing magnification. Fractal
dimension measures the rate of addition of structural detail with
increasing magnification, scale or resolution. The fractal dimension,
therefore, serves as a quantifier of complexity.

Ideal points have Euclidean dimension of 0, ideal lines of 1,
and perfectly flat planes of 2. However, collection of real points
have dimension greater than 0, real lines greater than1, real
surfaces greater than 2, etc. At each level, as the dimensions of an
object move from one integer to the next, the complexity of the
object increases. Euclidean or non-fractal (points, lines, circles,
cubes, etc.) may be viewed as fractal objects with the lowest
complexity (integer fractal dimensions) within their respective
dimension domains (0 to 1, 1 to 2, etc.). Natural objects are often

98

rough and are not well described by the ideal constructs of
Euclidian geometry .One familiar example of naturally occurring
fractal curves is coastline. Since all of the curve’s features that are
smaller than the size of the measuring tool will be missed, whatever
is the size of the measuring tool selected, therefore the result
obtained depends not only on the coastline itself but also on the
length of the measurement tool. The use of fractional power in the
measurements compensates for the details smaller than the size of
measuring tool – fractal dimension is the unique fractional power
that yields consistent estimates of a set’s metric properties.
Because it provides the correct adjustments factor for all those
details smaller than the measuring device, it may also be viewed as
a measurement of the shape’s roughness. The fractal dimension of
an object provides insight into how elaborate the process that
generated the object might have been, since the larger the
dimension the larger the number of degrees of freedom.

Euclidean Geometry Vs Fractal Geometry:

 In mathematics, Euclidean geometry was known more than
20000 years before sometimes means geometry in the plane
which is also called plane geometry. Euclidean geometry in
three dimensions is traditionally called solid geometry.

Fractal Geometry is a modern technique, known just 20 years
before.

 Using Euclidean Geometry methods (e.g. B-Spline or Bezier
curves) object shapes are described with equations which are
adequate or accurate for describing manufactured objects, i.e.
those that have smooth surfaces and regular shapes. Natural
objects such as mountains, tree, have irregular or fragmented
features and Euclidean methods do not realistically model these
objects.

Natural objects can be realistically described with Fractal
Geometry methods, where recursive procedures rather than
equations are used to model these objects. With only a small
amount of code and data you can generate highly detailed,
complex scenes.

 Euclidean Geometry methods use simple algebraic formulas to
draw various shapes which do not exhibit self-similarity on
magnification. E.g. sphere on magnification yields a flat plane;
hence it does not exhibit self-similarity. Hence it can be best
described by Euclidean Geometry.

99

Fractals are self-similar and independent of scaling, i.e.
various copies of an object can be found in the original object at
similar size scales.

Classification of fractals:

Fractals can also be classified according to their self-
similarity. There are three types of self-similarity found in fractals:

Exact self-similarity — this is the strongest type of self-
similarity; the fractal appears identical at different scales. Fractals
defined by iterated function systems often display exact self-
similarity. In many fractals, self-similarity is very obvious. For
example, it is clearly seen in the picture right. Each of these fractals
is composed of smaller versions of itself. When magnified, they turn
out to be identical to the entire picture. e.g. Sierpinski triangle, Koch
Curve etc.

Fig. 9.10 :Koch Curve

 Quasi-self-similarity — this is a loose form of self-similarity; the
fractal appears approximately (but not exactly) identical at different
scales. Quasi-self-similar fractals contain small copies of the entire
fractal in distorted and degenerate forms. Fractals defined by
recurrence relations are usually quasi-self-similar but not exactly
self-similar. For example, the famous Mandelbrot Set doesn’t
exhibit exactly identical pictures right away. However, on
magnification, small versions of it at all levels can be found.

Fig. 9.11 :Mandelbrot Set

100

 Statistical self-similarity — this is the weakest type of self-
similarity; the fractal has numerical or statistical measures which
are preserved across scales. Most reasonable definitions of
"fractal" trivially imply some form of statistical self-similarity. (Fractal
dimension itself is a numerical measure which is preserved across
scales.) Random fractals are examples of fractals which are
statistically self-similar, but neither exactly nor quasi-self-similar. In
perfectly self-similar object like Koch Curve, no matter how far it is
magnified, we get exactly similar fragmented picture. Compared to
a straight line, the Koch Snowflake is obviously better in describing
a natural shape such as a coastline or a river. However, there is a
major drawback to that, i.e. it is perfectly symmetrical shape.
Obviously, normally self-similar fractals are too regular to be
realistic. Fractals with statistical self-similarity have parts with
different scaling parameters in different coordinate directions. This
also may include random variations. Hence to make fractals more
realistic, a different type of self-similarity called statistical self-
similarity is used. E.g. Plot the location of some particle at certain
intervals of time; to get a fragmented trajectory with lines randomly
located in space.

Now, take one of these lines and plot locations at smaller intervals
of time. It is observed that a smaller fragmented line made up of
randomly located parts exists. If one of these lines is taken, it is
found that it is made up of smaller lines as well. However, this self-
similarity is different. Although each line is composed of smaller
lines, the lines are random instead of being fixed.

Fig. 9.12 :Statistical Self-Similarity

Statistical self-similarity is found in plasma fractals. They are very
useful in creatin realistic coastlines and landscapes.

 Mathematical fractals - self-similarity
Objects considered in Euclidean geometry are sets

embedded in Euclidean space and object’s dimension is the
dimension of the embedding space. One is also accustomed to
associate what is called topological dimension with Euclidean
objects - everybody knows that a point has dimension of 0, a line
has dimension of 1, a square is 2 dimensional, and a cube is 3-

101

dimensional. The topological dimension is preserved when the
objects are transformed by a homeomorphism. One cannot use
topological dimension for fractals, but instead has to use what is
called Hausdorff-Besikovitch dimension, commonly known as
fractal dimension. In fact, a formal definition of a fractal says that it
is an object for which the fractal dimension is greater than the
topological dimension. But this definition is too restrictive. An
alternative definition uses the concept of self-similarity – a fractal is
an object made of parts similar to the whole. The notion of self-
similarity is the basic property of fractal objects. Taking advantage
of self-similarity is one way (called similarity method) to calculate
fractal dimension.

For example, one can subdivide a line segment into m self-
similar intervals, each with the same length, and each of which can
be magnified by a factor of n to yield the original segment. A square
or a triangle may be subdivided into n2 self-similar copies of itself,
each of which must be magnified by a factor of n to yield the
original object. Similarly, a cube can be decomposed into n2 self-
similar copies of itself, each of which must be magnified by a factor
of n to yield the original cube (Table 1). If one takes the
magnification, n , and raise it to the power of dimension, D , one will
get the number of self-similar pieces in the original object, P: P = nD

Solving this equation for D one easily finds that
D = log(P) / log(n)
Using this formula one can calculate fractal dimension of

some fractals.

Object Dimension No. of Copies

Line 1 2 = 21

Square 2 4 = 22

Cube 3 8 = 23

Any
self-similar figure

D P = 2D

Sierpinski triangle 1.58 3 = 2D

Table 9.2

A mathematical fractal has some infinitely repeating pattern
and can be made by the iteration of a certain rule.

102

Fractal Curves :
Koch curve
A variant of the Koch curve which uses only right-angles.

Variables: F
Constants: + −
Start: F
Rules: (F → F+F−F−F+F)

Here, F means "draw forward", + means "turn left 90°", and -
means "turn right 90°" (see turtle graphics).

n = 0:
F

n = 1:
F+F-F-F+F

n = 2:

F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F

Fig 9.13 n = 3:
F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-
F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-
F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-
F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-
F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F

Sierpinski triangle

The Sierpinski triangle has drawn using an L-system.
Variables: A B
Constants: + −
Start: A
Rules: (A → B−A−B),(B → A+B+A)
Angle: 60º

Here, A and B mean both "draw forward", + means "turn left
by angle", and - means "turn right by angle" (see turtle graphics).
The angle changes sign at each iteration so that the base of the
triangular shapes are always in the bottom (they would be in the top
and bottom, alternatively, otherwise).

103

Fig.9.14 Evolution for n = 2, n = 4, n = 6, n = 9

Dragon curve
The Dragon curve drawn using an L-system.

Variables: X Y F
Constants: + −
Start: FX
Rules: (X → X+YF+),(Y → -FX-Y)
Angle: 90º

Here, F means "draw forward", - means "turn left 90°", and +
means "turn right 90°". X and Y do not correspond to any drawing
action and are only used to control the evolution of the curve.

Fig 9.15 Dragon curve for n = 10

Fractal plant
Variables: X F
Constants: + −
Start: X
Rules: (X → F-[[X] +X] +F [+FX]-X), (F → FF)
Angle: 25º

104

Here, F means "draw forward", - means "turn left 25º", and +
means "turn right 25º". X does not correspond to any drawing
action and is used to control the evolution of the curve.
[Corresponds to saving the current values for position and angle,
which are restored when the corresponding] is executed.
Fractal plant for n = 6

Fig .9.16 Fractal plant

Check your Progress:

1. List different types of fractal curves.
2. What are the types of s3lf similarity in fractals?

9.11 LET US SUM UP

 The order of the curve determines the minimum number of
control points necessary to define the curve.

 Circles and ellipses are special cases of a class of curves known
as conics.

 Bezier Curves are Easy to implement and reasonably powerful
in curve design.

 Bezier curves do not allow for local control of the curve shape. If
we reposition any one of the control points, the entire curve will
be affected.

 Fractals are known for a fine structure, too much irregularity to
be described in traditional geometric language, both locally and
globally, some form of self-similarity, perhaps approximate or
statistical, and a "fractal dimension"(somehow defined) which is
greater than its topological dimension, and a simple definition,
perhaps recursive.

105

9.13 REFERENCES AND SUGGESTED READING

 Computer Graphics,A. P. Godase, Technical Publications Pune.
 Mathematical Elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
 Computer Graphics, Donald Hearn, M P. Baker, PHI.

9.12 EXERCISE

1. Give the properties of B-Spline curve.
2. What is cubic Bezier curve? Explain in detail.
3. Give the applications of fractal geometry.
4. What are fractals?
5. Write a short note on:
a) Parametric curve design
b) Conic curve
c) Cubic

106

10

SURFACE DESIGN AND VISIBLE
SURFACES

Unit Structure:

10.0 Objectives

10.1 Introduction

10.2 Types of surfaces

10.2.1 Bilinear Surfaces

10.2.2 Ruled Surfaces

10.2.3 Developable Surfaces

10.2.4 Coons Patch

10.2.5 Sweep Surfaces

10.2.6 Surface of Revolution

10.2.7 Quadric Surfaces

10.3 Constructive Solid Geometry

10.3.1 Bezier Surfaces

10.3.2 BSpline Surfaces

10.3.3 Subdivision Surfaces

10.4 Introduction to visible and hidden surfaces

10.5 Coherence for visibility

10.6 Extents and Bounding Volumes

10.7 Back FaceCulling

10.8 Painter’s Algorithm

10.9 Z-Buffer Algorithm

10.10 Floating Horizon Algorithm

10.11 Roberts Algorithm

10.12 Let us sum up

10.13 References and Suggested Reading

10.14 Exercise

10.0 OBJECTIVE

The objective of this chapter is
 To understand the different types of surfaces.
 To understand concept of solid geometry.

107

 To understand concept of visible and hidden surfaces and
different algorithms to find and remove the hidden surfaces.

10.1 INTRODUCTION

When objects are to be displayed with color or shaded
surface, we apply surface- rendering procedures to the visible
surfaces so that the hidden surfaces are obscured. Some visible-
surface algorithms establish visibility pixel by pixel across the
viewing plane, other determine visibility for object surface as a
whole. By removing the hidden lines we also remove information
about the shape of the back surfaces of an object.

10.2 TYPES OF SURFACES

 Bilinear Surfaces
 Ruled Surfaces
 Developable surfaces
 Coon patch
 Sweep surfaces
 Surface of revolution
 Quadratic surfaces

10.2.1 BILINEAR SURFACES

A flat polygon is the simplest type of surface. The bilinear
surface is the simplest non flat (curved) surface because it is fully
defined by means of its four corner points. It is discussed here
because its four boundary curves are straight lines and because
the coordinates of any point on this surface are derived by linear
interpolations. Since this patch is completely defined by its four
corner points, it cannot have a very complex shape. Nevertheless it
may be highly curved. If the four corners are coplanar, the bilinear
patch defined by them is flat. Let the corner points be the four
distinct points P00, P01, P10, and P11. The top and bottom
boundary curves are straight lines and are easy to calculate.
They are P(u, 0) =(P10 − P00)u + P00 and P(u, 1) =(P11 − P01)u +
P01.

Fig. 10.1

108

To linearly interpolate between these boundary curves, we
first calculate two corresponding points P(u0, 0) and P(u0, 1), one
on each curve, then connect them with a straight line P(u0, w). The
two points are P(u0, 0) = (P10 − P00)u0 + P00 and P(u0,1) = (P11
− P01)u0 + P01, and the straight segment connecting them is

P(u0, w) = (P(u0, 1) − P(u0, 0))w + P(u0, 0)
= [(P11 − P01)u0 + P01 −(P10 − P00)u0 + P00]w+ (P10 −

P00)u0 + P00.

The expression for the entire surface is obtained when we
release the parameter u from its fixed value u0 and let it vary. The
result is:

P(u,w) = P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw

1 1

11 1
0 0

1000 01
10 11

1111

,

,
10

ij j
i j

B u P B

BP P
B u B u

BP P

where the functions B1i(t) are the Bernstein polynomials of degree
1. This implies that the bilinear surface is a special case of the
rectangular Bezier surface. Mathematically, the bilinear surface is a
hyperbolic paraboloid.

10.2.2 RULED SURFACES

Given two curves C1(u)
and C2(v), the ruled surface is
the surface generated by
connecting line segments
between corresponding points,
one on each given curve. if t is
a value in the domain [0,1] of
both curves, a segment
between C1(t) and C2(t) is
constructed. This segment is
usually referred as a ruling at t.
As t moves from 0 to 1, the
ruling at t sweeps out a surface
and this is the ruled surface
defined by curves C1(u)
and C2(v). Cylinder is another
well-known ruled surface. It is
generated from two circles

C1

C2

Fig. 10.2

109

10.2.3 DEVELOPABLE SURFACES

A developable surface is a surface that can be (locally)
unrolled onto a flat plane without tearing or stretching it. If a
developable surface lies in three-dimensional Euclidean space, and
is complete, then it is necessarily ruled, but the converse is not
always true. For instance, the cylinder and cone are developable,
but the general hyperboloid of one sheet is not. More generally, any
developable surface in three dimensions is part of a complete ruled
surface, and so itself must be locally ruled.

10.2.4 COONS PATCH

The Coons patch is
constructed from four
intersecting curves.
Consider a pair of such
curves that intersect at a
corner Pij of the Coons
patch. We can employ
this pair and the corner
to construct a
translational surface
Pij(u,w). Once we
construct the four
translational surfaces for
the four corners of the
Coons patch, they can
be used to express the
entire Coons linear
surface patch

Fig.10.3

10.2.5 SWEEP SURFACES

In sweep representation the 3D objects are created from 2 D
shapes. The 2D shape is swept in 2D directions. A) Translation B)
Rotational
A) Translational sweep

In translational sweep we replicate a 2D shape and draw the
set of connecting lines to produce a 3D object as shown in the fig.

Fig. 10.4

110

B) Rotational sweep
In rotational sweep 2 D shape or curve is rotated about the

axis of rotation to produce 3D object. In general for sweep
representation we are allowed to use any path curve and 2D shape.
For rotation sweep are allow to rotate 00 to 3600 . Where the
translation sweep and rotational sweep is combined to get a 3D
object. The corresponding sweep representation is called as
general sweep.

10.2.6 SURFACE OF REVOLUTION

A surface of revolution is generated by revolving a given
curve about an axis. The given curve is a profile curve while the
axis is the axis of revolution. To design a surface of revolution,
select Advanced Features followed by Cross Sectional Design. This
will bring up the curve system. In the curve system, just design a
profile curve based on the condition to be discussed below, and
then select Techniques followed by Generate Surface of
Revolution. The surface system will display a surface of revolution
defined by the given profile curve. Some special restrictions must
be followed in order to design a surface of revolution under the
curve system. First, the axis of revolution must be the z-
axis. Second, the profile curve must be in the xz-plane. However,
when brining up the curve system, only the xy-plane is shown. To
overcome this problem, one can design a profile curve on the xy-
plane and rotate the curve (not the scene) about the x-axis 90
degree (or -90 degree, depending on your need). In this way, the
profile curve will be placed on the xz-plane. Many commonly seen
and useful surfaces are surfaces of revolution (e.g., spheres,
cylinders, cones and tori).

10.2.7 QUADRIC SURFACES

A quadratic surface is a surface in space defined by a
quadratic equation:

f(x; y; z) j x2 + y2 = 1g Cylinder
f(x; y; z) j x2 + y2 + z2 = 1g Sphere
f(x; y; z) j x2 + 2xy + y2 + z2 � 2z = 5g ??

Advantages are as follows:
1. Build 3-dimensional intuition.
2. Techniques useful for contour plots, which you will see more.
3. These surfaces are useful.
4. Will see some of them later in the course.

Basic types of quadratic surfaces
Let’s try some more surfaces.

111

1. f(x; y; z) j x2 + y2/2 + z2/3 = 1 g: An ellipsoid
2. f(x; y; z) j x2 + y2 - z2 = 1 g: A hyperboloid of one sheet
3. f(x; y; z) j x2 + y2 - z2 = -1 g: A hyperboloid of two sheets
4. f(x; y; z) j x2 + y2 - z2 = 0 g: A cone
5. f(x; y; z) j z = x2 + y2 g: An (elliptic) paraboloid
6. f(x; y; z) j z = x2 - y2 g: A hyperbolic paraboloid

Check your Progress:

1. What do you mean by developable surface?
2. Define: Translational Sweep and Rotational Sweep.

10.3 CONSTRUCTIVE SOLID GEOMETRY

Constructive solid geometric representation

Here, we combine 3D objects using set operations such as,
union, intersection and many more. Here, the 3D object is defined
by a volume function and 2 or more volumes are combined to
generate a new shape or a new object.

Fig. 10.5

In CSG method we can use objects such as blocks,
cylinders, pyramids, cones, spheres, splines.

Fig. 10.6

A good graphic package always provides these 3D shapes
and the different operations and transformations that can be
applied.

10.3.1 BEZIER SURFACES

To create a Bezier surface, we blend a mesh of Bezier
curves using the blending function

 , , ,
0 0

,
m n

j k j m k n
j k

P u v P BEZ v BEZ u

 where j and k are points in

parametric space and ,x yP represents the location of the knots in

real space. The Bezier functions specify the weighting of a
particular knot. They are the Bernstein coefficients. The definition of

112

the Bezier functions is , , 1
u kk

k nBEZ u C n k u u

 . Where

 ,C n k represents the binary coefficients. When u=0, the function

is one for k=0 and zero for all other points. When we combine two
orthogonal parameters, we find a Bezier curve along each edge of
the surface, as defined by the points along that edge. Bezier
surfaces are useful for interactive design and were first applied to
car body design.

10.3.2 BSPLINE SURFACES

The equation of a B-spline surface follows directly from the
equation of a B-spline curve. This relationship is analogous to that
between Bezier curves and surfaces. Furthermore, we define the B-
spline surface, like the Bzier surface, in terms of a characteristic
polyhedron. The shape of the surface approximates the
polyhedron. The approximation is weaker the higher the degree.

The tensor product equation of the B-spline surface is

 , , ,
0 0

,
m n

i p j q i j
i j

P u v N u N v P

 Where Ni,p(u) and Nj,q(v) are B-

spline basis functions of degree p and q, respectively. Note that
the fundamental identities, one for each direction, must hold: h =
m + p + 1 and k = n + q + 1. Therefore, a B-spline surface is
another example of tensor product surfaces. As in Bezier surfaces,
the set of control points is usually referred to as the control
net and the range of u and v is 0 and 1. Hence, a B-spline surface
maps the unit square to a rectangular surface patch.

10.3.3 SUBDIVISION SURFACES

Subdivision surfaces are defined recursively. The process
starts with a given polygonal mesh. A refinement scheme is then
applied to this mesh. This process takes that mesh and subdivides
it, creating new vertices and new faces. The positions of the new
vertices in the mesh are computed based on the positions of
nearby old vertices. In some refinement schemes, the positions of
old vertices might also be altered (possibly based on the positions
of new vertices).

This process produces a denser mesh than the original one,
containing more polygonal faces. This resulting mesh can be
passed through the same refinement scheme again and so on.

The limit subdivision surface is the surface produced from
this process being iteratively applied infinitely many times. In
practical use however, this algorithm is only applied a limited
number of times.

113

Check your Progress:

Fill in the Blanks.
1. Subdivision surfaces are defined _________.
2. A B-spline surface maps the unit square to a ________surface

patch.

10.4 INTRODUCTION TO VISIBLE AND HIDDEN
SURFACES

In graphics, a picture /scene consists of objects which are
nearer to the “eye“ or block. The other objects are block, some part
of the other objects.

The part which cannot be visible needs to be removed to
give a realistic effect.

The problem of removing the unwanted surfaces and line is
called “hidden surface problem”. There are two methods used to
solve hidden surface problem:

 Image- Space Method
 Object –Space Method

Image - Space Method
 Here, we compare every object within the scene with pixel

location on the screen
 Here, we apply screen coordinates with above mention

conversion.
 If n is the number of objects and N is the number of pixels, then

the computational work increases proportional to the product .
 The method dependent on the precession of the screen

representation.
 The objects enlarge themselves significantly and do not give

correct results
 Eg. Z- Buffer Algorithms.

10.5 COHERENCE FOR VISIBILITY

Coherence is the result of local similarity which can be
calculated using the results calculated for one part of the scene or
image for other nearby parts as objects have continuous spatial
extent, object properties vary smoothly within a small local region in
the scene. Calculations can then be made incremental.

114

Types of coherence:

1. Object Coherence: Visibility of an object can often be decided
by examining a circumscribing solid (which may be of simple
form, eg. A sphere or a polyhedron.)

2. Face Coherence: Surface properties computed for one part of a
face can be applied to adjacent parts after small incremental
modification. (eg. If the face is small, we sometimes can assume
if one part of the face is invisible to the viewer, the entire face is
also invisible).

3. Edge Coherence: The Visibility of an edge changes only when
it crosses another edge, so if one segment of an nonintersecting
edge is visible, the entire edge is also visible.

4. Scan line Coherence: Line or surface segments visible in one
scan line are also likely to be visible in adjacent scan lines.
Consequently, the image of a scan line is similar to the image of
adjacent scan lines.

5. Area and Span Coherence: A group of adjacent pixels in an
image is often covered by the same visible object. This
coherence is based on the assumption that a small enough
region of pixels will most likely lie within a single polygon. This
reduces computation effort in searching for those polygons
which contain a given screen area (region of pixels) as in some
subdivision algorithms.

6. Depth Coherence: The depths of adjacent parts of the same
surface are similar.

7. Frame Coherence: Pictures of the same scene at successive
points in time are likely to be similar, despite small changes in
objects and viewpoint, except near the edges of moving objects.

Most visible surface detection methods make use of one or
more of these coherence properties of a scene. To take advantage
of regularities in a scene, eg. Constant relationships often can be
established between objects and surfaces in a scene.

10.6 EXTENTS AND BOUNDING VOLUMES

Bounding volume for a set of objects is a closed volume that
completely contains the union of the objects in the set. Bounding
volumes are used to improve the efficiency of geometrical
operations by using simple volumes to contain more complex
objects. Normally, simpler volumes have simpler ways to test for
overlap. A bounding volume for a set of objects is also a bounding

115

volume for the single object consisting of their union, and the other
way around. Therefore it is possible to confine the description to the
case of a single object, which is assumed to be non-empty and
bounded (finite). Bounding volumes are most often used to
accelerate certain kinds of tests. In ray tracing, bounding volumes
are used in ray-intersection tests, and in many rendering
algorithms, they are used for viewing frustum tests. If the ray or
viewing frustum does not intersect the bounding volume, it cannot
intersect the object contained in the volume. These intersection
tests produce a list of objects that must be displayed. Here,
displayed means rendered or rasterized. In collision detection,
when two bounding volumes do not intersect, then the contained
objects cannot collide, either.

Common types of bounding volume
A bounding sphere is a sphere containing the object. In 2-D
graphics, this is a circle.

A bounding ellipsoid is an ellipsoid containing the object.
Ellipsoids usually provide tighter fitting than a sphere.

A bounding cylinder is a cylinder containing the object.

A bounding capsule is a swept sphere (i.e. the volume that a
sphere takes as it moves along a straight line segment) containing
the object

A bounding box is a cuboid, or in 2-D a rectangle containing the
object

Check your Progress:

True or False.
1. In ray tracing, bounding volumes are used in ray-intersection

tests.
2. Coherence is the result of global similarity.

10.7 BACK FACECULLING

Back face culling is when you do not render a polygon
because its normal is pointing away from the viewer's eye point. A
naive way of preforming this check would be to construct a vector
from the eye point to a point on the face and compute the dot
product of this line of sight vector and the normal vector. If this
scalar is positive then the face is pointing away and consequently
can be culled. A more sophisticated way of making this check is to
transform the face's normal into the projection space, where the line
of sight vector is always the negative Z-axis. Then the check for

116

back face culling is just to see if the Z component of the
transformed normal is negative.

Back-face culling directly
eliminates polygons not
facing the viewer.

Fig. 10.7
Back-Face Culling in
VCS
A first attempt at
performing back-face
culling might directly use
the z-component of the
surface normal, as
expressed in VCS. This
does not always work,
however a better strategy
is to construct the plane
equation for the polygon
and to test whether the
eye-point falls above or
below this plane.
Plane(Peye)<0 implies
the eyepoint is below the
plane containing the
polygon and that the
polygon should thus be
culled

Fig. 10.8

Steps for VCS culling
 Calculate a surface normal, N = (A,B,C).

This need not be normalized.
 Compute D in plane equation by substituting any polygon vertex

into the plane equation.
Plane(P) = Ax + By + Cz + D = 0

 Calculate Plane(eyept) to determine if eye is above or below.
This corresponds to checking the sign of D.

Face Culling in NDCS :
In NDCS, the z-component of the surface normal does

reflect the true visibility, as desired. If the z-component is positive,
the normal points away from the eye and the polygon should thus
be culled.

117

Computing Surface
Normals
In order to do the face
culling, we need a surface
normal.
Method 1
Use the cross-product of
two polygon edges. The
order in which vertices are
stored should be
consistent. For example, if
polygon vertices are stored
in CCW order when viewed
from above the `front face',
then we could use

N = (P2 - P1) x (P3 - P2
) Fig. 10.9

Method 2
A more robust method is to
use the projected area onto
the yz, xz, and yz planes.
To see that areas can be
used to calculate a normal,
first consider the 2D case.

Fig. 10.10
The areas for the required
3D projections (and thus
the components of the
normal) can be calculated
as follows:

Fig. 10.11

118

10.8 PAINTER’S ALGORITHM

Painter’s Algorithm

• Sort polygons by farthest depth.

• Check if polygon is in front of any other.

• If no, render it.

• If yes, has its order already changed backward?

– If no, render it.

– If yes, break it apart.

Which polygon is in front? Our strategy: apply a series of tests.

– First tests are cheapest

– Each test says poly1 is behind poly2, or maybe.

1. If min z of poly1 > max z poly2 ------1 in back.

2. The plane of the polygon with smaller z is closer to viewer than
other polygon.

(a,b,c,)*(x,y,z) >= d.

3. The plane of polygon with larger z is completely behind other
polygon.

4. Check whether they overlap in image

a. Use axial rectangle test.

b. Use complete test.

Problem Cases: Cyclic and Intersecting Objects
• Solution: split polygons

Advantages of Painter’s Algorithm
– Simple
– Easy transparency

Disadvantages
– Have to sort first
– Need to split polygons to solve cyclic and intersecting objects

10.9 Z-BUFFER ALGORITHM

Z- Buffer Algorithms.
Here, the depth of the surface is given by the coordinates.

Algorithm compares the depth of each pixel position. We use the
normalized coordinates. So that the range of depth(z) values vary
from 0 to 1.

119

Z=0 denotes the back clipping plane.
Z=1 denotes the front clipping plane.

We use two types of memories.
1) Frame buffer: which stores the intensity values for each pixel

position and
2) Z-buffer: which stores the depth of each pixel (x,y) position.

Algorithm keeps track of the minimum depth value.

Algorithm:
1) Initialize depth (x,y)=0

Framebuffer (x,y)=I background for all (x,y)
2) Compute the z-Buffer values by using the equation of the plane.

Ax+By+Cz+D=0
[here, we store information about all the polygonal surface
included in the picture.]
The pixels are scanned by the scaline incremental method.
Z= -1/C (Ax+By+D) i.e. for any pixel position (Xk,Yk) the depth
(Xk,Yk)=Zk
Zk=-1/C(Axk+Byk+C) The next pixel position is at (Xk+1, Yk) or
(Xk,Yk-1)

Zk+1=-1/C(A(xk+1)+Byk+D)
Zk+1=-1/C(A(xk+1)+Byk+D) –A/C
Zk+1=-Zk-A/C calculates the values of depth recursively.

Similarly, the depth values down the edges of intersection of
the polygon surface and the scanline are given as calculated as
follows:

Let y=mx+c is the example of the left most intersecting edge
then from

(Xk,Yk)→(X’, Yk-1) along the edge gives,
Yk= mXk+C 1= m(Xk-X’)
Yk-1= mX’+C X’= Xk -1/m

The depth value then becomes,
Zk+1=-1/C (A (Xk-1/m) + Byk-1 + D)

Zk+1=-1/C(AXk + Byk - B+D)+ (A/M)/C

Zk+1=-1/C(AXk + Byk +D)+B/C+ (A/M)/C

Zk+1=Zk+ ((A/M)+B)/C

3) If the calculated depth value is Zk+1 and if at (x,y) pixel position
Z > calculated depth (x,y) Then,
Set the depth value as depth(x,y)=z and frame buffer (x,y)= I

surface.

120

4) Repeat steps 2 and 3, till all the polygonal surfaces are
processed.

10.10 FLOATING HORIZON ALGORITHM

It is useful for rendering a mathematically defined surface.
The algorithm can be implemented in object space or in image
space where aliasing may occur. Here given a surface represented
in the implicit form F(x,y,z) = 0. The surface is represented by
curves drawn on it, say curves of constant height z=c for multiple
values of c. It convert the 3D problem to 2D by intersecting the
surface with a series of cutting planes at constant values of z.

The function , , 0F x y z is reduced to a curve in each of

these parallel planes, ,y f x z where z is constant for each of the

planes.

Pseudocode for floating horizon

 The surface may dip below the closest horizon and the bottom
of the surface should be visible

o Keep two horizon arrays, one that floats up and one that floats
down

 In image space, aliasing can occur when curves cross
previously drawn curves

 Example:
o Let curves at z=0, z=1 and z=2 be defined by

20 for 0 20,

20 for 20 40

for 0 20,

4020 for 20 40

x x
y

x x

x x
y

x x

y= 10,respectively
Set h[0..40] = 0 and for 0,1, 2z compute the value

of y saving higher y and drawing the curves

10.11 ROBERTS ALGORITHM

Object space Algorithms:
In object space algorithm we compare every object in scene/

picture with every other object from the same scene. The
computational work increases proportionally as the square of
number of objects

Object space algorithms are implemented in the physical
coordinate system in which objects are described. They required

121

less storage space. They are particularly useful in engineering
applications.

The object space algorithm is Robert’s Algorithm.
It gives elegant mathematical solution which is operated in

object space because of more efficient image space algorithm.
Roberts’s algorithm is less appreciated. It requires each scene to
be divided into volumes which are either convex or concave. These
volumes are further divided to component volumes.

This algorithm is developed in 3 parts.
 1st part analysis each part separately to eliminate the hidden

plane.
 2nd part compares remaining edges of each volume against all

other to find which line segments are hidden
 3rd part construct the junction lines for penetrating volume.

Algorithm assumes that a volume consists of plane
polygonal faces. The faces consist of edges and the edges consist
of individual vertices.

Algorihtm:
1. { start

Eliminate the hidden plane{
2. For each volume in the scene{
3.

i) form volume matrix list
ii) compute the equation of plane for each face polygon of the

volume.
iii) Check the sign of the plane equation.
iv) find a point which lies inside the volume and find the dot

product of the equation of plane with this point. If the dot
product is less than zero change the sign of the plane
equation.

v) form the modified volume matrix.
vi) Multiply by the inverse of the viewing transformation.
vii) Compute and store the bounding box values as Xmin, Xmax,

Ymin, Ymax, Zmin, Zmax for the transformation volume.
1. Identify the hidden plane.{

i) Take the dot product of test point at infinity and transform
volume matrix.

ii) If the dot product is < 0 then the plane is the hidden plane.
iii) Eliminate entire polygon forming that plane. This eliminates

the necessity for separately identifying hidden lines.
}

2. Eliminate the line segments for each volume hidden by on other
volume in the scene.
If there is only one volume ---- STOP.
Else

122

For a priority list of volumes by performing any efficient
sorting algorithm on the z- coordinate

For each volume in the sorted list
DO {

i) Test the self hidden edges against all other volumes.
ii) The volume whose edges are being tested is named as the test

object which is tested against the current test volume.
iii) Perform bounding box test. For the test object and test volume.

As follows: {
If Xmin(test vol) > Xmax(test obj)
OR Xmax(test vol) < Xmin(test obj)
OR Ymin(test vol) > Ymax(test obj)
OR Ymax(test vol) < Ymin(test obj) Then

The test volume cannot hide any edge of the object
Continue with the next test volume.

Else perform preliminary penetrating text to click if the test
object is in sorted in the test volume.

[if the insertion list is empty No insertion.]
3. Determine the visible junction lines for penetrating volumes.

If the visibility False, Skip through the display routine.
If no penetrating points have been recorded, Skip through the
display routine.
Form possible junction edges by connections all penetrating
points.
Test all junction edges against the both volumes.
Test the surviving visible junction edges against all volumes in
the scene for visibility. Save the visible segments.

4. Display remaining visible edges
5. } End.

Check your Progress:

1. Which stores the intensity values for each pixel position is
known as _______.

2. Which stores the depth of each pixel (x,y) position is known as
___________.

10.12 LET US SUM UP

 The bilinear surface is the simplest non flat (curved) surface
because it is fully defined by means of its four corner points

 The translation sweep and rotational sweep is combined to get a
3D object. The corresponding sweep representation is called as
general sweep.

123

 The problem of removing the unwanted surfaces and line is
called “hidden surface problem”.

 Back-face culling directly eliminates polygons not facing the
viewer.

10.13 REFERENCES AND SUGGESTED READING

 Procedural elements of Computer Graphics, David F. Rogers,
Tata McGraw Hill.

 Computer Graphics, ISRD Group, Tata McGraw Hill.
 Computer Graphics, Amarendra Sinha, A. Udai,, Tata McGraw

Hill.
 Computer Graphics,A. P. Godase, Technical Publications Pune.
 Mathematical Elements of Computer Graphics, David F. Rogers,

Tata McGraw Hill.
 Computer Graphics, Donald Hearn, M P. Baker, PHI.
 Computer Graphics: A programming Approach, Steven

Harrington, McGraw-Hill.
 Theory and Problems of Computer Graphics, Zhigang Xiang,

Roy, plastock, Schaum’s outline series, McGraw-Hill.

10.14 EXERCISE

1. What is hidden surface problem? Discuss in brief.
2. Explain the following models: a) wireframe b) sweep

representation
3. What is painter’s algorithm? Explain with an example.
4. Give the z-buffer algorithm and explain it.
5. What is Back-face culling?
6. Explain the steps in Robert’s algorithm.
7. How to construct Bezier Surface?

124

11

OBJECT RENDERING

Unit Structure:

11.0 Objectives

11.1 Introduction

11.2 Light Modeling Techniques

11.3 Illumination Model

11.4 Shading:

11.4.1 Flat Shading

11.4.2 Polygon Mesh Shading

11.4.3 Gaurand Shading Model

11.4.4 Phong Shading

11.5 Transparency Effect

11.6 Shadows

11.7 Texture and Object Representation

11.8 Ray Tracing

11.9 Ray Casting

11.10 Radiosity

11.11 Color Models

11.12 Let us sum up

11.13 References and Suggested Reading

11.14 Exercise

11.0 OBJECTIVE

The objective of this chapter is
 To understand light modeling techniques and illumination

models.
 To understand different types of shading models.
 To understand concepts Ray Tracing and Radiosity.

11.1 INTRODUCTION

We know that the realistic scenes are obtained by
generating transformations, perceptive projection of objects and by

125

applying lighting effects to the visible surface. An illumination model
is used to calculate the intensity of light that we are going to see at
a given point on the surface of an object. Illumination models are
also some time called as lighting or shading models. Here, we
consider shading of 3-D objects and its models. In illumination
models to calculate the intensity of the color we use the method of
the object rendering.

11.2 LIGHT MODELING TECHNIQUES

The object may be illuminated by light which can come from
all direction.

A surface that is not exposed directly to a light source will be
still visible if nearby objects are illuminated. In basic illumination
model we can set a general level of brightness of a scene. The
method by which we create such effect usually follows the laws of
reflections. The light reflections obtained from various surfaces top
produce a uniform illumination is called ambient light or background
light. It has no special or directional characteristics the amount of
ambient light incident on each object is constant for all the surfaces
and for all the direction. When the illumination is uniform from all
directions it is called ‘diffused illumination’. Usually diffused
illumination is a back ground light which is reflected from walls
scenes and curve ceiling, floor.

When we illuminate a shiny surface such as polish metal we
observe highlight or bright spot on the shining surface. This
phenomenon of reflection of light in concentrated area around the
reflection angle is called specular reflection. Due to specular
reflection the surface appears to be not in its original color but
white, the color of the incident light. The specular reflection angle is
always equal to the angle of incident light.

11.3 ILLUMINATION MODEL

An illumination or lighting model is a model or technique for
determining the colour of a surface of an object at a given point. A
simple illumination model can be based on three components:
ambient reflection, diffuse reflection and specular reflection.

11.4 SHADING

A shading model is used in computer graphics to simulate
the effects of light shining on a surface. The intensity that we see
on a surface is dependent upon two things one the type of light
sources and second the surface characteristics (eg. Shining, matte,
dull, and opaque or transparent).

126

11.4.1 FLAT SHADING

Flat shading fills a polygon with a single color computed from
one lighting calculation.

Flat shading is appropriate under some conditions:
1. The light source is at infinity so N.L is constant for all points on

the polygon.
2. The viewer is at infinity so N.V
3. The object is indeed faceted and not an approximation to a

curved object.

11.4.2 POLYGON MESH SHADING

Suppose that we wish to approximate a curved surface by a
polygonal mesh. If each polygonal facet in the mesh is shaded
individually, it is easily distinguished from neighbors whose
orientation is different, producing a "faceted" appearance. This is
true if the polygons are rendered using constant shading,
interpolated shading, or even per-pixel illumination calculations,
because two adjacent polygons of different orientation have
different intensities along their borders. The polygon-shading
models determine the shade of each polygon individually. Two
basic shading models for polygon meshes take advantage of the
information provided by adjacent polygons to simulate a smooth
surface. In order of increasing complexity (and realistic effect), they
are known as Gouraud shading and Phong shading, after the
researchers who developed them.

11.4.3 GAURAND SHADING MODEL

Gouraud shading is a form of interpolated shading. The
illumination model is applied at vertices and the rest of the
polygon’s pixels are determined by bi-linear interpolation. If a
polygonal object is an approximation of a curved object, then the
normal at a vertex is usually the average of the normal of the
polygons which meet at that vertex.

N

Fig 11.1

127

11.4.4 PHONG SHADING

Using highlights avoids surfaces that look dull, lifeless,
boring, blah. One cool thing about highlights is that, in addition to
being all bright an shiny, they change as the object moves. In this
way, highlights provide useful visual information about shape and
motion.

The simplest model for approximating surface highlights is
the Phong model, originally developed by Bui-Tong Phong. In this
model, we think of the interaction between light and a surface as
having three distinct components:

 Ambient
 Diffuse
 Specular

Fig. 11.2

The ambient component is usually given a dim constant
value, such as 0.2. It approximates light coming from a surface due
to all the non-directional ambient light that is in the environment. In
general, you'll want this to be some tinted color, rather than just
gray. [ra,ga,ba]. For example, a slightly greenish object might have
an ambient color of [0.1,0.3,0.1].

The diffuse component is that dot product n•L that we
discussed in class. It approximates light, originally from light
source L, reflecting from a surface which is diffuse, or non-glossy.
One example of a non-glossy surface is paper. In general, you'll
also want this to have a non-gray color value, so this term would in
general be a color defined as: [rd,gd,bd](n•L).

Finally, the Phong model has a provision for a highlight,
or specular, component, which reflects light in a shiny way. This is
defined by [rs,gs,bs](R•L)p, where R is the mirror reflection direction
vector we discussed in class (and also used for ray tracing), and
where p is a specular power. The higher the value of p, the shinier
the surface.

The complete Phong shading model for a single light source is:

 0 0, , , , max . , , max .
p

a a a d d d s s sr q b r q b n L r q b R L

128

If you have multiple light sources, the effect of each light
source Li will geometrically depend on the normal, and therefore on
the diffuse and specular components, but not on the ambient
component. Also, each light might have its own [r,g,b] color. So the
complete Phong model for multiple light sources is:

 0 0, , , , , , max . , , max .
p

a a a r q p d d d i s s s ii
r q b L L L r q b n L r q b n L

Fig. 11.3

Check your Progress:

True or False
1. Gouraud shading is a form of interpolated shading.
2. Flat shading fills a polygon with a single color computed from

more than one lighting calculation.

11.5 TRANSPARENCY EFFECT

The fact that image files are always rectangular can present
some limitations in site design. It may be fine for pictures, but it is
less desirable for logos, or for images that gradually fade into the
background. For relatively simple web pages (such as the one that
you are reading now), this restriction is easily worked around:
simply match the background of your image to the background of
your web page. If you pick the exact same color (easiest if using
pure white), the rectangular boundary of your image will be
invisible. This simple technique has been utilized for many of the
graphics on this page. This technique is less successful if your
background is more complex, however. If you use an image as a
background, for example, you can't just match one color. And
because different web browsers have slight differences in how they
display web pages, it's basically impossible to try and match the
background of your image to the background of your web page.

129

11.6 SHADOWS

Shadow can help to create realism. Without it, a cup, eg., on
a table may look as if the cup is floating in the air above the table.
By applying hidden-surface methods with pretending that the
position of a light source is the viewing position, we can find which
surface sections cannot be "seen" from the light source => shadow
areas.

We usually display shadow areas with ambient-light intensity
only.

Fig 11.4

11.7 TEXTURE AND OBJECT REPRESENTATION

Since it is still very difficult for the computer to generate
realistic textures, a method called texture mapping is developed in
which a photograph of real texture is input into the computer and
mapped onto the object surface to create the texture for the object.
The texture pattern is defined in a M x N array of a texture map
indicted by (u, v) coordinates.

For each pixel in the display, map the 4 corners of pixel back
to the object surface (for curved surfaces, these 4 points define a
surface patch) and then map the surface patch onto the texture
map, this mapping computes the source area in the texture map.
Due to this the pixel value is modified by weighted sum of the
texture’s color.

Check your Progress:

1. What is transparency effect?
2. Explain shadow.

130

11.8 RAY TRACING

Ray tracing follows all rays from the eye of the viewer back
to the light sources. This method is very good at simulating
specular reflections and transparency, since the rays that are
traced through the scenes can be easily bounced at mirrors and
refracted by transparent objects.

Fig. 11.5

To create an image using ray tracing, the following
procedure is performed for each pixel on the computer screen.

1. A ray is traced back from the eye position, through the pixel on
the monitor, until it intersects with a surface. When the imaginary
line drawn from the eye, through a pixel, into a scene strikes a
polygon three things happen.

2. First, the color and brightness values are calculated based on
direct illumination from lights directly striking that polygon. We
know the reflectivity of the surface from the model description,
but we do not yet know the amount of light reaching that
surface. To determine the total illumination, we trace a ray from
the point of intersection to each light source in the environment
(shadow ray). If the ray to a light source is not blocked by
another object, the light contribution from that source is used to
calculate the color of the surface.

3. Next, the angles of reflection and refraction (the bending of light
as it passes through a transparent object such as water) are
calculated. Based on the surface's assigned reflectivity and/or
transparency, the ray splits and continues off in two new
directions. The intersected surface may be shiny or transparent.
In this case we also have to determine what is seen in or

131

through the surface being processed. Steps 1 and 2 are
repeated in the reflected (and, in the case of transparency,
transmitted) direction until another surface is encountered. The
color at the subsequent intersection point is calculated and
factored into the original point.

4. If the second surface is yet again a reflective or transparent
surface, the ray tracing process repeats once again, and so on,
until a maximum number of iterations is reached or until no more
surfaces are intersected. Each ray continues bouncing around
the scene until it hits a light source, leaves the scene, or
reaches some arbitrary number (recursion level). When all the
rays have completed their journeys the intensity and color
values are combined and the pixel is painted.

11.9 RAY CASTING

The basic goal of ray casting is to allow the best use of the
three-dimensional data and not attempt to impose any geometric
structure on it. It solves one of the most important limitations of
surface extraction techniques, namely the way in which they display
a projection of a thin shell in the acquisition space. Surface
extraction techniques fail to take into account that, particularly in
medical imaging, data may originate from fluid and other materials
which may be partially transparent and should be modeled as such.
Ray casting doesn't suffer from this limitation.

11.10 RADIOSITY

There is a new method of rendering that was recently
developed. It is called radiosity.

It does something all the other rendering methods don't do: it
figures out the relationship in the scene of all the objects present.
For example, in real life, if you take a bright colored ball and put it
into a white room, the walls of the room are going to reflect a little
bit of color from the ball, making them look a little reddish for
example.

This is not possible in ray tracing, since it does not bounce
rays off of matte objects, such as a wall. You can compare the
above picture to the one of the ray traced object. All though this is
not a very good example, you can see that the checkerboard
pattern of the "tri-ball" has a slight effect on the color of the bricks
right underneath it. This adds the extra thing to rendered scenes
and makes them look extremely realistic. Radiosity produces
extremely good results, but unfortunately, there is a tradeoff:
rendering time. Before the computer even starts rendering, it has to

132

solve a certain "radiosity model" which is the relationship of one
object on all the other ones in a scene. Then it can start rendering.

Check your progress:
1. Give the procedure of ray tracing.
2. What is radiosity?

11.11 COLOR MODELS

RGB Model:
There are many different ways of specifying color, or color

models. The most common is the RGB color model where a color is
specified in terms of red, green and blue color components. If we
use the RGB color model then the ambient color (reflectivity) of an
object is (kaR, kaG, kaB), the diffuse color (reflectivity) of an object
kd is (kdR, kdG, kdB) and the color of the light emitted from the
point light source as (LdR,LdG,LdB).

Fig. 11.6

CMY:
It is possible to achieve a large range of colors seen by humans by
combining cyan, magenta, and yellow transparent dyes/inks on a
white substrate. These are the subtractive primary colors. Often a
fourth black is added to improve reproduction of some dark colors.
This is called "CMY" or "CMYK" color space. The cyan ink absorbs

133

red light but transmits green and blue, the magenta ink absorbs
green light but transmits red and blue, and the yellow ink absorbs
blue light but transmits red and green.

Fig. 11.7

HSV/ HSB Model:

The HSV, or HSB, model describes colors in terms of hue,
saturation, and value (brightness). Note that the range of values for
each attribute is arbitrarily defined by various tools or standards. Be
sure to determine the value ranges before attempting to interpret a
value. Hue corresponds directly to the concept of hue in the Color
Basics section. The advantages of using hue are the angular
relationship between tones around the color circle is easily
identified. Shades, tints, and tones can be generated easily without
affecting the hue saturation corresponds directly to the concept of
tint in the Color Basics section, except that full saturation produces
no tint, while zero saturation produces white, a shade of gray, or
black.

Fig. 11.8

134

11.12 LET US SUM UP

 When light sources create highlights or bright spots they are
called ‘specular reflections’. This effect is usually seen on
shining surfaces than on dull surfaces.

 When the illumination is uniform from all directions it is called
‘diffused illumination’.

 Flat shading fills a polygon with a single color

 Gouraud shading is a form of interpolated shading.

11.14 REFERENCES AND SUGGESTED READING

 Procedural elements of Computer Graphics, David F. Rogers,
Tata McGraw Hill.

 Computer Graphics, Amarendra Sinha, A. Udai,, Tata McGraw
Hill.

 Mathematical Elements of Computer Graphics, David F. Rogers,
Tata McGraw Hill.

 Computer Graphics, Donald Hearn, M P. Baker, PHI.

11.13 EXERCISE

1. Write a short note on light modeling techniques.
2. List the different types of shading. Explain any one in details.
3. Write a short note on Phong shading.
4. Write a short note on Gaurand Shading Model

135

12

INTRODUCTION TO ANIMATION

Unit Structure:

12.0 Objectives
12.1 Introduction
12.2 Key-Frame Animation
12.3 Construction of an Animation Sequence
12.4 Motion Control Methods
12.5 Procedural Animation
12.6 Key-Frame Animation vs. Procedural Animation
12.7 Introduction to Morphing
12.8 Three-Dimensional Morphing
12.9 Let us sum up
12.10 References and Suggested Reading
12.11 Exercise

12.0 OBJECTIVE

The objective of this chapter is
 To understand the concepts of computer animation.
 To understand Morphing.

12.1 INTRODUCTION

The main goal of computer animation is to synthesize the
desired motion effect which is a mixing of natural phenomena,
perception and imagination. The animator designs the object's
dynamic behavior with his mental representation of causality

12.2 KEY-FRAME ANIMATION

When someone creates an animation on a computer, they
usually don't specify the exact position of any given object on every
single frame. They create key frames. Key frames are important
frames during which an object changes its size, direction, shape or
other properties. The computer then figures out all the in between
frames and saves an extreme amount of time for the animator. Two
frames are drawn by user In between frames generated by
computer.

136

12.3 CONSTRUCTION OF AN ANIMATION SEQUENCE

Design of animation sequences
1. Story board layout
2. Object definations
3. Key frame specification
4. Generation of in between frames

Visualization applications are generated by the solution of
the numerical models for frame- by- frame animation. Each frame
of the scene is separately generated and stored. Later, the frames
can be recorded on film or they can be consecutively displayed in
“real-time playback” mode.

The story board is an outline of the action. It defines the
motion sequence as a set of basic events that are to take place.

An Object definition is given for each participant in the
action. Objects can be defined in terms of basic shapes, such as
polygon or splines. In addition, the associated movements for each
object are specified along with the shape.

A key frame is a detailed drawing of the scene at a certain
time in the animation sequence. Within each key frame, each object
is positioned according to the time for that frame. Some key frames
are chosen at extreme positions in the action, other are spaced so
that the time interval between key frames is not too great. More key
frames are specified for intricate motions than for simple slowly
varying motions.

Two Frames drawn by user
Fig. 12.1

In between frames are the intermediate frames between the
key frames. The number of in between needed is determined by the
media to be used to display the animation. Film requires 24 frames
per second, and graphic terminals are refreshed at the rate of 30 to
60 frames per second.

137

In between frames generated by computer
Fig. 12.2

Final Animation
Fig. 12.3

Check your progress:

Fill in the blanks.
1. _________ frames are the intermediate frames between the key

frames.
2. The ________is an outline of the action.
3. _________ is a detailed drawing of the scene at a certain time in

the animation sequence.

12.4 MOTION CONTROL METHODS

The key issue of Computer Animation is the way of defining
motion, what is commonly known as Motion Control Methods
(MCMs). MCMs may be classified based on the nature of the
information, which is directly manipulated: geometric, physical, or
behavioral

Methods based on Geometric and Kinematics information
These methods are heavily relied upon the animator. Motion

is locally controlled and defined in terms of coordinates, angles,
velocities, or accelerations.

The Performance Animation which consists in magnetic or
optical measurement and recording of direct actions of a real
person for immediate or delayed playback. The technique is

138

especially used today in production environments for 3D character
animation.

Key frame animation is still another popular technique in which
the animator explicitly specifies the kinematics by supplying
keyframes values whose "in-between" frames are interpolated by
the computer.

Inverse kinematics is a technique coming from robotics, where the
motion of links of a chain is computed from the end link trajectory.

Image Morphing is a warping-based technique which interpolates
the features between two images to obtain a natural in between
image. For geometric deformations, multi-layered models are
particularly useful for modelling 3D characters.

Methods based on Physical information
In these methods, the animator provides physical data and the
motion is obtained by solving the dynamic equations. Motion is
globally controlled. We may distinguish methods based on
parameter adjustment and constraint-based methods, where
the animator states in terms of constraints the properties the model
is supposed to have, without needing to adjust parameters.

Methods based on Behavioral information
A behavioral motion control method consists of driving the behavior
of autonomous creatures by providing high-level directives
indicating a specific behavior without any other stimulus.

12.5 PROCEDURAL ANIMATION

Procedural animation corresponds to the creation of a motion by
a procedure describing specifically the motion. Procedural
animation should be used when the motion can be described by an
algorithm or a formula. For example, consider the case of a clock
based on the pendulum law. A typical animation sequence may be
produced using a program such as:

create CLOCK (...);

for FRAME:=1 to NB_FRAMES

TIME:=TIME+1/24;

ANGLE:=A*SIN (OMEGA*TIME+PHI);

MODIFY (CLOCK, ANGLE);

draw CLOCK;

record CLOCK

erase CLOCK

139

Categories of procedural animation

Two large categories of procedural animation are

1. Physics-based modeling/animation
2. Alife (artificial life)

1. Physics-based modeling/animation deals with things that are
not alive. Physics-based modeling/animation refers to techniques
that include various physical parameters, as well as geometrical
information, into models. The behavior of the models is simulated
using well-know natural physical laws. Physics-based
modeling/animation can be considered as a sub-set of procedural
animation and includes particle systems, flexible dynamics, rigid
body dynamics, fluid dynamics, and fur/hair dynamics.

Fig. 12.4

Particle systems simulates behaviors of fuzzy objects, such as
clouds, smokes, fire, and water.

Flexible dynamics simulates behaviors of flexible objects, such as
clothes. A model is built from triangles, with point masses at the
triangles’ vertices. Triangles are joined at edges with hinges; the
hinges open and close in resistance to springs holding the two
hinge halves together. Parameters are: point masses, positions,
velocities, accelerations, spring constants, wind force, etc..

(Reference: D. Haumann and R. Parent, “The behavioral test-bed:
obtaining complex behavior from simple rules,” Visual Computer,
’88.)

Rigid body dynamics simulates dynamic interaction among rigid
objects, such as rocks and metals, taking account various physical
characteristics, such as elasticity, friction, and mass, to produce
rolling, sliding, and collisions. Parameters for “classical” rigid body
dynamics are masses, positions, orientations, forces, torques,
linear and angular velocities, linear and angular momenta,
rotational ineria tensors, etc.

140

(Reference: J. Hahn, Realistic Animation of Rigid Bodies,
Proceedings of SIGGRAPH 88.)

Fig. 12.5

Fluid dynamics simulates flows, waves, and turbulence of water
and other liquids.

Fur & hair dynamics generates realistic fur and hair and simulates
behaviors of fur and hair. Often it is tied into a rendering method.

2. Alife (artificial life) deals with things are virtually alive.

Fig. 12.6

Behavioral animation simulates interactions of artificial lives.
Examples: flocking, predator-prey, virtual human behaviors.

Artificial evolution is the evolution of artificial life forms. The
animator plays the role of God. As artificial life forms reproduce and
mutate over time, the survival of the fittest is prescribed by the
animator's definition of "fittest" (that is artificial 'natural' selection).
See Karl Sims's works.

Branching object generation generates plants, trees, and other
objects with branching structures and simulate their behaviors.
Without a procedural method, building a model of a branching
object, such as a tree with a number of branches, requires a lot of
time and effort. Branching object generation methods (L-
systems &BOGAS) employ user defined rules to generate such
objects.

141

12.6 KEY-FRAME ANIMATION VS. PROCEDURAL
ANIMATION

In a procedural animation objects are animated by a
procedure -- a set of rules -- not by keyframing. The animator
specifies rules and initial conditions and runs simulation. Rules are
often based on physical rules of the real world expressed by
mathematical equations.

To produce a keyframe animation, the animator creates the
behavior of a model manually by using an intuitive “put that there”
methodology. The animator has direct control over the positions,
shapes, and motions of models at any moment in the animation. On
the other hand, to produce a procedural animation the animator
provides initial conditions and adjusts rather abstract physical
parameters, such as forces and torques, in order to control
positions, shapes, and motions of models. The effect of changing a
parameter value is often unpredictable in procedural animation. The
animator has to run a simulation to see the result.

Check your progress:

1. What are motion control methods?
2. Explain procedural animation.

12.7 INTRODUCTION TO MORPHING

Morphing is a special effect in motion pictures and
animations that changes (or morphs) one image into another
through a seamless transition. Image morphing means creating a
sequence of images which when played in sequence, show one
image being slowly changed into another image.

142

Original Image
Fig. 12.7

Morphed Image
Fig. 12.8

12.8 THREE-DIMENSIONAL MORPHING

Image morphing, the construction of an image sequence
depicting a gradual transition between two images, has been
extensively investigated. For images generated from 3D models,
there is an alternative to morphing the images themselves: 3D
morphing generates intermediate 3D models, the morphs, directly
from the given models; the morphs are then rendered to produce
an image sequence depicting the transformation. 3D morphing
overcomes the following shortcomings of 2D morphing as applied
to images generated from 3D models:

 In 3D morphing, creating the morphs is independent of the
viewing and lighting parameters. Hence, we can create a morph
sequence once, and then experiment with various camera
angles and lighting conditions during rendering. In 2D morphing,
a new morph must be recomputed every time we wish to alter
our viewpoint or the illumination of the 3D model.

143

 2D techniques, lacking information on the model's spatial
configuration, are unable to correctly handle changes in
illumination and visibility. Two examples of this type of artifact
are: (i) Shadows and highlights fail to match shape changes
occuring in the morph. (ii) When a feature of the 3D object is not
visible in the original 2D image, this feature cannot be made to
appear during the morph; for example, when the singing actor
needs to open her mouth during the morph, pulling her lips apart
thickens the lips instead of revealing her teeth.

The models subjected to 3D morphing can be described
either by geometric primitives or by volumes.

Check your progress:

True or False
1. Morphing is a special effect in motion pictures.
2. In 3D morphing, creating the morphs is dependent of the

viewing and lighting parameters.

12.9 LET US SUM UP

 Key frames are important frames during which an object
changes its size, direction, shape or other properties.

 Motion Control Methods (MCMs classified based on the nature
of the information, which is directly manipulated: geometric,
physical, or behavioral.

 Procedural animation should be used when the motion can be
described by an algorithm or a formula.

12.10 REFERENCES AND SUGGESTED READING

 Computer Graphics, Amarendra Sinha, A. Udai,, Tata McGraw
Hill.

 Computer Graphics, Donald Hearn, M P. Baker, PHI.

144

 Computer Graphics: A programming Approach, Steven
Harrington, McGraw-Hill.

 Theory and Problems of Computer Graphics, Zhigang Xiang,
Roy, plastock, Schaum’s outline series, McGraw-Hill.

12.11 EXERCISE

1. Explain conventional animation.
2. Write a short note on virtual reality.
3. Write a short note on image morphing.
4. Give the methods of controlling animation.
5. What is frame by frame animation?
6. Differentiate between Key-Frame Animation and Procedural

Animation.

