
Scan Conversion
CMP 477 Computer Graphics

S. A. Arekete

What is Scan-Conversion?

 2D or 3D objects in real world space are made up of graphic primitives such as
points, lines, circles and filled polygons.

 These picture components are often defined in a contiguous space at a higher

level of abstraction than individual pixels in the discrete image space.

 For instance, a line is defined by its two endpoints and the line equation while a
circle is defined by its radius, centre position, and the circle equation.

 It is the responsibility of the graphics system or the application program to
convert each primitive from its geometric definition into a set of pixels that
makes up the primitive in the image space.

 This conversion task is generally referred to as scan-conversion or rasterization.

Scan-Converting a Point

Scan-Converting a Point

Scan-Converting a Line

Consideration for Scan-Conversion of a

Line

 But what happens when we try to
draw line on a pixel based
display?

 How do we choose which pixels
to turn on?

 The line has to look good

 Avoid jaggies

 The drawing has to be very fast!

 How many lines need to be
drawn in a typical scene?

 This is going to come back to bite
us again and again

Lines and Slopes

 The slope of a line (m) is defined by its start and end coordinates

 The diagram below shows some examples of lines and their slopes

An Example of Direct Line Equation

Method

 We could simply work out the

corresponding y coordinate for

each unit x coordinate

 Let’s consider the following

example:

Direct Line Equation Method..

Direct Line Equation Method..

Limitations of the Direct Line Equation

Method

 However, this approach is just way too slow as mentioned earlier

 In particular look out for:

 The equation y = mx + b requires the multiplication of m by x

 Rounding off the resulting y coordinates

 We need a faster solution

The DDA Algorithm..

 The digital differential analyzer (DDA) algorithm takes an incremental

approach in order to speed up scan conversion

 Simply calculate yk+1 based on yk

 Consider the list of points that we determined for the line in our previous

example:

 (2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

 Notice that as the x coordinates go up by one, the y coordinates simply go

up by the slope of the line

 This is the key insight in the DDA algorithm

The DDA Algorithm..

 When the slope of the line is between -1 and 1 begin at the first point in the
line and, by incrementing the x coordinate by 1, calculate the

corresponding y coordinates as follows:

 When the slope is outside these limits, increment the y coordinate by 1 and

calculate the corresponding x coordinates as follows:

 Limitation of the DDA: The values calculated by the equations used by the
DDA algorithm must be rounded to match pixel values

myy kk 1

m
xx kk

1
1

The DDA Algorithm..

DDA Algorithm Example

 Let’s try out the following examples:

DDA Algorithm Example..

The DDA Algorithm Summary

 The DDA algorithm is much faster than our previous attempt

 In particular, there are no longer any multiplications involved

 However, there are still two big issues:

 Accumulation of round-off errors can make the pixelated line drift away from

what was intended

 The rounding operations and floating point arithmetic involved are time

consuming

The Bresenham’s Line Algorithm

 The Bresenham algorithm is another incremental scan conversion algorithm

 The big advantage of this algorithm is that it uses only integer calculations

 Move across the x axis in unit intervals and

at each step choose between two

different y coordinates

 For example, from position (2, 3) we have

to choose between (3, 3) and (3, 4)

 We would like the point that is closer

to the original line

The Bresenham’s Line Algorithm..

 At sample position xk+1 the vertical separations from the mathematical line

are labelled dupper and dlower

 The y coordinate on the mathematical line at xk+1 is:

bxmy k)1(

The Bresenham’s Line Algorithm..

 So, dupper and dlower are given as follows:

 and

 We can use these to make a simple decision about which pixel is closer to

the mathematical line

klower yyd

kk ybxm)1(

yyd kupper)1(

bxmy kk)1(1

The Bresenham’s Line Algorithm..

 This simple decision is based on the difference between the two pixel

positions:

 Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences between

the end-points:

122)1(2 byxmdd kkupperlower

)122)1(2()(

 byx

x

y
xddx kkupperlower

)12(222 bxyyxxy kk

cyxxy kk 22

The Bresenham’s Line Algorithm..

 So, a decision parameter pk for the kth step along a line is given by:

 The sign of the decision parameter pk is the same as that of dlower – dupper

 If pk is negative, then we choose the lower pixel, otherwise we choose the

upper pixel

cyxxy

ddxp

kk

upperlowerk

22

)(

The Bresenham’s Line Algorithm..

 Remember coordinate changes occur along the x axis in unit steps so we

can do everything with integer calculations

 At step k+1 the decision parameter is given as:

 Subtracting pk from this we get:

cyxxyp kkk 111 22

)(2)(2 111 kkkkkk yyxxxypp

The Bresenham’s Line Algorithm..

But, xk+1 is the same as xk+1 so:

where yk+1 - yk is either 0 or 1 depending on the sign of pk

The first decision parameter p0 is evaluated at (x0, y0) is given as:

)(22 11 kkkk yyxypp

xyp 20

BRESENHAM’S LINE DRAWING ALGORITHM
(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) and get the first value

for the decision parameter as:

4. At each xk along the line, starting at k = 0, perform the following test. If pk <

0, the next point to plot is (xk+1, yk) and:

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

N.B.: The algorithm and derivation above assumes slopes are less than 1. For

other slopes we need to adjust the algorithm slightly

xyp 20

ypp kk 21

xypp kk 221

An Example on Bresenham’s Line

Algorithm

 Let’s have a go at this:

 Let’s plot the line from (20, 10) to (30, 18)

 First off calculate all of the constants:

Δx: 10

Δy: 8

2Δy: 16

2Δy - 2Δx: -4

 Calculate the initial decision parameter p0:

p0 = 2Δy – Δx = 6

An Example on Bresenham’s Line

Algorithm..

 Go through the steps of the Bresenham line drawing algorithm for a line

going from (21,12) to (29,16)

Bresenham Line Algorithm Summary

 The Bresenham’s line algorithm has the following advantages:

 A fast incremental algorithm

 Uses only integer calculations

 Comparing this to the DDA algorithm, DDA has the following problems:

 Accumulation of round-off errors can make the pixelated line drift away from

what was intended

 The rounding operations and floating point arithmetic involved are time

consuming

