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ABSTRACT Crop disease diagnosis is an essential step in crop disease treatment and is a hot issue in
agricultural research. However, in agricultural production, identifying only coarse-grained diseases of crops
is insufficient because treatment methods are different in different grades of even the same disease.
Inappropriate treatments are not only ineffective in treating diseases but also affect crop yield and food
safety. We combine IoT technology with deep learning to build an IoT system for crop fine-grained disease
identification. This system can automatically detect crop diseases and send diagnostic results to farmers.
We propose a multidimensional feature compensation residual neural network (MDFC–ResNet) model for
fine-grained disease identification in the system. MDFC–ResNet identifies from three dimensions, namely,
species, coarse-grained disease, and fine-grained disease and sets up a compensation layer that uses a
compensation algorithm to fuse multidimensional recognition results. Experiments show that the MDFC–
ResNet neural network has better recognition effect and is more instructive in actual agricultural production
activities than other popular deep learning models.

INDEX TERMS IoT; Multiple crops; Fine-grained disease recognition; ResNet; Singular value
decomposition.

I. INTRODUCTION
For a long time, crop disease has been one of the most

urgent problems in the field of agriculture. It directly affects
crop yield, food safety, and sustainable development. South
American rubber blight prevents exploitation of native rubber
trees, and wheat stem rust strain Ug99 spread across Africa,
Asia, and the Middle East. Historically, the worst pest is the
Irish potato blight, which killed 1.2 million people from
1845–1849 [1]. Oerke [2] calculated total global potential loss
from 2001–2003 at 26%–29% for soybean, wheat, and cotton;
31% for maize; 37% for rice; 40% for potatoes. Savary [3]
estimated global losses for wheat at 21.5%, rice at 30%,

maize at 22.5%, potatoes at 17.2%, and soybeans at 21.4%.
Generally, crop losses due to pathogens, animals, and weeds
are approximately between 20% and 40% of global
production [2], [4]–[6]. In the near future, global warming
may increase crop losses through more active fungi [7] and
insects [8].
Rapid and accurate identification of crop diseases is the

first step prevention and control. Early identification limits the
damage and allows for less intensive countermeasures. If crop
diseases are inaccurately recognized, then treatments may be
ineffective or even harmful to crops. Globally, and especially
in developing nations, methods for identifying crop diseases
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are mostly manual. Farmers recognize diseases on the basis of
tradition and limited training with potentially high error rates.
Similarly, they may not have access to latest information
about crop disease treatments. Even when visual inspection is
performed by experts in accordance with detailed guidelines
and standards, significant interrater variability and low
intrarater repeatability are still found [9]–[14]. Therefore,
misdiagnosis of crop diseases and inappropriate treatment
methods are common and can severely affect agricultural
production. Inaccurate chemical treatments can be ineffective,
and unnecessarily high dosages increase cost and cause
pollution. We must use scientific control technology.
Some scientific detection methods are direct. Samples of

plants are analyzed in laboratories with techniques, such as
polymerase chain reaction, immune fluorescence,
fluorescence in-situ hybridization, enzyme-linked
immunosorbent assay, flow cytometry, and gas
chromatography–mass spectrometry [15]. Indirect methods
include thermography, fluorescence imaging, and
hyperspectral techniques [16].
With the development of artificial intelligence technology,

deep learning has been used in many fields. In agriculture,
deep learning technologies have been widely used in obstacle
detection, fruit counting, crop yield estimation, field soil
moisture prediction, weather prediction, crop disease
identification, and other production activities [17]–[25].
Specifically, crop disease recognition has been a frequent
subject of research in recent years [16], [21], [26]–[28]. In
crop disease recognition, diseases in fruits, vegetables, and
cash crops are mainly used for identification [17].
Analysis of current methods for identifying crop diseases

based on deep learning found that the existing methods still
have certain limitations. The success of these models is
dependent on the quality of the data set [17], [29], color
spectrum and vegetation indices [28], different stages of the
disease [30], and the limited availability of data sets [29]. The
neural networks often have the following limitations:
1.) Existing methods often use a single type of crop (such

as tomatoes [21] and cucumbers [31]), and few methods
support multiple crops and diseases.
2.) Identification process focuses on recognizing diseases

without clear indication of the severity of the disease. In
agricultural production, the degree of crop disease is also
essential. It directly determines the type and level of treatment.
Inaccurate type or dosage not only affects the efficacy but
also the safety of consumers [32] and causes unnecessary
environmental damage [33], [34].
3.) Existing methods mostly focus on shallow neural

network models, such as AlexNet and VGG. Although they
have achieved good recognition accuracy for diseases, they
need more sophisticated recognition for the disease level.
To solve these limitations and contribute to agricultural

production, we have combined deep learning with IoT
technology to build an agrarian IoT system for crop disease
identification. In the deep learning module of the IoT system,

we constructed the multidimensional feature compensation
residual neural network (MDFC–ResNet) with feature
compensation. Compared with the existing methods of crop
disease identification, our model can identify the severity of
crop diseases; it is instructive in actual agricultural production
activities. Our contributions are as follows:
1.) On the basis of deep learning and IoT technology, we

build an end-to-end IoT system for crop disease identification.
This system can obtain crop disease information in time and
feed it back to farmers.
2.) We improve the model training by using singular value

decomposition (SVD) technology to prepare the data. We use
SVD to process images of crop leaves, extract relevant
information, eliminate noise, compress data size, and reduce
image size to a certain extent.
3.) We optimize the network model by adjusting the

initialization and optimization procedures of the residual
network.
4.) We construct MDFC–ResNet for fine-grained

identification of crop diseases.
The remainder of the paper is arranged as follows: Chapter

II describes the related literature; Chapter Ⅲ introduces our
IoT system and the residual network of the multidimensional
feature compensation mechanism proposed in this article;
Chapter Ⅳ analyzes the experimental results, and Chapter Ⅴ
describes the conclusions and recommendation for future
research.

II. RELATED WORK
Early crop disease identification methods are mostly

manual, mainly by farmers or related experts to diagnose and
identify crop diseases in the field [13], [35]. These methods
are very dependent on the farmers or relevant experts’ own
experience in identifying crop diseases. The problems of these
methods are as follows: keen personal subjective awareness,
low recognition efficiency, and high recognition error rate.
With the development of image processing technology and

its application in the agricultural field, crop disease
identification has improved [18], [19], [36]. Computer image
processing refers to converting an image signal into a digital
signal and then processing it by using a computer. Its
advantages are good reproducibility, high processing accuracy,
rich processing content, complex nonlinear processing, and
flexibility. However, in solving complex problems of crop
disease identification, image processing technology seems to
be inadequate, and the recognition accuracy rate cannot reach
the expected effect.
To solve the problem of crop disease identification in

agricultural production activities, a large number of scholars
introduced deep learning [20]–[25] into the agricultural field
and achieved excellent results. In deep learning technology,
photos of crop disease parts are captured, and then a neural
network model is sent via the computer. The photos of crop
disease parts are sent to the neural network model for learning
(feature extraction), and the learned model is finally used to
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identify crop diseases. Deep learning technology is faster,
more convenient, and has higher recognition accuracy than
the first two methods.
Recent works use the combination of IoT technology and

deep learning technology to identify crop diseases [37]–[39].
This method uses IoT technology to combine various
information sensing devices with the Internet to collect
information in real-time and feed back to the deep learning
model. The deep learning model processes the collected
information in time and then displays the results in smart
terminal devices. In this way, we can grasp relevant
information in real-time. An artificial intelligence brain is also
available to analyze the information. We combine the IoT
technology with deep learning to build an IoT system for crop
disease identification in real-time. In the next section, we will
focus on the structure of the experimental system.

III. PROPOSED SYSTEM AND MDFC–ResNet SCHEME

A. SYSTEM STRUCTURE

Fig. 1. System structure

The proposed IoT system combines video cameras, deep
learning models, and intelligent terminal devices. The system
uses cameras to collect crop videos. It feeds back the health
status of crops analyzed by deep learning models to farmers
through smart terminal applications (web applications or
smartphone applications). Fig. 1 shows the system structure.
The system consists of the following six parts: one or more
video cameras, decoder, deep learning model, message center,
processing center, and terminal (computer or smartphone).
The main functions of each par and the system operation
process are as follows:

The video camera is set up in crop-fields or greenhouse to
collect crop information. Usually, we set up multiple video
cameras.
The decoder can receive data from multiple video cameras,

decode the video data, and extract the crop image from the
decoded information stream.
The deep learning model receives the crop image from the

decoder, judges the health status of the crop through the
trained model, and sends the result to the message center.
The message center receives the discrimination results and

organizes and manages the discrimination results in the form
of the message queue, which the processor uses.
The processor obtains information from the message center,

processes the information, and sends it to the web application
and smartphone application in the form of notification.
Deep learning models are an essential part of the system,

directly determining the performance of the IoT system. At
present, most crop disease identification systems only identify
the types of crop diseases but do not perform more fine-
grained identification of these diseases (the degree of crop
disease identification). However, in actual agricultural
production activities, the degrees of crop disease are different.
Thus, the treatment plan adopted and the amount of medicine
used are also different. Fine-grained identification of crop
diseases is instructive in terms of disease treatment, reducing
the number of pesticides used, and protecting the crop and the
natural environment. Therefore, we propose the MDFC–
ResNet model, which can identify the general and serious
diseases of crops and is more instructive in actual agricultural
production activities, for the system’s deep learning model.
The MDFC–ResNet model is described in detail in the
following section.

B. MODEL FLOW
Fig. 2 shows the overall process of our experiment. It

consists of two parts. In the data processing phase, we
perform data enhancement, normalization, and SVD
operations on pictures in the data set. The purpose is to
reduce the negative impact of the data set on model training.
In the model training phase, we divide the data set into a
training set, a validation set, and a test set. The training set
trains the model. The validation set verifies that the
expectations are satisfied; if yes, then the model is saved,
and if no, then the parameters in the model training are
adjusted until the expectations are satisfied. The test set is
used to test the accuracy of the model.

C. DATA PROCESSING
The data set used in this study is obtained from AI

Challenger [40]. It was divided according to “species–
disease–degree,” with a total of 59 categories, including 10
species, 49 detailed disease categories, and 10 health
categories with a total of 36258 pictures. Each image was
obtained from a crop in a natural environment and treated
with only one leaf. Fig. 3 shows the various class images.
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Fig. 2. Overall experimental process

Fig. 3. Sample dataset diagram

The dataset was not ready for use in image classification
due to different sources of pictures in the original dataset, the
shooting environment, equipment, and differences between
the crop species. Substantial differences in the number of
picture types, uneven picture quality, and inconsistent picture

sizes cause image recognition problems. To solve these
problems, we processed the dataset before model training.
The process included three critical steps, namely, data
enhancement, data normalization, and SVD.
The first step of data enhancement solves the problem of

significant differences in the number of pictures between the
various categories. The largest category has 2473 images, and
the smallest category has only 22 images. The number of
images in categories affects the model training, resulting in a
decrease in test accuracy. Data augmentation technology
expands categories with a small amount of samples in the
original data set. Random cropping might remove the
diseased part of the picture, resulting in loss of the
characteristic information. Therefore, we used rotation and
horizontal flip to enhance the dataset. We expanded
categories with less than 1,000 pictures to approximately
1,000 and reduced larger categories to approximately 1,000.
Balancing the number of images in various categories
removes the impact of the number of pictures on the final
classification accuracy. Fig. 4 shows an example of data
enhancement process. The original image is flipped
horizontally and rotated by 90°, 180°, and 270°. At the end of
this phase, the dataset increased from 36258 to 63265 images.

Original Horizontal flip 90° 180° 270°

Fig. 4. Image flip and rotation horizontally
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Fig. 5. Original and SVD-processed images

The second step of data normalization converts all images
to a uniform size to facilitate model training. We normalized
the pictures in the dataset to 224 × 224 pixels prior to the
experiment. Many deep learning models use this image size.
The third step of singular value decomposition solves the

problem of picture quality. It extracts important information
from the original picture and removes noise. In many images,
a small section of data carries most of the information, and the
remainder is irrelevant. The quality of the pictures in the
original data is uneven. We adjust the singular value and
observe the effect on the image, an example of which is
shown in Fig. 5. We select the singular value 0.9 to process
the images in the data set.

D. MODEL TUNING
During model training, the initializer and optimizer play an

essential role and have a significant impact on the final test
results.
The residual network is a deep network, and deep networks

require appropriate weight initialization to reduce the risk of
gradient explosion and gradient disappearance. If the cost
gradients are extremely large, then the cost oscillates around
the minimum value. If the cost gradient is extremely small,
then the cost converges before it can reach the minimum
value. Weight initialization refers to the process of setting
values in advance before the neural network starts training.
Without initialization, the weight values are 0, and all neural
nodes are the same. During backpropagation, each weight
gradient is the product of the node’s input value x and the
gradient of the previous layer. If the weights are equal, then
each neural node of the neural network updates equally and
no difference between nodes is found. The neural network
cannot learn useful information during the training process.
An appropriate initializer sets initial weights that allow the
network to train in an efficient and timely manner.
The goal of deep learning is to continuously adjust network

parameters to allow them to perform various nonlinear
transformations on the input to fit the output effectively.
Essentially, it is the process of solving the optimal solution of
the loss function. Research on deep learning focus on
algorithms to update the parameters. We refer to these
algorithms as optimizers. Selecting an optimizer in the field of
deep learning is one of the top priorities of a model. Even

when the dataset and the model architecture are the same,
using different optimizers may lead to different training
results. Therefore, the combination of network and dataset is
tested using different optimizers to select the most effective
approach.
With the development of deep learning in recent years,

some new optimizers and initializers have been proposed and
applied [41]. Therefore, before the experiment, the model is
tuned to select the appropriate initializer and optimizer. This
experiment is performed in a GPU environment, using Keras
framework based on TensorFlow, which mainly adjusts the
model’s learning rate, epoch, and batch parameters. Table 1
shows the experimental environment and parameter
configuration.

TABLE 1
EXPERIMENTAL ENVIRONMENT AND PARAMETER

CONFIGURATION

Parameter Numerical value

Development
environment

Using the Keras framework based on
Tensorflow.

GPU CUDA 9.0 and Tensorflow-GPU 9.0.

Learning rate The learning rate of the model varies
with different optimizers.

Batch 8.

Dropout
Dropout is used to prevent model

overfitting with a parameter of
0.5.

We use 58725 pictures in the dataset during the experiment.
We use training samples and 4,540 pictures as test samples.
The training samples are divided into the training set and the
verification set with a ratio of 8:2, as shown in Table 2.

TABLE 2
DATA SET PARTITION

Data set Number of
pictures Effect

Train 35182 Train the model

Val 8795 Adjust the parameters in
the model

Test 4540 Test the accuracy of the
model

1) INITIALIZER SELECTION.
This experiment selects the optimal initializer for the

traditional residual neural network. In the experiment, three
common initializers, namely, lecun, glorot, and he [42], [43],
[44], [45] are selected as the research objects. Each initializer
is used with normal and uniform distribution, resulting in six
types, namely, lecun_normal, lecun_uniform, glorot_normal,
glorrot_uniform, he_normal, and he_uniform. Technical
specifications can be found in the Keras initializer
documentation [46]. On the basis of a learning rate of 0.0001,
the optimizer selects six sets of comparative experiments.
Table 3 shows the experimental results. The glorot_normal
initializer proved most suitable for the residual network given
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the highest scores for training accuracy, validation accuracy,
and test accuracy. Therefore, we selected the glorot_normal
initializer as the model’s initializer for the remaining
experiments.

TABLE 3
EXPERIMENTAL RESULTS OF EACH INITIALIZER

Initializer
Training
accuracy
(%)

Validation
accuracy (%)

Test
accuracy
(%)

lecun_uniform 88.61 85.73 83.92
lecun_normal 85.53 83.77 78.83
he_uniform 85.85 83.80 77.73

he_normal 86.31 84.06 78.59

glorot_uniform 88.58 85.85 83.72

glorot_normal 90.92 87.31 84.07

2) OPTIMIZER SELECTION.

TABLE 4
LEARNING RATES OF FIVE OPTIMIZERS AND EXPERIMENTAL RESULTS

Optimizer Learning
Rates

Training
accuracy
(%)

Validation
accuracy
(%)

Test
accuracy
(%)

SGD 0.0010 90.92 87.31 84.07
RMSProp 0.0001 94.65 94.36 82.75
Adadelta 0.1000 93.16 89.33 82.44

Adamax 0.0001 93.77 89.03 80.72

Adam 0.0001 96.44 90.72 84.16

This experiment aims to select the best optimization
algorithm for the traditional residual neural network. We
compared five optimizers by using the initializer,
glorot_normalas. The five optimizers are SGD [47],
RMSProp [48], Adadelta [49], Adam [50], and Adamax [51].
Technical specifications can be found in the Keras optimizer

documentation [48]. The results of the comparative tests are
shown in Table 4. The experimental results show that the
Adam optimizer scores best in training accuracy and test
accuracy and second best in validation accuracy. Therefore,
we select Adam optimizer for this experiment.

E. MDFC–ResNet
Our MDFC–ResNet is based on the deep residual network

optimized in the previous section. The MDFC–ResNet model
consists of three dimensions, namely, species, disease, and
disease level. A compensation layer connects the three levels.
The recognition results of species and disease dimensions are
fed back as a compensation and error correction mechanism
and to improve the accuracy of crop disease level recognition.
Fig. 6 shows the structure of our deep residual neural network
with the multidimensional compensation mechanism. The
uppermost layer shows the first species dimension. The
optimized ResNet-34 network is used to identify the species
to which the picture belongs. The second dimension is the
disease dimension in the middle layer of Fig. 6. It uses the
optimized ResNet-50 network to identify diseases. The third
dimension is the disease level dimension in the bottom layer
of Fig. 6. The ResNet-50 models of disease dimension and
disease level dimension use parameter sharing to speed up the
recognition process and improve recognition accuracy.
Algorithm 1 describes the process of MDFC–ResNet. For

any single crop disease picture, the output of the three
dimensions is the probability distribution matrix of the crop
species to which the picture belongs, the disease, and the level
of disease. A compensation layer is used after three
dimensions. The compensation layer receives the probability
distribution matrices from the three dimensions. It uses the
probability distribution matrix of the identified species and t
of the disease as feedback data to compensate for the
probability of the obtained level of disease.

Fig. 6. MDFC–ResNet
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Fig. 7. Operation process of compensation layer

Algorithm 1 introduces the specific design scheme of
MDFC–ResNet.
Algorithm 1: MDFC–ResNet
Input: Training dataset and validation dataset
Output: Picture recognition results
1: For image in train dataset
2: Picture feed into the first (species) dimension
3: ResNet-34
4: Result of species identification
5: Picture feed into the second (disease) dimension
6: ResNet-50
7: Obtain disease results
8: Picture feed into the third (disease level) dimension
9: ResNet-50
10: Get disease level results
11: Use compensation layer to integrate species results, disease

results, and disease level results
12: End For
13: Output Final results
14: End Algorithm 1

Fig. 7 shows the operation flow of the distribution matrix
and compensation layer.
The results of the species identification, disease

identification, and disease level identification are in different
dimensions. Thus, the species dimension and the disease
dimension results are “expanded” in accordance with the

disease level result before all results are fused by using Eq. 1,
as follows:
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In the model, XiP is the probability of the i-th species, jYP is
the probability of the i-th disease, ZiP is the probability of the
i-th disease level, and Z 'iP is the final detailed feature
recognition result. In the process of selecting α and β values,
we set α = 1, determine the value of β, and finally, determine
the best value of α. After several trials, we achieve the highest
accuracy of the test set when α = 10 and β = 1.5.
Algorithm 2 shows the calculation algorithm of the

compensation layer.
Algorithm 2: Compensation layer design
Input: Species result matrix, disease result matrix, and disease
level result matrix
Output: Picture recognition results
1: For disease level result i in disease level result matrix

(1)
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2: Find the species s to which i belongs to
3: From species result matrix, find species s result
4: Set position i of the extended species result matrix as species s

result
5: Find the disease c to which i belongs
6: From disease result matrix, find disease level c result
7: Set position i of the extended disease result matrix as disease

c result
8: End For
9: Combine the extended species result matrix, the extended

disease result matrix, and the disease level result matrix by
using Formula 1 to calculate the detailed result matrix of
compensation

10: Find the maximum score from the detailed result matrix of
compensation

11: Output The category corresponding to the maximum score
12: End Algorithm 2

The specific process of “expanding” is shown in Fig. 8,
with apples and tomatoes as examples. The recognition result
of the species dimension is a matrix of 21, which represents
the probability of apple and tomato. The recognition result of
the disease dimension is a 41 matrix. The matrix contains

apple scab, apple gray spot, tomato powdery mildew, and
tomato scab. The disease level dimension result is an 8  1
matrix, which generally contains apple scab, severe apple
scab, general apple gray spot, severe apple gray spot, general
tomato powdery mildew, severe tomato powdery mildew,
general tomato scab, and severe tomato scab. At this point,
the dimensions of the matrices are different. In the expansion
process, the size of the disease level dimension is used as a
reference, and the results of the species dimension and the
disease dimension are expanded into 81 matrix. The species
dimension extends from 2  1 to 8  1; thus, each element
repeats four times before moving to the next element.
Similarly, because the disease dimension expands from 41
to 81, each element of the disease dimension repeats twice
before moving to the next element. At the end of this
expansion process, the three matrices have identical sizes.

Ⅳ. Performance analysis
We preprocess the data set in the model tuning process by

normalizing the size of the pictures. We use SVD technology
to remove the noise in the picture and determine

Fig. 8. Apple and tomato as examples to illustrate the operation process of the compensation layer in detail
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the model’s initializer and optimizer. This section focuses on
the performance of our proposed model.
In the experiment, we compare MDFC–ResNet with

commonly used methods in crop disease identification,
namely, AlexNet, VGG, and ResNet-50. The results of the
experiment confirm that our proposed residual network with
multidimensional feature comparison performs better than
traditional models. The overall results are shown in Table 5.
The table shows that our MDFC–ResNet has the best
performance in terms of training accuracy, validation
accuracy, and test accuracy. Specifically, the accuracy of the
training set is increased by 1.10%, 8.40%, and 5.31%; the
accuracy of the validation set is increased by 0.08%, 4.12%,
and 3.04%; the accuracy of the test set is improved by 5.03%,
2.12%, and 3.18%. Our model contains two ResNet-50
models and one ResNet-34 model (arguably less accurate
than ResNet-50); thus, we conclude that the compensation
layer adds accuracy to our model is reasonable.

TABLE 5
EXPERIMENTAL RESULTS OF EACH MODEL

Model VGG-19 AlexNet ResNet-
50

MDFC–
ResNet

Training
accuracy
(%)

92.86 85.52 88.65 93.96

Validation
accuracy
(%)

89.74 85.70 86.79 89.82

Test
accuracy
(%)

80.19 83.10 82.04 85.22

Network performance is not only measured by high
accuracy. Accuracy is simply the ratio of accurately
predicted values to the total number of observations. In any
recognition model, we have true positive and true negative

values, as well as false positive and false negative values.
Precision is the ratio of true positive over true positive and
true negative. In our study, it represents the accurately
identified diseased leaves out of the total diseased leaves.
Recall or sensitivity is the ratio of true positive, overall
labeled as positive, whether correct or not. In our study, it
represents the accurately identified diseased leaves out of all
leaves labeled as diseased. Finally, F1 ratio is the weighted
average of precision and recall. This measure is more useful
than accuracy if the class distribution is uneven. Our model
holds 59 crop disease categories, but 49 of which are levels
of specific diseases; only 10 categories show healthy leaves.
This finding skew the disease identification, but the F1
statistic corrects the disparity. For a more detailed analysis,
we review the precision, recall, and F1 values of all four
models in the 59 classifications. Table 6 shows the precision,
recall rate, and F1 measure of each model.
We compare the performance of MDFC–ResNet with the

best performance of the other three models, in terms of
ranges of precision, recall, and F1. For each network and
each statistic, we record the average, minimum, and
maximum scores. We then determine the highest average for
the three other networks and compare with the average of
MDFC–ResNet. The same procedure is performed for the
minimum and maximum scores. All networks had perfect
100% scores; thus, we considered them as well. Table 7
shows the results. MDFC–ResNet performs better than the
other models on all measures. It has the highest average
accuracy, the highest range (minimum to maximum), and
perfect scores for precision, recall, and F1 values. The only
exception is the minimum score for F1 percentage, and class
22 obtain the worst case; the score of the two other models is
only 44.45%. Finally, MDFC–ResNet scores lower than 50%
for F1 in only two of 59 cases, namely, 22 and 50.

TABLE 6.
RESULTS FOR EACH CLASS IN MDFC-RESNET

VGG-19 AlexNet ResNet-50 MDFC-ResNet

Class precisio
n (%)

Recall
(%) F1(%) precisio

n (%) Recall (%) F1(%) precisio
n (%)

Recall
(%)

F1(%
)

precisio
n (%)

Recall
(%) F1(%)

0 72.78 90.44 80.65 88.17 100.00 93.71 97.63 93.75 95.65 98.22 95.40 96.79
1 60.00 56.25 58.06 56.67 53.13 54.84 70.00 72.41 71.18 63.33 70.37 66.66
2 63.64 58.33 60.87 59.09 54.17 56.52 72.73 76.19 74.42 68.18 78.95 73.17
3 96.72 90.77 93.65 100.00 96.83 98.39 100.00 91.04 95.31 100.00 96.83 98.39
4 90.00 90.00 90.00 90.00 85.71 87.80 100.00 83.33 90.91 95.00 86.36 90.47
5 83.33 83.33 83.33 83.33 71.43 76.92 83.33 100.00 90.91 66.67 66.67 66.67
6 75.29 100.00 85.90 100.00 92.39 96.04 98.82 96.55 97.67 100.00 98.84 99.42
7 100.00 85.71 92.31 91.67 73.33 81.48 100.00 92.31 96.00 83.33 100.00 90.91
8 88.89 88.89 88.89 83.33 93.75 88.23 100.00 85.71 92.31 100.00 100.00 100.00
9 96.30 100.00 98.12 94.44 98.08 96.23 98.15 89.83 93.81 100.00 100.00 100.00
10 70.37 55.88 62.29 70.37 70.37 70.37 92.59 59.52 72.46 85.19 57.50 68.66
11 66.67 40.00 50.00 70.83 60.71 65.38 54.17 65.00 59.09 58.33 66.67 62.22
12 62.32 91.49 74.14 73.91 83.61 78.46 75.36 85.25 80.00 68.12 85.45 75.81
13 86.27 63.77 73.33 82.35 70.00 75.67 82.35 71.19 76.36 84.31 66.15 74.13
14 48.28 77.78 59.58 72.41 65.63 68.85 79.31 69.70 74.20 79.31 63.89 70.77
15 74.65 82.81 78.52 78.87 83.58 81.16 77.46 96.49 85.93 71.83 94.44 81.60
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16 100.00 99.15 99.57 100.00 100.00 100.00 93.10 10.00 18.06 100.00 100.00 100.00
17 97.62 97.62 97.62 100.00 100.00 100.00 100.00 95.45 97.67 100.00 97.67 98.82
18 62.96 65.38 64.15 53.70 72.50 61.70 77.78 67.74 72.41 72.22 78.00 75.00
19 78.79 73.24 75.91 87.88 69.88 77.85 75.76 80.65 78.13 83.33 79.71 81.48
20 77.03 80.28 78.62 78.38 85.29 81.69 89.19 82.50 85.71 86.49 84.21 85.33
21 89.83 76.81 82.81 89.83 80.30 84.80 77.97 86.79 82.14 81.36 81.36 81.36
22 22.22 66.67 33.33 11.11 25.00 15.38 22.22 66.67 33.33 22.22 40.00 28.57
23 97.78 90.72 94.12 96.67 89.90 93.16 98.89 92.71 95.70 96.67 92.55 94.57
24 100.00 98.11 99.05 98.08 96.23 97.15 100.00 94.55 97.20 100.00 100.00 100.00
25 73.23 72.69 72.96 79.55 70.39 74.69 72.86 73.41 73.13 66.17 73.86 69.80
26 67.18 74.89 70.83 64.89 76.58 70.25 71.76 71.48 71.62 75.57 68.04 71.61
27 88.89 86.49 87.67 91.67 78.57 84.62 91.67 89.19 90.41 86.11 93.94 89.85
28 72.13 91.67 80.73 80.33 90.74 85.22 79.51 94.17 86.22 83.61 94.44 88.70
29 90.00 87.61 88.79 90.91 84.03 87.33 94.55 85.25 89.66 90.00 83.90 86.84
30 78.23 92.74 84.87 95.92 97.24 96.58 91.84 97.83 94.74 98.64 98.64 98.64
31 67.50 81.81 73.97 77.50 83.78 80.52 75.00 78.95 76.92 85.00 79.07 81.93
32 87.04 74.60 80.34 90.74 84.48 87.50 81.48 84.62 83.02 81.48 83.02 82.24
33 94.12 86.49 90.14 98.04 99.01 98.52 95.10 97.98 96.52 98.53 98.53 98.53
34 68.97 76.92 72.73 79.31 74.19 76.66 82.76 77.42 80.00 89.66 72.22 80.00
35 91.78 80.72 85.90 89.04 84.42 86.67 91.78 89.33 90.54 87.67 90.14 88.89
36 80.56 63.04 70.73 83.33 63.83 72.29 88.89 65.31 75.30 88.89 80.00 84.21
37 79.69 68.92 73.91 82.81 76.81 79.70 75.00 73.85 74.42 84.38 81.82 83.08
38 100.00 53.85 70.00 97.14 94.44 95.77 100.00 85.37 92.11 100.00 92.11 95.89
39 66.67 90.00 76.60 62.96 85.00 72.34 74.07 90.91 81.63 85.19 79.31 82.14
40 98.80 86.32 92.14 96.39 86.96 91.43 96.39 90.91 93.57 91.57 93.83 92.69
41 96.53 71.37 82.06 95.95 95.40 95.67 97.11 94.38 95.73 98.27 92.39 95.24
42 71.74 73.33 72.53 76.09 97.22 85.37 78.26 62.07 69.23 71.74 68.75 70.21
43 90.58 87.41 88.97 86.23 90.84 88.47 84.06 92.06 87.88 89.13 90.44 89.78
44 63.89 56.10 59.74 75.00 72.97 73.97 75.00 84.38 79.41 80.56 90.63 85.30
45 85.71 73.97 79.41 79.37 69.44 74.07 84.13 75.71 79.70 85.71 90.00 87.80
46 55.26 80.77 65.62 63.16 70.59 66.67 65.79 67.57 66.67 71.05 75.00 72.97
47 77.22 91.73 83.85 74.68 93.65 83.10 72.78 92.00 81.27 87.34 92.00 89.61
48 71.74 73.33 72.53 73.91 72.34 73.12 73.91 73.91 73.91 78.26 83.72 80.90
49 72.92 71.43 72.17 77.08 75.51 76.29 81.25 68.42 74.29 87.50 82.35 84.85
50 25.00 50.00 33.33 50.00 33.33 40.00 50.00 40.00 44.44 50.00 40.00 44.44
51 60.00 60.00 60.00 20.00 100.0 33.33 60.00 42.86 50.00 60.00 42.86 50.00
52 81.67 74.24 77.78 76.67 79.31 77.97 76.67 80.70 78.63 81.67 77.78 79.68
53 81.74 85.45 83.55 86.09 86.84 86.46 89.57 88.79 89.18 89.57 90.35 89.96
54 64.94 64.94 64.94 77.92 70.59 74.07 83.12 73.56 78.05 77.92 78.95 78.43
55 41.03 76.19 53.34 69.23 65.85 67.50 61.54 68.57 64.87 66.67 65.00 65.82
56 79.70 67.93 73.35 85.15 65.65 74.14 87.62 63.44 73.59 85.15 67.98 75.60
57 76.49 89.11 82.32 72.80 89.86 80.44 69.41 93.16 79.55 75.35 90.78 82.35
58 91.89 69.39 79.07 91.89 91.89 91.89 91.89 94.44 93.15 91.89 94.44 93.15

TABLE 7
SUMMARY OF ACCURACY

VGG-19 AlexNet ResNet-50 MDFC-ResNet

Precision Recal
l F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

average 77.20 77.78 76.47 79.71 80.06 79.06 82.40 79.79 79.93 82.79 82.33 82.24
others 82.40 80.06 79.93

highest highest highest
min 22.22 40 33.33 11.11 25 15.38 22.22 10 18.06 22.22 40 28.57

others 22.22 40 33.33
highest highest not

max 100 100 99.57 100 100 100 100 100 97.67 100 100 100
others 100 100 100

highest highest highest
perfect 4 2 0 4 4 2 7 1 0 8 5 4

others 7 4 2
highest highest highest



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3001237, IEEE Access

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. *, NO. *, **

11

V.  CONCLUSION AND FUTURE RESEARCH
We have shown that our IoT system is effective in crop

disease recognition systems of the agricultural industry.
Through the combination of deep learning and IoT
technology, the proposed method can be automatically used
with multiple crop types. It differentiates between levels of
disease, apart from recognizing the disease. Treatment
protocols may differ between mild and severe cases of crop
disease, especially in types and amounts of chemicals used to
combat the disease. Most importantly, accuracy is high, even
compared with human recognition. We attribute much of this
accuracy to using three stages of recognition and the
compensation layer.
Future research can focus on two aspects; on the one hand,

identifying reasons why recognition fails in some cases.
Improving accuracy at the low end enhances the efficiency
of the system. Picture quality may be a factor in some cases,
and we can establish guidelines and requirements for pictures
in the dataset. One possible solution may be the use of color
calibration charts to be included in the images. Preprocessing
may then include correcting the image colors to standard.
Visual attention mechanisms and target detection can then
improve picture data. On the other hand, we improve the IoT
system by increasing sensor types. Through sensors, we can
collect weather, soil, and air quality data to improve the
accuracy of crop disease recognition.
ResNet is suitable for multiple purposes in agriculture.

Farmers can use them for fruit counting, crop yield
estimation, field soil moisture prediction, weather prediction,
crop disease identification, and other production activities.
Surprisingly, little is known about the actual level of use. We
may learn from the failure of medical diagnostic systems in
healthcare. One reason is the difficulty of data entry. This
case is not the same as in agriculture. Farmers can take
pictures with their cell phones and send them for analysis.
Another factor may be more relevant. Medical diagnostic
systems suffer from lack of follow-up in the form of
recommendations for treatment. Future research could focus
on the impact of providing treatment recommendations
according to best practices. Combined with the excellent
performance of IoT technology and neural convolutional
networks, these steps may improve penetration in practice.
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