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ABSTRACT

Machine Learning (ML) is the discipline that studies methods for

automatically inferring models from data. Machine learning has

been successfully applied in many areas of software engineering

ranging from behaviour extraction, to testing, to bug fixing. Many

more applications are yet be defined. However, a better understand-

ing of ML methods, their assumptions and guarantees would help

software engineers adopt and identify the appropriate methods for

their desired applications. We argue that this choice can be guided

by the models one seeks to infer. In this technical briefing, we re-

view and reflect on the applications of ML for software engineering

organised according to the models they produce and the methods

they use. We introduce the principles of ML, give an overview of

some key methods, and present examples of areas of software engi-

neering benefiting from ML. We also discuss the open challenges

for reaching the full potential of ML for software engineering and

how ML can benefit from software engineering methods.
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1 INTRODUCTION

One can scarcely open a newspaper or switch on the TV nowadays

without hearing about machine learning (ML), data mining, big data

analytics, and the radical changeswhich they offer society. However,

these technologies have so far had surprisingly little impact on

software engineers themselves. By examining the recent literature,

we can see small but perhaps significant changes emerging on the

horizon for our discipline. Surely one obstacle to the take-up of

these exciting technologies in software engineering (SE) is a general

lack of awareness of how they might be applied. What problems can
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ML currently solve? Are such problems at all relevant for software

engineers?

Machine learning is a mature discipline with many excellent

modern introductions to the subject. However, perspectives on

ML from software engineering are less common [2], and an intro-

duction for software engineers that attempts to be both accessible

and pedagogic, is a rare thing. Furthermore, at least some of the

ML methods currently applied to SE are not widely discussed in

mainstream ML. There is much more to ML than deep learning.

With these motivations in mind, we will present in this technical

briefing an introduction to machine learning for software engineer-

ing researchers and practitioners having little or no experience of

ML. This material might also be useful for the AI community to

better understand the limitations of their methods in an SE context.

To structure our presentation, we will focus on three questions

that we think should be addressed before attempting any new ML

solution to an existing software engineering problem. These are:

• What class of learned models is appropriate for solving an

SE problem?

• For this class of models, are there any existing learning algo-

rithms that will work for typical instances and sizes of my SE

problem? Otherwise, is it possible to adapt any fundamental

ML principles to derive new learning algorithms?

• Has anyone considered a similar SE problem, and was it

tractable to an ML solution?

2 RELEVANCE AND TIMELINESS

There is a strong trend in software engineering towards agile soft-

ware development, which emphasises incremental and exploratory

coding. However, agility de-emphasises the construction of many

traditional artefacts such as requirements specifications, models, re-

ports and documentation, which are typically required for software

analysis. To meet the needs of changing approaches to software

development, future SE techniques and tools will need to be much

more automated, lightweight, adaptable and scalable, to keep pace

with increased developer productivity. In particular, they will need

to construct their own analysis artefacts and models.

Another new line of research concerns using ML to cope with

systems integration problems and systems-of-systems such as the

Internet of Things. This involves for example statistical learning for

service matchmaking and automata learning for emergent middle-

ware. Note that there is currently no single conference for all these

topics, so the community is poorly connected. The organisation of

thematic workshops such as: (1) Machine Learning Technologies in

Software Engineering at ASE 2011, (2) Machine Learning for System

Construction at ISoLA 2011, and (3) AI meets Formal Software Devel-

opment at Schloss Dagstuhl 2012, illustrate the growing interest in

the field.
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This proposed technical briefing will provide a compact intro-

duction to ML methods and their use in SE, in conjunction with

the launch of our new book in early 2018, Machine Learning for

Dynamic Software Analysis: Potentials and Limits. This book is based

on a Dagstuhl Seminar [1], which we co-organised.

3 BACKGROUND

The technical briefing is intended for a broad audience of software

engineering researchers and practitioners. No prior knowledge

of ML techniques is required, a basic knowledge of modelling is

recommended. We will provide the participants with a handout

beforehand and we will provide practical examples throughout

the presentation. All the material will be available online, and will

remain online afterwards. As depicted in Figure 1, the presentation

will be structured around three main concepts: models, methods,

and applications.
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Figure 1: Key concepts of ML for software engineering

3.1 Models

A learning algorithm constructs a model M from a given data set D.

This model represents some sort of synthesis of the facts contained

in D. Most machine learning algorithms perform inductive infer-

ence, to extract general principles, laws or rules from the specific

observations in D. Otherwise, learning would simply correspond

to memorisation. So a model M typically contains a combination of

facts (from D) and conjectures which have some predictive power.

For software analysis, it is sometimes appropriate to learn an ex-

plicit model of computation such as an automaton model. At other

times, an implicit model such as a function approximation model

may be used.

3.2 Methods

The scope and power of algorithms to learn interesting models

increases each year, thanks to the extraordinary productivity of

the AI community. Therefore, what was technically infeasible five

years ago, may have changed or be about to change. This rapid

pace of development is reflected in the media excitement. How-

ever, the SE community needs to be more aware, on a technical

level, of these changes, as well as the fundamental and unchanging

theoretical limits. For example, very broad classes of models (e.g.

Turing machines) are known to be infeasible to learn under any

circumstances.

Such negative results do not necessarily mean that ML cannot

be used for your SE problem. Nor does media hype imply that you

will succeed. Therefore, we believe that it is beneficial to have some

insight into some general principles of learning that go beyond

specific algorithms.

3.3 Applications

We also believe it will be beneficial for software engineers to read

about success stories in applying ML to SE. Figure 2 illustrates

applications of ML techniques to SE activities. In the technical

briefing, we will outline some SE applications where ML has already

been tried with some degree of success. Scalability in the face of

growing software complexity is one of the greatest challenges for

SE toolmakers. Therefore, information (however ephemeral) about

the state of the art in solved problem sizes is also relevant.
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Figure 2: Applications of ML for software engineering

4 PRESENTERS

Prof. Dr. Karl Meinke. In the last ten years Meinke and his group

have pioneered new applications of machine learning combined

with model checking to the problem of functional requirements

testing for software and systems. Group research has studied the

learning problem for both procedural and reactive systems. Nu-

merical function approximation as well as symbolic automaton

learning methods have been considered. Our main requirements

testing tool LBTest[3] (http://www.lbtest.org) has been evaluated in

sectors such as automotive, avionics, finance and web, and by major

Swedish multinational companies such as SAAB Aerospace, Scania

and Volvo. Meinke has a publication track record in the areas of

machine learning for finite and infinite state systems, theoretical

principles of learning-based testing, and practical tools and case

studies for learning-based testing.

Dr. Amel Bennaceur is a Lecturer in Computing at the Open Uni-

versity, UK. She received her PhD degree in Computer Science from

the University of Paris VI in 2013. Her research interests include

dynamic mediator synthesis for interoperability and collaborative

security. She was part of the Connect and EternalS EU projects

that explored synergies between machine learning and software

synthesis [4]. The results of her work have been published in lead-

ing conferences and journals such as Middleware, ECSA, and IEEE

TSE. She has also been invited to present the results of this work

in various scientific events such as Dagstuhl and Shonan seminars.
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