
CURVE 

REPRESENTATION



Representation

Non-parametric 
form:    y = f(X)

Explicit form:
y = mx + b

Implicit form:
f(x, y) = 0

Parametric form:
x = x(t)
y = y(t)



2nd degree implicit representation:
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Any guess, why the factor 2 is used ?

This form of the expression, with the 
coefficients, provide a wide variety of 2D 
curve forms called:

CONIC SECTIONS
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CONIC SECTIONS
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Ellipse (e=1/2), parabola (e=1) and hyperbola (e=2) 
with fixed focus F and directrix.

For circle, e = ??0.                  



Polar Equation of a conic (home assignment):
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F – Focal Point; d – Directrix;

e – Eccentricity.

Condns: Focal point at Origin;

e.L = l; is called the “semi-latus rectum”.
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If the conic passes through the origin: f = 0.

Assuming, one of the parameters to be a
constant, c = 1.0, f = 1.0

Remaining 5 Coeffs. may be obtained using
5 geometric conditions:

Say:  
Boundary Conditions -

– two (2) end points
- slope of the curves at two (2) end points.
and
- one (1) intermediate point
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Generalized CONIC

Re-organize:

S is symmetric



Special Conditions:

If b2 = ac,  the equation represents
a PARABOLA;

If b2 < ac,  the equation represents
an ELLIPSE;

If b2 > ac,  the equation represents
a HYPERBOLA.



SPACE CURVE (3-D)

Explicit non-parametric representation:
x = x, y = f(x),  z = g(x).

Non-parametric implicit representation:
f(x, y, z)  = 0,  g(x, y, z) = 0.

Intersection of the above two surfaces 
represents a curve.

Examples:
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Curve on the
seam of a 
baseball: ).2sin(.

)],4/(3sin.)4/sin(.[
)],4/(3cos.)4/cos(.[

θ
πθπθμ
πθπθλ

cz
bay
bax

=
+−+=
+−+=

where,

.0.10,2
);/(1)2sin(.1
),/(1)2sin(.1

≤≤=
−=−=
+=+=

tt
czdd
czdd

πθ
θμ
θλ

HELIX:
∞<<−∞≠

===
tb

btztrytrx
,0

;),sin(.),cos(.

A parametric space curve:

x = x(t),  y = f(t),  z = g(t).



PARAMETRIC CUBIC CURVES
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CUBIC CURVE:
- identify geonetrical/mathematical 
properties



PARAMETRIC CUBIC Splines
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To solve for:

;1PTCF −=
What do you need ??

Spline curve refers to 
any composite curve, formed 
with Polynomial sections, 
satisfying specific continuity 
conditions (1st and 2nd

derivatives) at the boundary 
of the pieces.



With 7 
Polynomial 
segments

Quadratic spline 
With 6 Polynomial 

segments
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To solve for:

;1PTCF −=
You need four (4) boundary conditions ??
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Solve to get:
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M is a 4x4 basis matrix and G is a four 
element column vector of geometric 
constants, called the geometric vector. 
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In general:

The curve is a weighted sum of the 
elements of the geometry matrix.

The weights are each cubic polynomials
of t, and are called the blending functions:

B = T.M.



CUBIC SPLINES
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position vector of 
any point on the 
cubic spline 
segment.

P(t)  =  [x(t), y(t), z(t)] Cartesian

Cylindrical

Spherical

or    [r(t), θ(t), z(t)]

or   [r(t), θ(t), φ(t)] 
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Use boundary 
conditions
to evaluate the 
coeficients
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Equation of a single cubic spline segment:

Various other
approaches
used are:

• Normalized Cubic splines
• Blending
• Weighting functions.
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Rewrite as: 
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Equation of a 
normalized cubic spline segment:

Use, t2 = 1;
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Remember,
The derivation:



For piece-wise continuity for complex
curves, two or more curve segments are
joined together.

In that case, use second derivative
P2’’(t) at end-points (joints).
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Equation of a single cubic spline segment:

[ ]
[ ] [ ]

[ ] ; and

 M  , 1tttT where,
,...)()()()(

4321

44
23

T
xij

ggggG

m
GBGMTtztytxtP

=

==
===



The degree three polynomial - known as a cubic polynomial  
- is the one that is most typically chosen for constructing smooth 
curves in computer graphics.

It is used because:
1. it is the lowest degree polynomial that can support an inflection  
- so we can make interesting curves, and
2. it is very well behaved numerically  - that means that the curves 
will usually be smooth like this: 

and not jumpy like this:

control points:
(-1, 2); (0, 0); (1, -2); (2, 0)

Solution for the Coefficients can be given as:
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Cubic Polynomial - why and how ?



What do we do here – even 3rd degree is insufficient.

What about degree five, with how many extra control points ??   
3

Piecewise polynomial curves:

Three factors in the design:

• Actual Degree/order in the response of the system ??
• No. of Control Points
• Degree of the Polynomial ?
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P1’ and P3’  known,
But what about P2’ ?
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Generalized equation for any two adjacent
cubic spline segments, Pk(t) and Pk+1(t) :
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For first segment:

For second 
segment:

Curvature Continuity ensured as:
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Equation of a 
normalized cubic spline segment:

Use, t2 = 1;

For curvature Continuity:
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For curvature Continuity: ][34' 2
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For three control points (knots) this works as:

For N points ??
For  3 points – 1 Eqn. (& 1 unknown)
For  4 points – 2 eqns. (& 2 unknowns)
.
.
.
For  N points – (N-2) eqns. (& N-2 unknowns)

In general:

Write the eqn. set for N = 5; in matrix form.
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Solve using:
Forward-
backward 
substitution:

Thomas Algm.
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Problem: The position vectors of a normalized cubic 
spline are given as (0 0), (1 1), (2 -1) and (3 0).

The tangent vectors at the ends are both (1 1).

Soln: The 2 internal tangent vectors are 
calculated, and both are equal to (1 –0.8).



Two 
piecewise 
cubic 
spline 
segments

No use of 2nd

derivative 
smoothing

Using 2nd

derivative 
smoothing



Examples of spline 
interpolation

No use of 2nd

derivative 
smoothing

Using 2nd

derivative 
smoothing



Other Variants:

- Cardinal Splines;

- Catmul-Rom splines

- Irvine-Hall Splines 

- T-spline

- B-spline



BEZIER CURVES
• Basis functions are real
• Degree of polynomial is one less than the 
number of points
• Curve generally follows the shape of the 
defining polygon
• First and last points on the curve are 
coincident with the first and last points of the 
polygon
• Tangent vectors at the ends of the curve have 
the same directions as the respective spans
• The curve is contained within the convex hull 
of the defining polygon
• Curve is invariant under any affine 
transformation.



A few typical examples of
cubic polynomials for Bezier



BEZIER CURVES
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Equation of a parametric Bezier curve:

Bi’s are called the control points;
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Binomial Coefficients:
(ith, nth-order Bernstein basis function)

where the Bezier or Bernstein basis or 
blending function is:



Jn,i(t) is the ith, nth order Bernstein 
basis function. 

n is the degree of the defining 
Bernstein basis function (polynomial 
curve segment).

This is one less than the number of
points used in defining Bezier polygons.
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t ->0 1

1

n = 2
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0 1
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J3,0
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n = 3 (cubic)

Below are some examples of BBF 
(Bezier /Bernstein blending functions:



i)!i!(ii
n

−
=








=








3
63

Take n = 3:

i)!i!(n
n!

i
n

;    t)(t
i
n

(t)J ini
n,i −

=







−








= −1

.)(

);1.(.3)(

;)1.(.3)(

;)1()1(.1)(

3
3,3

2
2,3

2
1,3

330
0,3

ttJ

tttJ

tttJ

ttttJ

=

−=

−=

−=−=



[ ] .;n

B
B
B
B

ttt

Btt)B(tBt)t(Bt)(P(t)

3

0001
0033
0363
1331

1

13131

3

2

1

0

23

3
3

2
2

1
2

0
3

=





































−
−

−

=

+−+−+−=
Thus,
for 
Cubic
Bezier:
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Cubic-splines:
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Home Assignment:

Get the expressions of J2,i and J4,i

Computation of 
successive binomial coefficients:
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Bezier Basis Functions
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Bezier Curve Examples



P0

P2

P1

Recursive geometric definition of
BEZIER CURVES

If, N > 3 ??



Recursive Bezier Curve Example



Iterative Bezier Curve Animation



Iterative Higher-order Bezier Curve 
Animation







More to follow: 

• B-splines represented as blending functions

• Conversion between one format to another.

• Knots and control points.

• When B-spline becomes a Bezier?

QUADRICS – 3-D analogue of conics:



The red curve is the Runge  (The Cauchy–Lorentz 
distribution or Breit–Wigner distribution) function.

The blue curve is a 5th-order interpolating polynomial (using 
six equally-spaced interpolating points).

Basis Splines (B-splines):
- a generalisation of a Bézier curve, avoids the Runge 

phenomenon without increasing the degree of the B-spline

The green curve is a 9th-order interpolating 
polynomial (using ten equally-spaced 
interpolating points).

At the interpolating points, the error 
between the function and the interpolating 
polynomial is (by definition) zero. 

Between the interpolating points (especially 
in the region close to the endpoints 1 and 
−1), the error between the function and the 
interpolating polynomial gets worse for 
higher-order polynomials. 



Limitations of Bezier Curves:

- Not enough flexibility

- Higher degree with more No. of control points

- Larger degree has instability, numerical errors, and 
computational costly

- Not enough local control (global effect of change).

-



Ni,k (i-th B-spline blending function, of order k) is a 
polynomial of order k (degree k-1) on each interval:  

ti < t < ti+k. 

k must be at least 2 (linear) and can be not more, 
than p+1 (the number of control points = n in Fig. above). 

A knot vector (t0 , t1 , ... , tp+k) must be specified. 
Across the knots basis, functions are C k-2 continuous. 

In mathematics, a spline is a 
special function defined piece-
wise by polynomials.

Spline interpolation is often 
preferred to polynomial 
interpolation because it yields 
similar results, even when using 
low-degree polynomials, while 
avoiding Runge's phenomenon 
for higher degrees.

Periodic uniform B-spline 
basis, with k= 3, p = 3;

Uniform Knots: [0 1 2 3 4 5 6];



The form of a B-spline curve is very similar to that of a 
Bézier curve. However, unlike a Bézier curve, a B-spline curve 
involves more information, namely: 
• a set of p control points, 
• a knot vector of m knots, and 
• a degree n (i.e. order n+1). 

Note that n, m and p must satisfy m = n + p + 1. 
More precisely, if we want to define a B-spline curve of degree 
n with p control points, we have to supply n + p + 1 knots:

t0, t1, ...., tn+p+1. 

On the other hand, if a knot vector of m knots and p 
control points are given, the degree of the B-spline curve is:

n = m - p – 1  or m – (p+1).



Basis Splines (B-splines):

• Degree is independent of the No. of control Points

• Local Control over Shape

• More complex than Bezier

The Pi are called control points or de Boor points 
(there are m-n-1 control points). A polygon can be 
constructed by connecting the de Boor points with lines, 
starting with P0 and finishing with Pm−n−2. This polygon is 
called the de Boor polygon.

Given m values   , called knots, with

a B-spline of degree n is a parametric curve

composed of linear combination of basis B-splines  bi,n
( of degree n):

yunnecessar */
  ;1 pn ≤≤



The m-n-1 basis B-splines of degree n
for n = 0,1,...,(m-2), can be defined using the Cox-de Boor 
recursion formula:

j = 0,1,...,(m-2)

j = 0,1,...,(m-n-2)

(j+n+1) can not exceed m-1, which limits both j and n.

No. of Control Points:   (m – n - 1);

Degree of Spline:  n;

No. of Knots: m ( = No. of Control Points + degree + 1);

(m-n-1=4=n+1; n=3) - If B-
spline has [0 0 0 0 1 1 1 1] knot 
vector, we get  Bezier basis.

The above recursion formula  specifies how to construct nth-
order function from two B-spline function of order (n-1).

][ 1, ++∈ njj ttt



OPEN CLAMPED CLOSED

B-splines

The above figures have p control points (p=10) and n = 
3. Then, m must be 14, so that the knot vector has 14 knots. 

To have the clamped effect, the first n+1 = 4 and the 
last 4 knots must be identical. The remaining 14 - (4 + 4) = 6 
knots can be anywhere in the domain (giving non-periodic structure). 

In fact, the central curve is generated with knot vector:
U = { 0, 0, 0, 0, 0.14, 0.28, 0.42, 0.57, 0.71, 0.85, 1, 1, 1, 1 }.

Note that except for the first four and last four knots, 
the middle ones are almost uniformly spaced. In fact, the little 
triangles are the knot points. Periodic structure gives closed 
curves. Avoid multiplicty at ends for open unclamped curves.



The “Standard Knot Vector” for a B-spline of 
order (n + 1) begins and end with a knot of “multiplicity” 
(n+1) and uses unit spacing for the remaining knots.  

Let,  No. of control points: m-n-1 = 8; 
and for a cubic (n=3) B-spline: n + 1 = 4;

So, m  = 12; The “Standard Knot Vector” is”

[0 0 0 0  1 2 3 4  5 5 5 5]
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−=Periodic, 
Cubic B-spline
Blending functions :

Bi,n(t) is non-zero only in 
the interval:

Hence it spans the knots:
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The recursion for integer knots

Lets solve for, the B-spline function of order 2 
(degree n=1) beginning at n=0, the recursion is ??
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Degree is “n” and order is “m” = n + 1.
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Now Plot B01(t) from 
Two Boxes B00(t) and B10(t)

B01(t) is a tent function
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 B-splines of order 2 are tent 
functions, starting at a knot, 
rising linearly to 1 at the next 
knot, and decaying linearly to 0 
two knots over.

 They (B0,1 & B1,1) are 
continuous.  

 Order 2 implies a continuous 
derivative of order 0.

 Order 2 knots are piecewise 
linear



Order 3 - B02(t) from Two Tent Functions
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Joints: Values of functions at 
adjacent segments;

Knot – Values of t, where 
segments meet



Linear B-spline: 

Constant B-spline:

V = 
[1, 2, 3, 4, 5, 6];

Uniform quadratic B-spline (uniform knot vector): 

Above, when reparameterized in the unit interval: 

2
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Order 5, Degree 4, Knots = 6, Poly pieces = 5.

Order 4, Degree 3, Knots = 5, Poly pieces = 4.

B-Spline Examples



Knot Sequence: 
[0 1 2 3 4]

A B-Spline of Order 4, and the 
Four Cubic Polynomials from 

which it is made.



A B-Spline of Order 4, and the Four Cubic Polynomials 
from which It Is Made

Knot Sequence: [0 1.5 2.3 4 5]



Uniform B-spline
When the B-spline is uniform, the basis B-splines for a given 
degree n are just shifted copies of each other. An alternative 
non-recursive definition for the m−n-1 basis B-splines is:

with

and

where

is the truncated power function.

When the knots are equidistant we say the B-
spline is uniform, otherwise we call it non-uniform. 

NURBS: Non-uniform Regularized B-Splines

When the number of 
Control points is the same as 
the order, the B-Spline 
degenerates into a Bézier 
curve. 

The shape of the basis 
functions is determined by 
the position of the knots. 
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Bezier:
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For
Cubic-splines:

For reparameterized
Cubic B-splines, with 
uniform Knot vector:
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QUADRIC SURFACES
Some trivial examples:

SPHERE
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ELLIPSOID
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General expression of a Quadric Surface
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The above is a generalization of the general 
conic equation in 3-D. In matrix form, it is:
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Parametric forms of the quadric surfaces, are often 
used in computer  graphics
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Some examples of Quadric Surfaces

Hyperboloid

Parabolic
Cylinder

Elliptic 
Paraboloid

Hyperbolic 
Paraboloid



BEZIER Surfaces

• Degree of the surface in each parametric 
direction is one less than the number of 
defining polygon vertices in that direction
• Surface generally follows the shape of the 
defining polygon net
• Continuity of the surface in each parametric 
direction is two less than the number of 
defining polygon net
• Only the corner points of the defining 
polygon net and the surface are coincident
• The surface is contained within the convex 
hull of the defining polygon
• Surface is invariant under any affine 
transformation.
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BEZIER Surfaces
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BEZIER Surface in matrix form:
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4x4 bicubic BEZIER Surface in matrix form:
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Non-square
4x4 bicubic 
BEZIER 
Surface 
in matrix 
form:
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End of Lectures on

CURVES
and SURFACE

REPRESENTATION


