

Course Delivery Plan Department of Computer Science and Engineering

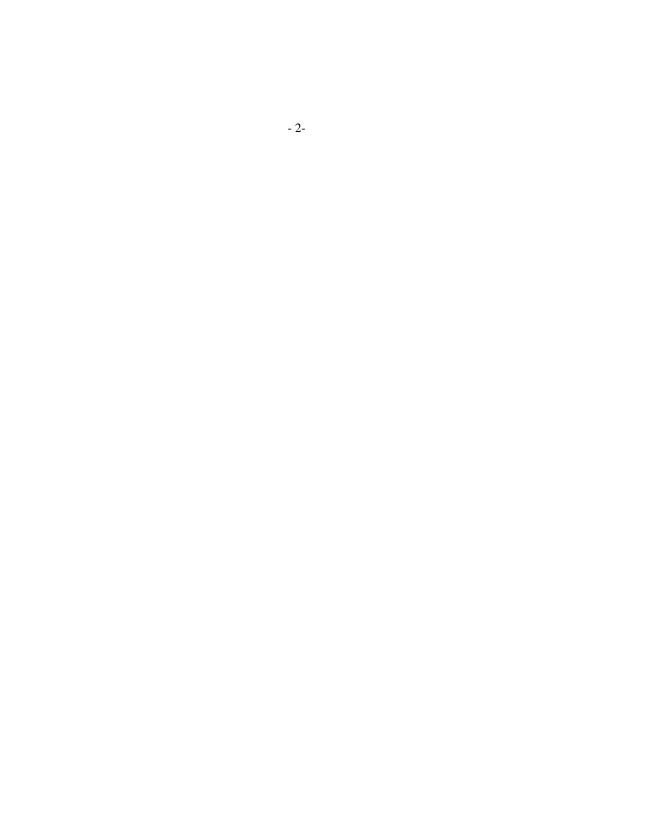
Semester: Summer-2020

Credit Hours:3

Course Code : CSE 234 Course Title : Numerical Methods Course Intended Learning Outcome: Students will be able to

- 1. Solve algebraic or transcendental equations using appropriate numerical methods
- 2. Approximate functions using appropriate numerical methods
- 3. Solve differential equations using appropriate numerical methods
- 4. Evaluate derivatives at a point using appropriate numerical methods
- 5. Solve system of linear equations using appropriate numerical methods
- 6. Perform error analysis for a given numerical method
- 7. Prove results for numerical root finding methods
- 8. Model engineering systems using first and second order differential equations, and solve the equations both analytically and numerically
- 9. Calculate definite integrals using appropriate numerical methods
- 10. Code numerical methods in a modern computer language

Week No	Topics	Expected Learning Outcome	Assessments(ASSN/ CT/Mid/Final)
WK1	a. Introduction and error analysis b. Bisection method to solve algebraic and transcendental equations with algorithm	a. Appreciate the needs of numerical analysisb. Visualize the applicationsc. perform an error analysis for a given numerical method	
WK2	a. Newton Raphson method to solve algebraic and transcendental equations with algorithm	 a. prove results for various numerical root finding methods b. perform an error analysis for a given numerical method c. code a numerical method in a modern computer language 	2/3 problems related to discussion in the class
WK3	Difference Method	 a. approximate a function using an appropriate numerical method b. code a numerical method in a modern computer language 	CLASS TEST1 (Up-to last class of the week)
WK4	difference Method.	 a. approximate a function using an appropriate numerical method b. able to use in cryptography 	2/3 problems related to discussion in the class
WK5	 a. Lagrange Interpolation Formula b. Numerical Differentiation: maximum and minimum value of a tabulated functions 	a. approximate a function using an appropriate numerical method b. able to forecast missing data	
WK6	 a. Maximum and minimum value of a tabulated functions b. Review discussion 	a. able to find maximum and minimum value of a tabulated functions.	CLASS TEST2
WK7	midterm week	midterm week	MIDTERMEXAM
WK8	a. Curve fitting: Least square method for linear and non-linear case	a. Construct a curve or mathematical function that has the best fit to a series of data points.	PRESENTATION


Theory Session Plan:

	Course Denvery Flun				
	a. Derivation of General Formula	a coloulate a definite integral			
	Numerical Integration	a. calculate a definite integral			
WK09	for	using an appropriate	CLASS TEST3		
	Simpson's 1/3 rule	numerical method			
	1				
	a. Numerical solution of				
	ordinary				
	differential equations: Runge-kutta				
		a. solve a differential equation			
WK10	method of 4thorder	using an appropriate			
WIXI0	method of 4morder	0 11 1			
		numerical method			
	a Background of matrix	a solva a linear system of	7/3 problems		
WK11	a. Background of matrix	a. solve a linear system of equations using an	2/3 problems related to		
	solving systems of Linear		discussion in the		
		appropriate numerical method	Class		
	Equations	a. able to find solution of linear			
WK12	Gauss Method	system			
		b. find the dominant Eigen -values			
	final exam week				
WK13		final exam week	FINALEXAM		

Text Book(s):

- Numerical Analysis by Burden & Faires , 5th edition
 Introductory Methods of Numerical Analysis, S.S Sastry, 5th edition
 Numerical Methods in Engineering, J. Kiusalaas

