i Chapter 4 Classic Algorithms

= Bresenham’s Line Drawing

= Doubling Line-Drawing Speed

= Circles

= Cohen-Sutherland Line Clipping

= Sutherland—Hodgman Polygon Clipping
= Bézier Curves

= B-Spline Curve Fitting

©2006 Wiley & Sons

i Bresenham’s Line Drawing

= A line-drawing (also called scan-conversion)
algorithm computes the coordinates of the pixels
that lie on or near an ideal, infinitely thin straight line

Q

X
X X
X
X X
P
X

1 2 3 4 5 6 7 8 9 10 11 12 13 «x

O = N W s~ 0O 0 <

©2006 Wiley & Sons

i Bresenham’s Line Drawing (cont’'d)

= Forlines -1 < slope < 1, exactly 1 pixel in each column.
= For lines with other slopes, exactly 1 pixel in each row.
= Todraw a pixel in Java, we define a method

void putPixel(Graphics g, int x, int y)
{ g.drawLine(x, y, X, y);
}

©2006 Wiley & Sons

i Basic Incremental Algorithm

= Simplest approach:
= Slope m = Ay/Ax
= Increment x by 1 from leftmost point (if -1<m< 1)
= Use line equation y; = x;m + B and round off y;

= But inefficient due to FP multiply, addition,
and rounding

©2006 Wiley & Sons

Basic Incremental Algorithm (cont’ed)

= Let’s optimize it:
= VY, =MX,, +B=m(xi+Ax) +B=y;+mAx
= So it’s called incremental algorithm:
= At each step, increment based on previous step

’/:\(x+ 1, round(y+m))

(XI Y) | '\

I

// / , Yexact

(x, round(y)) ——

(x+1, y+m)

©2008 Wiley & Sens

Basic Incremental Algorithm (cont’ed)

s For-1sm=<Tt.:
" int x;
= floaty, m = (float)(yQ - yP)/(float)(xQ - xP);
= for (x= xP; x<=xQ; x++) {
. putPixel(g, x, Math.round(y));
. y=y+m;}
= Because of rounding, error of inaccuracy is
s -0.5<Ypui-ys0.5
s If /m/>1, reverse the roles of x and y:
= Vi =Yt X =X+ 1/m
= Need to consider special cases of horizontal, vertical, and
diagonal lines
= Major drawback: one of x and y is float, so is m, plus rounding.

©2006 Wiley & Sons

i Breshenham Line Algorithm

Let’s improve the incremental algorithm
= To get rid of rounding operation, make y an integer

L~

P Yexact

©2006 Wiley & Sons

i Breshenham Line Algorithm (cont’d)

= d=y—round(y),so -0.5<d=<0.5

= We separate y’s integer portion from its fraction
portion
s intx,y;
float d = 0, m = (float)(yQ - yP)/(float)(xQ - xP);
for (x= xP; x<=xQ; x++) {
putPixel(g, x, y); d =d +m;
if (d > 0.5) {y++; d-; }

©2006 Wiley & Sons

i Breshenham Line Algorithm (cont’d)

= To get rid of floating types m and d, we
= double dto make it an integer, and
= multiply mby xQ — xP
= We thus introduce a scaling factor
» C=2"(xQ—-xP)
= (why can we do this?)
= So:
s M=cm=2(yQ-yP)
= D=cd

©2006 Wiley & Sons

i Breshenham Line Algorithm (cont’d)

= We finally obtain a complete integer version of the
algorithm (variables starting with lower case letters):
= intx,y=yP,d=0,dx=xQ-xP,c=2*dx,m=2"(yQ - yP);
s for (x=xP; x<=xQ; x++) {
. putPixel(g, X, y);
u d+=m;
. if (d >=dx) {y++;d-=c;}
=}
= Now we can generalize the algorithm to handle all
slopes and different orders of endpoints

©2006 Wiley & Sons

Doubling Line-Drawing Speed

= Bresenham algorithm:

= Determines slope

= Chooses 1 pixel between 2 based on d
= Double-step algorithm:

= Halves the number of decisions by checking for next
TWO pixels rather than 1

M 2) @) 4)

©2006 Wiley & Sons 11

Double-Step Algorithm

= Patterns 1 and 4 cannot happen on the same

line
g
u S e
e
! M 3
e /Z &
,,,,, iterns 1, &
e B—1p e
4‘4/‘
- (Xi’ yi) L1 L

©2006 Wiley & Sons 12

Double-Step Algorithm (cont’d)

= For slope within [0, ¥2):

= Pattern 1: 4dy < dx
= Pattern 2: 4dy = dx AND 2dy < dx
= Pattern 3: 2dy = dx
= Algorithm:
= Set dinitially at 4dy-dx, check in each step
« d<0: Pattern 1 d = d+4dy
« d20,ifd<2dy Pattern 2 d =d + 4dy - 2dx
d = 2dy Pattern 3 d =d + 4dy - 2dx
B X=X+2
©2006 Wiley & Sons 13
Circles

= How do we implement a circle-drawing
method in Java
« drawCircle(Graphics g, int xC, int yC, int r)
= A simplest way is
= x=xC+rcos g
= y=yC+rsing
where
= @=ix (i=0,1,2,...,n—1)
for some large value of n.
= But this method is time-consuming ...

©2006 Wiley & Sons 14

+

Circles (cont'd)

= According to circle
formula
. R+ R

= Starting from P, to
choose between y and

<

. 8 ™~
y-1, we compare which 7
of the following closer to g la
r. 4
B X4)P and 3 \
m X+ (y—1)2 ‘12 \

o

12 34 56 7 8 x

©2006 Wiley & Sons 15

+

Circles (cont’d)

= [0 avoid computing squares, use 3 new variables:
m U=(x+1)2-x2=2x+1
m V=2 —(y—-1)2=2y—1
s E=x2+y2-12
= Starting at P
= x=0andy=rthusu=1,v=2r—-1and E=0
= [f|E—V <|A, then y-- which is the same as
s (E-Vv)2<E2= v(v-2E) <0
= Vis positive, thus we simply test
= V<2E

©2006 Wiley & Sons 16

Circles (cont'd)

= Java code for the arc PQ:
= void arc8(Graphics g, intr)
s { intx=0,y=r,u=1,v=2"r-1,e=0;
= while (x <=y)
= { putPixel(g, x, y);
. X++; € += U; U += 2;
. if (v<2*e){y-;e-=v;v-=2;}
-}
-)

©2006 Wiley & Sons 17

Line Clipping

= Clipping endpoints
= For a point (x, y) to be inside clip rectangle defined by
Xmin/xmax and ymin/yman:
= Xnin < x—<xmax AND Ymin —<y—<ymax
= Brute-Force Approach
= If both endpoints inside clip rectangle, trivially accept
= If one inside, one outside, compute intersection point
= If both outside, compute intersection points and check
whether they are interior
= Inefficient due to multiplication and division in
computing intersections

©2006 Wiley & Sons 18

Cohen-Sutherland Algorithm

= Based on “regions”, more line segments could
be trivially rejected

= Efficient for cases
= Most line segments are inside clip rectangle
= Most line segments are outside of clip rectangle

©2006 Wiley & Sons 19

i Cohen-Sutherland Algorithm (cont’d)

= Check for a line
1. If Outcode, = Outcodeg = 0000,
trivially accept
2. If Outcode, AND Outcodeg # 0,
trivially reject
s. Otherwise, start from outside
endpoint and find intersection
point, clip away outside segment,
Yonax ; = P and replace outside endpoint with
: ‘ intersection point, go to (1)

0101 | 0100 | 0110
| § = Order of boundary from
outside:
Outcode: = Top = bottom = right = left
’yma)(—y \ y- ym/'n Xma X \ X _Xm/'n

©2006 Wiley & Sons 20

10

i Cohen-Sutherland Algorithm (cont’d)

X o = Consider line AD:
3 = Outcode, = 0000,

C 1000 Outcodep, = 1001,
B neither accept nor accept
A G = Choose D, use top edge to

0001 0000 clip to AB
Vool = Find Outcodeg = 0000,
max e/ F according to (1), accept AB

0101 0100 0110

Outcode:

’maxy)y m/n) maxx)x m/n

©2006 Wiley & Sons 21

i Cohen-Sutherland Algorithm (cont’d)

= Consider line El:
= Outcodeg = 0100,
Outcode, = 1010,
= Start from E, clip to FI, neither
(1) nor (2)
= Since Outcode, = 0000,
choose |
e/ F = Use top edge to clop to FH
0101 : 0100 | 0110 = Outcode,, = 0010, use right
i § edge to clip to FG
Outcode: = According to (1), accept FG

= Same result if start from |

maxXNX m/n

’ max}/\y m/n

©2006 Wiley & Sons 22

11

i Polygon Clipping

= Sutherland-Hodgman Algorithm: divide & conquer

= General — a polygon (convex or concave) can be clipped
against any convex clipping polygon

©2006 Wiley & Sons

23

i Sutherland-Hodgman Algorithm

= Clip the given polygon against one clip
edge at a time

< - N

= =

©2006 Wiley & Sons

24

12

Sutherland-Hodgman Algorithm (cont’d)

= The algorithm clips every polygon edge against each clipping line
= Use an output list to store newly clipped polygon vertices
= With each polygon edge, 1 or 2 vertices are added to the output list

Inside

[

p:output

1 output

Outside Inside | Outside
j [j p
S i:output
1 output

Inside | Outside
p

il

0 output

Inside | Outside

p:output2 | —15
[ﬂputl

2 outputs

©2006 Wiley & Sons 25

Sutherland-Hodgman Algorithm (cont’d)

= Output vertices |, J, K, L, F, and A,

©2006 Wiley & Sons 26

13

i Bézier Curves

= 2 endpoints + 2 control points -> a curve segment
= P, and P, are endpoints

P mmal N mun amradual it
u 1 dllu Py dai CUINIUUI PUITIWL P
2

Py

P3

©2006 Wiley & Sons 27

i Bézier Curves (cont’d)

= C, is the point for drawing the curve

©2006 Wiley & Sons 28

14

i Bézier Curves (cont'd)

= Analytically
s A(t) = Py +t*PyP, (0 =t <1, t may be considered time)
s A() = Py +t(P, — Py) = (1 = t)P, + t*P,

= Similarly = A()=(1-tHA +t*C
= B(t)=(1-t)P, +t'P, = B,(t)=(1-1)C +t'B
= C(t) = (1-t)P, + t*P, = C,(t) = (1 —t)A1 + t*B,
= So

= C,(t) = (1 =t)((1 =t)A + t*C) + t*(1 = 1)C + t*B)

LERETTTET

s Cy(t) = (1 —1)3P, + 3(1 —t)2*P, + 3(1 —)P, + t3*P,

©2006 Wiley & Sons 29
14 -]
‘ Bézier Curves (cont'd)
= void bezier1(Graphics g, Point2D[] p)
= { intn=200;
" float dt = 1.0F/n, x = p[0].%x, y = p[0].y, X0, y0;
" for (int i=1; i<=n; i++)
" { floatt=i*dt,u=1-t,
" tuTriple =3 *t* u,
" cO=u*u*u,
" c1 =tuTriple * u,
" c2 = tuTriple * t,
" c3=t"t*g;
n x0=x;y0=y;
. x = c0*p[0].x + c1*p[1].x + c2*p[2].x + c3*P[3].X;
. y = c0*p[0].y + c1™p[1].y + c2*p[2].y + c3*p[3].y;
. g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
=}
=}
©2006 Wiley & Sons 30

15

Bézier Curves (cont’d)

void bezier2(Graphics g, Point2D[] p)
{ int n = 200;
float dt = 1.0F/n,
. . cx3 = -p[0].x + 3 * (p[1].x - p[2].x) + p[3].x,
= Further manipulation: cyg = ;’pLO(].)[/O-I]- 3 *2(2[1][.1y] - p[z].[yz)] +)p[3].y,
. — (- _ X2 = p[0].x - p[1].x + p[2].x),
Cilt) = LPor P SPatPat 2 =3+ (ploly - 2 pitly + pl2ly),
+ (Pg—2P;+P)t ox1 = 3 * (p[1].x - p[0]-x),
—3(P—Py))t cyl = 3 * (p[1]y - p[0].y),
= ox0 = p[0].x, cy0 = p[0].y,
+Fo x = p[0].x, y = p[0l.y, X0, y0;
for (inti=1; i<=n; i++)
{ floatt =i * dt;
X0=x;y0 =y,
Xx=((cx3*t+cx2) *t+ cxl) *t+ ox0;
y = ((cy3 *t+cy2) *t + cyl) * t + cy0;
g.drawLine(iX(x0), iY(y0), iX(x), iY(y));

©2006 Wiley & Sons 31

Bézier Curves (cont'd)

= C,(t) is the position of the curve at time t, its derivative
C1’(t) is velocity:
= C,'(t) = -3(t-1)2P,+3(3t-1)(t-1)P,=3t(3t-2) P,+3tP,

©2006 Wiley & Sons 32

16

i Bézier Curves (cont'd)

= When two Bézier curves a (P,P3;) and b (Q,Q;) are
combined, to make the connecting point smooth,
= C;.(1) =Gy (0)
i.e. the final velocity of curve a equals the initial velocity of curve b
= The condition is guaranteed if P, (=Q,) is the midpoint of line P,Q,

Qs

Q

©2006 Wiley & Sons 33

i B-Spline Curve Fitting

= Number of control points = number of curve
segments + 3

E:giDeline points; press any key after the final one

©2006 Wiley & Sons 34

17

i B-Spline Curve Fitting (cont’d)

= For example, following curve consists of 5
segments, 8 control points (left 2 repeated)

= Smooth connections between curve segments

%Deﬁne points: press any key after the final one

©2006 Wiley & Sons

i B-Spline Curve Fitting (cont'd)

= The mathematics for B-splines (first 15t curve
segment) can be expressed as (0 <t<1):

-1 3 -3 1][p,

1 3 -6 3 0]|P

B(t) = — [t3 ? ot 1] !
6 -3 0 3 o|lp

1 4 1 ol|Pp

-P, +3P, -3P, + P,
3P, — 6P, +3P,
—-3P, +3P,

P, +4P, +P,

B(t) é[ﬁ 12t l]

©2006 Wiley & Sons

18

B-Spline Curve Fitting (cont’d)

B(t) =

%(—PO +3P, =3P, + Py’ + %(PO —2P, +P,)t% + %(—PO +Py))r + %(P0 +4P, +P,)

©2006 Wiley & Sons 37

B-Spline Curve Fitting (cont’d)

void bspline(Graphics g, Point2D[] p)
{ intm =50, n =p.length;

float xA, yA, xB, yB, xC, yC, xD, yD,
a0, at, a2, a3, b0, b1, b2, b3, x=0, y=0, x0, y0;

boolean first = true;

for (inti=1; i<n-2; i++)

{ xA=p[i-1].x; xB=p[i].x; xC=p[i+1].x; xD=p[i+2].x;
yA=p[i-1].y; yB=plil.y; yC=p[i+1].y; yD=p[i+2].y;
a3=(-xA+3*(xB-xC)+xD)/6; b3=(-yA+3*(yB-yC)+yD)/6;
a2=(xA-2*xB+xC)/2; b2=(yA-2*yB+yC)/2;
al=(xC-xA)/2; b1=(yC-yA)/2;
a0=(xA+4*xB+xC)/6; b0=(yA+4*yB+yC)/6;
for (int j=0; j<=m; j++)

{ x0=x;y0=y;
float t = (float)j/(float)m;
x = ((@3*t+a2)*t+al)*t+a0; y = ((b3*t+b2)*t+b1)*t+b0;
if (first) first = false;
else g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
}
}

©2006 Wiley & Sons 38

i Chapter 5 Perspective

Basic concepts

Viewing Transformation
Perspective Transformation
A Cube Example

Some Useful Classes
Wire-Frame Drawings

©2006 Wiley & Sons 39
i Perspective Concepts

Vanishing point Horizon Vanis hing point

= Viewpoint
= Parallel (orthographic) projection
= Perspective projection

©2006 Wiley & Sons 40

20

i Perspective Concepts (cont'd)

World coordinates (xw, yw, zw) — 3D
Viewing fransformation

Eye coordinates (xe, ye, z22) — 3D

PerspectiYe transformation

Screen coordinates (X, ¥) — 2D

©2006 Wiley & Sons

41

Viewing Transformation

Zw

ZEfL

©2006 Wiley & Sons

42

21

i Viewing Transformation (cont'd)

1 0 0 0
0 1 0 O
T =
0 0 0
-xg —Yg —zg 1

©2006 Wiley & Sons 43
= - H bl
‘ Viewing Transformation (cont'd)
cos(—8—-90°) sin(—€-90°) 0O O —sind —cos@® 0 O
R - —sin(—0-90°) cos(—6-90°) 0 O B cosd —sind 0 O
‘o 0 0 10 0 0 10
0 0 01 0 0 01
z
Zw
Xw \\\\\\/\ Yw ©2006 Wiley & Sons 44

22

i Viewing Transformation (cont'd)

1 0 0 0 1 0 0 0
R - 0 cos(—¢) sin(—¢p) 0 3 0 cos¢p —sing O
* 10 —sin(-@) cos(-@) 0| |0 sing cosgp O
0 0 0 1 0 O 0 1
—sin@ —cos@cosf sing@cosl
V=TR R, =

o 0 sin @ cos @

0
cosd —cosesinf singsind 0
0

0 0 -p 1

©2006 Wiley & Sons

45

$ Perspective Transformation
[

P2

Changing r can change perspective.
It becomes parallel projection if r = oo

©2006 Wiley & Sons

46

23

i Perspective Transformation (cont'd)

Due to similar triangles EQP’ and EOP:
PQ _ PR

EQ ER
Applied to X-x, and Y-y, relationship:

Xy et oy g2
d —Z ©
d _ imagesize
p ObJ ect SiZe ©2006 Wiley & Sons 47
i A Cube Example

= Draw a cube in perspective, given the

viewing distance and object size.

©2006 Wiley & Sons

48

24

A Cube Example (cont’d)

= Implementation

= Class Objcontains 3D data and transformations
= World coordinates for the cube — 3D
= ObjectSize = SquareRoot(12)
= Viewing distance r=5 * ObjectSize

= Prepare matrix elements

= Transformations (viewing and perspective)

= Draw cube (in paint)
= Find center of world coordinate system
= d - r*lmageSize/ObjectSize
= Transformations
= Draw cube edges according to screen coordinates

©2006 Wiley & Sons 49

Some Useful Classes

= /nput: for file input operations
= Obj3D: to store 3D objects

= Tria: to store triangles by their vertex
numbers

= Polygon3D: to store 3D polygons

m Canvas3D:. an abstract class to adapt
the Java class Canvas

= Fr3D: a frame class for 3D programs

©2006 Wiley & Sons 50

25

i Wire-Frame Drawings

= Using all the previous classes, implement the following:

< Wire-frame model
File Wiew

©2006 Wiley & Sons

51

26

