Scan Conversion

CMP 477 Computer Graphics
S. A. Arekete

What is Scan-Conversion@e

» 7D or 3D objects in real world space are made up of graphic primitives such as
points, lines, circles and filled polygons.

» These picture components are often defined in a contiguous space at a higher
level of abstraction than individual pixels in the discrete image space.

» [or instance, a line is defined by its two endpoints and the line equation while a
circle is defined by its radius, centre position, and the circle equation.

» |t is the responsibility of the graphics system or the application program to
convert each primitive from its geometric definition into a set of pixels that
makes up the primitive in the image space.

» This conversion task is generally referred to as scan-conversion or rasterization.

Scan-Converting a Point

B A mathematicalpoint (x,y) wherex and y are ¥ Pixel grid
real numbers within the image areq, needs 1o
be convertedto a pixel location (x',y').

= This can be done by making x' to be the
infeger part of X, and y' the integer part of y.

» |n otherwords, x' = Floor(x) and y' = Floor(y),
where function Floorreturns the largest integer

that is less than or equal to the argument. 3.0

® Doing so in essence places the origin of a 3
contfinuous coordinate system (x,y) at the
lowest left corner of the pixel grid in the image

*H2.310
* P2211.3)

space 1.

0 A17.0.8)

= Al points thatsatfisfy x’ <x<x'+1andy’ <y < /
y' + 1 are mapped to pixel (x’,y’) °0 010 120 2 3p 340
®» For example, point P,(1.7,0.8) is represented by Pl

pixel (1,0), points P,(2.2,1.3) and P5(2.8,1.9) are
both represented by pixel (2,1)

coordinates

Scan-Converting a Point

B Another approach is to align the integer ¥
values in the coordinate system for (x,y) Pixel grid
with the pixel coordinates

» Here we scan (x,y) by making, x’ =
Floor(x + 0.5) and y’ = Floor(y + 0.5).

» This essentially places the origin of a
coordinate system (x,y) at the centre of i
the pixel (0,0). P(281%)

[]
!:u
o]

» All points that safisfy x’ — 0.5 < x < x’+ 0.5 Ll1o *P22.13)
andy’'— 0.5 <y <y + 0.5 are mapped LA

to pixel (x',y’)

O oo 10

» This means that points P,(1.7,0.8) and /
P,(2.2,1.3) are now both represented by A
pixel (2,1), whereas P5(2.8,1.9) is Piel
represented by pixel (3,2) coordinates

b | B

Scan-Converting a Line

B Alinein computer graphics typically y
refers to a line segment — a portion of a
straight line which extends indefinitely in
opposite directions

» |fis defined by the endpoints and the
line equation: y=mx +»b

» Where mis the slope of the lineand b
is the y intercept

» NB: The slope-intercept equation is not
suitable for vertical lines. P x.yv)
171

» Horizontal, vertical and diagonal lines |
|m|=1 are special cases which are
offen mapped info the image space
specially for execution efficiency

Consideration for Scan-Conversion of o
Line

» But what happens when we 1ry to
draw line on a pixel based
displaye

» How do we choose which pixels
to furn on?

» The line has to look good

» Avoid jaggies
» The drawing has to be very fast!

=» How many lines need to be
drawn in a typical scene?¢

® This is going to come back to bite
us again and again

Lines and Slopes

» The slope of aline (m) is defined by its start and end coordinates

» The diagram below shows some examples of lines and their slopes

An Example of Direct Line Equation
Method

» We could simply work out the
corresponding Y coordinate for v 1
each unit x coordinate

» | et's consider the following (7, 3)
example:

(2, 2)

Direct Line Equation Method..

(7.9 First work out m and b:

5-2 3

mm=—=—

7-2 5

(2,2)

x 5 5

Now for each x value work out the y value:
(3)—3 3+4—2 (4)—3-4+i—3l

PITSETST PVESTETSTOS

3 4 2
6)=—6+—=4—
v(6) 5 5

p(5)=2-5+=-=3 :

5 5

3
5
3. 4 4
5

Direct Line Equation Method..

Now just round off the results and turn on
these pixels to draw our line

Limitations of the Direct Line Equation
Method

» However, this approach is just way too slow as mentioned earlier

» |n particular look out for:

» The equationy = MX + b requires the multiplication of M by X

= Rounding off the resulting Y coordinates

» \We need a faster solution

The DDA Algorithm..

» The digital differential analyzer (DDA) algorithm takes an incremental
approach in order to speed up scan conversion

» Simply calculate y, ., based ony,

» Consider the list of points that we determined for the line in our previous
example:

= (22),(3,2%5). (4, 3/5). (5. 3%s). (6, 4°/s). (7. 5)

» Notice that as the x coordinates go up by one, the y coordinates simply go
up by the slope of the line

» This is the key insight in the DDA algorithm

The DDA Algorithm..

» When the slope of the line is between -1 and 1 begin at the first point in the
line and, by incrementing the x coordinate by 1, calculate the
corresponding y coordinates as follows:

yk+1 — yk +M

» When the slope is outside these limits, increment the y coordinate by 1 and
calculate the corresponding x coordinates as follows:

X —X+1
k+t1 — kT
’ m

» Limitation of the DDA: The values calculated by the equations used by the
DDA algorithm must be rounded to match pixel values

The DDA Algorithm..

() ()) '
./ ./ (N L
e e e r; -
N N
(x +1, round(y, +m))
“ P
X ¥
A

/

¢
(X, round(yy))

.

Y
p—y

~,
vy

C

./

(round(v, + /,,), y,+1)
/l\ b Yy
Y U
(xk, }'k) (xk—l_ 1"" m? .}!k+1)
“u
p p—

—O>

(round(x,), ;)

DDA Algorithm Example

» | et’s try out the following examples:

V. vy (2,7)

(7, 9)

(2, 2) (3, 2)

DDA Algorithm Example..

) Y)) Y) Y Y
R p— p R R Ny R p—
)) Y) Y Y Y Y
Py p—y N Py Py p P P
Y Y) Y Y Yy Y Y
R N N R N Ny R p—
) Y) Y Y) Y Y
R p—y - R Ry fy P R
) ()) () () () ())
p— p—y p p— Ry p—y P Ry
Y Y)) Y Y Y Y
p— p— [R R (Y P R

The DDA Algorithm Summary

» The DDA algorithm is much faster than our previous attempt
» |n particular, there are no longer any multiplications involved
» However, there are still two big issues:

» Accumulation of round-off errors can make the pixelated line drift away from
what was intended

» The rounding operations and floating point arithmetic involved are time
consuming

The Bresenham’s Line Algorithm

» The Bresenham algorithm is another incremental scan conversion algorithm
» The big advantage of this algorithm is that it uses only integer calculations
» Move across the x axis in unit intervals and
t each step choose between t ° 5 ¢ b—de
at each step choose between two oL,)
different y coordinates 4 A A
e)),
» [or example, from position (2, 3) we have o)
to choose between (3, 3) and (3, 4) T A
: : : 3 g/ O—U)
» We would like the point that is closer R(xkﬂ)
to the original line A A PN PN
2—) —0) \r U
2 3 4 5

The Bresenham’s Line Algorithm..

» At sample position X, +1 the vertical separations from the mathematical line

are labelled dy,per AN ey

» The y coordinate on the mathematical line at X, +1 is:

pper| /

y=m(x, +1)+b t

¥

The Bresenham’s Line Algorithm..

= 50, dyyper AN dygyer Qre given as follows:
dlower =Y — yk
=m(x, +1)+b—y,
» ond
dupper - (yk +1) -y

=Yy, +1-m(x +1)-b

» We can use these to make a simple decision about which pixel is closer to
the mathematical line

The Bresenham’s Line Algorithm..

®» This simple decision is based on the difference between the two pixel
positions:

dIower _dupper = 2m(xk +1) - 2yk +2b-1

» |et's substitute m with Ay/AX where AX and Ay are the differences between
the end-points:

AX(dlower — dupper) = AX(Z% (Xk +1) o 2yk + 2b _1)

=2AY - X, —2AX- Y, +2Ay +Ax(2b-1)
=2Ay-X, —2AX-Yy, +C

The Bresenham’s Line Algorithm..

» S0, a decision parameter p, for the kth step along a line is given by:

Py = AX(dlower - dupper)
=2Ay - X, —2AX-y, +C
= The sign of the decision parameter p, is the same as that of djgyer — dypper

» |f p, is negative, then we choose the lower pixel, otherwise we choose the
upper pixel

The Bresenham’s Line Algorithm..

®» Remember coordinate changes occur along the X axis in unit steps so we
can do everything with integer calculations

» At step k+1 the decision parameter is given as:
P = 2Ay "Xy 2AX - Yk TC

» Subtracting p, from this we get:

Peia — P = 28Y (X1 =X) — 2A%(Yieis — Vi)

The Bresenham’s Line Algorithm..

But, X, is the same as X, +1 so:
Pii1 = P +24Y —2AX(Yyi1 — Vi)

where Y, - Y is either 0 or 1 depending on the sign of p,

The first decision parameter p, is evaluated at (x,, yy) is given as:

P, = 2AYy — AX

BRESENHAM'S LINE DRAWING ALGORITHM
(for [m| < 1.0)

SH

. Input the two line end-points, storing the left end-point in (X,, Y,)

Plot the point (X, Yo)

Calculate the constants AX, Ay, 2Ay, and (2Ay - 2Ax) and get the first value
for the decision parameter as: p, = 2Ay —AX

At each x, along the line, starting at k = 0, perform the following test. If p, <
0, the next point to plotis (X, +1, y,) and: P4 = Py +2Ay

Otherwise, the next point to plot is (X, +1, y,+1) and: Pe = Py + 24y —2AX
Repeat step 4 (Ax— 1) times

N.B.: The algorithm and derivation above assumes slopes are less than 1. For
other slopes we need to adjust the algorithm slightly

An Example on Bresenham'’s Line
Algorithm

» |et’'s have a go at this:
» | etf’s plot the line from (20, 10) to (30, 18)

» First off calculate all of the constants:
Ax: 10
Ay: 8
2Ay: 16
2Ay - 2AX: -4

» Calculate the inifial decision parameter Py:

Po = 2Ay —Ax=6

An Example on Bresenham’s Line
Algorithm..

» Go through the steps of the Bresenham line drawing algorithm for a line
going from (21,12) to (29.16)

Pk | (Xis1.Yie1)

OOOOOOOOQ
jololcielelelel’

oo’
ﬁﬁﬁﬁﬁﬁt’ﬁﬁ'

6 (21,11)

2 (22,12)

-2 (23,12)
14 (24,13)

w @ N O O s W N = O =
=

(25,14)

6 | (615
RS | =
237 | =
OOOOOOOO |5 |4 | eam

20 21 22 23 24 25 26 27 28 20 30 10 (30, 18)

Bresenham Line Algorithm Summary

®» The Bresenham’s line algorithm has the following advantages:
» A fast incremental algorithm
» Uses only integer calculations
» Comparing this to the DDA algorithm, DDA has the following problems:

» Accumulation of round-off errors can make the pixelated line drift away from
what was intended

» The rounding operations and floating point arithmetic involved are fime
consuming

