
Scan Conversion
CMP 477 Computer Graphics

S. A. Arekete

What is Scan-Conversion?

 2D or 3D objects in real world space are made up of graphic primitives such as
points, lines, circles and filled polygons.

 These picture components are often defined in a contiguous space at a higher

level of abstraction than individual pixels in the discrete image space.

 For instance, a line is defined by its two endpoints and the line equation while a
circle is defined by its radius, centre position, and the circle equation.

 It is the responsibility of the graphics system or the application program to
convert each primitive from its geometric definition into a set of pixels that
makes up the primitive in the image space.

 This conversion task is generally referred to as scan-conversion or rasterization.

Scan-Converting a Point



Scan-Converting a Point



Scan-Converting a Line



Consideration for Scan-Conversion of a

Line

 But what happens when we try to
draw line on a pixel based
display?

 How do we choose which pixels
to turn on?

 The line has to look good

 Avoid jaggies

 The drawing has to be very fast!

 How many lines need to be
drawn in a typical scene?

 This is going to come back to bite
us again and again

Lines and Slopes

 The slope of a line (m) is defined by its start and end coordinates

 The diagram below shows some examples of lines and their slopes

An Example of Direct Line Equation

Method

 We could simply work out the

corresponding y coordinate for

each unit x coordinate

 Let’s consider the following

example:

Direct Line Equation Method..

Direct Line Equation Method..

Limitations of the Direct Line Equation

Method

 However, this approach is just way too slow as mentioned earlier

 In particular look out for:

 The equation y = mx + b requires the multiplication of m by x

 Rounding off the resulting y coordinates

 We need a faster solution

The DDA Algorithm..

 The digital differential analyzer (DDA) algorithm takes an incremental

approach in order to speed up scan conversion

 Simply calculate yk+1 based on yk

 Consider the list of points that we determined for the line in our previous

example:

 (2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

 Notice that as the x coordinates go up by one, the y coordinates simply go

up by the slope of the line

 This is the key insight in the DDA algorithm

The DDA Algorithm..

 When the slope of the line is between -1 and 1 begin at the first point in the
line and, by incrementing the x coordinate by 1, calculate the

corresponding y coordinates as follows:

 When the slope is outside these limits, increment the y coordinate by 1 and

calculate the corresponding x coordinates as follows:

 Limitation of the DDA: The values calculated by the equations used by the
DDA algorithm must be rounded to match pixel values

myy kk 1

m
xx kk

1
1 

The DDA Algorithm..

DDA Algorithm Example

 Let’s try out the following examples:

DDA Algorithm Example..

The DDA Algorithm Summary

 The DDA algorithm is much faster than our previous attempt

 In particular, there are no longer any multiplications involved

 However, there are still two big issues:

 Accumulation of round-off errors can make the pixelated line drift away from

what was intended

 The rounding operations and floating point arithmetic involved are time

consuming

The Bresenham’s Line Algorithm

 The Bresenham algorithm is another incremental scan conversion algorithm

 The big advantage of this algorithm is that it uses only integer calculations

 Move across the x axis in unit intervals and

at each step choose between two

different y coordinates

 For example, from position (2, 3) we have

to choose between (3, 3) and (3, 4)

 We would like the point that is closer

to the original line

The Bresenham’s Line Algorithm..

 At sample position xk+1 the vertical separations from the mathematical line

are labelled dupper and dlower

 The y coordinate on the mathematical line at xk+1 is:

bxmy k )1(

The Bresenham’s Line Algorithm..

 So, dupper and dlower are given as follows:

 and

 We can use these to make a simple decision about which pixel is closer to

the mathematical line

klower yyd 

kk ybxm )1(

yyd kupper )1(

bxmy kk )1(1

The Bresenham’s Line Algorithm..

 This simple decision is based on the difference between the two pixel

positions:

 Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences between

the end-points:

122)1(2  byxmdd kkupperlower

)122)1(2()(



 byx

x

y
xddx kkupperlower

)12(222  bxyyxxy kk

cyxxy kk  22

The Bresenham’s Line Algorithm..

 So, a decision parameter pk for the kth step along a line is given by:

 The sign of the decision parameter pk is the same as that of dlower – dupper

 If pk is negative, then we choose the lower pixel, otherwise we choose the

upper pixel

cyxxy

ddxp

kk

upperlowerk





22

)(

The Bresenham’s Line Algorithm..

 Remember coordinate changes occur along the x axis in unit steps so we

can do everything with integer calculations

 At step k+1 the decision parameter is given as:

 Subtracting pk from this we get:

cyxxyp kkk   111 22

)(2)(2 111 kkkkkk yyxxxypp  

The Bresenham’s Line Algorithm..

But, xk+1 is the same as xk+1 so:

where yk+1 - yk is either 0 or 1 depending on the sign of pk

The first decision parameter p0 is evaluated at (x0, y0) is given as:

)(22 11 kkkk yyxypp  

xyp  20

BRESENHAM’S LINE DRAWING ALGORITHM
(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) and get the first value

for the decision parameter as:

4. At each xk along the line, starting at k = 0, perform the following test. If pk <

0, the next point to plot is (xk+1, yk) and:

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

N.B.: The algorithm and derivation above assumes slopes are less than 1. For

other slopes we need to adjust the algorithm slightly

xyp  20

ypp kk  21

xypp kk  221

An Example on Bresenham’s Line

Algorithm

 Let’s have a go at this:

 Let’s plot the line from (20, 10) to (30, 18)

 First off calculate all of the constants:

Δx: 10

Δy: 8

2Δy: 16

2Δy - 2Δx: -4

 Calculate the initial decision parameter p0:

p0 = 2Δy – Δx = 6

An Example on Bresenham’s Line

Algorithm..

 Go through the steps of the Bresenham line drawing algorithm for a line

going from (21,12) to (29,16)

Bresenham Line Algorithm Summary

 The Bresenham’s line algorithm has the following advantages:

 A fast incremental algorithm

 Uses only integer calculations

 Comparing this to the DDA algorithm, DDA has the following problems:

 Accumulation of round-off errors can make the pixelated line drift away from

what was intended

 The rounding operations and floating point arithmetic involved are time

consuming

