
SCAN CONVERTING

LINES,

CIRCLES and ELLIPSES

LINE DRAWING

Description: Given the specification for a
straight line, find the collection of
addressable pixels which most closely
approximates this line.

Goals (not all of them are achievable with
the discrete space of a raster device):

• Straight lines should appear straight.

• Lines should start and end accurately,
matching endpoints with connecting lines.

• Lines should have constant brightness.

• Lines should be drawn as rapidly as possible.

Problems:

 How do we determine which pixels to
illuminate to satisfy the above goals?

 Vertical, horizontal, and lines with slope
= +/- 1, are easy to draw.

 Others create problems: stair-casing/
jaggies/aliasing.

 Quality of the line drawn depends on the
location of the pixels and their brightness

It is difficult to determine whether
a pixel belongs to an object

Direct Solution:
Solve y=mx+b, where (0,b) is the y-intercept
and m is the slope.

Go from x0 to x1:
calculate round(y) from the equation.

Take an example, b = 1 (starting point (0,1))
and m = 3/5.

Then x = 1, y = 2 = round(8/5)
x = 2, y = 2 = round(11/5)
x = 3, y = 3 = round(14/5)
x = 4, y = 3 = round(17/5)
x = 5, y = 4 = round(20/5)

For results, see next slide.

(0,1) 1 2 3 4 5

4

3

2

(5,4)

Ideal Case of a line drawn in a graph paper

Using Round

(0,1)

(5,4)
4

3

2

(0,1)

4

3

2

(5,4)

Using next highest

Choice of pixels in the raster, as integer values
x = 1, y = 2 = round(8/5)

x = 2, y = 2 = round(11/5)

x = 3, y = 3 = round(14/5)

x = 4, y = 3 = round(17/5)

x = 5, y = 4 = round(20/5)

Take another example:

y = 10.x + 2

x=1, y=12;

x=2, y=22.

Why is this undesired?

• `*´ and `/´ are expensive

• Round() function needed

• Can get gaps in the line (if slope > 1)

DDA - Digital Difference Analyzer

Incremental Algorithm.
Based on y = (y1- y0) / (x1-x0) x + b

Assume x1 > x0 and |dx| > |dy|
(can be easily modified for the other
cases.)

The Algorithm: dx = x1- x0 ;
dy = y1- y0 ;
m = dy/dx ;
y = y0 ;
for (x=x0 to x1)

draw_point (x, round(y)) ;
y=y+m;

end for

Still uses floating point and round()
inside the loop.

How can we get rid of these?

Problems:

4

3 2

1

8

76

5

Octants covering the 2-D space

MIDPOINT LINE ALGORITHM

Incremental Algorithm (Assume first octant)

Given the choice of the current pixel,
which one do we choose next : E or NE?

Equations:

1. y = (dy/dx) * x + B

2. F(x,y) = a*x + b*y + c = 0

Gives: F(x,y) = dy*x - dx*y + B*dx = 0

=> a = dy, b = -dx, c = B*dx

Rewrite as:

F(x,y) > 0; if point below the line

F(x,y) < 0; if point above the line

NE

M
E

Criteria:
Evaluate the mid-point, M,
w.r.t. the equation of the line.

F(x,y) = dy*x - dx*y + B*dx =0

Choice: E or NE?

(Xp, Yp) (Xp+1, Yp)

(Xp+1, Yp+1/2)

(Xp+1, Yp+1)

M

Q

E

NE

Q is above M,
hence select NE pixel as your next choice

ALGO – for next choice:
If F(M) > 0 /*Q is above M */

then Select NE
/*M is below the line*/

else Select E ;
/* also with F(M) = 0 */

(Xp, Yp) (Xp+1, Yp)

(Xp+1, Yp+1/2)

(Xp+1, Yp+1)

M

Q

E

NE

Q is below M, hence
select E pixel as
your next choice

Evaluate mid-point M using a decision
variable d = F(X,Y);

d = F(Xp+1,Yp+1/2) = a(Xp+1)+b(Yp+1/2)+c;
at M,

Set dold = d;

Based on the sign of d, you choose E or NE.

dnew = F(Xp+2,Yp+1/2)
= a(Xp+2) + b(Yp+1/2) + c

(d)E = dnew - dold = a /* = dy */

Case I. Chosen E:

dnew = F(Xp+2,Yp+3/2)
= a(Xp+2) + b(Yp+3/2) + c

(d)NE = dnew - dold = a + b /*= dy – dx */

Update using dnew = dold + d

Case II.
Chosen NE:

(Xp, Yp) (Xp+1, Yp)

(Xp+1, Yp+1/2)

(Xp+1, Yp+1)

M

Q

E

NE

Midpoint criteria

Case EAST :

increment M by 1 in x
dnew= F(Mnew) = F(Xp + 2, Y + 1/2)
(d)E = dnew - dold = a = dy
(d)E = dy

Case NORTH-EAST:

increment M by 1 in both x and y
dnew= F(Mnew) = F(Xp + 2, Yp + 3/2)

(d)NE = dnew - dold = a + b = dy - dx
(d)NE = dy - dx

d = F(M) = F(Xp+1, Yp+1/2);

if d > 0 choose NE
else /* if d <= 0 */ choose E ;

Let's get rid of the fraction and see what
we end up with for all the variables:

What is dstart?

dstart = F(x0 + 1, y0 + 1/2)

= ax0 + a + by0 + b/2 + c

= F(x0, y0)+ a + b/2

= dy - dx/2

dstart = 2dy – dx ;

(d)E = 2dy ;

(d)NE = 2(dy - dx) ;

The Midpoint Line Algorithm

x = x0; y = y0;

dy = y1 - y0 ; dx = x1 - x0;

d = 2dy – dx;

(d)E = 2dy;

(d)NE = 2(dy - dx);

Plot_Point(x,y)

while (x < x1)
if (d <= 0) /* Choose E */

d = d + (d)E ;

else /* Choose NE */
d = d + (d)NE ;
y = y + 1

endif

x = x + 1 ;

Plot_Point(x, y) ;

end while

The Midpoint Line Algorithm (Contd.)

Example:

Starting point:
(5, 8)
Ending point:
(9, 11)

Successive
steps:

• d=2, (6, 9)

• d=0, (7, 9)

• d=6, (8, 10)

• d=4, (9, 11)
4 5 6 7 8 9 10 11

13

12

11

10

9

8

7

6

INIT: dy = 3; dx = 4; dstart=2;

(d)E = 6; (d)NE = -2;

We have considered lines in the first
Quadrant only.

What about
the rest?

4

3 2

1

8

76

5

How do you generalize this to the other
octants?

Octant Change

1 none

2 Switch roles of x & y

3 Switch roles of x & y; Use (4)

4 Draw from P1 to P0; Use (8)

5 Draw from P1 to P0

6 Draw from P1 to P0; Use (2)

7 Switch roles of x & y; Use (8)

8 Use y = y - 1.

4
3 2

1

8
76

5
Octant Change

1 None

2 Switch roles of x & y

3 Switch roles of x & y; Use (4)

4 Draw from P1 to P0; Use (8)

5 Draw from P1 to P0

6 Draw from P1 to P0; Use (2)

7 Switch roles of x & y; Use (8)

8 Use y = y - 1.

Draw from P1 to P0:

swap(P0, P1).

Use y = y - 1; dy = -dy;

Switch Roles of X & Y:

Swap (x1, y1);

Swap (x0, y0);

Swap (dx, dy);

plot_point(y, x);

Issues: Staircasing,
Fat lines, end-effects

and end-point ordering.

4 5 6 7 8 9 10

11
12

10
9
8
7
6

ANTI-ALIASING

0 1 2 3 4 5 6 7 8 9 10 11

5

4

3

2

1

0

Intersection of a line with a vertical
edge of the clip rectangle

X=Xmin

Y=Ymin

NE

E

M[Xmin, round(m.Xmin + b)]

[Xmin, m.Xmin + b]

P

Q

No problem in this case to round off the
starting point, as that would have been a point
selected by mid-point criteria too.

Select P by rounding the intersection point
coordinates at Q.

X=Xmin

Y=Ymin

NE

E
M[Xmin, round(m.Xmin + b)]

[Xmin, m.Xmin + b]
P

Q

X=Xmin

Y=Ymin

NE

E
M[Xmin, round(m.Xmin + b)]

[Xmin, m.Xmin + b]
P

Q

What about dstart?
If you initialize the algorithm from P, and

then scan convert, you are basically changing “dy”
and hence the original slope of the line.

Hence, start by initializing from d(M), the
mid-point in the next column, (Xmin+ 1), after
clipping).

Intersection of a shallow line with a
horizontal edge of the clip rectangle

X=Xmin Y=Ymin

AB

Y=Ymin-1

Intersection of line with edge and then
rounding off produces A, not B.

To get B, as a part of the clipped line:

Obtain intersection of line with (Ymin - 1/2)
and then round off, as

B = [round(X|Ymin-1/2), Ymin]

CIRCLE DRAWING

CIRCLE DRAWING

E

SE

Xp, Yp

M ME

MSE

Assume second octant

Now the choice is between pixels E and SE.

CIRCLE DRAWING

Only considers circles centered at the origin
with integer radii.

Can apply translations to get non-origin
centered circles.

Explicit equation: y = +/- sqrt(R2 - x2)

Implicit equation: F(x,y)= x2 + y2 - R2 =0

Note: Implicit equations used extensively
for advanced modeling

(e.g., liquid metal creature from
"Terminator 2")

Draw_circle(x, y)

begin
Plotpoint (x, y); Plotpoint (y, x);

Plotpoint (x, -y); Plotpoint (-y, x);

Plotpoint (-x, -y) ; Plotpoint (-y, -x);

Plotpoint (-x, y); Plotpoint (-y, x);
end

Use of Symmetry: Only need to calculate one
octant. One can get points in the other 7
octants as follows:

(X, Y)

(Y, X)

(-Y, X)

(X, -Y)(-X, -Y)

(-Y, -X)

(-Y, X)

(-X, Y)

MIDPOINT CIRCLE ALGORITHM
Will calculate points for the second octant.

Use draw_circle procedure to calculate the rest.

Now the choice is between pixels E and SE.

F(x, y) = x2 + y2 - R2 =0

F(x, y) > 0 if point is outside the circle

F(x, y) < 0 if point inside the circle.

Again, use dold = F(M) ;

F(M) = F(Xp + 1, Yp - 1/2)
= (Xp + 1)2 + (Yp - 1/2)2 - R2

(d)SE = dnew – dold
= F(Xp + 2, Yp - 3/2) - F(Xp + 1, Yp - 1/2)
= 2Xp – 2Yp + 5 ;

(d)E = dnew – dold
=F(Xp + 2, Yp - 1/2) - F(Xp + 1, Yp - 1/2)
= 2Xp + 3;

dstart = F(X0 + 1, Y0 - 1/2) = F(1, R - 1/2)
= 1 + (R - 1/2)2 - R2 = 1 + R2 - R + 1/4 - R2

= 5/4 - R

d >= 0 choose SE ; next midpoint: Mnew;
Increment + 1 in X, -1 in y; which gives dnew.

d < 0 choose E ; next midpoint: Mnew;
Increment + 1 in X; which gives = dnew.

To get rid of the fraction,
Let h = d - ¼ => hstart = 1 - R

Comparison is: h < -1/4.

Since h is initialized to and incremented
by integers, so we can just do with: h < 0.

E

SE

Xp, Yp

M ME

MSE

The Midpoint Circle algorithm:
(Version 1)

x = 0;
y = R;
h = 1 – R;

DrawCircle(x, y);

while (y > x)
if h < 0 /* select E */

h = h + 2x + 3;

else /* select SE */
h = h + 2(x - y) + 5;
y = y - 1;

endif

x = x + 1;
DrawCircle(x, y);

end_while

10

9

8

7

6

0 1 2 3 4 5 6 7 8 Example:
R = 10;

Initial Values:
h = 1 – R = -9;
X = 0; Y = 10;
2X = 0;
2Y = 20.

X, Y

2Y

2X
h

7654321K

(1, 10)

20

0

-6

(2, 10)

20

2

-1

(3, 10)

20

4

6

(4, 9)

20

6

-3

(5, 9)

18

8

8

(6, 8)

18

10

5

(7, 7)

16

12

6

Problems with this?

Requires at least 1 multiplication and
3 additions per pixel.

Why? Because (d)E and (d)SE
are linear functions and not constants.

Solution?
All we have to do is calculate the

differences for: (d)E and dSE (check if these
will be constants). Say, (d2)E and (d2)SE.

If we chose E, then we calculate (d2)E/E
and (d2)E/SE, based on this. Same if we choose
SE, then calculate (d2)SE/E and (d2)SE/SE.

If we chose E, go from (Xp, Yp) to (Xp + 1, Yp)

(d)E-old = 2Xp + 3, (d)E-new = 2Xp + 5.

Thus (d2)E/E = 2.

(d)SE-old = 2Xp – 2Yp + 5,

(d)SE-new = 2(Xp + 1) – 2Yp + 5

Thus (d2)E/SE = 2.

If we chose SE,
go from (Xp, Yp) to (Xp + 1, Yp - 1)

(d)E-old = 2Xp + 3, (d)E-new = 2Xp + 5.
Thus (d2)SE/E = 2.

(d)SE-old = 2Xp – 2Yp + 5,
(d)SE-new = 2(Xp + 1) – 2(Yp - 1) + 5

Thus (d2)SE/SE = 4.

So, at each step, we not only increment
h, but we also increment (d)E and (d)SE .

What are (d)E-start and (d)SE-start ?

(d)E-start = 2*(0) + 3 = 3 ;
(d)SE-start = 2*(0) - 2*(R) + 5

The MidPoint Circle Algorithm
(Version 2):

x = 0; y = radius;
h = 1 – R ;
deltaE = 3 ; deltaSE = -2*R + 5 ;

DrawCircle(x, y);

while (y > x)

if h < 0 /* select E */

h = h + deltaE ;

deltaE = deltaE + 2;
deltaSE= deltaSE + 2

else /* select SE */

h = h + deltaSE ;

deltaE = deltaE + 2 ;
deltaSE = deltaSE + 4
y = y – 1 ;

endif
x = x + 1 ;

DrawCircle(x, y) ;
end_while

10

9

8

7

6

0 1 2 3 4 5 6 7 8

X, Y
SE

E

h
7654321K

Example:
R = 10;
Initial Values:
X = 0; Y = 10;
h = 1 – R = -9;
E = 3;
SE = -15;

(1, 10)

-13

5

-6

(2, 10)

-11

7

-1

(3, 10)

-9

9

6

(4, 9)

-5

11

-3

(5, 9)

-3

13

8

(6, 8)

1

15

5

(7, 7)

5

17

6

X, Y
SE

E

h
7654321K

(1, 10)

-13

5

-6

(2, 10)

-11

7

-1

(3, 10)

-9

9

6

(4, 9)

-5

11

-3

(5, 9)

-3

13

8

(6, 8)

1

15

5

(7, 7)

5

17

6

X, Y

2Y

2X
h

7654321K

(1, 10)

20

0

-6

(2, 10)

20

2

-1

(3, 10)

20

4

6

(4, 9)

20

6

-3

(5, 9)

18

8

8

(6, 8)

18

10

5

(7, 7)

16

12

6

Comparison of the solutions with two different methods

ELLIPSE DRAWING

SCAN CONVERTING ELLIPSES
Y

Xa

b

-b

-a

Equation of Ellipse
centered at origin:

0baYaXbY)F(X, 222222
Length of the major axis: 2a;

and minor axis: 2b.

R1

R2
X

Y

slope = -1

Draw pixels in two regions R1 and R2,
to fill up the first Quadrant.

Points in other quadrants are obtained
using symmetry.

We need to obtain the point on the
contour where the slope of the curve is -1.

This helps to demarcate regions R1 and R2.

The choice of pixels in R1 is between E and SE,
whereas in R2, it is S and SE.

ĵ Y)(2a î X)2b(

ĵ
Y
f î

X
fYX,f grad

22

Y
f

X
f :R2 in

and
X
f

Y
f :R1 In

R1

R2
X

Y

slope = -1

0baYaXbY)F(X, 222222

At the region boundary point on the ellipse:

X
f

Y
f

Based on this condition,
we obtain the criteria when the next mid-point
moves from R1 to R2 :

1/2)(Ya1)(Xb p
2

p
2

When the above condition occurs,
we switch from R1 to R2.

Analysis in region R1:

Let the current pixel be (Xp, Yp); dold = F(M1);

For choice E (d<0):

dnew = F(Xp + 2, Yp - 1/2)
= b2(Xp + 2)2 + a2(Yp - 1/2)2 - a2b2

= dold + b2(2Xp + 3);

Thus, (d)E1 = b2(2Xp + 3);
For choice SE (d>0):

dnew = F(Xp + 2, Yp - 3/2)
= b2(Xp + 2)2 + a2(Yp - 3/2)2 - a2b2

= dold + b2(2Xp + 3) + a2(-2Yp + 2) ;

Thus, (d)SE1 = b2(2Xp + 3) + a2(-2Yp + 2) ;

F(M1) = dold = F(Xp + 1, Yp - 1/2)

= b2(Xp + 1)2 + a2(Yp - 1/2)2 - a2b2

Initial Condition:
In region R1, first point is (0, b).

Switch to Region R2, when:

1/2)(Ya1)(Xb pp 22

(dinit)R1 = F(1, b - 1/2) = b2 + a2(1/4 - b) ;

Let the last point in R1 be (Xk, Yk).

F(M2) = F(Xk + 1/2, Yk - 1)

= b2(Xk + 1/2)2 + a2(Yk - 1)2 - a2b2

= (dinit)R2

Problem with a fractional (floating point) value
for (dinit)R1 ?

For choice SE (d<0):
dnew = F(XK + 3/2, Yk - 2)

= b2(Xk + 3/2)2 + a2(Yk - 2)2 - a2b2

= dold + b2(2Xk + 2) + a2(-2Yk + 3);

Thus, (d)SE2 = b2(2Xk + 2) + a2(-2Yk + 3);

For choice S (d>0):

dnew = F(XK + 1/2, Yk - 2)
= b2(Xk + 1/2)2 + a2(Yk - 2)2 - a2b2

= dold + a2(-2Yk + 3);

Thus, (d)S2 = a2(-2Yk + 3);

Stop iteration, when Yk = 0;

F(M2) = dold = F(Xk + 1/2, Yk - 1)

= b2(Xk + 1/2)2 + a2(Yk - 1)2 - a2b2

void MidPointEllipse (int a, int b, int value);
{

double d2; int X = 0; int Y = 0;
sa = sqr(a); sb = sqr(b);
double d1 = sb – sa*b + 0.25*sa;

EllipsePoints(X, Y, value);
/* 4-way symmetrical pixel plotting */

while (sa*(Y - 0.5) > sb*(X + 1))
/*Region R1 */

{ if (d1 < 0) /*Select E */
d1 += sb*((X<<1) + 3);

else /*Select SE */
{ d1 += sb*((X<<1) + 3) + sa*

(-(Y<<1) + 2); Y-- ; }
X++ ; EllipsePoints(X, Y, value);

}

double d2 = sb*sqr(X + 0.5) +
sa*sqr(Y - 1) - sa*sb;

while (Y > 0) /*Region R2 */

{ if (d2 < 0) /*Select SE */
{ d2 += sb*((X<<1) + 2) +

sa*(-(Y<<1) + 3);
X++; }

else /*Select S */
d2 += sa*(-(Y<<1) + 3);

Y-- ; EllipsePoints(X, Y, value);
}

}

In some cases the quality of
the picture is not satisfactory

