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A B S T R A C T

It is necessary for autonomous robotics in agriculture to provide real time feedback, but due to a diverse
array of objects and lack of landscape uniformity this objective is inherently complex. The current study
presents two implementations of the multiple-expert colour feature extreme learning machine (MEC-
ELM). The MEC-ELM is a cascading algorithm that has been implemented along side a summed area table
(SAT) for fast feature extraction and object classification, for a fully functioning object detection
algorithm. The MEC-ELM is an implementation of the colour feature extreme learning machine (CF-ELM),
which is an extreme learning machine (ELM) with a partially connected hidden layer; taking three colour
bands as inputs. The colour implementation used with the SAT enable the MEC-ELM to find and classify
objects quickly, with 84% precision and 91% recall in weed detection in the Y’UV colour space and in 0.5 s
per frame. The colour implementation is however limited to low resolution images and for this reason a
colour level co-occurrence matrix (CLCM) variant of the MEC-ELM is proposed. This variant uses the SAT
to produce a CLCM and texture analyses, with texture values processed as an input to the MEC-ELM. This
enabled the MEC-ELM to achieve 78–85% precision and 81–93% recall in cattle, weed and quad bike
detection and in times between 1 and 2 s per frame. Both implementations were benchmarked on a
standard i7 mobile processor. Thus the results presented in this paper demonstrated that the MEC-ELM
with SAT grid and CLCM makes an ideal candidate for fast object detection in complex and/or agricultural
landscapes.
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1. Introduction

Agriculture systems require autonomous robotics for weed
spraying, livestock detection and vehicle safety. The ability to
detect and process objects quickly is a desire of many of these
systems. Agricultural scenarios can be exceedingly complex as
compared to other industrial based robotics systems. Object
detection algorithms in agriculture may compete with any number
of structurally similar or diverse objects. This makes for a complex
environment with the potential for many false positives and false
negatives. A potential solution to this problem is to adopt a
cascading or multiple expert approach. These types of solutions
have varying levels of success in both flora and fauna detection and
there are numerous implementations, ranging from substratal to
more complex. These approaches include simple colour and
texture detection, as well as broad template matching and have
* Corresponding author.
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been implemented for weed, horse and wildlife detection [1–3].
The more complex solutions use a wide range of techniques, which
can include large data structures such as deep or exemplar neural
networks and varying levels of texture and shape based analyses.
This includes for the ripeness of bananas and for other generic
object detectors [4–7].

The approaches discussed often rely on grey-scale images and
in many cases, the detection of prominent features or stand out
colour attributes. Processing speed is the key advantage in this
case. Deep learning architectures are much slower and more
complex and for this reason are often avoided in place of real time
solutions. Notably, with a high-end GPU it is possible to process a
large number of frames per second [8], but in remote mobile
computing GPUs might not be attainable. A disadvantage of many
approaches is the reliance on prominent key characteristics in the
classification process. This often leads to poor overall classification
accuracy, particularly in more complex scenarios, e.g., in weed
detection there may not be any prominent features; in the case of
cattle detection there may be variations in colour between the
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same breed and in other cases an object's features may appear
different at different angles or rotations.

The goal of this research is then to explore methods that can be
used to deliver both fast and accurate feature extraction and object
classification. For this, an implementation of the Multiple-expert
colour feature extreme learning machine (MEC-ELM) [9] is
proposed. The MEC-ELM is a cascading implementation of the
Colour Feature Extreme Learn Machine (CF-ELM) [10], which is
itself an implementation of the Extreme Learning Machine (ELM)
[11] for colour object detection. The ELM in part due to its efficient
implementation and fast processing speeds has demonstrated
suitability for computer vision based problems in the agricultural
scenarios. Including for soybean classifications [12], unmanned
aerial vision for palm tree detection [13] and has been bench-
marked using notable feature extraction techniques [7]. The MEC-
ELM can be used as both a feature extraction and classification
technique. This can be achieved by adopting the summed area
table (SAT) [14] (or integral image) and thereby reducing a
landscape image (or video frame) to a grid of coloured blocks. The
purpose of this is to provide a generic approach to HAAR features
[15] and hence take advantage of the SATs fast, multi-scale feature
extraction architecture. Fast processing may require low resolution
image data and this can result in a potential loss of pixel based
information. To meet this challenge, the output of the SAT grid is
used to generate three colour level co-occurrence matrices (CLCM)
[16], one for each colour band (red, green and blue). The outcome
will be a texture based analysis, with the values provided as input
of each CF-ELM. The two implementations of the MEC-ELM were
implemented and processing speeds and overall accuracy com-
pared. The algorithm is designed with the objective of fast object
detection in complex and unpredictable terrain, making it an ideal
candidate for use in the agriculture industry. The objective in this
case is to implement the MEC-ELM as a weed detector for spraying,
unobtrusive cattle tracking and as a vehicle interaction and
avoidance tool. This paper will benchmark the MEC-ELM with pre-
recorded video data, for eventual use in a remote laptop interface
for interaction with an unmanned aerial vehicle (UAV or drone) and
stationary surveillance devices.

2. Theory/calculation

2.1. Multiple-expert colour extreme learning machine (MEC-ELM)

The ELM is a single layer, feed forward neural network that is
known for its fast and analytical training phase. In this phase the
output of the neural networks hidden layer is stored in a matrix
designated H the output weights are then determined analytically.
This can be expressed [17,18]:

HðW1 � � � ; W~N; b1 � � � ; b~N; x1 � � � ; xNÞ

¼
gðW1�x1 þ b1Þ � � � gðW~N�x1 þ b~NÞ
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where H is the hidden layer output matrix, N is the number of
samples used in the training phase and ~N is the number of neurons
in the hidden layer. In the activation function g() [19], W is the
input weight, x is the input sample pixels and b is the bias.

The Colour Feature Extreme Learning Machine (CF-ELM) is
similar in architecture to the ELM, comprising of a single layer, feed
forward, neural network with a partially connected hidden layer
and a fully connected output layer. The hidden layer is divided into
3 sections and this gives the CF-ELM the ability to be used with
different colour models, including red, green, blue (RGB), lumi-
nance, chrominance red, chrominance blue (Y’UV) and hue,
saturation, value (HSV) [20], Y’UV (also known as YCrCb) is
defined by the international telecommunications union as ITU-R
B.601 [32]. Equivalent to the standard ELM it uses randomly
assigned weights in the hidden layer and by using the pseudo
inverse it can analytically determine the output weights from a
fully connected output layer. By dividing the hidden layer into 3
sections, each colour attribute can be processed in a separate
section of the hidden layer and it is for this reason that the number
of neurons in the hidden layer must be a multiple of 3. By storing
the output of these 3 sections into 3 sections of the H matrix it
allows the matrix to be used to determined the output weights in
the same way as the standard ELM. For Y’UV the CF-ELM hidden
layer can be expressed [10].
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where Y0, U and V are equal to the individual colour pixel
matrices for each image and are stored in the H matrix at the
output of the hidden layer. The hidden layer process is repeated
in the output layer, with the output b becoming the input
multiplier for the output weights b. The output T of the CF-ELM
is then the result of b � H.

T ¼ b�H ð3Þ
Here b can be expressed:

b ¼
bT
1

..

.

bT
~N

2
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3
75~N�m ð4Þ

where m is the number of neurons in the output layer, which is
equivalent to the number of outputs of the ANN. The matrix of
target outputs T can be expressed as:

T ¼
tT1
..
.

tTN

2
64

3
75N�m ð5Þ

where for each TN the value is stored based on the input training
sample and its desired output. This leaves b as the one unknown,
by making b the subject we get:

b ¼ H�1�T ð6Þ
where H�1 is the Moore-Penrose pseudo inverse of matrix H. The
output values of this process are then stored in b and used as the
weights in the output layer removing the need for a long gradient
descent based training process.

The MEC-ELM is then a set of CF-ELMs, where each CF-ELM can
be trained on a different set of sample images, different colour
system or image analysis techniques. The MEC-ELM becomes a
global consensus of all CF-ELMs or experts, the goal is then to find
individual CF-ELMS of high classification accuracy but with varying
consensus [21]. The method used in this paper was inspired by the
Examplar SVM [22] and the Ensemble ELM (EN-ELM) [23], where
training samples are divided among different instances of CF-
ELMs. The training phase of the MEC-ELM is depicted in Fig. 1,



Fig.1. The MEC-ELM with each CF-ELM trained on a different portion of the training
set.
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where K is the number of CF-ELMs, each instance is trained on one
kth of the training set and 1N

K to KN
K (or N) denotes the final image for

each instance. A predetermined number of values is sent to the
input of each CF-ELM, where RGB values are first processed, this
will be discussed further in the methodology in Section 3.1.

2.2. Summed area table (SAT)

The SAT, which is also known as the integral image (II), was made
popular by Viola and Jones object detection framework [24]. The SAT
allows fast object detection by converting an image into a summed
representationof allpixelvaluesand from these valuesa HAAR based
featureset canbeusedfor broad templatematching. TheHAAR based
featureset canbequite large andthe AdaBoost algorithm [25] isoften
usedto find featuresmost commonlyassociatedwith a setof training
images. The HAAR features are rectangular based features with
alternating dark and light areas designed to match the dark and light
areas (or light intensity) associated with a target object. These blocks
match the block based summation values found in the SAT, which
means that these dark and light areas can be matched to areas within
the image very quickly. Only four sets of coordinates are required to
calculate the light intensity of one sub block. To create the SAT all
pixelvaluesin the tableare stored assummations of the pixelvalueat
the current location and the preceding summation values. In this
fashion, the SAT can be generated from just one pass over the image.
This can be expressed [14]:

IIði; jÞ ¼ ði; jÞ þ ði � Di; jÞ þ ði; j � DjÞ � ði � Di; j � DjÞ ð7Þ
where II(i, j) is a single coordinate of dimensions i and j of the SAT
and the decrements (Di, Dj) refer to the preceding pixel
summation value; here Di, Dj = 1. The sum light intensity value
of any rectangular area can then be calculated using the four
coordinates of each corner of the rectangle. This can be expressed:

Sði; j; i � w; j � hÞ ¼ ði; jÞ þ ði � w; j � hÞ � ði � w; jÞ � ði; j � hÞ ð8Þ
where S refers to the sum of the rectangle's pixel values, with
bottom right coordinates i and j and dimensions w (width) and h
(height). The resulting magnitudes are then normalised by divide
the magnitude by the number of pixels within the rectangle. This
will produce an average light intensity value between 0 and 255. In
this paper red, green and blue SATs were created instead of one SAT
for grey-scale (or light intensity). This allowed the CF-ELM to work
with each individual colour band as required.

2.3. Colour-level co-occurrence matrix (CLCM)

The CLCM [16] (orgreylevelGLCM)isanimageanalysis toolbased
on light intensity and looks at the relationship between pixels and
their nearest neighbour [26]. The CLCM has 3 or more possible
variants, including first order, second order and third order. Each
order describes a tabulation of different combinations of pixels. The
first order is essentially a one dimensional histogram of pixel
intensities, it does not look at the relationship between neighbouring
pixels and can be used to determine statistics such as mean and
variance [27].Second orderCLCMslook atthe relationship between a
pixel and one of its neighbours, creating a two dimensional array (or
matrix) of combination occurrences. The second order can be used
for texture analyses and will be utilised in this paper. Third or higher
order CLCMs look at 2 or more of a pixel's nearest neighbours. These
implementations are computationally more expensive and more
difficult to interpret, for this reason they were not used in this
research. The initialisation of a second order co-occurrence matrix
can be expressed [28]:

Pði; jÞ ¼
Xn
x¼1

Xn
y¼1

1; if Iðx; yÞ ¼ i and Iðx þ Dx; y þ DyÞ ¼ j
0; otherwise

�
ð9Þ

where P(i, j) represents total events and is an individual element in
the CLCM, n by n is the dimensions of a rectangular image, x and y
are coordinates within an image and Dx and Dy are the distance
from a pixel to its neighbour in the right direction (these same
combinations are checked in the left direction as well), in this case
Dx, Dy = 1. For this research the intensity levels were reduced from
256 to 16 during initialisation of the CLCM. This was done to reduce
the occurrence of nil values. After initialisation values are
normalised by dividing all values in the CLCM by all possible
combinations in the CLCM. Total potential combinations can be
calculated from known dimensions 2 � n � n, where 2 represents
the left and right directions. Texture analyses values can then be
calculated from the values in the CLCM matrix. Five statistics were
chosen; these values were selected as they were the least
computationally intensive and provided good results in prelimi-
nary testing. These included energy, entropy, contrast, homogene-
ity and CLCM mean, which can be expressed [28,26]:

Energy ¼
XD�1

i;j¼0

Pði; jÞ2; ð10Þ

Entropy ¼
XD�1

i;j¼0

�lnðPði; jÞÞ � Pði; jÞ; ð11Þ

Contrast ¼
XD�1

i;j¼0

Pði; jÞ � ði � jÞ2; ð12Þ

Homogeniety ¼
XD�1

i;j¼0

Pði; jÞ
1 þ ði � jÞ2

; ð13Þ

CLCM Mean ¼
XD�1

i;j¼0

i � Pði; jÞ ð14Þ

where D is the number of values within the CLCM. In this research
three CLCMs were created to match the three colour band
requirements of the CF-ELM. These included a red level, green
level and blue level co-occurrence matrix. To avoid confusion these
will be referred to as a colour-level co-occurrence matrix (CLCM),
but it is noteworthy that a grey-level (GLCM) is more common in
literature.



Fig. 3. Left image is a SAT grid of the image on the right with 196 blocks.
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3. Methodology

All instances of the MEC-ELM were programmed and tested
using the C programming language, C was chosen due to portability
and faster processing speeds. It is also possible to use variants of C
in many embedded devices [29]. All benchmarking was conducted
using a laptop computer with a Linux based system, 16 gigabytes of
ram, a solid state drive and a 4th generation i7 mobile processor. All
time benchmarking was conducted using the clock _ g ettime
function with the CLOCK _ M ONOTONIC option from the time. h
library. All images were stored as JPEG and decompressed using the
jpegIO. h library (also known as libjepg), before pre-processing,
images were stored in memory as RGB values between 0 and 255.
JPEG was chosen for storage and file transfer reasons, it is also an
output available in a number of remote camera interfaces. Images
were stored using 4:4:4 sub-sampling which is perceptually
lossless and were saved using the default setting 4:2:0 (lossy) in
libjpeg for user feedback/external processing (smaller file). In
agriculture this means that the lesser quality images are better
prepared for the potential wireless transfer constraints of remote
environments.

3.1. The algorithm

The algorithm is a multiple stage process based primarily on
Sadgrove et al. [9,10] for the initialisation of the CF-ELM for remote
computer based classification. These stages included an (i)
initialisation stage: where the neural network is initialised into
memory with initial random weights, (ii) weight biasing stage:
where the weights were biased to the training data and is based on
the CIW-ELM [30], (iii) training stage: where the output weights
were analytically determined with assistance from the C lapack
library [31], (iv) a tuning stage: where optimal threshold values
were found based on a tuning set of 100 images, this stage was also
used to assist in an off line training process, where optimal
individual weight sets for each CF-ELM were saved in text based
data files so that they can be imported instead of retraining, (V)
testing stage: where the individual CF-ELMS were tested on the
image frames. The weight biasing, training, tuning and testing
stages differed for each of the two implementations and from the
standard CF-ELM algorithm. These differences will be discussed. Of
the two implementations of the MEC-ELM tested in this paper the
primary difference is that one utilises the CLCM and the other does
not. This means that the CLCM MEC-ELM has CF-ELMs with just 5
inputs to match the 5 texture values. The Y’UV MEC-ELM has inputs
matching the number of grid blocks from the integral image. In
both cases the grid blocks will be referred to as the SAT grid. In this
implementation the RGB image is converted to Y’UV before being
processed as a sat grid.

� Frame Extraction: prior to testing, each video described in
Section 3.2 was extracted into individual frames. The frames
were extracted from MPEG video format to JPEG using the FFmpeg
package available to bash in Linux. The frames were extracted at
Fig. 2. Diagram of the standard Y
two frame per second to match the expected processing time of
the algorithm, although this did not take into account the CLCM
and tracking algorithms. The video used for testing in the case of
the cattle aerial footage was only 18 s long, for this reason six
frames per second were extracted instead. To elaborate, the
extraction of two frames per second was deemed adequate for
object detection in remote environments, but the emphasis in
this paper was on evaluating the effectiveness of the algorithm
and for this reason more frames were required.

� The SAT Grid: during the training, testing and tuning processes, all
images were first converted to a summed area table. The SAT was
then used to extract an average colour grid of the image or target
area. There was no limit on the number of coloured blocks within
the grid, but in this research between 25 and 100 blocks were
used and this depended on how successful classification was at
each block number. As processing speed was a priority, lower
block numbers were preferred. For the Y’UV variant of the MEC-
ELM these values were sent directly to each CF-ELM for
processing. This is on display in Fig. 2, where 3SAT is the three
individual summed area tables for the colour bands Y’, U and V.
There is also an example of an image converted to a SAT grid with
196 blocks in Fig. 3.

� Scaling: Each frame was read as a selection of rectangles. The
rectangle size was produced by dividing the width and height of
the image frame by a number determined to be effective in
pretesting. At each iteration the search rectangle was moved
through the image frame (typically by 10–20 pixels at a time). To
search with a larger or smaller rectangle the number for dividing
was increased or decreased and this caused a scale change.

� The CLCM: The block RGB values extracted from the SAT were
processed into a CLCM for use with the CLCM variant of the MEC-
ELM. During this process the red, green and blue level co-
occurrence matrices were produced and from each an energy,
entropy, contrast, homogeneity and CLCM mean value were
produced. The five values were then sent to the five inputs of
each CF-ELM for processing. A diagram is on display in Fig. 4.
Note the extra stage 3CLCM, where R, G and B SATs are used to
make 3 CLCMs for texture values energy, entropy, contrast,
homogeneity and CLCM mean.
’UV variant of the MEC-ELM.



Fig. 4. Diagram of the CLCM variant of the MEC-ELM.

Table 1
Number of images in each dataset, with resolution of video frames.

Dataset Training Tuning Testing Resolution

Bull Thistle 688 100 120 2000, 1500
Cattle Drone 1331 100 110 1920, 1080
Cattle Stationary 500 100 120 640, 480
ATV 608 100 144 1280, 720
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� Object Detection: to improve the precision and recall rates of the
algorithm, areas of interest were saved every time a tested
rectangle within the image frame produced a positive classifica-
tion. If an area produced multiple classifications at multiple
scales and in close proximity, a square was drawn in the area
based on saved coordinates. Each classification was stored with
an (x, y) coordinate number for the top right hand corner and the
bottom left hand corner of the rectangle. A classification was
considered in the same area if coordinates for a tested rectangle
were within a percentile area of previously saved coordinates.
The amount of classifications that triggered a square to be drawn
differed for each test set. Typically if 1–10 detections of the target
object were found in an area, this was a good indication that
something was there. Each search area was within 10–100%
radius of the first classified rectangle.

� Tracking Assist: to assist tracking objects across multiple frames,
a single neuron extreme learning machine (SNELM) was utilised
and the output of the SAT was used as it's input. The SNELM was
initialised based on just one image and the RGB values were
reduced to a single 16 bit colour value [33]. Preliminary testing
with grey-level values did not improve results. The training
image was be arbitrarily selected from the tuning set. After an
object is detected the base SNELM is updated to reflect the
detected object. In the proceeding frame the SNELM is then
primed to detect the same or similar object. As training is based
on a single image, the pseudo inverse is not required, this can be
expressed:

b ¼ T
ð65536 � R þ 256 � G þ BÞ � C

ð15Þ

where R, G and B are the arrays of colour values from the grid
extracted from the SAT and C is the number of grid blocks. b is
one dimensional and serves as an input weights container, with
length equal to C and T contains only one value, as only one image
is used in training. This value is a target and can be set to 1.
Processing an object can then be expressed:

Output ¼
XC�1

i¼0

bðiÞ � ð65536 � R þ 256 � G þ BÞ ð16Þ

the output is then checked against a predefined threshold
(typically between 0.1 and 1).

3.2. Datasets

Four datasets were used in training, tuning and testing. The
number of images in each dataset is listed in Table 1. The tuning
set contained 50 images of the object from the training set and
50 images of random surrounding terrain from the test frames.
All images used in testing and tuning were 100 by 100 pixels in
resolution. This resolution was chosen based on a trade off
between the higher precision of high resolution images and an
improvement in processing time. High resolution images were
not considered important due to the SAT grid producing a low
resolution version of each image. The resolution of the video
frames is based on the resolution of the original pre-recorded
video. The four datasets were chosen based on a potential use in
the agriculture industry, a particular emphasis was placed on
unmanned aerial vehicle (UAV or drone) technology. The
datasets included, a weed detection scenario involving Cirsium
vulgare (or Bull Thistle), two cattle detection scenarios and an all
terrain vehicle (ATV or quad bike) scenario. The Bull Thistle
scenario was chosen, as thistle competes with other more valuable
pasture, which is a potential problem for livestock. Detection of
the thistle allows for both weed surveillance and targeted
spraying, saving money, pasture and the environment. The two
cattle detection scenarios involved cattle recorded by a river bed
with a stationary surveillance camera and cattle recorded by a
drone hovering over green pasture. The cattle detection scenario
displays the algorithm's potential as a cattle tracking and counting
algorithm. The quad bike scenario involved a rider driving through
a rural country side. Vehicle detection can be used in both accident
detection and prevention. The technical aspects of each dataset are
listed:

� Bull Thistle: this dataset was sourced in two different ways. The
training set was photographed using a 10 mega-pixel Fujifilm
hand held camera on default settings and at a fixed distance of
2 m to simulate aerial surveillance. They were captured in JPEG
format at a resolution of 3648 by 2736 before cropping to 100 by
100. The video used to produce the testing frames were captured
by a DJI Phantom quadcopter in MP4 for 60 s at 4069 by 2178
pixels, at a distance of 10 m and on default settings. Both were
captured from pasture fields on the University of New England
SMART Farm (Long 151� 35 min 40 s E, Latitude 30� 26 min
09 s S), in sunny conditions between midday and late afternoon.

� Cattle Drone: This data was sourced from van Gemert et al [34]
allowing comparison of results of the MEC-ELM and the
Exemplar Support Vector Machines (Exemplar-SVM) presented.
The video footage was recorded using an AscTec Pelican
quadcopter, with a mounted GoPro 3: Black Edition action
camera, in overcast conditions and at varying distances (around
30–50 m). The video was recorded in 1920 by 1080 pixels at 60
frames per second. The video selected for testing was 18 s long.
The training data was made up of cropped and resized images
from the remaining videos in the dataset. To extend the training
dataset, images were flipped vertically using a bash command.
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� Cattle Stationary: the dataset is a collection of surveillance videos
taken from a nearby farm using a Scoutguard SG860C camera at
640 by 480 pixels, at 16 frames per second for 60 s and AVI format
(before conversion to MP4). The videos included Poll Hereford
cattle surrounding a river bed and other areas for grazing. The
training set was made up of images cropped from some of these
videos. A video not used to generate the training images was
used as the test video. Each video was captured at different times
of day and in different weather conditions. The distance to the
cow depended on how close they got to the camera.

� ATV: The video of the quad bike rider was captured using a DJI
Phantom 3 Adv in areas of Lough Coolin and Mount Gable in
Ireland in overcast conditions and at varying distances (around
20–50 m). Precise specifications of the video were not available.
The video was downloaded from Youtube for fair use in MP4
format and at a resolution of 1280 � 720 pixels. The video was
submitted to Youtube by user and channel name “JGK Drone”
[35]. As only one video was available the training and test set
were made up of different sections of the 3 min 37 s video,
exactly 144 frames or 1 min and 12 s of video were used for
testing sequences and the rest was used as the training set. Areas
that were overly dark or shadowy were avoided for reasons that
will be explored in the discussion, although these were still used
in the training dataset. Frames used in testing were cropped to
surround the quad bike. Images were flipped vertically using
bash to increase the number of training images. Some training
images overlapped slightly with the test set.

4. Results

The results from each dataset are split with the Y’UV input
results in Table 2 and the CLCM input results in Table 3. The tables
include the name of each dataset, the number of blocks used in the
SAT grid, the average accuracy of individual CF-ELMs achieved in
the tuning phase, the average time taken in testing per frame, the
precision and recall rates for all frames. Accuracy, precision and
recall can be expressed:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; ð17Þ

Precision ¼ TP
TP þ FP

; ð18Þ

Recall ¼ TP
TP þ FN

; ð19Þ

where TP is true positive, TN is true negative, FP is false positive
and FN false negatives.

The results in Tables 2 and 3 indicate better overall performance
in the cattle and ATV datasets for the MEC-ELM with CLCM texture
inputs. The MEC-ELM with Y’UV inputs performed best on the
thistle dataset with a precision rate of 98% and recall at 84%. The
Y’UV variant produced much faster processing times, with all
datasets processing around half a second to a second per frame.
Table 2
Testing results for each dataset using Y’UV inputs based on all frames of test videos, w

Y’UV Dataset SAT grid blocks Accuracy i

Bull Thistle 25 97% 

Cattle Drone 100 81% 

Cattle Stationary 100 89.25% 

ATV 25 93% 
The CLCM variant took between 1 and 2 s longer due to the time
needed to process the CLCM and get the texture values. The Y’UV
variant did not perform very well in the cattle datasets. In both
cases it required more grid blocks and recorded many false
positives. This included the reflection of the cattle in the water in
the case of the stationary camera and a large number of false
positives in the tree line and on the helipad in the drone dataset,
this dataset was also the slowest of the four because of the multiple
scales required to get true positives. The CLCM variant recorded a
number of false positives on the helipad as well, particularly in the
last ten frames. Discarding the last ten frames puts the precision at
84%. Sample output frames from each of the 4 datasets are in Fig. 5,
where B (cattle stationary) and D (bull thistle) are from the Y’UV
variant and A (quad bike) and C (cattle drone) are from the CLCM
variant. Note the detection of the cow reflection in B. This problem
did not occur in the CLCM variant.

In Fig. 6 there is a receiver operator characteristic (ROC) curve
that is depicting the average classification rates for different sized
SAT grids, with area under the curve (AUC). There were four
different sized SAT grids tested and these results were conducted
using the tuning images, with 50 images of the target object and 50
images of surrounding landscape. For this test the thistle dataset
with the Y’UV variant was chosen. This was chosen as a
demonstration dataset, as the difference between true positive
and false positive rates appeared most obvious. The test was
conducted once with a SAT grid of sizes 9, 25, 100 and 2500. The
four MEC-ELMS were trained and test on the tuning images and the
average TP and FP rates from the four were saved. The average rates
were then used to make the ROC curve. As can be seen the larger
the SAT grid the better the results, with the best results coming
from the SAT grid with 2500 blocks. Notably the results are not as
good as the tuning accuracies found in the result Tables 2 and 4.
The testing in this case was based on an on-line training method
were all weights were randomised and tested immediately after.
The MEC-ELMs used to get the precision and recall rates were
trained using an off-line method, where the CF-ELMS were
initialised a number of times and the weights for the CF-ELM
producing the best results was saved in a text based file [9]. This
meant the results in Fig. 6 were therefore based on the average of
randomly trained classifiers, rather than the best of 100 classifiers.
In further testing processing with 9 blocks took an average of 0.35 s
per frame, 25 blocks took 0.44 s per frame, 100 blocks took 1.1 s per
frame and 2500 blocks took around 67 s per from.

5. Discussion

Multiple expert or cascading approaches to object detection
are often limited to rudimentary approaches and this is mostly
due to time constraints, particularly in the pursuit of real time
results. This paper has presented a multiple-expert colour feature
extreme learning (MEC-ELM) for real time feature extraction and
object classification. The algorithm allowed real time results by
adopting a summed area table and hence, converted the images
into a low resolution and multiple scale environment. This
allowed the MEC-ELM to process video frames and classify objects
in less than a second per frame for Y’UV inputs and 1–2 s in the
case of the CLCM implementation on a standard mobile CPU. The
ith accuracy detected during the tuning stage.

n tuning Time/frame Precision Recall

0.44(s) 98% 84%
1.19(s) 23% 53%
0.53(s) 84% 78%
0.49(s) 91% 78%



Table 3
Testing results for each dataset using the CLCM texture values based on all frames of the test videos, with accuracy detected during the tuning stage.

CLCM Dataset SAT grid blocks Accuracy in tuning Time/frame Precision Recall

Bull Thistle 25 91% 1.2(s) 84% 81%
Cattle Drone 25 93.5% 1.9(s) 78% 93%

Cattle Stationary 25 94% 1.3(s) 85% 84%
ATV 25 90% 2.3(s) 84% 91%

Fig. 5. Sample result from detection in each dataset.

Fig. 6. ROC curve measuring the average classification rates for different sized SAT
grids.
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multiple scale environment gave the MEC-ELM the ability to
process at multiple scales per second, with 2–4 different scales
used in each of the datasets. This means that objects can be
detected up close, far away or in smaller forms (a calf or thistle in
rosette). Another advantage of using the SAT grid is the ability to
produce low resolution images. Although this would be a problem
for classifiers that require high resolution images, a cascading
approach such as the MEC-ELM can improve accuracy by forming
a consensus among experts. The SAT grid is essentially a naive
scale [36] and at 25 blocks per image, the resolution would be
considered quite low. There are many advantages to this, by
reducing sections of the image into blocks there is the possibility
to reduce noise in the image and by reducing the size of each
frame, the video feed could be processed at a much lower
resolution. This would decrease the processing times by a
considerable amount. This would also have an impact on hardware
restrictions, that is, processing smaller images would lessen the
memory requirements for on board computing and allow faster
transfer speeds while lessoning storage issues.

Low resolution images have some drawbacks, loss of pixel
information for example can be a serious problem. Efforts should
be made to preserve and/or retrieve some of this lost data and this
is reason the CLCM variant of the MEC-ELM was proposed. The
CLCM was slower than the Y’UV variant, but managed to alleviate
some of the problems found in the cattle datasets. The Y’UV
variant, although very good at detecting objects where colour is of
some importance (the red quad bike and green thistle), struggled
detecting multi-coloured objects, such as black and white cows
and delivered a lot of false positives. The CLCM removed many of
the false positives and was able to detect multiple colour objects
with little difficulty; 1–2 s at multiple scales. This result was an
improvement when compared to similar solutions in literature.
The “Verschoor Aerial Cow Dataset” was previously tested at 32–
144 s per frame and at around 66% precision and 87% recall [34].
The CLCM variant, although it was only tested on one video from
the dataset, produced 78% precision and 94% recall in 1.9 s. These
times make the MEC-ELM comparable to the fast processing Yolo
object detection framework, which has processing times around 6–
12 s per frame [37] on a standard CPU. It is however difficult to
compare at this stage, as Yolo is commonly benchmarked on a high
end GPU and the above citation was programmed in Python and not
C. A comparison between C and Python is available in Fourment and
Gillings [38]. This paper has limited itself to a mobile CPU for the
purpose of field based analysis. It is conceivable however that GPUs
will become more commonplace in the agricultural environment.
Conveniently the SAT Grid is quite adaptable to different resource
constraints and as the availability of hardware resources increases,
the number of blocks used could also increase. This will increase
the accuracy of the algorithm as the constraints are lessened. At
lower resolutions it will still be advantages to a GPU, allowing
processing of much larger areas while keeping processing times
down.

Notably, the results in the dataset were not fully balanced, the
differences between precision and recall in some of the datasets for
example could have been much closer. This could be achieved with
more precise tuning or a well established tracking algorithm
[39,40]. The tracking algorithm developed was minimal to save
processing time, future research could explore more sophisticated
tracking algorithms [41]. Another issue that could be resolved is
the problem of shadows or overcast. The quad bike video for
example went through a lot of transitional lighting and the
classification would suffer during these phases. This can depend on
the training set of course, but the incorporation of illumination
invariant or illumination robust images would likely further
improve the performance of the algorithm.

The results demonstrate the ability of the MEC-ELM as a low
resolution real-time object detection algorithm for drone and
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surveillance video capture in the agriculture industry. Choosing
between the best algorithm depends on the dataset, with the Y’UV
performing better in weeds and the CLCM performing better in
cattle detection. While they both performed well in ATV detection.
The choice of datasets and capture methods give the algorithms a
good indication of how they will perform in a live scenario. The
algorithms were benchmarked on a laptop, while real-time
wireless transfer has already been establish [42]. Calibrating the
algorithm for live use should now be a process of choosing the right
frame rate and compression methods. JPEG images were chosen for
this reason, as it produces smaller image sizes for image transfer.
Global position systems (GPS) can be incorporated into drone and
surveillance equipment to give location feedback.

The usefulness of the algorithms can be exemplified in each of
the chosen datasets. In weed detection, the algorithm could be
used to locate infestations quickly. A farm hand or ground based
robot could then be used to deliver chemical to affected areas.
Delivering chemicals to precise areas rather than entire areas
would save chemical and reduce cost. The cattle detection scenario
could be used to track and count cattle in an unobtrusive way. ATV
detection could be used for vehicle safety monitoring, locating
missing or injured persons and in collision avoidance systems. In
each case the algorithm could be used in a stand alone device such
as a drone, unmanned ground vehicle (UGV) or stationary
surveillance camera.

This paper has demonstrated through quantifiable properties
the MEC-ELM's potential as a real time object detection algorithm
for on board and/or remote computer based technology. The
datasets used placed particular emphasis on drones and displayed
the algorithm's ability to perform with aerial video data. This is
particularly important given the convenience of drones, with their
ability to fly long distances over difficult terrain and report back
results in real time [42]. This point is particularly important in
agriculture, but the MEC-ELM was designed to be a generic
approach to object detection in complex environments and for this
reason could prove useful in many different scenarios, particularly
where fast processing is required.

6. Conclusion

Two implementations of the multiple expert colour feature
extreme learning have been benchmarked as real time feature
extraction and object classification algorithms. This included a low
resolution Y’UV colour implementation and a CLCM texture based
implementation. The Y’UV implementation produced superior
results in the datasets where colours were uniform and a defining
characteristic, including weed detection with a precision of 98%
and a recall of 84%, while producing lower accuracy in multiple
coloured datasets, such as cattle detection. The CLCM variant was
able to produce consistent results through all the datasets and
higher results overall in three, including quad bike detection with
84% precision and 91% recall, cattle detection from a stationary
camera at 85% precision and 84% recall and cattle detection from a
drone, at 78% precision and 93% recall. The Y’UV variant was able to
process video frames in half a second for three of the datasets and
just over 1 s for cattle detection from a drone. The CLCM processing
times were between 1 and 2 s. These processing times indicate the
algorithms ability to process the images within a time frame
suitable for agricultural robotics applications. This is particularly
notable given its ability as a low resolution classifier. Future
research will involve testing the algorithm on an embedded device
attached to a drone or land vehicle and testing the algorithm in
different lighting conditions using different illumination equal-
isation techniques. There is also potential for testing the MEC-ELM
on a GPU for a comparison to similar real-time object detection
algorithms.
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