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A B S T R A C T

Objective: Diabetes is a major public health problem in the United States, affecting roughly 30 million people.
Diabetes complications, along with the mental health comorbidities that often co-occur with them, are major
drivers of high healthcare costs, poor outcomes, and reduced treatment adherence in diabetes. Here, we evaluate
in a large state-wide population whether we can use artificial intelligence (AI) techniques to identify clusters of
patient trajectories within the broader diabetes population in order to create cost-effective, narrowly-focused case
management intervention strategies to reduce development of complications.
Methods: This approach combined data from: 1) claims, 2) case management notes, and 3) social determinants of
health from ∼300,000 real patients between 2014 and 2016. We categorized complications as five types:
Cardiovascular, Neuropathy, Ophthalmic, Renal, and Other. Modeling was performed combining a variety of
machine learning algorithms, including supervised classification, unsupervised clustering, natural language
processing of unstructured care notes, and feature engineering.
Results: The results showed that we can predict development of diabetes complications roughly 83.5% of the
time using claims data or social determinants of health data. They also showed we can reveal meaningful clusters
in the patient population related to complications and mental health that can be used to design a cost-effective
screening program, reducing the number of patients to be screened down by 85%.
Conclusion: This study outlines creation of an AI framework to develop protocols to better address mental health
comorbidities that lead to complications development in the diabetes population. Future work is described that
outlines potential lines of research and the need for better addressing the “people side” of the equation.

1. Introduction

1.1. Problem

Diabetes is a major public health problem in the United States, af-
fecting roughly 30 million people (9.4% of the population) at a total
annual cost of $327 billion USD as of 2017 [1]. Diabetes is also asso-
ciated with the development of a number of serious complications –
cardiovascular, renal, neuropathic, ophthalmic – that are major drivers
of high costs and poor outcomes [2]. Those complications (e.g. renal
failure) additionally lead to increased mortality risk [3,4]. Diabetes has
a high comorbidity with mental health issues, such as mood disorders
like depression and bipolar. Those mental health comorbidities are
known to reduce treatment adherence in diabetes, and increase the risk
for development of complications [5,6].

There have a number of efforts to tackle the diabetes problems

through analytical solutions using both clinical electronic health record
(EHR) data and insurance claims data, primarily focused on identifying
patients who are “at-risk” [7–12]. Definitions of risk vary, such as
identifying non-diabetic patients via genetic or other information who
may develop diabetes in the future, or identifying patients who are pre-
diabetic and at-risk for developing full blown diabetes. But for our
purposes here (and in most real-world clinical settings for both provi-
ders and payors), the fundamental definition of at-risk is those diabetic
patients who are at-risk for high costs and poor outcomes in the im-
mediate future. In other words, how do we best manage patients who
already have diabetes?

The problem for providers and payors is that the patients who are
identified as most “at-risk” are, counter-intuitively, not always the ones
who represent the most opportunity to change course. Or to put it an-
other way: the real question is which patients have future trajectories
(in terms of both costs and outcomes) that are actually change-able? In
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real world clinical settings, we want actionable information [13]. A
patient may be at-risk, but there may either be nothing we can do about
it, or too late to do so. This issue has led to the development of “rising
risk” models in both payor and provider analytic departments [14],
which seek to identify patients with significant differentials between
their current estimated risk and either past or future levels. In other
words, patients whose trajectories suggest the individual will become a
high risk, high cost patient in the future, even though they are not one
currently. The idea is to intervene early before risk escalation occurs.
On the flip side, such early intervention often comes with its own siz-
able costs (e.g. population-wide screening efforts), unless narrowly fo-
cused. There are limited resources – we cannot screen every patient for
everything. This is a particularly acute problem for healthcare organi-
zations, such as payors, integrated payor-provider systems, and ac-
countable care organizations (ACOs), who are responsible for managing
the total cost of care for patients and/or function in value-based care
settings [15]. With the growth of value-based care models in the United
States, the challenge is only growing.

1.2. Goal

The goal here is to evaluate whether we can cluster trajectories of
diabetic patients – not necessarily the patients themselves – based on
service utilization (detailed in Section 2.2.). The primary concern is
what is causing the later development of complications in some dia-
betes patients, but not others. Then to evaluate the characteristics
among those trajectory clusters and look for differences that represent
actionable intervention opportunities. In short, are there sub-groups
of patient trajectories within the broader diabetes population we
can identify where narrowly-focused early intervention strategies
could reduce the later development of complications with rea-
sonable costs?

To this end, the current project was conducted in a statewide po-
pulation in the southeastern United States comprising roughly∼32,000
individuals with diabetes. We looked at both payor claims data and
social determinants of health data. The ultimate output was to create a
deployable framework for case management of diabetes patients in real
world clinical settings, resulting in a scalable, sustainable system. While
we are concerned with the technical development of an artificial in-
telligence (AI) system for diabetes here, we are also concerned with the
“people side” of the equation and how such a system could integrate
with existing practices of providers and patients within healthcare
systems. The latter is key for successful implementation and user
adoption [13,16].

1.3. Previous work

In previous work, we have focused on creating AI systems for
finding optimal treatments for a range of chronic illnesses. This includes
systems to simulate and augment clinical-decision making in co-oc-
curring physical and mental chronic illness [17,18], data-driven ap-
proaches to selecting optimal treatments for mental health [19,20], and
robotic applications for patients with dementia and aging-related issues
[21,22]. The primary aim across all these was improving treatment of
mental health and cognitive issues, as well as understanding the role co-
occurring physical illnesses (such as diabetes or cardiovascular issues)
play in that.

Along similar lines, a number of researchers have been exploring the
possibility of predicting complications development in diabetes care.
For instance, the MOSAIC project in Europe has recently been building
predictive machine learning models of diabetes complications in Type II
diabetes using clinical data, reporting accuracy rates up to 83.8% [23].
Numerous papers in recent years have also constructed computational
models of risk assessment for diabetes complications [24,25], while
others such as Makino et al. have focused on predicting the develop-
ment of specific complications like renal disease [26]. Elsewhere, the

Centers for Disease Control (CDC) in the United States has begun de-
veloping forecasting models to support screening policies for co-morbid
mental health issues in diabetic patients [27]. As mentioned in Section
1.1, those mental health comorbidities are known to reduce treatment
adherence in diabetes, and increase the risk for development of com-
plications [5,6]. In short, there are a number of ongoing projects
looking at using artificial intelligence and machine learning techniques
to better manage diabetes care and complications, addressing various
facets and coming from varying angles.

1.4. Current work

In this work, we are particularly interested in AI applications fo-
cused on the intersection of physical and mental health, and how that
can be used to produce tools to enhance case management for diabetes
care. As described in Section 1.2, this entailed looking for clusters of
trajectories of diabetic patients, then identifying differences between
the clusters that represent actionable intervention opportunities. For
instance, are there particular co-morbidities causing patient trajectories
to worsen (i.e. switch from one cluster to another) that are alterable
through some case management intervention? And critically, can we
not only accurately cluster individual patients, but also predict when
one may be likely to switch clusters before such a switch occurs?

This prediction piece is important, as our a priori hypothesis is that
the trajectory clusters will align with higher or lower incidence of
complications in sub-groups of the diabetes population. We base this on
the fact that, as noted in Section 1.1, complications are a major cost
driver in diabetes, and so should be reflected in service utilization
patterns over time.

The final aspect of the work is understanding how this approach fits
into current paradigms of case management for diabetes patients within
payors and related organizations, such as ACOs. Often there is a lack of
rigor in many systems for collecting specific case management inter-
ventions performed, where that information is often recorded in un-
structured text notes with low fidelity or consistency. We address how
this both represents a barrier, and an opportunity, for this kind of work.

2. Methods

2.1. Data

The current project was conducted in late 2017 on a statewide po-
pulation in the southeastern United States who received health in-
surance through an Affordable Care Act exchange plan (ACA, known
colloquially as “Obamacare”) between 2014 and 2016. The total
number of unique individuals was approximately ∼300,000. Of those,
roughly ∼32,000 individuals had diabetes, defined as an individual
diagnosed with an ICD9 code starting with ‘250’. 90% of those were
individuals with Type II diabetes. In order to be able to analyze com-
parable windows of patient trajectories (24 months), we limited our
analysis to only those individuals whose first appearance of diabetes in
the dataset was in 2014 (though as discussed in Section 2.2 below, this
is not a cohort analysis). Note this means the first documented in-
surance claim in the dataset for that individual, not necessarily the first
clinical appearance of diabetes. This reduced the final dataset for
analysis to 14,941 patients.

Data for each individual patient came from three distinct sources:

1) Insurance Claims Data – including both service claims and
medication claims
2) Case Management Notes – which are unstructured text notes of
each patient-case manager interaction
3) Social Determinants of Health – information about the in-
dividual's lifestyle, habits, and environment within which they live
and work from outside the clinical context
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A brief description of the sources of each data above. For #1
(claims), this was obtained directly from the claims processing system
from a large insurance payor in the state, who covered approximately
70% of the population in that state. The total number of claim records
available was roughly 29.9 million, alongside nearly 11 million medi-
cation prescription claim records. For #2 (case mgmt notes), this was
obtained from the backend database for the population health tool used
by case managers while managing their patient load. We had nearly
85,000 documented interactions. For #3 (social determinants), this
data was obtained from a third party vendor (Acxiom) partnered with
the payor. The social determinants data included hundreds of fields
comprising things such as socioeconomic status indicators, shopping
habits, political affiliation, PersonicX household market segment, off-
label vitamin use, occupational data, transportation sources, and more.

Lab values (such as A1C measures) were also available but not in-
cluded in this analysis, given that such clinical data is not always
available outside of clinical settings. However, their inclusion in the
future could augment the results seen here.

Data from these disparate sources was consolidated as a unified data
warehouse (Postgres 9.5) running in a HIPAA-compliant cloud en-
vironment (Healthcare Blocks, https://www.healthcareblocks.com/)
built atop Amazon Web Services (AWS). Data was loaded and trans-
formed via ETL processes built in Pentaho, an open-source data in-
tegration tool. Data for individual patients from across the three data-
sets was tied together using a set of unique identifiers provided by the
payor and Acxiom. Subsequently, data was loaded into KNIME (Version
3.5.1) [28], an advanced machine learning, modeling, and statistical
software package, which also integrates WEKA (Waikato Environment
for Knowledge Analysis; Version 3.7) [28]. Some additional modeling
was done using Python's SciKit library (http://scikit-learn.org). Ap-
propriate legal consent was obtained between the researchers and the
insurance payor prior to accessing the data. We followed all applicable
laws in conducting the research, including signed business associate
agreements with lawyer approval on both sides.

2.2. Framework overview

The modeling framework described here operates using a number of
definitions. First and foremost are the diagnostic definitions. Here, we
define diabetes as an individual diagnosed with an ICD9 code starting
with ‘250’. We did not differentiate in most of the analysis between
Type I and Type II (90% were Type II), for comparison purposes to
other recent research such as Dagliata et al. and Makino et. Al [12,23].
However, there was one curious finding related to Type I individuals
from a post-hoc analysis of the clusters (detailed in the Results section
3.2 below). Mental health diagnoses were defined based on the national
Agency for Healthcare Research and Quality (AHRQ) classification
scheme (see Section 2.4), i.e. ICD9 codes starting with either ‘29’, ‘30’,
or ‘31’. Additional sub-categories were defined specifically for Mood
Disorders (e.g. Depression, Bipolar, Cyclothymia … see appendix for
include codes). Categorization of diabetes drug stages was also done for
the most common medications seen in the dataset, into the following
groups: initial medications (e.g. Metformin), Sulfa drugs, GLP-1, DPP-4,
SGLT-2, Thiazolidinedione, and Insulin replacement.

Diabetes complications were categorized into five groups:
Cardiovascular, Neuropathy, Ophthalmic, Renal, and Other.
Cardiovascular Disease was defined using the AHRQ classification
codes for ICD9 (see Section 2.4) or codes starting with ‘2507’. Neuro-
pathy was similarly defined using the AHRQ classification codes for
ICD9 or codes starting with ‘2506’. Ophthalmic was defined as ICD9
codes starting with ‘3620’ or ‘2505’, including retinopathy, edema, and
other ophthalmic issues. Renal was defined using the AHRQ classifi-
cation codes for ICD9 or codes starting with ‘2504’. The Other category
included any codes starting with ‘2502′, ‘2508′, or ‘2509′, including
hyperosmolarity and other unspecified complications.

Patient trajectories here are defined based on service utilization,

calculated based on the amounts on paid claims (similar to Liu et al.
[29]). Like many payor/provider systems in healthcare, consistently
collected outcome measurement is uncommon. As such, we use future
service utilization as a proxy for whether the patient is getting better or
worse over time. The assumption is that worse-off patients generally
exhibit higher utilization levels than the rest, and vice versa.

We should also be clear that is not a cohort analysis – these patients
were at various points of diabetes disease progression (we do not know
their medical history prior to 2014), which actually plays a large role in
some of our more interesting findings from the trajectory clustering and
modeling in the Results section below. This also represents a realistic
modeling scenario, at least within the United States and similar
healthcare systems, where due to a lack of healthcare data sharing
across various payors and providers, when someone signs up for a
health insurance plan in a given year, we often know little to nothing
about them prior. Real-world models intended to operate given that
current reality need to be able to handle such partial observability.

2.3. Modeling approach

Different algorithms were used for modeling in different parts of the
study, and each of these will be detailed in the relevant sections of the
Results below. In short, we used a combination of clustering and clas-
sification techniques to solve various questions. Some of the techniques
used included Expectation-Maximization (EM) clustering [30], Random
Forests [31], J48 Decision Trees (a variant of the classic C4.5 algo-
rithm) [32], Neural Networks [28], Logistic Regression, SVMs [33], and
Bayesian Networks [28]. Standard cross-validation techniques from
machine learning were used to ensure generalizability [19]. As will be
seen in the Results below, there were a few techniques that stood out
from the others in terms of performance for this particular problem and
dataset. However, this paper is not intended as a comparison of ma-
chine learning techniques, as a plethora of those already exist in the
literature. Rather here we are focused on the application.

2.4. Feature engineering

A critical part of modeling real-world healthcare datasets is the
creation of “meta-data” from the underlying raw data derived from
backend databases, which falls under the concept of feature engineering.
The goal is to create information by intersecting across data sources and
fields, constructing “meaning” out of individual data fields that may
otherwise lack it [13]. In healthcare, this often takes the form of
combining subject matter expertise (SME) with analytic techniques.
Another approach is to use blind feature engineering (often on image
data) via deep learning, although using such an approach with other
clinical data (e.g. electronic health records, EHRs) is fraught with
challenges that can produce spurious results, such as issues with data
quality, disease heterogeneity, and temporality [34]. Here, we focus on
the SME approach using experts from the payor, and highlight a couple
of key engineered features which are critical to our results below.

First, we constructed from the underlying raw data a geographic risk
factor. As we know, where someone lives is often a proxy for things such
as socio-economic status, transportation access, lifestyle factors, etc.
that correlate with health outcomes (see Fig. 1) [35]. This was done in
this study at zip code level given the available data, but could be per-
formed at a more finite level (e.g. census tracts) if available. Geographic
risk was calculated by looking at historical utilization patterns in our
dataset (scaled per-member) across geographic locales for all patients
(not just diabetes) across the state, and then converted into a “risk
score” for each zip code on a 0–4 scale. This incorporated two metrics:
historical claims cost and the percentage of Top Ten utilizers in that zip
code (defined as an individual who fell in the top 10% of members in
terms of utilization). This final 0–4 scale was created via equal-widths
binning of the raw values based on the mean and standard deviation
across all zip codes for each metric separately on a 0–2 scale, then
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adding those together. This was necessary as different metrics were on
different scales.
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Where c equals historical claim costs for the zip code, and t equals
the percentage of Top Ten utilizers for the zip code. We experimented
with other approaches for this calculation including different scalings
and other metrics like cost ratio (fourteen different approaches total,
not shown for brevity), but this particular calculation showed the best
performance during analysis.

Another piece of meta-data we termed “Quick-Hitters” (or QH for
short). Early on, we had a suspicion that there might be some members
who sign up for coverage via the Exchange and use a high number of
services, then subsequently do not use many services after that (or in
some cases don't even keep their coverage) [37]. This is a potentially
significant problem for payors providing Exchange plans under the ACA
in the United States, particularly if they drop coverage. We calculated
this by looking at people who had high cost ratios, defined as spending
over 90% of their total annual claim amounts in the first 60 days of
coverage, to create a binary variable. Interestingly, on average, mem-
bers who were Quick-Hitters tended to actually have lower claim
amounts than average. However, there are notable exceptions, which led
to a further distinction between “low risk” Quick-Hitters and others
with higher utilization patterns. Some basic info about Quick Hitters is
shown in Table 1. The main takeaway is that Quick-Hitters comprise
about 15% of the total exchange member population, and that their
utilization patterns are significantly different from the rest of the po-
pulation.

Finally, we also tagged AHRQ classification codes onto the raw data
(https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp). We used
that to categorize diagnosis codes (ICD9 and ICD10), CPT procedure
codes (including HCPCS), and inpatient revenue codes into smaller
categories for analysis. For instance, this allowed us to reduce the

roughly 16,000 unique CPT codes in our dataset down to 234 cate-
gories. The original AHRQ download files provide instructions for using
the classification codes in SAS, but we rewrote that into SQL code
procedures to apply the classification codes directly inside a database
with claims or clinical data.

3. Results

We are interested in evaluating three questions here: 1) can we
discern predictable patterns of complications development in diabetes
patients, 2) do those patterns cluster into common trajectories, 3) can
we use those clustered trajectories to recommend actionable interven-
tions.

3.1. Predicting diabetes disease progression

Our first step was to explore whether we could predict diabetes
disease progression, in particular whether a diabetes patient without
any complication-related claims in a calendar year would develop
complications in a subsequent 12-month period (binary prediction, yes
vs. no). This is a similar approach to what Dagliati et al. did in the
recently reported MOSAIC project, though theirs was based on clinical
data from a hospital setting [23]. This left a sample size of about 5,000
individuals, with about 30% developing complications in the sub-
sequent time period (the majority of which were cardiovascular-re-
lated). Complications were grouped into Cardiovascular, Neuropathy,
Ophthalmic, Renal, and Other, as defined in Section 2.2. Given the
limited 12-month time frame, we did not attempt to predict specific
complications, but complication development overall.

Results can be seen in Table 2, using a Random Forest model
(number of trees set to 100, max depth unlimited). The overall accuracy
was roughly 83.5%, assessed via standard 10-fold cross validation [19].
We note that is extremely close to Dagliati et al., 2018 who reported
83.8% for predicting complications, theirs from a clinical EHR per-
spective and ours from a payor claims perspective [23]. We also note

Fig. 1. Diabetes prevalence geographic risk example (taken from Ref. [36]).

Table 1
Quick-hitter basic info.

Quick
Hitter?

Member
Count

60 Day
Cost

180 Day
Cost

365 Day
Cost

Cost
Ratio

Yes 29083 $2,041 $2,102 $2,972 0.99
No 183138 $506 $2,157 $4,291 0.23

Table 2
Diabetes complication prediction.

Prediction Non PredPos
%

PredPos % Total Acc AUC

Diabetes to Complications
(2015)

19.9% 87.0% 83.5% 0.9199
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that similar to Dagliati et al., in order to obtain said performance we
had to re-balance the dataset, since most individuals did not develop
complications. In our case, we used SMOTE to synthetically over-
sample the minority class [38]. Note that the PredPos in Table 2 in-
dicates the sensitivity, while “Non PredPos” is equivalent to 1-specifi-
city.

We also tried various other machine learning classification algo-
rithms mentioned in Section 2.3 to predict complications, including
SVMs, Neural Networks, Bayesian Networks, J48 Decision Trees, and
logistic regression. None of the other algorithms performed as well as
Random Forests, with Bayesian Networks and Neural Networks coming
closest with accuracy levels around 78–80% (data omitted for brevity).

There were several hundred variables considered in the model, with
37 of those determined to be driving the prediction, based on the gain
ratio of each feature [28]. For brevity, we summarize those variables in
Table 3. Most of those are self-explanatory, but we do note that “service
features” refer to details about claims a member had the previous year,
things such as procedure codes, procedure category, diagnoses, diag-
nosis category, provider specialty, provider type, and place of service.
In other words, patients who had more complex medical histories and
risker co-morbidities were more likely to develop complications. Plan
Type indicated the ACA exchange metallic plan level (Bronze, Silver,
Gold), while PolicyHolder indicated whether the member was the pri-
mary policy holder or a covered dependent. We also note that the
geographic risk score constructed in Section 2.4 turned out to be a
critical predictor. On the other hand, we note that the “Quick Hitter”
constructed feature did not turn out to be useful in this context, even
though it was useful in predicting high utilizers in general. That was not
entirely surprising though, given the ongoing chronic nature of dia-
betes, averse to more episodic diseases.

3.2. Predicting diabetes complications using social determinants of health

We were also interested in using the social determinants of health
data described in Section 2.1 to predict the development of diabetes
complications, using the same approach as above. When we simply
added the social determinants data to the existing claims data for the
model in Section 3.1 though, performance was roughly the same, in-
dicating the social determinants did not add any additional information
to the model apart from the patterns the claims data already predicted.

A separate question, however, is whether the social determinants
data could be used as a substitute for claims and clinical data. To this
end, we stripped out all features from the claims, and only included
fields from the social determinants data. Using the same Random Forest
approach as above, we were able to build models with only social de-
terminants data predicting the development of diabetes complications
with approximately 79.1% accuracy, which is comparable to we can
achieve with claims data alone. This is valuable, in that it may allow for
making patient predictions in the future based on social determinants
for new members we know nothing about (i.e. don't have claims or
clinical information yet). Or, in other words, allow us to address the
partial observability problem when making these kinds of healthcare
predictions.

There were 109 selected features in the final model (out of 1746
total), which we summarize in Table 4. Of notable interest were

variables related to vitamin use, weight loss, and home remedies for
arthritis, as well as internet search behavior for medical information
and vitamin use. These variables were often, though not always, higher
in the group that did not develop complications. This seems to indicate
that many of these individuals are practicing a fair amount of “self-
medicating” outside conventional clinical therapies. Alternatively, it
could also be taken as an indicator that the individual is taking a more
active self-interest in their own health outcomes. Either way, social
determinant variables associated with patient self-care are predictive of
higher outcomes and reduced costs. We intend to explore this more in
future work.

3.3. Clustering diabetes patient trajectories

While being able to predict whether an individual has a higher
likelihood of developing complications is useful, the real question is
what do we do about it. To this end, we investigated whether the pre-
dictive patterns of complication development seen above could trans-
late into common patient trajectory clusters in terms of service utili-
zation over time (see Section 2.2). Critically we were looking for such
clusters not created by a human, but emergent in the data itself.

The same data as above for all 14,941 diabetes patients in the da-
taset was processed through an EM clustering algorithm, an un-
supervised form of cluster learning (see Section 2.3). Clustering was
performed using cross-validation, which found optimal performance
with four clusters based on log likelihood. Average per-member service
utilization trajectories (cumulative over time, starting in the first
quarter of eligible insurance coverage under an Exchange plan) are
shown in Fig. 2.

We compared these emergent clusters based on patient character-
istics in each one. In summary, there was a high-utilizer Orange group
with a lot of complications, and a very high incidence of Renal com-
plications relative to other groups (see Table 5). The low-utilizer Gray
group had fewer complications, although they did have a high in-
cidence of minor cardiovascular complications (e.g. hypertension). The
Blue group fell somewhere in between those two in terms of utilization
and complication incidence rates. The most interesting group is the
Yellow group, who appear to be “newer” cases with fewer complica-
tions or mental health issues and lower levels of medication prescrip-
tions. They tended to be on the initial stage medications (Metformin) if
any, and only prescribed Insulin or Sulfa drugs at half the frequency of
the other groups.

In short, there were significant differences among the clusters in
terms of complications, mental health comorbidities, medication drug
stage (insulin vs. other drugs like DPP-4 and Sulfa), secondary diag-
noses severity, and so forth. A couple examples (mental health co-
morbidity and complications) are shown in Tables 5 and 6.

Interestingly, there was also a significant mental health component
(Table 6), with the Blue and Orange groups being twice as likely to have
a mental health comorbidity (which on closer analysis were primarily
mood disorders such as depression and bipolar disorder), which aligns

Table 3
Claims features for predicting diabetes complications.

Driving Features Gain Ratio

Prev Year Service Features 0.147
Age 0.095
Prev Year Costs 0.084
Geographic Risk 0.053
Plan Type 0.045
PolicyHolder (Yes/No) 0.036

Table 4
Social determinant features for predicting diabetes complications.

Variable Description

AP models Vitamin use (A,B,C, Ginger, Echinacea, etc.)
AP models Weight Loss
AP models Arthritis indicators
AP models Whether they received RX online
AP models Likelihood of making doctor's appt last 12 months
AP006257 Social Setting Risk
AP006258 Smoking Frequency
AP006259 Unhealthy Diet
PersonicX Clusters Appear to be “lifestyle” clusters
3101–3103 All race/ethnicity (primary risk is if the person was African-

American)
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with previous findings [5,39,40]. The TopTen Utilizers (defined as an
individual who fell in the top 10% of members in terms of utilization)
mirrored that pattern. There appears to be some connection between
lower rates of mental health comorbidity, lower rates of more serious
complications, and lower service utilization patterns, as evidenced in
the Gray and Yellow groups.

As a brief aside, we also note that Type I diabetes appears in normal
proportions (∼10% give or take a few percent) in all clusters except the
Orange cluster, which is curious since Type I and Type II had very si-
milar complication rates overall (65.6% vs. 62.6%, respectively). One
possible explanation is that since Type I often develops earlier in life as
juvenile diabetes, more of those people had bifurcated into that high-
cost high-utilization Orange cluster, but more research is needed.

After identifying these clusters, the next question was whether in-
dividuals switch clusters over time, and at what rate? In other words, if
patients get worse or better, that should be reflected in changes to their
trajectories. Our analysis showed that for the Gray, Blue, and Orange
groups, nearly 70% of individuals remained in the same cluster.
However, for the Yellow group, less than half of the individuals (47.3%)
remained in the same cluster over time. It appears that, as relatively
newer cases, those individuals bifurcate either into more stable, lower
utilizer diabetic cases (Gray cluster) or into less stable, higher cost
diabetic patients with more complications and needs (Blue and Orange
clusters). The latter transition also corresponds to higher rates of mental
health comorbidities seen in the Blue and Orange clusters. There is

likely a link between the two – development of complications and de-
velopment of mental health comorbidities – although it is not clear
which factor is driving the other. It is also very possible that there are
unaddressed mental health issues in the Yellow group which are yet to
be diagnosed or treated.

All of this suggested that the Yellow cluster would be a likely focus
for targeted case management interventions on a subset of diabetes
population (∼2,000 patients per year), i.e. narrowly-focused early in-
tervention strategies, that could improve outcomes, reduce costs, and
be operationalized effectively with limited resources. Given the results
above, such targeted interventions would likely need to focus on both
early-stage diabetes progression to reduce complication development as
well as unaddressed mental health issues. Or in other words, focus on
the intersection of physical and mental health. Stymieing one could

Fig. 2. Diabetes trajectory clusters.

Table 5
Complication rates by cluster.

Winner Cluster Member Cnt Cardiovascular disease Neuropathy Opthalmic Renal Other Complications

Gray 3864 94.8% 6.4% 5.0% 3.3% 4.5%
Yellow 2260 4.2% 0.7% 0.6% 0.0% 0.3%
Blue 6090 71.5% 14.7% 8.1% 8.4% 7.2%
Orange 2727 83.9% 22.8% 10.4% 26.6% 18.1%
Total 14941 69.6% 11.9% 6.6% 9.1% 7.4%

Table 6
Mental health comorbidity rates by cluster.

Winner
Cluster

Member Cnt Avg Age Mental Health
comorbid

% TopTen
Utilizers

Gray 3864 54.3 21.8% 0.0%
Yellow 2260 49.2 27.1% 0.1%
Blue 6090 50.5 41.4% 13.1%
Orange 2727 50.9 51.7% 81.4%
Total 14941 51.4 36.1% 20.2%
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help stymie the other.

3.4. Text mining interventions from case management notes

The final question here for developing an AI system to support
diabetes case management is whether currently available population
health and care management software typically used by case managers
to document care of diabetes patients could effectively track diabetes or
mental health interventions that could be leveraged as part of an AI
framework. The problem is that in most of those software such data is
collected as unstructured text notes, meaning information about inter-
ventions needs to be parsed out, and the actual recording of keywords
associated with specific interventions or protocols is dependent on case
manager training.

In a separate analysis, we looked at a randomly sampled subset of
case management notes of encounters with patients having diabetes and
depression (roughly 3500) to evaluate whether we could identify in-
terventions from a depression protocol, as shown in Fig. 3.

Code was written in Python (www.Python.org) using the NLTK
toolkit (www.nltk.org/) to tag interventions in case management notes
via a Bag-of-Words analysis along with Regex to account for spelling
variation [41]. The bag of words were based on individual component
keywords seen in Fig. 3, but not full phrases. For instance, for “Arrange
PCP Visit”, we looked for the presence of the term ‘pcp’ along with any
of the terms like ‘schedule’, ‘arrange’, ‘visit’, setup’, ‘appointment’,
while using Regex to account for spelling variations. These terminology
component keywords were drawn from the training manual that the
insurance payor used to train case managers in how to document.

We evaluated this Intervention Tagger and found that we could
identify at least one intervention in 16.2% of encounters, with about
10% of those encounters having multiple interventions in the same
encounter.

That percentage is, as expected, very low. This represents a sig-
nificant barrier to deploying any sort of AI system for diabetes case
management in a real-world setting. Such a barrier would necessitate
either 1) enhancements to the software to collect interventions as
structured data fields, or 2) changes to care manager training to im-
prove intervention keyword recording in unstructured text fields. Either
of these approaches are associated with the broader challenges of de-
ploying technical innovations in real-world clinical practice, i.e. user
adoption and implementation science [13,16,42].

4. Discussion

4.1. Main findings

The main takeaway of this study is that there is a critical connection
between mental health issues and the development of complications in
diabetes, and by stymieing one we can potentially stymie the other. Our
findings revealed clusters of trajectories in diabetes patients, that show

how rates of complications and mental health comorbidities co-occur in
unison over time. It also revealed a particular cluster (the “Yellow”
cluster) which would be a likely focus for targeted case management
interventions as a subset of diabetes population, due to it largely re-
presenting “newer” cases which are likely to bifurcate over time into
more stable, lower-utilizer diabetic cases or into less stable, higher-cost
diabetic patients with more complications. In short, the Yellow cluster
represents actionable intervention opportunities.

We also found we could predict the development of complications
using insurance claims data with 83.5% accuracy using Random Forest
techniques, which is very similar to that reported by Dagliati et al.,
2018 in the MOSAIC project using clinical data [23]. Interestingly, we
were also able to achieve comparable performance using only social
determinants of health data.

These findings were converted into the following derived protocol,
combining artificial intelligence with changes in clinical practice, for
reducing development of complications in diabetes populations:

1) Cluster: Clustering approach to identify patients similar to the
Yellow group described above
2) Screen: Screening program for unaddressed mental health issues
among the Yellow group
3) Intervene: Targeted case management interventions for mental
health for identified patients

This approach provides three key advantages. First, it reduces the
population to be screened down by roughly 85% (15,000 to 2,000 pa-
tients), providing a more cost-effective, narrow focus. Second, it targets
patients who are likely to change in the near future, i.e. actionable in-
formation. Third, it addresses the mental health comorbidities known to
reduce treatment adherence in diabetes, and increase the risk for de-
velopment of complications [5,6].

4.2. The “people side” of the equation

A major challenge in moving any technical innovation into real-
world clinical practice is dealing the “people side” of the equation.
Indeed, what is not often acknowledged is that when we deploy arti-
ficial intelligence or other analytic solutions, we are in fact engaging in
an act of behavioral re-engineering. We are trying to change what people
do, how they behave, the choices they make. Because in the end, if we
don't change any of those things, then we haven't truly “accomplished”
anything. The true mark of any technology, clinical or otherwise, is user
adoption.

These issues tie back to the field of implementation science
[13,43–45], and the work of Kaplan and Green addressing the chal-
lenges of creating clinical utility out of technology [16,42]. This is not a
trivial problem, which goes beyond the quality of the technology or
solution itself. Often there is a misalignment between how the tech-
nology “thinks” about the problem, and how clinicians and patients
think about the problem. Moreover, there are often issues in other parts
of the technology stack or clinical workflow which are limiting factors.

A good example of such a limiting factor is the case note issue de-
scribed in Section 3.4. The above protocol in Section 4.1 necessitates
consistent collection of case management interventions performed at
each patient interaction, but analysis of currently available population
health and care management software typically used by case managers
to document care of diabetes patients showed that such interventions
could only identified 16.2% of the time. While enhancements to the
software may help address this issue, it is also likely a training issue.
Effective measures are needed to improve intervention keyword re-
cording in unstructured text fields. In short, strategies have to si-
multaneously address both technology and “people side” issues. Suc-
cessful deployment of any AI solution in real-world practice depends on
this holistic understanding. Much of this work remains unaddressed
here, and represents an opportunity for future research.

Fig. 3. Example of depression protocol.
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4.3. Limitations

There are a number of limitations to this study, mostly related to the
nature of working with claims data and the realities of a real-world
insurance payor setting. First and foremost is the problem of partial
observability. We do not know anything about the patient prior to 2014,
nor have their complete medical history. For instance, it is entirely
possible, though uncommon, that a patient may have had a diagnosed
cardiovascular complication, such as high blood pressure, prior to 2014
and yet went untreated for the entire year of 2014. Even though it is
uncommon, there is no way to rule it out. A second major issue is that in
this scenario, we only receive data about a patient when a claim occurs,
rather than at pre-determined set intervals. In other words, we only
know anything about a patient when they receive medical services of
some kind. What might be occurring in their day-to-day health outside
that scope is unknown. Social determinants data (see Section 3.2) may
help address this in the future, as well as in-home sensor technology
deployed via smart home devices and social robots [22].

5. Conclusion

We presented here a study using insurance claims and social de-
terminants data to identify clusters of trajectories of diabetes patients, in
order to support development of an artificial intelligence solution that
could reduce development of complications related to diabetes. We
showed how we can 1) predict development of complications 83.5% of
the time using either claims data or social determinants of health data,
2) identify clusters to reduce the number of patients to be screened
down by 85% to create a cost-effective screening program, 3) use a
derived protocol with the AI tool to better address mental health

comorbidities in the diabetes population. Future work is intended to
focus on deployment of this approach on a broader scale, and better
address issues related to the “people side” of the equation – e.g. con-
sistent intervention recording in care notes – through participatory
design methods [46].
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Appendix

Table A1Mood Disorder Subcategory ICD9 Codes

ICD9 Code Description Subcategory

29600 Bipolar I disorder, single manic episode, unspecified Bipolar
29601 Bipolar I disorder, single manic episode, mild Bipolar
29602 Bipolar I disorder, single manic episode, moderate Bipolar
29603 Bipolar I disorder, single manic episode, severe, without mention of psychotic behavior Bipolar
29604 Bipolar I disorder, single manic episode, severe, specified as with psychotic behavior Bipolar
29605 Bipolar I disorder, single manic episode, in partial or unspecified remission Bipolar
29606 Bipolar I disorder, single manic episode, in full remission Bipolar
29610 Manic affective disorder, recurrent episode, unspecified Bipolar
29611 Manic affective disorder, recurrent episode, mild Bipolar
29612 Manic affective disorder, recurrent episode, moderate Bipolar
29613 Manic affective disorder, recurrent episode, severe, without mention of psychotic behavior Bipolar
29614 Manic affective disorder, recurrent episode, severe, specified as with psychotic behavior Bipolar
29615 Manic affective disorder, recurrent episode, in partial or unspecified remission Bipolar
29616 Manic affective disorder, recurrent episode, in full remission Bipolar
29640 Bipolar I disorder, most recent episode (or current) manic, unspecified Bipolar
29641 Bipolar I disorder, most recent episode (or current) manic, mild Bipolar
29642 Bipolar I disorder, most recent episode (or current) manic, moderate Bipolar
29643 Bipolar I disorder, most recent episode (or current) manic, severe, without mention of psychotic behavior Bipolar
29644 Bipolar I disorder, most recent episode (or current) manic, severe, specified as with psychotic behavior Bipolar
29645 Bipolar I disorder, most recent episode (or current) manic, in partial or unspecified remission Bipolar
29646 Bipolar I disorder, most recent episode (or current) manic, in full remission Bipolar
29650 Bipolar I disorder, most recent episode (or current) depressed, unspecified Bipolar
29651 Bipolar I disorder, most recent episode (or current) depressed, mild Bipolar
29652 Bipolar I disorder, most recent episode (or current) depressed, moderate Bipolar
29653 Bipolar I disorder, most recent episode (or current) depressed, severe, without mention of psychotic behavior Bipolar
29654 Bipolar I disorder, most recent episode (or current) depressed, severe, specified as with psychotic behavior Bipolar
29655 Bipolar I disorder, most recent episode (or current) depressed, in partial or unspecified remission Bipolar
29656 Bipolar I disorder, most recent episode (or current) depressed, in full remission Bipolar
29660 Bipolar I disorder, most recent episode (or current) mixed, unspecified Bipolar
29661 Bipolar I disorder, most recent episode (or current) mixed, mild Bipolar
29662 Bipolar I disorder, most recent episode (or current) mixed, moderate Bipolar
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29663 Bipolar I disorder, most recent episode (or current) mixed, severe, without mention of psychotic behavior Bipolar
29664 Bipolar I disorder, most recent episode (or current) mixed, severe, specified as with psychotic behavior Bipolar
29665 Bipolar I disorder, most recent episode (or current) mixed, in partial or unspecified remission Bipolar
29666 Bipolar I disorder, most recent episode (or current) mixed, in full remission Bipolar
2967 Bipolar I disorder, most recent episode (or current) unspecified Bipolar
29680 Bipolar disorder, unspecified Bipolar
29689 Other bipolar disorders Bipolar
29620 Major depressive affective disorder, single episode, unspecified Depression
29621 Major depressive affective disorder, single episode, mild Depression
29622 Major depressive affective disorder, single episode, moderate Depression
29623 Major depressive affective disorder, single episode, severe, without mention of psychotic behavior Depression
29624 Major depressive affective disorder, single episode, severe, specified as with psychotic behavior Depression
29625 Major depressive affective disorder, single episode, in partial or unspecified remission Depression
29626 Major depressive affective disorder, single episode, in full remission Depression
29630 Major depressive affective disorder, recurrent episode, unspecified Depression
29631 Major depressive affective disorder, recurrent episode, mild Depression
29632 Major depressive affective disorder, recurrent episode, moderate Depression
29633 Major depressive affective disorder, recurrent episode, severe, without mention of psychotic behavior Depression
29634 Major depressive affective disorder, recurrent episode, severe, specified as with psychotic behavior Depression
29635 Major depressive affective disorder, recurrent episode, in partial or unspecified remission Depression
29636 Major depressive affective disorder, recurrent episode, in full remission Depression
29681 Atypical manic disorder Other Mood Disorders
29682 Atypical depressive disorder Other Mood Disorders
29690 Unspecified episodic mood disorder Other Mood Disorders
29699 Other specified episodic mood disorder Other Mood Disorders
3004 Dysthymic disorder Other Mood Disorders
30110 Affective personality disorder, unspecified Other Mood Disorders
30113 Cyclothymic disorder Other Mood Disorders
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