A Simple Circle Drawing Algorithm

The equation for a circle is:

$$
x^{2}+y^{2}=r^{2}
$$

where r is the radius of the circle So, we can write a simple circle drawing algorithm by solving the equation for y at unit x intervals using:

$$
y= \pm \sqrt{r^{2}-x^{2}}
$$

$$
\begin{aligned}
& y_{0}=\sqrt{20^{2}-0^{2}} \approx 20 \\
& y_{1}=\sqrt{20^{2}-1^{2}} \approx 20 \\
& y_{2}=\sqrt{20^{2}-2^{2}} \approx 20 \\
& \vdots \\
& y_{19}=\sqrt{20^{2}-19^{2}} \approx 6 \\
& y_{20}=\sqrt{20^{2}-20^{2}} \approx 0
\end{aligned}
$$

However, unsurprisingly this is not a brilliant solution!
Firstly, the resulting circle has large gaps where the slope approaches the vertical Secondly, the calculations are not very efficient

- The square (multiply) operations
- The square root operation - try really hard to avoid these!
We need a more efficient, more accurate solution

Similarly to the case with lines, there is an incremental algorithm for drawing circles the mid-point circle algorithm In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points

Mid-Point Circle Algorithm (cont...)

Assume that we have just plotted point (x_{k}, y_{k}) The next point is a choice between $\left(x_{k}+1, y_{k}\right)$ and $\left(x_{k}+1, y_{k}-1\right)$
We would like to choose the point that is nearest to
 the actual circle
So how do we make this choice?

Let's re-jig the equation of the circle slightly to give us:

$$
f_{\text {circ }}(x, y)=x^{2}+y^{2}-r^{2}
$$

The equation evaluates as follows:

$$
f_{\text {circ }}(x, y)\left\{\begin{array}{l}
<0, \text { if }(x, y) \text { is inside the circle boundary } \\
=0, \text { if }(x, y) \text { is on the circle boundary } \\
>0, \text { if }(x, y) \text { is outside the circle boundary }
\end{array}\right.
$$

By evaluating this function at the midpoint between the candidate pixels we can make our decision

Mid-Point Circle Algorithm (cont...)

To ensure things are as efficient as possible we can do all of our calculations
incrementally
First consider:

$$
\begin{aligned}
p_{k+1} & =f_{\text {circ }}\left(x_{k+1}+1, y_{k+1}-1 / 2\right) \\
& =\left[\left(x_{k}+1\right)+1\right]^{2}+\left(y_{k+1}-1 / 2\right)-r^{2}
\end{aligned}
$$

or:

$$
p_{k+1}=p_{k}+2\left(x_{k}+1\right)+\left(y_{k+1}^{2}-y_{k}^{2}\right)-\left(y_{k+1}-y_{k}\right)+1
$$

where y_{k+1} is either y_{k} or $y_{k}-1$ depending on the sign of p_{k}

The Mid-Point Circle Algorithm

MID-POINT CIRCLE ALGORITHM

Input radius r and circle centre ($x_{c}, y_{)}$), then set the coordinates for the first point on the circumference of a circle centred on the origin as:

$$
\left(x_{0}, y_{0}\right)=(0, r)
$$

- Calculate the initial value of the decision parameter as:

$$
p_{0}=5 / 4-r
$$

- Starting with $k=0$ at each position x_{k}, perform the following test. If $p_{k}<0$, the next point along the circle centred on $(0,0)$ is $\left(x_{k}+1, y_{k}\right)$ and:

$$
p_{k+1}=p_{k}+2 x_{k+1}+1
$$

Assuming we have just plotted the pixel at $\left(x_{k}, y_{k}\right)$ so we need to choose between $\left(x_{k}+1, y_{k}\right)$ and $\left(x_{k}+1, y_{k}-1\right)$
Our decision variable can be defined as:

$$
\begin{aligned}
p_{k} & =f_{\text {circ }}\left(x_{k}+1, y_{k}-1 / 2\right) \\
& =\left(x_{k}+1\right)^{2}+\left(y_{k}-1 / 2\right)^{2}-r^{2}
\end{aligned}
$$

If $p_{k}<0$ the midpoint is inside the circle and and the pixel at y_{k} is closer to the circle
Otherwise the midpoint is outside and $y_{k}-1$ is closer

Mid-Point Circle Algorithm (cont...)

The first decision variable is given as:

$$
\begin{aligned}
p_{0} & =f_{\text {circ }}(1, r-1 / 2) \\
& =1+(r-1 / 2)^{2}-r^{2} \\
& =5 / 4-r
\end{aligned}
$$

Then if $p_{k}<0$ then the next decision variable is given as:

$$
p_{k+1}=p_{k}+2 x_{k+1}+1
$$

If $p_{k}>0$ then the decision variable is:

$$
p_{k+1}=p_{k}+2 x_{k+1}+1-2 y_{k}+1
$$

The Mid-Point Circle Algorithm (cont...)

Otherwise the next point along the circle is $\left(x_{k}+1, y_{k}-1\right)$ and:

$$
p_{k+1}=p_{k}+2 x_{k+1}+1-2 y_{k+1}
$$

4. Determine symmetry points in the other seven octants
5. Move each calculated pixel position (x, y) onto the circular path centred at $\left(x_{c}, y_{d}\right)$ to plot the coordinate values:

$$
x=x+x_{c} \quad y=y+y_{c}
$$

6. Repeat steps 3 to 5 until $x>=y$

Mid-Point Circle Algorithm Example

To see the mid-point circle algorithm in action lets use it to draw a circle centred at $(0,0)$ with radius 10

\section*{	31
of	
39	\quad Mid-Point Circle Algorithm Example}

Mid-Point Circle Algorithm Exercise

Use the mid-point circle algorithm to draw the circle centred at $(0,0)$ with radius 15

The key insights in the mid-point circle algorithm are:

- Eight-way symmetry can hugely reduce the work in drawing a circle
- Moving in unit steps along the x axis at each point along the circle's edge we need to choose between two possible y coordinates

