CURVE

REPRESENTATION

Representation

Non-parametric
form: $y=f(X)$
\downarrow
Implicit form:
$f(x, y)=0$

Explicit form:
$\mathbf{y}=\mathbf{m x}+\mathbf{b}$

Parametric form:

$$
\begin{aligned}
& x=x(t) \\
& y=y(t)
\end{aligned}
$$

$2^{\text {nd }}$ degree implicit representation:

$$
a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0
$$

Any guess, why the factor $\mathbf{2}$ is used ?

This form of the expression, with the coefficients, provide a wide variety of 2D curve forms called:

CONIC SECTIONS

Parabola- cutting plane parallel to side of cone.

Circle and Ellipse

Hyperbolas
PARABOLA
directrix
directrix

$$
x=-a
$$

$$
x=a / e
$$

CONIC SECTIONS

ELLIPSE

$y^{2}=4 a x ; a>0$
Focus: $(a, 0)$;
Directrix $=-a$.
eccentricity, $e=1$
$x=a t^{2} ; y= \pm 2 a t$.
or
$x=\tan ^{2}(\phi) ;$
$y= \pm 2 \sqrt{a \tan (\phi)}$.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 ; \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& e>1 ; \text { Foci }:(\pm a e, 0) .
\end{aligned}
$$

Directrices : $x= \pm a / e ;$
$x=a \sec (t)$,
$y=b \tan (t) ;$
$-\pi / 2<t<\pi / 2$.
Rectangular
Hyperbola :
$\mathrm{e}=\sqrt{2 ;} \boldsymbol{x}=c t ; y=c / t$.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ;$
$a \geq b>0$.
$b^{2}=a^{2}\left(1-e^{2}\right) ;$
$0 \leq e \leq 1$.
Foci : $\pm a e, 0)$;
Directrices : $x= \pm a / e$.
$x=a \cos (t)$,
$y=b \sin (t) ;$
$t \in[-\pi, \pi]$.

Ellipse (e=1/2), parabola (e=1) and hyperbola (e=2) with fixed focus F and directrix.

For circle, e $=0$.

Polar Equation of a conic (home assignment):

$$
r=\frac{e \cdot L}{1+e \cos (\theta)}, \quad \text { where, } L=\operatorname{dist}(F, d)
$$

F - Focal Point; d - Directrix;
e - Eccentricity.

Condns: Focal point at Origin;
e.L $=l$; is called the "semi-latus rectum".

$a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0$

If the conic passes through the origin: $\mathbf{f}=\mathbf{0}$.
Assuming, one of the parameters to be a constant, $\mathrm{c}=1.0$, $\mathrm{f}=1.0$

Remaining 5 Coeffs. may be obtained using 5 geometric conditions:

Say:
Boundary Conditions -

- two (2) end points
- slope of the curves at two (2) end points.
and
- one (1) intermediate point

Generalized CONIC

$a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0$

Re-organize:

$$
\begin{aligned}
& \text { as } \boldsymbol{X S} \boldsymbol{X}^{\boldsymbol{T}}=0, \text { S is symmetric } \\
& \Rightarrow\left[\begin{array}{lll}
\boldsymbol{x} & \boldsymbol{y} & 1
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{d} \\
\boldsymbol{b} & \boldsymbol{c} & \boldsymbol{e} \\
\boldsymbol{d} & \boldsymbol{e} & \boldsymbol{f}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]=0 \\
& \text { or } \\
& \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{\boldsymbol{T}}+\boldsymbol{G X}+\boldsymbol{f}=0
\end{aligned}
$$

Special Conditions:

If $b^{2}=a c$, the equation represents a PARABOLA;

If $b^{2}<a c$, the equation represents an ELLIPSE;

If $b^{2}>a c$, the equation represents a HYPERBOLA.

SPACE CURVE (3-D)

Explicit non-parametric representation:

$$
x=x_{r} \quad y=f(x), z=g(x) .
$$

Non-parametric implicit representation:

$$
f(x, y, z)=0, \quad g(x, y, z)=0 .
$$

Intersection of the above two surfaces represents a curve.

Examples:

$$
x=t^{3}, y=t^{2}, z=t
$$

A parametric space curve:

$$
x=x(t), y=f(t), z=g(t) .
$$

Curve on the seam of a baseball:

$$
\begin{aligned}
& x=\lambda[a \cdot \cos (\theta+\pi / 4)-b \cdot \cos 3(\theta+\pi / 4)], \\
& y=\mu[a \cdot \sin (\theta+\pi / 4)-b \cdot \sin 3(\theta+\pi / 4)], \\
& z=c \cdot \sin (2 \theta) . \\
& \lambda=1+d \cdot \sin (2 \theta)=1+d(z / c), \\
& \mu=1-d \cdot \sin (2 \theta)=1-d(z / c) ; \\
& \theta=2 \pi t, 0 \leq t \leq 1.0 .
\end{aligned}
$$

where,

$$
\begin{aligned}
& x=r \cdot \cos (t), y=r \cdot \sin (t), z=b t \\
& b \neq 0,-\infty<t<\infty
\end{aligned}
$$

PARAMETRIC CUBIC CURVES

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}, \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}, \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z} .
\end{aligned}
$$

$Q(t)=\left[\begin{array}{lll}x(t) & y(t) & z(t)\end{array}\right]=T . C$,
where, $T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$ and $C=\left[\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z}\end{array}\right]$

PARAM=TRIC CUBIC Splines

$x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}$
$y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}$, $z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}$.

Spline curve refers to any composite curve, formed with Polynomial sections, satisfying specific continuity conditions (1st and $2^{\text {nd }}$ derivatives) at the boundary of the pieces.

$$
P(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T . C F,
$$

To solve for:

$$
C F=T^{-1} P ;
$$

where, $T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$ and $C F=\left[\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z}\end{array}\right]$

What do you need ??

$P(t)=\left[\begin{array}{lll}x(t) & y(t) & z(t)\end{array}\right]=T . C F$,

To solve for:

$$
C F=T^{-1} P
$$

where, $T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$ and $C F=\left[\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z}\end{array}\right]$

You need four (4) boundary conditions ??
$P(t)=A t^{3}+B t^{2}+C t+D ; 0 \leq t \leq 1$.
$P(t)=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\left[\begin{array}{c}A \\ B \\ C \\ D\end{array}\right] ;\right.$
Hermite Boundary Gonditions:

$$
\begin{aligned}
& P(0)=P_{0} ; P(1)=P_{1} ; \\
& P^{\prime}(0)=D P_{0} ; P^{\prime}(1)=D P_{1} ;
\end{aligned}
$$

$$
P(t)=A t^{3}+B t^{2}+C t+D ; \quad 0 \leq t \leq 1
$$

$P(0)=P_{0} ; P(1)=P_{1} ;$

$$
P^{\prime}(0)=D P_{0} ; P^{\prime}(1)=D P_{1} ;
$$

Solve to get;

$$
\left[\begin{array}{c}
P(0) \\
P(1) \\
D P(0) \\
D P(1)
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D
\end{array}\right] ;
$$

$$
\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
P(0) \\
P(1) \\
D P(0) \\
D P(1)
\end{array}\right]=M_{H} G(=C F) ;
$$

In general:

$Q(t)=\left[\begin{array}{lll}x(t) & y(t) & z(t)\end{array}\right]=T . M . G$, where, $T=\left[\begin{array}{llll}\mathbf{t}^{3} & \mathbf{t}^{2} & \mathbf{t} & 1\end{array}\right]$,
$\mathbf{M}=\left[m_{i j}\right]_{4 \times 4}$ and $G=\left[\begin{array}{llll}g_{1} & g_{2} & g_{3} & g_{4}\end{array}\right]^{T}$
M is a 4×4 basis matrix and G is a four element column vector of geometric constants, called the geometric vector.

The curve is a weighted sum of the elements of the geometry matrix.

The weights are each cubic polynomials of t , and are called the blending functions:

$$
\mathrm{B}=\mathrm{T} . \mathrm{M} .
$$

CUBIC SPLINES

$$
\boldsymbol{P}(\boldsymbol{t})=\sum_{i=1}^{4} \boldsymbol{B}_{i} \boldsymbol{t}^{i-1} ; \boldsymbol{t}_{\boldsymbol{i}} \leq \boldsymbol{t} \leq \boldsymbol{t}_{2} .
$$

$P(t)$ is the

 position vector of any point on the cubic spline segment.$P(t)=[x(t), y(t), z(t)]$
or $[r(t), \theta(t), z(t)]$
or $[r(t), \theta(t), \phi(t)]$

Cartesian
Cylindrical
Spherical

$$
\begin{aligned}
& \boldsymbol{x}(\boldsymbol{t})=\sum_{i=1}^{4} \boldsymbol{B}_{i x} \boldsymbol{t}^{\boldsymbol{i}-1} \\
& \boldsymbol{y}(\boldsymbol{t})=\sum_{\boldsymbol{i}=1}^{4} \boldsymbol{B}_{i \boldsymbol{y}} \boldsymbol{t}^{\boldsymbol{i}-1} \mid \boldsymbol{t}_{1} \leq \boldsymbol{t} \leq \boldsymbol{t}_{2} \\
& \boldsymbol{z}(\boldsymbol{t})=\sum_{\boldsymbol{i}=1}^{4} \boldsymbol{B}_{\boldsymbol{i} \boldsymbol{z}} \boldsymbol{t}^{\boldsymbol{i}-1}
\end{aligned}
$$

Use boundary conditions to evaluate the coeficients

$$
\begin{gathered}
P(t)=B_{1}+B_{2} t+B_{3} t^{2}+B_{4} t^{3}, \\
t_{1} \leq t \leq t_{2}
\end{gathered}
$$

$$
\begin{aligned}
& P^{\prime}(t)=\sum_{i=1}^{4}(i-1) B_{i} t^{i-2} \\
& =B_{2}+2 B_{3} t+3 B_{4} t^{2}
\end{aligned}
$$

$$
\text { Let, } \mathrm{t}_{1}=0 \text { : }
$$

$$
\begin{array}{ll}
P(0)=P_{1} ; \quad P\left(t_{2}\right)=P_{2} . \\
P^{\prime}(0)=P_{1}^{\prime} ; & P^{\prime}\left(t_{2}\right)=P_{1}^{\prime} .
\end{array}
$$

$$
B_{1}=P_{1} ; B_{2}=P_{1}^{\prime} ;
$$

Solutions:

$$
\begin{aligned}
& B_{1}+B_{2} t_{2}+B_{3} t_{2}^{2}+B_{4} t_{2}^{3}=P\left(t_{2}\right) ; \\
& B_{2}+2 B_{3} t_{2}+3 B_{4} t_{2}^{2}=P^{\prime}\left(t_{2}\right) ;
\end{aligned}
$$

$B_{3}=$
 $B_{4}=$

Equation of a single cubic spline segment:

$$
P(t)=P_{1}+P_{1}^{\prime} t+\left[\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2 P_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}}\right] t^{2}
$$

$$
+\left[\frac{2\left(P_{1}-P_{2}\right)}{t_{2}^{3}}+\frac{P_{1}^{\prime}}{t_{2}^{2}}+\frac{P_{2}^{\prime}}{t_{2}^{2}}\right] t^{3} ;
$$

$$
P(u)=\sum_{k=0}^{د} g_{k} H_{k}(u)
$$

$$
P(t)=P_{1}\left(2 t^{3}-3 t^{2}+1\right)+P_{2}\left(-2 t^{3}+3 t^{2}\right)
$$

$$
+P_{1}^{\prime}\left(t^{3}-2 t^{2}+t\right)+P_{2}^{\prime}\left(t^{3}-t^{2}\right)
$$

Various other approaches used are:

- Normalized Cubic splines
- Blending
- Weighting functions.

Equation of a

normalized cubic spline segment:

$$
\begin{aligned}
& B=T \cdot M \\
& P(t)=T \cdot M \cdot G=
\end{aligned}
$$

$$
\text { Use, } \mathrm{t}_{2}=1 \text {; }
$$

Remember, The derivation:

$$
\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
3 & 2 & 1 & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
P(0) \\
P(1) \\
D P(0) \\
D P(1)
\end{array}\right]=M_{H} G(=C F) ;
$$

Equation of a single cubic spline segment:

$$
\text { and } G=\left[\begin{array}{llll}
g_{1} & g_{2} & g_{3} & g_{4}
\end{array}\right]^{T} \text {; }
$$

For piece-wise continuity for complex curves, two or more curve segments are joined together.

In that case, use second derivative $\mathrm{P}_{2}{ }^{\mu}(\mathrm{t})$ at end-points (joints).

$$
\begin{aligned}
& P(t)=P_{1}+P_{1}^{\prime} t+\left[\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2 P_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}}\right] t^{2} \\
& +\left[\frac{\mathbf{2}\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{2}\right)}{\boldsymbol{t}_{2}^{3}}+\frac{\boldsymbol{P}_{1}^{\prime}}{\boldsymbol{t}_{2}^{\mathbf{2}}}+\frac{\boldsymbol{P}_{2}^{\prime}}{\boldsymbol{t}_{2}^{2}}\right] \boldsymbol{t}^{3} ;
\end{aligned}
$$

Cubic Polynomial - why and how ?

The degree three polynomial - known as a cubic polynomial - is the one that is most typically chosen for constructing smooth curves in computer graphics.

It is used because:

1. it is the lowest degree polynomial that can support an inflection

- so we can make interesting curves, and

2. it is very well behaved numerically - that means that the curves will usually be smooth like this:
and not jumpy like this:

$$
a+b x+c x^{2}+d x^{3}=y
$$

$$
(-1,2) ;(0,0) ;(1,-2) ;(2,0)
$$

Solution for the Coefficients can be given as:

What do we do here - even 3 rd degree is insufficient.
What about degree five, with how many extra control points ??
Three factors in the design:

- Actual Degree/order in the response of the system ??
- No. of Control Points
- Degree of the Polynomial ?

Piecewise polynomial curves:

$\mathrm{P}_{1}{ }^{\prime}$ and $\mathrm{P}_{3}{ }^{\prime}$ known,

 But what about P_{2}^{\prime} ?$$
\begin{aligned}
& P^{\prime \prime}(t)=\sum_{i=1}^{4}(i-1)(i-2) B_{i} t^{i-3} \\
& =2 B_{3}+6 B_{4} t
\end{aligned}
$$

$$
P^{\prime \prime}\left(t_{2}\right)=2 B_{3}+6 B_{4} t_{2}=P^{\prime \prime}(0)=2 \bar{B}_{3}
$$

$$
\begin{aligned}
& B_{3}=\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2 P_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}} ; \\
& B_{4}=\frac{2\left(P_{1}-P_{2}\right)}{t_{2}^{3}}+\frac{P_{1}^{\prime}}{t_{2}^{2}}+\frac{P_{2}^{\prime}}{t_{2}^{2}} ;
\end{aligned}
$$

$$
\left.6 t_{2}\left[\frac{2\left(P_{1}-P_{2}\right)}{t_{2}^{3}}+\frac{p_{1}^{\prime}}{t_{2}^{2}}+\frac{P_{2}^{\prime}}{t_{2}^{2}}\right]+2 \frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2 p_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}}\right]=2\left[\begin{array}{ll}
3\left(P_{3}-P_{2}\right) & 2 p_{2}^{\prime} \\
t_{3}^{2} & \left.-\frac{p_{3}^{\prime}}{t_{3}}-\frac{t_{3}^{\prime}}{t_{3}}\right]
\end{array}\right.
$$

Multiplying both sides by $\mathrm{t}_{2} \mathrm{t}_{3}$

Generalized equation for any two adjacent

 cubic spline segments, $P_{k}(t)$ and $P_{k+1}(t)$:For first segment:

$$
\begin{aligned}
& P_{k}(t)=P_{k}+P_{k}^{\prime} t+\left[\frac{3\left(P_{k+1}-P_{k}\right)}{t_{k+1}^{2}}-\frac{2 P_{k}^{\prime}}{t_{k+1}}-\frac{P_{k+1}^{\prime}}{t_{k+1}}\right] t^{2} \\
& +\left[\frac{2\left(P_{k}-P_{k+1}\right)}{t_{k+1}^{3}}+\frac{P_{k}^{\prime}}{t_{k+1}^{2}}+\frac{P_{k+1}^{\prime}}{t_{k+1}^{2}}\right] t^{3} ;
\end{aligned}
$$

For second
segment: $P_{k+1}(t)=P_{k+1}+P_{k+1}^{\prime} t+\left[\frac{3\left(P_{k+2}-P_{k+1}\right)}{t_{k+2}^{2}}-\frac{2 P_{k+1}^{\prime}}{t_{k+2}}-\frac{P_{k+2}^{\prime}}{t_{k+2}}\right] t^{2}$

$$
+\left[\frac{2\left(P_{k+1}-P_{k+2}\right)}{t_{k+2}^{3}}+\frac{P_{k+1}^{\prime}}{t_{k+2}^{2}}+\frac{P_{k+2}^{\prime}}{t_{k+2}^{2}}\right] t^{3} ;
$$

Curvature Continuity ensured as:

$$
t_{k+2} P_{k}^{\prime}+2\left(t_{k+1}+t_{k+2}\right) P_{k+1}^{\prime}+t_{k+1} P_{k+2}^{\prime}=\frac{3}{t_{k+1} t_{k+2}}\left[t_{k+1}^{2}\left(P_{k+2}-P_{k+1}\right)+t_{k+2}^{2}\left(P_{k+1}-P_{k}\right)\right]
$$

Equation of a normalized cubic spline segment:

$F=T . N ;$
Use, $\mathrm{t}_{\mathbf{2}}=\mathbf{1}$;
$P(t)=T . N . G=$
$=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}P_{k} \\ P_{k+1} \\ P_{k}^{\prime} \\ P_{k+1} \prime^{\prime}\end{array}\right]$
For curvature Continuity:

$$
P_{k}^{\prime}+4 P_{k+1}^{\prime}+P_{k+2}^{\prime}=3\left[P_{k+2}-P_{k}\right]
$$

The Hermite Splines

$$
P(t)=P_{1}\left(2 t^{3}-3 t^{2}+1\right)+
$$

$$
P_{2}\left(-2 t^{3}+3 t^{2}\right)
$$

$$
+P_{1}^{\prime}\left(t^{3}-2 t^{2}+t\right)
$$

$$
+P_{2}^{\prime}\left(t^{3}-t^{2}\right)
$$

For curvature Continuity:

$$
P_{k}^{\prime}+4 P_{k+1}^{\prime}+P_{k+2}^{\prime}=3\left[P_{k+2}-P_{k}\right]
$$

For three control points (knots) this works as:

In general:

$$
P_{2}^{\prime}=\left[3\left(P_{3}-P_{1}\right)-P_{1}^{\prime}-P_{3}^{\prime}\right] / 4
$$

$$
t_{k+2} P_{k}^{\prime}+2\left(t_{k+1}+t_{k+2}\right) P_{k+1}^{\prime}+t_{k+1} P_{k+2}^{\prime}=\frac{3}{t_{k+1} t_{k+2}}\left[t_{k+1}^{2}\left(P_{k+2}-P_{k+1}\right)+t_{k+2}^{2}\left(P_{k+1}-P_{k}\right)\right]
$$

For N points ??
For 3 points - 1 Eqn. (\& 1 unknown)
For 4 points - 2 eqns. ($\& 2$ unknowns)
-
,
For N points - ($\mathrm{N}-2$) eqns. ($\& \mathrm{~N}-2$ unknowns)
Write the eqn. set for $\mathrm{N}=5$; in matrix form.

Thomas Algm.
$P_{k}{ }^{\prime}+4 P_{k+1}^{\prime}+P_{k+2}^{\prime}=3\left[P_{k+2}-P_{k}\right] \quad$ Lets solve for $\mathrm{N}=4 ;$

Re-arrange to get:
$P_{1}^{\prime}+4 P_{2}^{\prime}+P_{3}^{\prime}=3\left[P_{3}-P_{1}\right] ;$
$P_{2}^{\prime}+4 P_{3}^{\prime}+P_{4}^{\prime}=3\left[P_{4}-P_{2}\right]$
$\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}P_{2}^{\prime} \\ P_{3}^{\prime}\end{array}\right]=\left[\begin{array}{l}3\left(P_{3}-P_{1}\right)-P_{1}^{\prime} \\ 3\left(P_{4}-P_{2}\right)-P_{4}^{\prime}\end{array}\right] ;$
$\left[\begin{array}{l}P_{2}^{\prime} \\ P_{3}^{\prime}\end{array}\right]=(1 / 15)\left[\begin{array}{cc}4 & -1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}3\left(P_{3}-P_{1}\right)-P_{1}^{\prime} \\ 3\left(P_{4}-P_{2}\right)-P_{4}^{\prime}\end{array}\right]$
倠rohlem: The position vectors of a normalized cubic spline are given as (00), ($1 \mathbf{1}$), ($2-1$) and (30). The tangent vectors at the ends are both (1 1).

Golfic: The 2 internal tangent vectors are calculated, and both are equal to (1-0.8).

Gubic spline curve

Examples of spline interpolation

Using $2^{\text {nd }}$ derivative smoothing

Other Variants:

- Cardinal Splines;
- Catmul-Rom splines
- Irvine-Hall Splines
- T-spline
- B-spline

BEZZIER CURVES

- Basis functions are real
- Degree of polynomial is one less than the number of points
- Curve generally follows the shape of the defining polygon
- First and last points on the curve are coincident with the first and last points of the polygon
- Tangent vectors at the ends of the curve have the same directions as the respective spans
- The curve is contained within the convex hull of the defining polygon
- Curve is invariant under any affine transformation.

A few typical examples of cubic polynomials for Bezier

BEZZIER CURVES

Equation of a parametric Bezier curve:

$$
P(t)=\sum_{i=0}^{n} B_{i} J_{n, i}(t) ; 0 \leq t \leq 1
$$

B_{i} 's are called the control points;
where the Bezier or Bernstein basis or blending function is:

Binomial Coefficients:

(ith, n th-order Bernstein basis function)

$$
\begin{aligned}
& J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} \\
& \binom{n}{i}=\frac{n!}{i!(n-i)!}
\end{aligned}
$$

$\mathrm{J}_{\mathrm{n}, \mathrm{i}}(\mathrm{t})$ is the $i \mathrm{th}, \boldsymbol{n t h}$ order Bernstein basis function.
n is the degree of the defining Bernstein basis function (polynomial curve segment).

This is one less than the number of points used in defining Bezier polygons.

$$
\boldsymbol{P}(t)=\sum_{i=0}^{n} \boldsymbol{B}_{i} \boldsymbol{J}_{n, i}(\boldsymbol{t}) ; \quad 0 \leq \boldsymbol{t} \leq 1
$$

$$
J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ;
$$

$$
\text { Limits for } i=0 \text { : }
$$

$$
0^{0}=1 ; 0!=1
$$

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

$$
J_{n, 0}(0)=\frac{n!}{0!n!} 0^{0}(1-0)^{n-0}=1 ;
$$

For $i \neq 0: \quad J_{n, i}(0)=\frac{n!}{i!(n-i)!} 0^{i}(1-0)^{n-i}=0$;

Also:

$$
\begin{aligned}
& \boldsymbol{J}_{n, n}(1)=1, \boldsymbol{i}=\boldsymbol{n} ; \\
& \boldsymbol{J}_{\boldsymbol{n}, \boldsymbol{i}}(1)=0, \boldsymbol{i} \neq \boldsymbol{n} .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \boldsymbol{P}(0)=\boldsymbol{B}_{0} \boldsymbol{J}_{n, 0}(0)=\boldsymbol{B}_{0} . \\
& \boldsymbol{P}(1)=\boldsymbol{B}_{n} \boldsymbol{J}_{n, n}(1)=\boldsymbol{B}_{n} .
\end{aligned}
$$

For any t:

$$
\sum_{i=0}^{n} J_{n, i}(t)=1
$$

Also Verify:

$$
\begin{aligned}
& J_{n, i}(t)= \\
& (1-t) . J_{(n-1), i}(t)+t . J_{(n-1),(i-1)}(t) ; n>i \geq 1
\end{aligned}
$$

Below are some examples of BBF

 (Bezier / Bernstein blending functions:
n = 3 (cubic)

$$
J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; \quad\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

Take $\mathrm{n}=3$:

$$
\begin{aligned}
\binom{n}{i}=\binom{3}{i}=\frac{6}{i!(3-i)!} & J_{3,0}(t)=1 \cdot t^{0}(1-t)^{3}=(1-t)^{3} ; \\
& J_{3,1}(t)=3 \cdot t \cdot(1-t)^{2} ; \\
& J_{3,2}(t)=3 \cdot t^{2} .(1-t) ; \\
& J_{3,3}(t)=t^{3} .
\end{aligned}
$$

$$
\boldsymbol{P}(\boldsymbol{t})=(1-\boldsymbol{t})^{3} \boldsymbol{B}_{0}+3 \boldsymbol{t}(1-\boldsymbol{t})^{2} \boldsymbol{B}_{1}+3 \boldsymbol{t}^{2}(1-\boldsymbol{t}) \boldsymbol{B}_{2}+\boldsymbol{t}^{3} \boldsymbol{B}_{3}
$$

Thus, for
Cubic ${ }^{\text {Eerier: }}=\left[\begin{array}{llll}\boldsymbol{t}^{3} & \boldsymbol{t}^{2} & \boldsymbol{t} & 1\end{array}\right]\left[\begin{array}{cccc}3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}\boldsymbol{B}_{1} \\ \boldsymbol{B}_{2} \\ \boldsymbol{B}_{3}\end{array}\right] ; \boldsymbol{n}=3$.

$$
P(t)=T . N . G=
$$

For

$$
=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
P_{k} \\
P_{k+1} \\
P_{k}{ }^{\prime} \\
P_{k+1}{ }^{\prime}
\end{array}\right]^{T}
$$

For $\mathrm{n}=4$:

$$
\begin{aligned}
& P(t)=\left[\begin{array}{lllll}
t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & -4 & 6 & -4 & 1 \\
-4 & 12 & -12 & 4 & 0 \\
6 & -12 & 6 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3} \\
B_{4}
\end{array}\right] \\
& =T . N . G=F . G ;
\end{aligned}
$$

where:

$$
\begin{gathered}
F=\left[\begin{array}{ll}
J_{n, o}(t) & \left.J_{n, 1}(t) \quad \ldots \ldots . . J_{n, n}(t)\right] \\
N=\left[\lambda_{i j}\right]_{n x n}
\end{array}\right]
\end{gathered}
$$

where:

$$
\lambda_{i j}= \begin{cases}\binom{\boldsymbol{n}}{\boldsymbol{j}}\binom{\boldsymbol{n}-\boldsymbol{j}}{\boldsymbol{n}-\boldsymbol{i}-\boldsymbol{j}}(-1)^{n-i-\boldsymbol{j}} & 0 \leq(\mathrm{i}+\mathrm{j}) \leq \mathrm{n} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; \\
& \binom{n}{i}=\frac{n!}{i!(n-i)!}
\end{aligned}
$$

Computation of

successive binomial coefficients:

$$
\binom{n}{i}=\left(\quad\binom{n}{i-1}\right.
$$

Home Assignment:
Get the expressions of $\mathrm{J}_{2, i}$ and $\mathrm{J}_{4, i}$

Bezier Basis Functions

Bezier Curve Examples

Recursive geometric definition of BEZIIER CURVES

If, $N>3 ? ?$
P_{2}

Recursive Bezier Curve Example

Iterative Bezier Curve Animation

Iterative Higher-order Bezier Curve Animation

More to follow:

- B-splines represented as blending functions
- Conversion between one format to another.
- Knots and control points.
- When B-spline becomes a Bezier?

QUADRICS - 3-D analogue of conics:
$A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F_{z x}+G x+H y+J z+K=0$

Basis Splines (B-splines):

- a generalisation of a Bézier curve, avoids the Runge phenomenon without increasing the degree of the B-spline

The blue curve is a 5th-order interpolating polynomial (using six equally-spaced interpolating points).

The green curve is a 9th-order interpolating polynomial (using ten equally-spaced interpolating points).

At the interpolating points, the error between the function and the interpolating polynomial is (by definition) zero.

Between the interpolating points (especiall) in the region close to the endpoints 1 and -1), the error between the function and the interpolating polynomial gets worse for higher-order polynomials.

Limitations of Bezier Curves:

- Not enough flexibility
- Higher degree with more No. of control points
- Larger degree has instability, numerical errors, and computational costly
- Not enough local control (global effect of change).

In mathematics, a spline is a special function defined piecewise by polynomials.

Spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low-degree polynomials, while avoiding Runge's phenomenon for higher degrees.

$N_{i, k}$ (i-th B-spline blending function, of order k) is a polynomial of order k (degree $k-1$) on each interval:

$$
t_{i}<t<t_{i+k^{2}}
$$

k must be at least 2 (linear) and can be not more, than $p+1$ (the number of control points $=\mathbf{n}$ in Fig. above).

A knot vector $\left(t_{0}, t_{1, \ldots}, t_{p+k}\right)$ must be specified. Across the knots basis, functions are C^{k-2} continuous.

The form of a B-spline curve is very similar to that of a Bézier curve. However, unlike a Bézier curve, a B-spline curve involves more information, namely:

- a set of P control points,
- a knot vector of \boldsymbol{m} knots, and
- a degree n (i.e. order $n+1$).

Note that n, m and p must satisfy $m=n+p+1$. More precisely, if we want to define a B-spline curve of degree n with p control points, we have to supply $n+p+1$ knots:

$$
t_{0 r} t_{1 /} \cdots+r t_{n+p+1}
$$

On the other hand, if a knot vector of m knots and p control points are given, the degree of the B-spline curve is:

$$
n=m-p-1 \quad \text { or } \quad m-(p+1)
$$

Basis Splines (B-splines):

- Degree is independent of the No. of control Points
- Local Control over Shape
- More complex than Bezier

Given m values $t_{i} \in[0,1]$, called knots, with $t_{0} \leq t_{1} \leq \cdots \leq t_{m-1}$
a B -spline of degree \boldsymbol{n} is a parametric curve $\mathrm{S}:\left[t_{n}, t_{m-n-1}\right] \rightarrow \mathbb{R}^{d}$
composed of linear combination of basis B-splines $\boldsymbol{b}_{i, n}$
(of degree n):

$$
\mathbf{S}(t)=\sum_{i=0}^{m-n-2} \mathbf{P}_{i} b_{i, n}(t), t \in\left[t_{n}, t_{m-n-1}\right]
$$

$1 \leq n \leq p$
$/ *$ unnecessary
The P_{i} are called control points or de Boor points (there are m-n-1 control points). A polygon can be constructed by connecting the de Boor points with lines, starting with P_{0} and finishing with P_{m-n-2}. This polygon is called the de Boor polygon.

The $m-n-1$ basis B-splines of degree n
for $n=0,1, \ldots,(m-2)$, can be defined using the Cox-de Boor recursion formula: $b_{j, 0}(t):=\left\{\begin{array}{cc}1 & \text { if } t_{j} \leq t<t_{j+1} \mathrm{j}=0,1, \ldots, r(m-2) \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& b_{j, n}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t) \\
& t \in\left[t_{j,} t_{j+n+1}\right] \\
& j=0,1, \ldots(m-n-2)
\end{aligned}
$$

$(j+n+1)$ can not exceed $m-1$, which limits both j and n.
The above recursion formula specifies how to construct nthorder function from two B-spline function of order (n-1).

No. of Control Points: $(m-n-1)$;

$$
(m-n-1=4=n+1 ; n=3)-\text { If } B-
$$

Degree of Spline: n; spline has [0 O O O 1 1111] knot vector, we get Bezier basis.
No. of Knots: m (= No. of Control Points + degree + 1);

B-splines

OPEN

CLAMPED

CLOSED

The above figures have p control points $(p=10)$ and $n=$ 3. Then, m must be 14 , so that the knot vector has 14 knots.

To have the clamped effect, the first $n+1=4$ and the last 4 knots must be identical. The remaining $14-(4+4)=6$ knots can be anywhere in the domain (giving non-periodic structure).

In fact, the central curve is generated with knot vector: $U=\{0,0,0,0,0.14,0.28,0.42,0.57,0.71,0.85,1,1,1,1\}$.

Note that except for the first four and last four knots, the middle ones are almost uniformly spaced. In fact, the little triangles are the knot points. Periodic structure gives closed curves. Avoid multiplicty at ends for open unclamped curves.

The "Standard Knot Vector" for a B-spline of order ($n+1$) begins and end with a knot of "multiplicity" $(\mathrm{n}+1)$ and uses unit spacing for the remaining knots.

Let, No. of control points: $\mathbf{m - n - 1}=\mathbf{8 ;}$ and for a cubic ($n=3$) B-spline: $n+1=4 ;$

So, m = 12; The "Standard Knot Vector" is"
$\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 5 & 5\end{array}\right]$
Periodic,
Cubic B-spline

$$
\begin{aligned}
& B_{0,3}(t)=(1-t)^{3} / 6 \\
& B_{1,3}(t)=\left(3 \cdot t^{3}-6 t^{2}+4\right) / 6
\end{aligned}
$$

Blending functions :
$\mathrm{B}_{\mathrm{i}, \mathrm{n}}(\mathrm{t})$ is non-zero only in
the interval: $t \in\left[t_{i}, t_{i+n+1}\right]$
Hence it spans the knots:

$$
B_{2,3}(t)=\left(-3 \cdot t^{3}+3 t^{2}+3 t+1\right) / 6
$$

$$
\left.t_{i}, t_{i+1}, t_{i+2, \ldots, \ldots,} t_{i+n+1}\right]
$$

$$
B_{3,3}(t)=t^{3} / 6
$$

The recursion for integer knots

$$
\begin{aligned}
& (n) B_{j n}(t)= \\
& (t-j) B_{j, n-1}(t)+(n+1+j-t) B_{j+1, n-1}(t)
\end{aligned}
$$

$$
b_{j, n}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t) .
$$

Lets solve for, the B-spline function of order 2 (degree $\mathrm{n}=1$) beginning at $\mathrm{n}=0$, the recursion is ??

$B_{01}(t)=$

Degree is " n " and order is " m " $=n+1$.

$$
b_{j, 0}(t)=1_{\left[t_{j}, t_{j+1}\right]}=\left\{\begin{array}{lll}
1 & \text { if } & t_{j} \leq t<t_{j-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Now Plot $B_{01}(t)$ from

Two Boxes $B_{00}(t)$ and $B_{10}(t)$

$B_{01}(t)$ is a tent function

knots: $\xi_{0}, \xi_{1}, \ldots, \xi_{L}$.

- B-splines of order 2 are tent functions, starting at a knot, rising linearly to 1 at the next knot, and decaying linearly to 0 two knots over.
They ($\mathrm{B}_{0,1} \& \mathrm{~B}_{1,1}$) are continuous.
Order 2 implies a continuous derivative of order 0 .
Order 2 knots are piecewise linear

Order 3 - $B_{02}(t)$ from Two Tent Functions

$(n) B_{j n}(t)=(t-j) B_{j, n-1}(t)+(n+1+j-t) B_{j+1, n-1}(t)$

Joints: Values of functions at adjacent segments;
Knot - Values of t, where segments meet

Constant B-spline: $b_{j, 0}(t)=1_{\left[t_{j}, t_{j+1}\right]}=\left\{\begin{array}{lll}1 & \text { if } & t_{j} \leq t<t_{j+1} \\ 0 & \text { otherwise }\end{array}\right.$
Linear B-spline:

$$
b_{j, 1}(t)=\left\{\begin{array}{ccc}
\frac{t-t_{j}}{t_{j+1}-t_{j}} & \text { if } \quad t_{j} \leq t<t_{j+1} \\
\frac{t_{j+2}-t}{t_{j+2}-t_{j+1}} & \text { if } \quad t_{j+1} \leq t<t_{j+2} \\
0 & \text { otherwise }
\end{array}\right.
$$

Uniform quadratic B-spline (uniform knot vector):
$b_{j, 2}(t)= \begin{cases}\frac{1}{2}\left(t-t_{j}\right)^{2} & t_{j} \leq t \leq t_{j+1} \\ -\left(t-t_{j+1}\right)^{2}+\left(t-t_{j+1}\right)+\frac{1}{2} & t_{j+1} \leq t \leq t_{j+2} \\ \frac{1}{2}\left(1-\left(t-t_{j+2}\right)\right)^{2} & t_{j+2} \leq t \leq t_{j+3} \\ 0 & \text { otherwise } \\ {[1,2,3,4,5,6]}\end{cases}$
Above, when reparameterized in the unit interval:

$$
\begin{aligned}
\mathrm{S}_{i}(t)=\left[\begin{array}{lll}
t^{2} & t & 1
\end{array}\right] \frac{1}{2}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 2 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1}
\end{array}\right] \\
t \in[0,1], i=1,2 \ldots m-2
\end{aligned}
$$

For the special case of the cubic B-spline $(k=4)$, the basis functions are

$$
B_{i 3}(s)=\left\{\begin{array}{lr}
\frac{1}{6}(s-i)^{3} & \text { if } i \leq s<i+1 \\
\frac{1}{6}\left[-3(s-i-1)^{3}+3(s-i-1)^{2}+3(s-i-1)+1\right] & \text { if } i+1 \leq s<i+2 \\
\frac{1}{6}\left[3(s-i-2)^{3}-6(s-i-2)^{2}+4\right] & \text { if } i+2 \leq s<i+3 \\
\frac{1}{6}[1-(s-i-3)]^{3} & \text { if } i+3 \leq s<i+4 \\
0 & \text { otherwise }
\end{array}\right.
$$

A Convenient Representation

Because of the local support property, we can rewrite the equation for a cubic B-spline as
$p(s)=\frac{1}{6}\left[(1-(s-i))^{3} p_{i-3}\right.$
Where $\leq s<i+1 . A$ simith $B_{0,3}(t)=(1-t)^{3} / 6$; as

$$
B_{1,3}(t)=\left(3 . t^{3}-6 t^{2}+4\right) / 6 ;
$$

again unere i $\leq<i+1.1$ In $B_{2,3}(t)=\left(-3 . t^{3}+3 t^{2}+3 t+1\right) / 6$;

$$
{ }^{\mathrm{B}_{1}=} B_{3,3}(t)=t^{3} / 6 .
$$

We can also include the placement matrix \mathbf{G}_{i} :

$$
p(s)=\left[\begin{array}{llll}
1 & s & s^{2} & s^{3}
\end{array}\right] \mathbf{B}_{i} \mathbf{G}_{i} \mathbf{p}
$$

B-Spline Examples

Order 5, Degree 4, Knots = 6, Poly pieces = 5 .

A B-Spline of Order 4, and the Four Cubic Polynomials from which it is made.

Knot Sequence:
[0 1234 4]

A B-Spline of Order 4, and the Four Cubic Polynomials from which It Is Made Knot Sequence: $\left[\begin{array}{lllll}0 & 1.5 & 2.3 & 4 & 5\end{array}\right]$

When the knots are equidistant we say the Bspline is uniform, otherwise we call it non-uniform.

NURBS: Non-uniform Regularized B-Splines

Uniform B-spline

When the B -spline is uniform, the basis B -splines for a given degree n are just shifted copies of each other. An alternative non-recursive definition for the $\boldsymbol{m} \boldsymbol{- n - 1}$ basis \mathbf{B}-splines is:

$$
b_{j, n}(t)=b_{n}\left(t-t_{j}\right), \quad j=0, \ldots, m-n-2
$$

with

$$
b_{n}(t):=\frac{n+1}{n} \sum_{i=0}^{n+1} \omega_{i, n}\left(t-t_{i}\right)_{+}^{n}
$$

and

$$
\omega_{i, n}:=\prod_{j=0, j \neq i}^{n+1} \frac{1}{t_{j}-t_{i}}
$$

where

$$
\left(t-t_{i}\right)_{+}^{n}:=\left\{\begin{array}{cl}
\left(t-t_{i}\right)^{n} & \text { if } t \geq t_{i} \\
0 & \text { if } t<t_{i}
\end{array}\right.
$$

When the number of Control points is the same as the order, the B-Spline degenerates into a Bézier curve.

The shape of the basis functions is determined by the position of the knots.

For

Bezier:

For

$$
\begin{aligned}
P(t)=\left[\begin{array}{lllll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
B_{0} \\
B_{1} \\
B_{0,3}(t)
\end{array}\right. & =(1-t)^{3} / 6 ; \\
B_{1,3}(t) & = \\
& \left(3 \cdot t^{3}-6 t^{2}+4\right) / 6 ;
\end{aligned}
$$

Cubic-splines:

$$
\begin{gathered}
\text { Cubic-splines: } B_{2,3}(t)=\left(-3 . t^{3}\right. \\
P(t)=\left[\begin{array}{ll}
t^{3} & t \\
& B_{3,3}(t)=t^{3} / 6
\end{array}\right.
\end{gathered}
$$

For reparameterized
Cubic B-splines, with uniform Knot vector:

$$
\mathrm{S}_{i}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \frac{1}{6}
$$

\mathbf{p}_{i-1}
p_{i}
p_{i+1}
\mathbf{p}_{i+2}

$$
\begin{aligned}
& \boldsymbol{P}(\boldsymbol{t})=\sum_{i=1}^{4} \boldsymbol{B}_{i} \boldsymbol{i}^{\boldsymbol{i}-1} ; \boldsymbol{t}_{\boldsymbol{i}} \leq \boldsymbol{t} \leq \boldsymbol{t}_{2} . \quad P(u)=\sum_{k=0}^{3} g_{k} H_{k}(u) \\
& P(t)=P_{1}\left(2 t^{3}-3 t^{2}+1\right)+P_{2}\left(-2 t^{3}+3 t^{2}\right) \\
& +P_{1}^{\prime}\left(t^{3}-2 t^{2}+t\right)+P_{2}^{\prime}\left(t^{3}-t^{2}\right) \text { CUBIC SPLINES } \\
& P(t)=\sum_{i=0}^{n} B_{i} J_{n, i}(t) ; \quad 0 \leq t \leq 1 \\
& \text { BEZIER CURVES } \\
& J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ;\binom{n}{i}=\frac{n!}{i!(n-i)!} \\
& \mathbf{S}(t)=\sum_{i=0} \mathbf{P}_{i} b_{i, n}(t), t \in\left[t_{n}, t_{m-n}\right] \text { B-splines } \\
& b_{j, 0}(t):=\left\{\begin{array}{ll}
1 & \begin{array}{l}
\text { if } \\
0
\end{array} \\
t_{j} \leq t<t_{j+1} \\
\text { otherwise }
\end{array} \mathrm{i}=0,1, \ldots, \mathrm{~m}-2 \quad \mathrm{j}=0,1, \ldots, \mathrm{~m}-\mathrm{n}-2\right. \\
& \overline{b_{j, n}}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t) .
\end{aligned}
$$

Studio Spline

Method
Sirnle Seument
$A B$Matched Knot Fosition
\square Glosed
Deqree $3 * \square$ Associative

OK
Apply
Cancel

Figure 2. Spatial rational closed B-spline curves, only the curves of order $k=2+3 i$, Figure 1. Spatial B-spline curves, only the curves of order $k i=0,1, \ldots$ are drawn. The weight of the control point marked with filled dot is 4 , are drawn. while that of the rest is 1 .

QUADRIC SURFACES

Some trivial examples:

SPHERE

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} \\
& x=r \cdot \cos \phi \cdot \cos \theta,-\pi / 2 \leq \phi \leq \pi / 2 \\
& y=r \cdot \cos \phi \cdot \sin \theta,-\pi \leq \phi \leq \pi \\
& z=r \cdot \sin \phi
\end{aligned}
$$

ELLTPSOID

$$
\begin{aligned}
& \left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1 ; \\
& x=a \cdot \cos \phi \cdot \cos \theta,-\pi / 2 \leq \phi \leq \pi / 2 \\
& y=b \cdot \cos \phi \cdot \sin \theta, \quad-\pi \leq \phi \leq \pi \\
& z=c \cdot \sin \phi .
\end{aligned}
$$

$$
\left[r-\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}}\right]^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

$$
x=a \cdot(r+\cos \phi) \cdot \cos \theta,-\pi \leq \phi \leq \pi
$$

$$
y=b \cdot(r+\cos \phi) \cdot \sin \theta, \quad-\pi \leq \phi \leq \pi
$$

$$
z=c \cdot \sin \phi .
$$

SUPERELLTPSOID

$$
\begin{aligned}
& {\left[\left(\frac{x}{a}\right)^{2 / s_{2}}+\left(\frac{y}{b}\right)^{2 / s_{2}}\right]^{s_{2} / s_{1}}+\left(\frac{z}{c}\right)^{2 / s_{1}}=1 ;} \\
& x=a \cdot \cos ^{s_{1}} \phi \cdot \cos ^{s_{2}} \theta,-\pi / 2 \leq \phi \leq \pi / 2 \\
& y=b \cdot \cos ^{s_{1}} \phi \cdot \sin ^{s_{1}} \theta,-\pi \leq \phi \leq \pi \\
& z=c \cdot \sin s_{1} \phi .
\end{aligned}
$$

SUPEROUADRICS:

$$
(\alpha x)^{n}+(\beta y)^{n}+(z z)^{n}=k
$$

General expression of a Quadric Surface

$$
\begin{aligned}
& A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z \\
& +G x+H y+J z+K=0 .
\end{aligned}
$$

The above is a generalization of the general conic equation in 3-D. In matrix form, it is:
$\boldsymbol{X S} \boldsymbol{X}^{\boldsymbol{T}}=\mathbf{0}$,
$\Rightarrow\left[\begin{array}{llll}x & y & z & 1\end{array}\right](1 / 2)\left[\begin{array}{cccc}2 A & D & F & G \\ D & 2 B & E & H \\ F & E & 2 C & J \\ G & H & J & 2 K\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=0$

Parametric forms of the quadric surfaces, are often

 used in computer graphicsEllipsoid :
$x=a \cos (\theta) \cdot \sin (\phi) ; 0 \leq \theta \leq 2 \pi ;$
$y=b \sin (\theta) \cdot \sin (\phi) ; 0 \leq \phi \leq 2 \pi ;$
$z=c \cos (\phi) ;$
Hyperbolic Paraboloid :
$x=a \phi \cosh (\theta) ;-\pi \leq \theta \leq \pi$
$y=b \phi \sinh (\theta) ; \phi_{\min } \leq \phi \leq \phi_{\max }$
$z=\phi^{2}$
$H y p e r b o l o i d:$
$x=a \cos (\theta) \cosh (\phi) ; 0 \leq \theta \leq 2 \pi$
$y=b \sin (\theta) \sinh (\phi) ;-\pi \leq \phi \leq \pi$
$z=\sinh (\phi)$

Ellipsoid :

$x=a \cos (\theta) \cdot \sin (\phi) ; 0 \leq \theta \leq 2 \pi ;$ $y=b \sin (\theta) \cdot \sin (\phi) ; 0 \leq \phi \leq 2 \pi ;$
$z=c \cos (\phi) ;$

Hyperboloi d:
$x=a \cos (\theta) \cosh (\phi) ; 0 \leq \theta \leq 2 \pi$
$y=b \sin (\theta) \sinh (\phi) ;-\pi \leq \phi \leq \pi$
$z=\sinh (\phi)$

Elliptic Cone:

$x=a \phi \cos (\theta) ; 0 \leq \theta \leq 2 \pi$
$y=b \phi \sin (\theta) ; \phi_{\text {min }} \leq \phi \leq \phi_{\text {max }}$
$z=c \phi$
Elliptic Paraboloid :

$$
x=a \phi \cos (\theta) ; 0 \leq \theta \leq 2 \pi
$$

$$
y=b \phi \sin (\theta) ; \quad 0 \leq \phi \leq \phi_{\max }
$$

$$
z=\phi^{2}
$$

$$
\begin{aligned}
& \text { Parabolic } \quad \text { Cylinder }: \\
& x=a \theta^{2} ; 0 \leq \theta \leq \theta_{\max } \\
& y=2 a \theta ; \phi_{\min } \leq \phi \leq \phi_{\max } \\
& z=\phi
\end{aligned}
$$

Some examples of Quadric Surfaces

Elliptic Paraboloid

Hyperbolic
Paraboloid

BEZIER Surfaces

- Degree of the surface in each parametric direction is one less than the number of defining polygon vertices in that direction
- Surface generally follows the shape of the defining polygon net
- Continuity of the surface in each parametric direction is two less than the number of defining polygon net
- Only the corner points of the defining polygon net and the surface are coincident
- The surface is contained within the convex hull of the defining polygon
- Surface is invariant under any affine transformation.

Equation of a parametric $J_{n, i}(\boldsymbol{u})=\binom{n}{i} \boldsymbol{u}^{i}(1-\boldsymbol{u})^{n-i} ; ~$
$Q(u, w)=\quad\binom{n}{i}=\frac{n!}{i!(n-i)!}$
$\sum_{i=0}^{n} \sum_{j=0}^{m} P_{i, j} J_{n, i}(u) K_{m, j}(w) ;$

$$
K_{m, j}(w)=\binom{m}{j} w^{j}(1-w)^{m-j} ;
$$

$$
\binom{m}{j}=\frac{m!}{j!(m-j)!}
$$

BEZIER Surfaces

$$
\begin{aligned}
& Q(u, w)=\sum_{i=0}^{n} \sum_{j=0}^{m} P_{i, j} J_{n, i}(u) K_{m, j}(w) \\
& =\sum_{i=0}^{n}\left[\sum_{j=0}^{m} P_{i, j} J_{n, i}(u)\right] K_{m, j}(w) ;
\end{aligned}
$$

BEZIER Surface in matrix form:

$$
\begin{aligned}
& Q(u, w)=U \cdot N . B \cdot M^{T} W \\
& \text { where, } \\
& U=\left[\begin{array}{llll}
u^{n} & u^{n-1} & \cdot & 1
\end{array}\right], \\
& W=\left[\begin{array}{llll}
w^{m} & w^{m-1} & \cdot & 1
\end{array}\right]^{T}, \\
& B=\left[\begin{array}{cccc}
B_{0,0} & \cdot & \cdot & B_{0, m} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
B_{n, 0} & \cdot & \cdot & B_{n, m}
\end{array}\right]
\end{aligned}
$$

4×4 bicubic BEZIIER Surface in matrix form:

$Q(u, w)=$
$\left[\begin{array}{llll}\boldsymbol{u}^{3} & \boldsymbol{u}^{2} & \boldsymbol{u} & 1\end{array}\right]\left[\begin{array}{cccc}\mathbf{1} & \mathbf{3} & -\mathbf{3} & \mathbf{1} \\ \mathbf{3} & -6 & \mathbf{3} & \mathbf{0} \\ -3 & \mathbf{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right]\left[\begin{array}{llll}\boldsymbol{B}_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\ \boldsymbol{B}_{1,0} & \boldsymbol{B}_{1,1} & \boldsymbol{B}_{1,2} & \boldsymbol{B}_{1,2} \\ \boldsymbol{B}_{2,0} & \boldsymbol{B}_{2,1} & \boldsymbol{B}_{2,2} & \boldsymbol{B}_{2,3} \\ \boldsymbol{B}_{3,0} & \boldsymbol{B}_{3,1} & \boldsymbol{B}_{3,2} & \boldsymbol{B}_{3,3}\end{array}\right]$
$X\left[\begin{array}{cccc}1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}w^{3} \\ w^{2} \\ w \\ 1\end{array}\right] ;$

$$
Q(u, w)=
$$

NURBS

$$
Q(u, v)=\frac{\sum_{i=0}^{M} \sum_{k=0}^{L} w_{i, j} P_{i, k} B_{i, m}(u) B_{k, n}(v)}{\sum_{i=0}^{M} \sum_{k=0}^{L} w_{i, j} B_{i, m}(u) B_{k, n}(v)}
$$

End of Lectures on

> CURVES
> and SURFACE REPRESENTATION

