
CSM213 Computer Graphics

Vincent Zammit, modified by Mike Rizzo and Kurt Debattista

Department of Computer Science and A.I.

University of Malta

February 1995, October 1997, February 2001

Contents

1 Brief Overview of Graphics Systems 4
1.1 Introduction . 4

1.1.1 Recommended Texts . 4
1.1.2 Course Structure . 4

1.2 Applications of Computer Graphics . 4
1.3 Graphics Systems . 5

1.3.1 Random Scan Displays . 5
1.3.2 Raster Scan Displays . 5

2 Graphics Primitives: Line Drawing Algorithms 7
2.1 Scan Conversion . 7
2.2 Line Drawing Algorithms . 7
2.3 A straightforward line drawing algorithm . 8
2.4 The incremental DDA Algorithm . 8
2.5 The Midpoint Line Drawing Algorithm - Pitteway (1967) 9
2.6 The Bresenham Line Drawing Algorithm . 11
2.7 The Double Step Midpoint Line Drawing Algorithm 11
2.8 Some points worth considering . 13
2.9 Exercises . 14

3 Graphics Primitives: Circle Drawing Algorithms 15
3.1 The circle equation . 15
3.2 The Symmetry of a Circle . 15
3.3 A Straightforward Circle Drawing Algorithm 16
3.4 Use of parametric polar form equation . 17
3.5 The Midpoint Circle Drawing Algorithm . 17

3.5.1 Second Order Differences . 20
3.6 Ellipses . 22
3.7 Exercises . 22

4 Graphics primitives: Filled Areas 23
4.1 Filling polygons . 23

4.1.1 Inside-outside test . 23
4.2 The scan-line polygon filling algorithm . 23

4.2.1 An example . 24
4.2.2 Dealing with vertices . 25
4.2.3 Horizontal edges . 27

4.3 General-purpose filling algorithms . 27

1

4.3.1 Boundary-fill algorithm . 27
4.3.2 Flood-Fill Algorithm . 28

4.4 Pattern Filling . 30
4.5 Exercises . 30

5 Clipping in 2D 31
5.1 Clipping Points . 31
5.2 The Cohen-Sutherland algorithm for line clipping 31
5.3 Sutherland-Hodgman polygon clipping algorithm 33

5.3.1 Clipping against an edge . 34

6 Geometrical transformations 37
6.1 Preliminaries . 37

6.1.1 Vectors . 37
6.1.2 Matrices . 38

6.2 2D transformations . 39
6.2.1 Translation . 39
6.2.2 Scaling relative to origin . 40
6.2.3 Rotation relative to origin . 41

6.3 Homogeneous coordinates . 42
6.4 Composition of 2D Transformations . 43

6.4.1 General fixed-point Scaling . 43
6.4.2 General pivot-point rotation . 43
6.4.3 General direction scaling . 44

6.5 Inverse transformations . 44
6.6 Other 2D Transformations . 44

6.6.1 Reflection . 44
6.6.2 Shearing . 45

6.7 Applying transformations . 46
6.8 The 2D viewing pipeline . 46

6.8.1 Example of a Window to Viewport Transformation 47
6.9 Transformation as a change in coordinate system 50
6.10 3D transformations . 50
6.11 Exercises . 51

7 Viewing in 3D 52
7.1 Preliminaries . 52

7.1.1 3D co-ordinate systems . 52
7.1.2 Representation of 3D objects . 52

7.2 The 3D viewing pipeline . 53
7.2.1 The view reference coordinate system 53
7.2.2 Projections . 54

7.3 Parallel projections . 55
7.3.1 Orthographic projections . 55
7.3.2 Oblique projections . 56
7.3.3 Parallel projection transformation . 57

7.4 Perspective Projections . 58
7.5 Clipping in 3D . 59

2

7.5.1 Normalisation of view volume . 60
7.5.2 3D version of Cohen-Sutherland clipping algorithm 62

7.6 Mapping into a 2D viewport . 63

8 Hidden surface and hidden line removal 64
8.1 Back-face culling . 64
8.2 Depth-buffer (or z-buffer) method . 65
8.3 Scan-line method . 66
8.4 Depth-sorting method (painter’s algorithm) 67
8.5 Hidden-line removal . 68

3

Chapter 1

Brief Overview of Graphics
Systems

1.1 Introduction

• This chapter gives an introduction to some basic concepts underlying computer graph-
ics.

• These notes summarize the main points covered in the lectures. Reading the following
texts is recommended.

1.1.1 Recommended Texts

• Introduction to Computer Graphics. Foley, Van Dam, Feiner, Hughes and Phillips.
Addison-Wesley Publishing Company.

• Computer Graphics. Donald Hearn and M. Pauline Baker. Prentice Hall Interna-
tional Editions.

• Computer Graphics - A Programming Approach. Steven Harrington. McGraw-
Hill International Editions.

1.1.2 Course Structure

The course is divided into 3 parts:

1. Graphics Primitives

2. 2D and 3D Transformations

3. 3D Viewing and Representation

1.2 Applications of Computer Graphics

The use of computer graphics is becoming more popular in:

• User Interfaces: Today, virtually every software package provides an adequate graph-
ical user interface.

4

• Computer Aided Design: Computers play an important role in the design and
manufacture of vehicles, buildings, appliances, etc due to their ability to produce and
amend designs interactively.

• Visualisation: Graphical representation of scientific, statistical, business, etc data
gives the users an effective and illustrative presentation of numeric results.

• Computer Aided Learning: Interactive simulators and other graphics based learn-
ing systems are becoming an indispensable aid to education and specialised training.

• Entertainment: Advertisement, motion pictures, games, etc are constantly taking
advantage of the ability of computers to develop realistic and detailed graphical images.

1.3 Graphics Systems

Graphics output devices can be classifies as:

• Random scan devices, or

• Raster scan devices.

1.3.1 Random Scan Displays

• Random scan, or vector devices accept a sequence of coordinates and display images
by moving a drawing pointer (a pen for the case of a plotter, an electron beam for the
case of a random scan cathode ray tube) as required.

• In a random scan system the image is stored in the system memory as a list of prim-
itive drawing commands called the display list or refresh buffer. A display processor,
or graphics controller reads and interprates the display list and outputs the plotting
coordinates to the display device.

• Random scan devices produce precise and fast wireframe images.

• However they are not suitable for generating realistic images.

• Random scan devices include:

– Plotters

– CRT

1.3.2 Raster Scan Displays

• Raster scan devices treat an image as a rectangular matrix of intensity and colour
values. They accept a sequence of colour/intensity values generating the image by
displaying the individual spots as required.

• In a raster scan system the image is usually stored in a memory area called the frame
buffer or refresh buffer as an array of pixels. The video controller scans the frame buffer
and outputs the colour intensity values to the display device.

5

• Raster scan systems are well suited for displaying realistic images since pattern filled
areas, shading, etc can be easily stored in the frame buffer as different colour intensity
values.

• However the output lacks the accuracy and well definition of random scan systems.

• Raster scan devices include:

– Raster scan monitors

– Dot matrix printers

6

Chapter 2

Graphics Primitives: Line Drawing
Algorithms

2.1 Scan Conversion

• Displaying graphics primitives (such as lines and circles) on a raster scan system in-
volves the task of choosing which pixel to turn on and to which intensity.

• This process of digitizing a picture definition is called scan conversion.

• Some graphics controllers are capable of scan converting particular primitives, however
in most low cost systems, scan converting has to be done by the software packages
and/or libraries.

• This section deals with the implementation of relatively efficient scan converting algo-
rithms of particular output primitives.

2.2 Line Drawing Algorithms

• The Cartesian equation of a line is:

y = mx+ c

• Our aim is to scan convert a line segment usually defined by its endpoints: (xa, ya)
and (xb, yb).

• Therefore, we need to draw the line segment:

y = mx+ c

for xa ≤ x ≤ xb

where

m =
yb − ya
xb − xa

c = ya − xa
yb − ya
xb − xa

7

• It is noted that for the particular case when |m| = 1, there will be exactly one pixel
turned on in every column between xa and xb; and exactly one pixel turned on in every
row between ya and yb.

• It is desireable that for |m| < 1, there is exactly one pixel in every column and at least
one pixel in every row.

• Similarly, for |m| > 1, there will be exactly one pixel in every row and at least one
pixel in each column.

2.3 A straightforward line drawing algorithm

The above points can be used to implement a rather straightforward line drawing algorithm.
The slope and the intercept of a line are calculated from its endpoints. If |m| ≤ 1, then the
value of the x coordinate is incremented from min(xa, xb) to max(xa, xb), and the value of
the y coordinate is calculated using the Cartesian line equation. Similarly, for |m| > 1, the
value of the y coordinate is varied from min(ya, yb) to max(ya, yb) and the x coordinate is
calculated (using x = y−c

m
).

The following algorithm assumes that 0 ≤ m ≤ 1 and xa < xb. The other cases can
be considered by suitable reflections with the coordinate axes and looping through the y
coordinates instead of the x coordinates.

m := (yb - ya) / (xb - xa);

c := ya - m * xa;

for x := xa to xb do

begin

y := round (m*x + c);

PlotPixel (x, y)

end;

However, this algorithm is extremely inefficient due to the excessive use of floating point
arithmetic and the rounding function round.

2.4 The incremental DDA Algorithm

Given the line y = mx + c, the previous algorithm can be improved if we note that if the
change in x is δx, then the change in the value of y is:

δy = (m(x+ δx) + c)− (mx+ c)

= mx+mδx+ c−mx− c

= mδx

Hence, while looping through the x coordinate (δx = 1) we can deduce the new value of
y by adding δy (= m) to the previous one, instead of calculating it using the Cartesian line
equation each time. Also, the above result can be used to get:

δx =
1

m
δy

8

M

NE

E

Figure 2.1: Checking whether the line is above the midpoint or not.

Therefore, while looping through the y coordinate, the new value of x can be achieved
by adding 1

m
.

m := (yb - ya) / (xb - xa);

y := ya;

for x := xa to xb do

begin

PlotPixel (x, Round (y));

y := y + m

end;

• DDA stands for Digital Differential Analyser.

• The DDA algorithm is an improvement over the first one but it is still very inefficient.

2.5 The Midpoint Line Drawing Algorithm - Pitteway (1967)

Previously, we have shown that the difference between successive values of y in the line
equation is δy = m. However, in practice, for 0 ≤ m ≤ 1 the difference between the
successive values of the y coordinate of the pixel plotted (Round (y)) is either 0 or 1. So,
given that the previous pixel plotted is (xp, yp), then the next pixel ((xp+1, yp+1)) is either
(xp + 1, yp) (let us call this point E, for East) or (xp + 1, yp + 1) (NE).

Therefore, the incremental DDA algorithm can be modified so that we increment the
value of the y coordinate only when necessary, instead of adding δy = m in each step of the
loop.

Given that the line equation is:

f(x) = mx+ c

• E is plotted if the point M (the midpoint of E and NE) is above the line, or else

9

• NE is plotted if M is below the line.

Therefore, E is plotted if:

f(xp+1) ≤ My

mxp+1 + c ≤ yp +
1

2

m(xp + 1) + (ya −mxa) ≤ yp +
1

2

m(xp − xa + 1) ≤ yp − ya +
1

2

defining

∆x = xb − xa

∆y = yb − ya

∆y

∆x
(xp − xa + 1) ≤ yp − ya +

1

2

∆y(xp − xa + 1)−∆x(yp − ya +
1

2
) ≤ 0

2∆y(xp − xa + 1)−∆x(2yp − 2ya + 1) ≤ 0

Now, let us define the left hand side of the above inequality by:

C(xp, yp) = 2∆y(xp − xa + 1)−∆x(2yp − 2ya + 1)

So for all p the point

• (xp + 1, yp) is plotted if C(xp, yp) ≤ 0, or else

• (xp + 1, yp + 1) is plotted if C(xp, yp) > 0.

But how does the value of C(xp, yp) depend on the previous one? If we choose E, then
(xp+1, yp+1) = (xp + 1, yp). Therefore,

C(xp+1, yp+1) = C(xp + 1, yp)

= 2∆y(xp + 1− xa + 1)−∆x(2yp − 2ya + 1)

= 2∆y(xp + 1− xa)−∆x(2yp − 2ya + 1) + 2∆y

= C(xp, yp) + 2∆y

and, if we choose NE, then (xp+1, yp+1) = (xp + 1, yp + 1). Therefore,

C(xp+1, yp+1) = C(xp + 1, yp + 1)

= 2∆y(xp + 1− xa + 1)−∆x(2yp + 2− 2ya + 1)

= 2∆y(xp + 1− xa)−∆x(2yp − 2ya + 1) + 2∆y − 2∆x

= C(xp, yp) + 2(∆y −∆x)

Moreover, the initial value of C is:

C(xa, ya) = 2∆y(xa − xa + 1)−∆x(2 ∗ ya − 2 ∗ ya + 1)

= 2∆y −∆x

10

• Note that the value of C is always an integer.

• The value of y is always an integer.

• The value of C can be computed from the previous one by adding an integer value
which does not depend on the x and y-coordinates of the current pixel.

Procedure MidpointLine (xa, ya, xb, yb: Integer);

Var

Dx, Dy, x, y: Integer;

C, incE, incNE: Integer;

Begin

Dx := xb - xa;

Dy := yb - ya;

C := Dy * 2 - Dx;

incE := Dy * 2;

incNE := (Dy - Dx) * 2;

y := ya;

for x := xa to xb - 1 do

begin

PlotPixel (x, y);

If C <= 0 then

C := C + incE

else

begin

C := C + incNE;

inc (y)

end

end;

PlotPixel (xb, y)

End;

2.6 The Bresenham Line Drawing Algorithm

The midpoint algorithm selects the next pixel by checking whether the line passes over or
beneath the midpoint M. The Bresenham algorithm selects the pixel which is nearest to
the line. It can be easily seen that these two selection criteria are equivalent, so that the
Bresenham and the midpoint line drawing algorithms are basically identical.

2.7 The Double Step Midpoint Line Drawing Algorithm

Wu and Rokne (1987) proposed a midpoint line drawing algorithm that attempts to draw to
pixels at a time instead of one. The Wu and Rokne double step algorithm draws one of four

11

Pattern 1 Pattern 2

Pattern 3 Pattern 4

Figure 2.2: Double step midpoint line algorithm patterns.

possible pixel patterns. The four pixel patterns that can occur for a line with 0 ≤ m ≤ 1
can be seen in Figure 2.2.

Wu showed that pattern 1 and pattern 4 cannot occur on the same line, and if the slope
is less than 1

2 , patten 4 cannot occur (similarly for a slope greater than 1
2 , pattern 1 cannot

occur). These properties mean that one of three patterns can be drawn for a given line,
either 1,2,3 or 2,3,4. Assuming that the slope is between 0 and 1

2 , only patterns 1,2,3 need to
be considered. It can be seen that pattern 1 is chosen if C < 0, and pattern 2 or 3 otherwise.
Moreover, pattern 2 is chosen if C < 2∆y. Also,

Ca = 4∆y −∆x
Cp+1 = Cp + 4∆y pattern 1 is chosen
Cp+1 = Cp + 4∆y − 2∆x either of pattern 2 or 3 are chosen

Procedure DoubleStep (xa, ya, xb, yb: Integer);

Var

Dx, Dy, x, y, current_x: Integer;

C, inc_1, inc_2, cond: Integer;

Begin

Dx := xb - xa;

Dy := yb - ya;

C := Dy * 4 - Dx;

inc_1 := Dy * 4;

inc_2 := ((2 * Dy) - Dx) * 2;

cond := 2 * Dy;

12

current_x = xa;

while (current_x < xb) do

begin

if C <= 0 then

begin

draw_pixel_pattern(PATTERN_1, current_x);

C = C + inc_1;

end;

else

begin

if (C < cond)

draw_pixel_pattern(PATTERN_2, current_x);

else draw_pixel_pattern(PATTERN_3, current_x);

C = C + inc_2;

end;

current_x = current_x + 2;

end;

End;

The draw pixel pattern() routine needs to know the x position, because otherwise the
line might be extended by a pixel. We note that all computations are done using integer
additions. A simple form of antialiasing can be obtained, if instead of choosing between
pattern 2 or 3 both are drawn at half-intensities. Wyvill (1990) demonstrates an algorithm
that takes advantage of the symmetry about the midpoint to draw the line from two endpoints
simultaneously, effectively doubling the algorithms speed.

2.8 Some points worth considering

Intensity of a line depending on the slope

It can be noted that lines with slopes near to ±1 appear to be fainter than those with
slopes near to 0 or ∞. This discrepancy can be solved by varying the intensity of the pixels
according to the slope.

Antialiasing

Due to the discrete nature of the pixels, diagonal lines often appear jaggied. This staircasing
effect is called aliasing, and techniques which try to solve, or at least minimize this problem
are called antialiasing. For example, a line can be treated as a one-pixel thick rectangle
and the intensity of the pixels is set according to a function of the area the rectangle covers
over that particular pixel.

Endpoint Order

It must be ensured that a line drawn from (xa, ya) to (xb, yb) must be identical to the line
drawn from (xb, yb) to (xa, ya). In the midpoint/Bresenham algorithm, the point E is chosen

13

when the selection criterion C = 0. (i.e. when the line passes through the midpoint of NE
and E.) Thus it must be ensured that when the line is plotted from right to left, the point
SW (not W) is selected when the criterion does not specify an obvious choice.

Clipping Lines

Suppose that the line segment ((xa, ya) → (xb, yb)) is clipped into ((xc, yc) → (xd, yd)). It
must be ensured that the clipped line segment is identical to the relevant line segment of the
otherwise unclipped line. This can be achieved by calculating the initial selection criterion
C(xc, yc) relative to the initial point (xa, ya) instead of considering (xc, yc) as the initial
point.

Drawing Polylines

While drawing polylines, it must be ensured that the shared vertices are plotted only once.

Parallel Line Drawing Algorithms

On multiple processing systems, a line can be drawn concurrently by assigning a line segment
to each processor.

2.9 Exercises

1. The line drawing routines discussed in this lecture make the assumption that the
gradient m of the line being drawn lies in the range 0 ≤ m < 1. How would you
generalize these algorithms to work for the cases where this assumption does not hold?

2. Implement the various line drawing algorithms described in this chapter using any
graphics library of your choice.

14

Chapter 3

Graphics Primitives: Circle
Drawing Algorithms

3.1 The circle equation

• The Cartesian equation of a circle with centre (xc, yc) and radius r is:

(x− xc)
2 + (y − yc)

2 = r2

or,

y = yc ±
√

r2 − (x− xc)2

• It can be noted that at the 4 points (xc ± r/
√
2, yc ± r/

√
2), the gradient of the circle

is ±1.

• For xc− r/
√
2 < x < xc+ r/

√
2, the absolute value of the gradient is between 0 and 1.

• For yc − r/
√
2 < y < yc + r/

√
2, the absolute value of the gradient is more than 1.

3.2 The Symmetry of a Circle

• Due to the eight way symmetry of a circle, it is necessary to calculate the positions of
the pixels of only one octant.

• Up to eight points can thus be plotted simultaneously:

Procedure PlotCirclePoints (x, y: Integer);

Begin

PlotPixel (xc + x, yc + y);

PlotPixel (xc + x, yc - y);

If x <> 0 then

begin

PlotPixel (xc - x, yc + y);

15

-x,y x,y

y,x

y, -x

x, -y-x, -y

-y,-x

-y,x

Figure 3.1: The 8-way symmetry of a circle.

PlotPixel (xc - x, yc - y)

end;

If x <> y then

begin

PlotPixel (xc + y, yc + x);

PlotPixel (xc - y, yc + x);

If x <> 0 then

begin

PlotPixel (xc + y, yc - x);

PlotPixel (xc - y, yc - x)

end

end

End;

• Note that care is taken so that no duplicate pixels are plotted.

3.3 A Straightforward Circle Drawing Algorithm

• The Cartesian circle equation can be used to implement a straightforward but very
inefficient algorithm for scan converting circles.

For x := 0 to Round (r / Sqrt (2)) do

16

begin

y := Round (Sqrt (r*r - x*x));

PlotCirclePixels (x, y)

end;

• This algorithm is extremely inefficient due to excessive floating point computation.

3.4 Use of parametric polar form equation

The equation of a circle may be expressed in parametric polar form as follows:

x = xc + r cos θ

y = yc + r sin θ

where r is the radius of the circle.
Additionally, the length of an arc δa corresponding to an angular displacement δθ is given

by:

δa = rδθ

To avoid gaps in our circle, we should use an increment value δa = 1, which corresponds to
an increment value δθ = (1/r).

dtheta = 1/r;

theta = 0;

while (theta < PI / 4) do

begin

x := round(xc + r * cos(theta));

y := round(yc + r * sin(theta))

PlotCirclePixels (x, y)

theta = theta + dtheta;

end;

• This algorithm still makes excessive use of floating point arithmetic, and may still cause
points to be plotted more than once.

• A value for δθ > (1/r) could be used to generate dotted circles.

3.5 The Midpoint Circle Drawing Algorithm

We have shown that we can devise a fast line drawing algorithm by selecting the pixels which
are nearest to the real valued equation of the line. The same approach can be used to develop
an algorithm for drawing circles.

Basically, given that the circle equation is:

f(x) =
√

r2 − x2

and that (xp, yp) is the previous pixel plotted, then we choose from the two candidate
pixels E and SE by considering whether the boundary of the circle passes above or below
the midpoint M. Where E is the point (xp + 1, yp), and SE is the point (xp + 1, yp − 1).

17

E

SE

M

Figure 3.2: The midpoint circle drawing algorithm.

The pixel E is selected if M lies below the circle, that is, if:

My < f(xp+1)

yp −
1

2
<

√

r2 − (xp+1)2

(yp −
1

2
)2 < r2 − (xp + 1)2

(xp + 1)2 + (yp −
1

2
)2 − r2 < 0

Now, defining:

C(xp, yp) = (xp + 1)2 + (yp −
1

2
)2 − r2

For all p, the point

• E = (xp + 1, yp) is selected if C(xp, yp) < 0, or else

• SE = (xp + 1, yp − 1) is selected if C(xp, yp) ≥ 0.

Now, if E is chosen, the new value of C is:

C(xp+1, yp+1) = C(xp + 1, yp)

= (xp + 1 + 1)2 + (yp −
1

2
)2 − r2

= (xp + 1)2 + (yp −
1

2
)2 − r2 + 2(xp + 1) + 1

= C(xp, yp) + 2xp+1 + 1

And if SE is chosen,

C(xp+1, yp+1) = C(xp + 1, yp − 1)

18

= (xp + 1 + 1)2 + (yp −
1

2
− 1)2 − r2

= (xp + 1)2 + (yp −
1

2
)2 − r2 + 2(xp + 1) + 1− 2(yp −

1

2
) + 1

= C(xp, yp) + 2(xp+1 − yp+1) + 1

The initial value of C is:

C(0, r) = (1)2 + (r − 1

2
)2 − r2

= 1 + r2 − r +
1

4
− r2

=
5

4
− r

= (1− r) +
1

4

The initial value of C is 1
4 greater than an integer. In each step, C is added to an integer

value, thus the value of C is always 1
4 greater than that of an integer. However, if we define

C ′ = C − 1
4 , so that C ′ has always an integer value, it can be seen that C < 0 ⇔ C ′ < 0.

Therefore, we can use the criterion C ′ (which requires only integer arithmetic to compute)
instead of C.

Procedure MidPointCircle (xc, yc, r: Integer);

Procedure PlotCirclePoints (x, y: Integer);

Begin

(* Refer to previous algorithm *)

End;

Var

x, y, C: Integer;

Begin

x := 0;

y := r;

C := 1 - r;

PlotCirclePoints (x, y);

While (x < y) do

begin

if C < 0 then

begin

Inc (x);

C := C + x * 2 + 1

end

else

begin

Inc (x);

19

Dec (y);

C := C + (x - y) * 2 + 1

end;

PlotCirclePoints (x, y)

end

End;

• The midpoint algorithm uses only integer addition, subtraction and multiplication.

• The difference in the selection criterion depends on the coordinates of the previous
pixel.

• However, since the first difference of the selection criterion is a linear function, it can
be reduced to a constant if second order differences are applied.

3.5.1 Second Order Differences

It is noted that the first order differences of C depend on the current pixel coordinates:

incE(p) = ∆EC(p)

= C(xp+1, yp+1)− C(xp, yp)

= ((xp + 1 + 1)2 + (yp −
1

2
)2 − r2)− (xp + 1)2 + (yp −

1

2
)2 − r2)

= 2xp + 3

incSE(p) = ∆SEC(p)

= C(xp+1, yp+1)− C(xp, yp)

= ((xp + 1 + 1)2 − (yp − 1− 1

2
)2 − r2)− ((xp + 1)2 + (yp −

1

2
)2 − r2)

= 2(xp − yp) + 5

Where ∆E is the first difference given that pixelE is chosen, and ∆SE is the first difference
given that pixel SE is chosen.

Now, the second order differences are:

∆EincE(p) = incE(p+ 1)− incE(p)

= (2(xp + 1) + 3)− (2xp + 3)

= 2

∆EincSE(p) = incSE(p+ 1)− incSE(p)

= (2(xp+1 − yp+1) + 5)− (2(xp − yp) + 5)

= (2(xp + 1− yp) + 5)− (2(xp − yp) + 5)

= 2

So, if E is chosen, 2 is added to incE(p) and 2 is added to incSE(p) to obtain the new
values of the first differences.

∆SEincE(p) = incE(p+ 1)− incE(p)

20

= (2(xp + 1) + 3)− (2xp − 3)

= 2

∆SEincSE(p) = incSE(p+ 1)− incSE(p)

= (2(xp+1 − yp+1) + 5)− (2(xp − yp) + 5)

= (2(xp + 1− yp + 1) + 5)− (2(xp − yp) + 5)

= 4

So, if SE is chosen, 2 is added to incE(p) and 4 is added to incSE(p) to obtain the new
values of the first differences.

Now, the initial values of incE and incSE are:

incE(0) = 2x0 + 3

= 3

incSE(0) = 2(x0 − y0) + 5

= 5− 2r

The optimized midpoint circle scan conversion algorithm thus follows:

Procedure MidPointCircle (xc, yc, r: Integer);

Procedure PlotCirclePoints (x, y: Integer);

Begin

(* Refer to previous algorithm *)

End;

Var

x, y, C: Integer;

incE, incSE: Integer;

Begin

x := 0;

y := r;

C := 1 - r;

incE := 3;

incSE := 5 - r * 2;

PlotCirclePoints (x, y);

While (x < y) do

begin

if (C < 0) then

begin

C := C + incE;

incE := incE + 2;

incSE := incSE + 2;

21

Inc (x)

end

else

begin

C := C + incSE;

incE := incE + 2;

incSE := incSE + 4;

Inc (x);

Dec (y)

end;

PlotCirclePoints (x, y)

end

End;

• This algorithm is faster than the original midpoint algorithm because it avoids integer
multiplication.

3.6 Ellipses

The cartesian equation of an ellipse with centre (xc, yc), semimajor axis r1, and semiminor
axis r2 is:

(

x− xc
r1

)2

+

(

y − yc
r2

)2

= 1

or,

y2 = r2
2

(

1− x2

r12

)

or in polar parametric form,

x = xc + r1 cos θ

y = yc + r2 sin θ

• Circle drawing techniques can be adapted to draw ellipses. Note, however, that ellipses
in general do not possess 8-way symmetry, but only 4-way symmetry.

• When using the mid-point and Bresenham techniques, it cannot be assumed that the
same two choices for the next point are valid throughout; in previous cases, these
choices were only adopted after taking the gradient into consideration. In the case of
an ellipse quadrant, the approach has to be changed as the gradient crosses the m = 1
boundary.

3.7 Exercises

1. Implement the various circle algorithms.

2. Derive a mid-point algorithm suitable for drawing ellipses.

22

Chapter 4

Graphics primitives: Filled Areas

4.1 Filling polygons

4.1.1 Inside-outside test

An important issue that arises when filling polygons is that of deciding whether a particular
point is interior or exterior to a polygon. A rule called the odd-parity (or the odd-even
rule) is usually applied to test whether a point is interior or not. A half-line starting from
the particular point and extending to infinity is drawn in any direction such that no polygon
vertex intersects with the line. The point is considered to be interior if the number of
intersections between the line and the polygon edges is odd.

4.2 The scan-line polygon filling algorithm

The scan-line polygon filling algorithm involves the horizontal scanning of the polygon from
its lowermost to its topmost vertex, identifying which edges intersect the scan-line, and
finally drawing the interior horizontal lines. The algorithm is specified by the following 3
steps:

For each horizontal scan-line:

1. List all the points that intersect with the horizontal scan-line.

2. Sort the intersection points in ascending order of the x coordinate.

a b c d

Figure 4.1: Horizontal scanning of the polygon.

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12 E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

V1 V2

V3

V4V5

V6V7

V8V9

V10

Figure 4.2: A non-simple polygon.

3. Fill in all the interior pixels between pairs of successive intersections.

The third step accepts a sorted list of points and connects them according to the odd-
parity rule. For example, given the list [p1; p2; p3; p4; . . . ; p2n−1; p2n], it draws the lines p1 →
p2; p3 → p4; . . . ; p2n−1 → p2n. A decision must be taken as to whether the edges should
be displayed or not: given that p1 = (x1, y) and p2 = (x2, y), should we display the line
(x1, y, x2, y) or just the interior points (x1 + 1, y, x2 − 1, y)?

• Step 1 can be optimized by making use of a sorted edge table. Entries in the edge table
are sorted on the basis of their lower y value. Next, edges sharing the same low y value
are sorted on the basis of their higher y value. A pair of markers are used to denote the
range of ‘active’ edges in the table that need to be considered for a particular scan-line.
This range starts at the top of the table, and moves progressively downwards as higher
scan-lines are processed.

• Given a scan-line y = s, and a non-horizontal edge with end-points (x1, y1), (x2, y2), y1 <
y2, an intersection between the two exists if y1 ≤ y ≤ y2. The point of intersection is
(s−c
m
, s) where m = y2−y1

x2−x1
and c = y1 −mx1.

4.2.1 An example

Consider the polygon in Figure 4.2. The edge table for such a polygon would be:

24

Edge Ymin Ymax X of Ymin X of Ymax
1
m

E1 11 11 6 11 0

E2 7 11 15 11 -1

E3 3 7 15 15 0

E4 3 3 10 15 -

E5 3 5 10 10 0

E6 5 5 10 6 -

E7 3 5 6 6 0

E8 3 3 3 6 -

E9 3 7 3 3 0

E10 7 11 3 7 1

The edge list for such a polygon, for each of the scan-lines from 3 to 11 is:

Scan-line Edge number

11 -

10 -

9 -

8 -

7 2, 10

6 -

5 -

4 -

3 3, 5, 7, 9

Note that in the above table the horizontal lines are not added to the edge list. The
reason for this is discussed below. The active edges for scan-line 3 would be 3, 5, 7, 9, these
are sorted in order of their x values, in this case 9, 7, 5, 3. The polygon fill routine would
proceed to fill the intersections between (3,3) (E9) and (6,3) (E7) and (10,3) (E5) to (15,3)
(E3). The next scan-line (4) is calculated in the same manner. In this the values of x do not
change (since the line is vertical; it is incremented by 0). The active edge at scan-line 7 are
10 and 2 (correct order).

4.2.2 Dealing with vertices

Dealing with vertices is not trivial since the odd-parity rule assumes that the lines used
to check whether a point is interior does not intersect with a vertex. Should a vertex be
considered as a single edge, two separate edges or none at all?

Consider the polygon in figure 4.3. It seems obvious that vertices C and G should be
considered as two separate intersections (or none at all). However, vertices A and E should
be considered as a single one!

The property that distinguishes C and G from A and E is that, in the former case, the
lines sharing the edge are on the same side of the half-plane defined by the scan line, while
in the case of A and E, the lines are at opposite sides. This criterion can be checked before
considering whether each particular vertex is to be treated as one intersection or as two.

A more efficient solution is to adjust vertices so that they do not overlap whenever they
should be treated as one intersection. One possible scheme involves traversing the edges in
a clockwise fashion and increasing or decreasing the y value of an end-point by 1 (depending
on whether y is decreasing or increasing), and calculating the corresponding x value (see
figure 4.4).

25

A

H

G

F

E

D

C

B

Figure 4.3: Considering polygon vertices.

y increasing − lower edge one unit y decreasing − raise edge one unit

Figure 4.4: Shortening edges.

26

4.2.3 Horizontal edges

If the polygon boundary is to be included in the fill, horizontal edges can be handled simply
by leaving them out of the edge table. It is important, however, that the same checks applied
at individual vertices are applied to the end-points at each end of a horizontal line:

• if the edges on either side of the horizontal edge are in the same half plane defined by
the horizontal line, then no additional action is required;

• otherwise one of the neighbouring edges must be shortened by one pixel. Determining
which edge to shorten is tricky. Two possible approaches are:

– choose any edge for shortening: this may leave the edge undrawn, so all such
horizontal edges should be (re-)drawn seperately;

– follow round the edges in a clockwise manner, and shorten that edge which first
meets the horizontal line: this ensures that all edges are drawn whilst filling. If
the other edge is chosen for shortening, then horizontal lines will not be drawn.

Choosing which edge to shorten when dealing with horizontal lineshorchoice

4.3 General-purpose filling algorithms

4.3.1 Boundary-fill algorithm

This makes use of coherence properties of the boundary of a primitive/figure: given a point
inside the region the algorithm recursively plots the surrounding pixels until the primitive
boundary is reached.

Given the FillColour, the BoundaryColour and a point inside the boundary, the fol-
lowing algorithm recursively sets the four adjacent pixels (2 horizontal and 2 vertical) to the
FillColour.

Procedure BoundaryFill (x, y: Integer;

FillColour, BoundaryColour: ColourType);

Procedure BFill (x, y: Integer);

Var

CurrentColour: ColourType;

Begin

CurrentColour := GetPixel (x, y);

If (CurrentColour <> FillColour) and

(CurrentColour <> BoundaryColour)

then

SetPixel (x, y, FillColour);

BFill (x + 1, y);

BFill (x - 1, y);

BFill (x, y + 1);

BFill (x, y - 1)

End;

Begin

BFill (x, y)

End;

27

• Regions which can be completely filled with this algorithm are called 4-connected
regions.

• Some regions cannot be filled using this algorithm. Such regions are called 8-connected
and algorithms filling such areas consider the four diagonally adjacent pixels as well as
the horizontal and vertical ones.

Procedure BFill8 (x, y: Integer);

Var

CurrentColour: ColourType;

Begin

CurrentColour := GetPixel (x, y);

If (CurrentColour <> FillColour) and

(CurrentColour <> BoundaryColour)

then

SetPixel (x, y, FillColour);

BFill8 (x + 1, y);

BFill8 (x - 1, y);

BFill8 (x, y + 1);

BFill8 (x, y - 1);

BFill8 (x + 1, y + 1);

BFill8 (x + 1, y - 1);

BFill8 (x - 1, y + 1);

BFill8 (x - 1, y - 1)

End;

• Care must be taken to ensure that the boundary does not contain holes, which will
cause the fill to ‘leak’. The 8-connected algorithm is particularly vulnerable.

4.3.2 Flood-Fill Algorithm

The flood-fill algorithm is used to fill a region which has the same colour and whose boundary
may have more than one colour.

Procedure FloodFill (x, y: Integer;

FillColour, OldColour: ColourType);

Procedure FFill4 (x, y): Integer;

Begin

if GetPixel (x, y) = OldColour then

SetPixel (x, y, FillColour);

FFill4 (x + 1, y);

FFill4 (x - 1, y);

FFill4 (x, y + 1);

FFill4 (x, y - 1)

End;

Begin

FFill4 (x, y)

End;

28

4

7

Scan−line algorithm
 with patterned fill

Figure 4.5: Scan-line algorithm with pattern.

4

7

Boundary−filll algorithm
 with patterned filll

Figure 4.6: Bounary-fill (4-connect) algorithm with pattern.

29

4.4 Pattern Filling

Any of the filling algorithms discussed thus far can be modified to use a given pattern when
filling. Figures 4.5 and 4.6 show the effects of using this with the scan-line and boundary
fill algorithms respectively. Patterned fills can be achieved by changing PlotPixel (x, y)

statements into SetPixel (x, y, pixmap[x mod m, y mod n]), where pixmap an m by n
matrix that defines the fill pattern.

4.5 Exercises

1. Derive an algorithm for filling in circles and ellipses.

2. Implement the scan-line polygon filling algorithms for both simple and non-simple
polygons.

3. Adapt the scan-line polygon filling algorithm from 1 and optimise it to cater for simple
polygons only.

4. Implement the 4-way and 8-way boundary filling algorithms.

30

Chapter 5

Clipping in 2D

Usually only a specified region of a picture needs to be displayed. This region is called the
clip window. An algorithm which displays only those primitives (or part of the primitives)
which lie inside a clip window is referred to as a clipping algorithm. This lecture describes
a few clipping algorithms for particular primitives.

5.1 Clipping Points

• A point (x, y) lies inside the rectangular clip window (xmin, ymin, xmax, ymax) if and
only if the following inequalities hold:

xmin ≤ x ≤ xmax
ymin ≤ y ≤ ymax

5.2 The Cohen-Sutherland algorithm for line clipping

Clipping a straight line against a rectangular clip window results in either:

1. a line segment whose endpoints may be different from the original ones, or

2. not displaying any part of the line. This occurs if the line lies completely outside the
clip window.

The Cohen-Sutherland line clipping algorithm considers each endpoint at a time and
truncates the line with the clip window’s edges until the line can be trivially accepted
or trivially rejected. A line is trivially rejected if both endpoints lie on the same outside
half-plane of some clipping edge.

The xy plane is partitioned into nine segments by extending the clip window’s edges
(figure 5.1). Each segment is assigned a 4-bit code according to where it lies with respect to
the clip window:

Bit Side Inequality
1 N y > ymax
2 S y < ymin
3 E x > xmax
4 W x < xmin

For example bit 2 is set if and only if the region lies to the south of (below) the clip
window.

31

N

S

W E

SESW

NW NE

Figure 5.1: Partition of plane into 9 segments.

The Cohen-Sutherland algorithm starts by assigning an outcode to the two line endpoints
(say c1 and c2).

• If both outcodes are 0 (c1 OR c2 = 0) the line lies entirely in the clip window and is
thus trivially accepted.

• If the two outcodes have at least one bit in common (c1 AND c2 6= 0), then they lie on
the same side of the window and the line is trivially rejected.

• If a line cannot be accepted or rejected, it is then truncated by an intersecting clip
edge and the previous steps are repeated.

Function CSClip (var x1, y1, x2, y2: Real; xmin, ymin, xmax, ymax:

Real): Boolean;

Const

North = 8; South = 4; East = 2; West = 1;

Function OutCode (x, y: Real): Integer;

Var

c: Integer;

Begin

c := 0;

if y > ymax then

c := North

else if y < ymin then

c := South;

if x > xmax then

c := c OR East

else if x < xmin then

32

c := c OR West;

OutCode := c

End;

Var

Accept, Done: Boolean;

c1, c2, c: Integer;

x, y: Real;

Begin

Accept := False; Done := False;

c1 := OutCode (x1, y1); c2 := OutCode (x2, y2);

repeat

if (c1 OR c2) = 0 then

Accept := True; Done := True

else if (c1 AND c2) <> 0 then

Done := True

else

if c1 <> 0 then

c := c1; x := x1; y := y1;

else

c := c2; x := x2; y := y2

if (c AND North) <> 0 then

x := x1 + (x2 - x1) * (ymax - y1) / (y2 - y1);

y := ymax

else if (c AND South) <> 0 then

x := x1 + (x2 - x1) * (ymin - y1) / (y2 - y1);

y := ymin

else if (c AND East) <> 0 then

x := xmax;

y := y1 + (y2 - y1) * (xmax - x1) / (x2 - x1)

else (* West *)

x := xmin;

y := y1 + (y2 - y1) * (xmin - x1) / (x2 - x1)

if c = c1 then

c1 := OutCode (x, y); x1 := x; y1 := y

else

c2 := OutCode (x, y); x2 := x; y2 := y

Until Done;

CSClip := Accept;

End;

5.3 Sutherland-Hodgman polygon clipping algorithm

A polygon can be clipped against a rectangular clip window by considering each clip edge
at a time. For filled polygons, a new polygon boundary must be computed (figure 5.2). At
each clipping stage, a new polygon is created by removing the outside vertices and inserting

33

Figure 5.2: Polygon clipping.

the intersections with the clip boundary.

5.3.1 Clipping against an edge

Given the polygon [v1; v2; . . . ; vn], we can create a new polygon [w1;w2; . . . ;wm] by consid-
ering the vertices in sequence and deciding which ones (and any intersections with the edge)
have to be inserted into the clipped polygon vertex list.

Suppose that vi has been processed in the previous step. There are four possible cases
which need to be considered while processing the next vertex vi+1.

1. If vi is outside the window and vi+1 is inside, then the intersection of the line vi → vi+1

with the clipping edge, and the vertex vi+1 have to be inserted into the new polygon
list.

2. If vi and vi+1 are both outside the clip window then no point need be inserted.

3. If both vi and vi+1 are inside the window, vi+1 is inserted into the list, and finally

4. If vi is inside the window and vi+1 is outside, only the intersection of the line vi → vi+1

with the clip boundary is inserted.

Type

EdgeType = (Top, Left, Bottom, Right);

VertexType = Record x, y: Real; End;

34

PolygonType = Record

Vertnum: Integer;

Vertex: Array[1..MAX] of VertexType;

End;

Procedure CHPolyClip (Pin: PolygonType; Var Pout: PolygonType;

xmin, ymin, xmax, ymax: Integer);

Function Inside (v: VertexType; e: EdgeType): Boolean;

Begin

Case e of

Top: Inside := v.y <= ymax;

Left: Inside := v.x >= xmin;

Bottom: Inside := v.y >= ymin;

Right: Inside := v.x <= xmax

End;

Procedure Intersect (v1, v2: VertexType; e: EdgeType; var v: VertexType);

Begin

Case e of

Top: v.x := v1.x + (ymax - v1.y) *

(v2.x - v1.x) / (v2.y - v1.y);

v.y := ymax

Left: v.x := xmin;

v.y := v1.y + (xmin - v1.x) *

(v2.y - v1.y) / (v2.x - v1.x)

Bottom: v.x := v1.x + (ymin - v1.y) *

(v2.x - v1.x) / (v2.y - v1.y);

v.y := ymin

Right: v.x := xmax;

v.y := v1.y + (xmax - v1.x) *

(v2.y - v1.y) / (v2.x - v1.x)

End;

Procedure ClipEdge (P1: PolygonType; Var P2: PolygonType; e: EdgeType);

Procedure Insert (v: VertexType);

Begin

inc (P2.Vertnum); P2.Vertex [P2.Vertnum] := v

End

Var

v1, v2, i: VertexType; n: Integer;

Begin

P2.VertNum := 0;

if P1.VertNum <> 0 then

v1 := P1.Vertex[P1.VertNum];

For n := 1 to P1.VertNum do

v2 := P1.Vertex[n];

if Inside (v2, e) then

if Inside (v1, e) then

35

Figure 5.3: Problems with clipping a concave shape.

Insert (v2)

else

Intersect (v1, v2, e, i);

Insert (i);

Insert (v2)

else if Inside (v1, e) then

Intersect (v1, v2, e, i);

Insert (i)

v1 := v2

End;

Var

e: EdgeType;

Begin

For e := Top to Right do ClipEdge (Pin, Pin, e);

Pout := Pin

End;

• The Sutherland-Hodgman algorithm fails on certain concave polygons. In such cases
the polygon must be split into two convex ones. See figure 5.3.

36

Chapter 6

Geometrical transformations

6.1 Preliminaries

6.1.1 Vectors

A vector is an n-tuple of real numbers, where n = 2 for 2D space, n = 3 for 3D space etc.
We will denote vectors using small italicized letters, and represent them as columns e.g.

v =

1
3
1

.

Vectors may be added:

x
y
z

+

x′

y′

z′

=

x+ x′

y + y′

z + z′

Vectors may be multipled by real numbers (scalar multiplication):

s.

x
y
z

=

sx
sy
sz

A linear combination of the vectors v1, v2, . . . , vn, is any vector of the form α1v1+α2v2+
. . .+ αnvn.

Dot product and applications

Dot product:

x
y
z

.

x′

y′

z′

= xx′ + yy′ + zz′

Properties of dot product:

• symmetric: v.w = w.v

37

• nondegenerate: v.v = 0 iff v = 0

• bilinear: v.(u+ αw) = v.u+ α(v.w)

Uses of dot product:

• magnitude (length) of a vector: ‖v‖ = √v.v

• normalization and unit vector: we can normalize a vector v to obtain a unit vector v̄
as follows: v̄ = v/‖v‖. A unit vector is one whose magnitude is 1.

• angle between two vectors: given two vectors, v and w, the angle between them θ is given

by θ = cos−1
(

v.w)
‖v||.‖w‖

)

. If v and w are unit vectors then the division is unnecessary.

• projection: given a unit vector v̄ and a vector w, the projection u of w in the direction
of v̄ is given by v̄.w.

6.1.2 Matrices

A matrix is a rectangular array of real numbers which can be used to represent operations
(called transformations) on vectors. A vector in n-space is effectively an nx1 matrix, or a
column matrix. Non-column matrices will be denoted using capitalized italics e.g.

A =

3 0 1
2 0 1
0 3 1

Multiplication: if A is an nxmmatrix with entries aij and B is anmxpmatrix with entries
bij , then AB is defined as an nxp matrix with entries cij where each cij =

∑m
s=1 aisbsj .

Identity matrix:

I =

1 0 0
0 1 0
0 0 1

Determinant (of a square matrix)

detA =
n
∑

i=1

(−1)1+iA1i

where Aij denotes the determinant of the (n− l)x(n− 1) matrix obtained by removing the
ith row and jth column of A.

Cross product of two vectors

Given v =

v1

v2

v3

, w =

w1

w2

w3

then

vXw = det

i j k
v1 v2 v3

w1 w2 w3

38

= (v2w3 − v3w2)i+ (v3w1 − v1w3)j

+(v1w2 − v2w1)k

where i, j, k represent unit vectors directed along the three coordinate axes i.e.

vXw =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

The cross product uXv of the two vectors u and v is a vector with the following properties:

• it is perpendicular to the plane containing u and v,

• ‖uXv‖ = ‖u‖.‖v‖.|sinθ|, where θ is the angle between u and v.

Transpose

The transpose of an mxn matrix is an nxm matrix obtained by flipping the matrix along its
diagonal. Denote the tranpose of a matrix A by AT .

Inverse

A multiplicative inverse matrix is defined only for square matrices whose determinants are
non-zero. The inverse of a matrix A is denoted by A−1, and has the property AA−1 = I.
The inverse of a matrix may be computed using a technique known as Gaussian elimination.

6.2 2D transformations

6.2.1 Translation

The point (x, y) is translated to the point (x′, y′) by adding the translation distances
(tx, ty):

x′ = x+ tx

y′ = y + ty

The above equations can be expressed in matrix form by:
[

x′

y′

]

=

[

x
y

]

+

[

tx
ty

]

So, the translation of the two dimensional vector P by T into P ′ is given by:

P ′ = P + T

where

P ′ =

[

x′

y′

]

P =

[

x
y

]

T =

[

tx
ty

]

39

x x’

y

y’

P

P’
T

Figure 6.1: Two Dimensional Translation

x x’

y

y’

P

P’

Figure 6.2: Two Dimensional Scaling

6.2.2 Scaling relative to origin

The vertex (x, y) is scaled into the vertex (x′, y′) by multiplying it with the scaling factors
sx and sy:

x′ = sxx

y′ = syy

This can be expressed in matrix form by:
[

x′

y′

]

=

[

sx 0
0 sy

] [

x
y

]

or

P ′ = S · P

where

S =

[

sx 0
0 sy

]

40

P

P’

x’ x

y

y’

Figure 6.3: Two Dimensional Rotation

• If sx = sy the transformation is called a uniform scaling.

• If sx 6= sy it is called a differential scaling.

6.2.3 Rotation relative to origin

The point (x, y), or (r, φ) in polar coordinates, is rotated anticlockwise about the origin by
θ into the point (x′, y′), or (r, φ+ θ). So

x′ = r cos(φ+ θ)

= r(cosφ cos θ − sinφ sin θ)

y′ = r sin(φ+ θ)

= r(cosφ sin θ + sinφ cos θ)

Now

x = r cosφ

y = r sinφ

Therefore

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

This can be expressed by:

P ′ = R · P

where

R =

[

cos θ − sin θ
sin θ cos θ

]

41

6.3 Homogeneous coordinates

A combination of translations, rotations and scaling can be expressed as:

P ′ = S ·R · (P + T)

= (S ·R) · P + (S ·R · T)
= M · P +A

Because scalings and rotations are expressed as matrix multiplication but translation is
expressed as matrix addition, it is not, in general, possible to combine a set of operations
into a single matrix operation. Composition of transformations is often desirable if the same
set of operations have to be applied to a list of position vectors.

We can solve this problem by representing points in homogenous coordinates. In homoge-
nous coordinates we add a third coordinate to a point i.e. instead of representing a point
by a pair (x, y), we represent it as (x, y,W). Two sets of homogenous coordinates represent
the same point if one is a multiple of the other e.g. (2, 3, 6) and (4, 6, 12) represent the same
point.

Given homogenous coordinates (x, y,W), the cartesian coordinates (x′, y′) correspond to
(x/W, y/W) i.e. the homogenous coordinates at which W = 1. Points with W = 0 are called
points at infinity.

Representing points as 3-dimensional vectors, we can re-write our transformation matrices
as follows:

Translation

A translation by (tx, ty) is represented by:

P ′ = T (tx, ty) · P

where

T (tx, ty) =

1 0 tx
0 1 ty
0 0 1

Scaling

Scaling by the factors sx and sy relative to the origin is given by:

P ′ = S(sx, sy) · P

where

S(sx, sy) =

sx 0 0
0 sy 0
0 0 1

42

Rotation

Rotation about the origin by θ is given by:

P ′ = R(θ) · P
where

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

6.4 Composition of 2D Transformations

Using the associative property of matrix multiplication, we can combine several transforma-
tions into a single matrix.

It can easily be shown that:

T (tx2
, ty2) · T (tx1

, ty1) = T (tx1
+ tx2

, ty1 + ty2)

S(sx2
, sy2) · S(sx1

, sy1) = S(sx1
sx2

, sy1sy2)

R(θ2) ·R(θ1) = R(θ1 + θ2)

6.4.1 General fixed-point Scaling

Scaling with factors sx and sy with respect to the fixed point (x, y) can be achieved by the
following list of operations:

1. translate by (−x,−y) so that the fixed point is moved to the origin;

2. scale by sx and sy with respect to the origin;

3. translate by (x, y) to return the fixed point back to its original position.

So, the general fixed-point scaling transformation matrix is:

Sx,y(sx, sy) = T (x, y) · S(sx, sy) · T (−x,−y)

=

sx 0 x(1− sx)
0 sy y(1− sy)
0 0 1

6.4.2 General pivot-point rotation

A rotation about the rotation-point or pivot-point (x, y) by θ is achieved as follows:

1. translate by (−x,−y);

2. rotate by θ;

3. translate by (x, y).

The general pivot-point rotation matrix is therefore given by:

Rx,y(θ) = T (x, y) · R(θ) · T (−x,−y)

=

cos θ − sin θ x(1 − cos θ) + y sin θ
sin θ cos θ y(1 − cos θ) − x sin θ

0 0 1

43

6.4.3 General direction scaling

Scaling an object by the factors sx and sy along a line making angle θ with the x-axis can
be achieved as follows:

1. rotate by −θ;

2. scale by sx and sy;

3. rotate by θ.

This transformation can be expressed by the matrix:

Sθ(sx, sy) = R(θ) · S(sx, sy) ·R(−θ)

6.5 Inverse transformations

The matrix of an inverse transformation is the inverse matrix of the transformation: if

P ′ = M · P

then

P = M−1 · P ′

It can easily be shown that:

T (tx, ty)
−1 = T (−tx,−ty)

S(sx, sy)
−1 = S(

1

sx
,
1

sy
)

R(θ)−1 = R(−θ)

6.6 Other 2D Transformations

6.6.1 Reflection

Reflection about the y-axis can be accomplished by multiplying the x coordinate by −1 and
leaving the y coordinate unaltered:

x′ = −x
y′ = y

This can represented by:

P ′ = Fy · P

where

Fy =

−1 0 0
0 1 0
0 0 1

44

PP’

−x x

y

Figure 6.4: Reflection about the y-axis

x x’

y y

Figure 6.5: Shearing in the x direction

Similarly, reflection about the x-axis is represented by:

P ′ = Fx · P

where

Fx =

1 0 0
0 −1 0
0 0 1

• Reflection can be represented by negative unit scaling:

Fy = S(−1, 1)
Fx = S(1,−1)

6.6.2 Shearing

A shearing in the x direction relative to the x-axis unalters the y coordinate while shifts the
x coordinate by a value directly proportional to the y coordinate.

An x direction shearing relative to the x-axis with shearing parameter hx is given by:

P ′ = Hx(hx) · P

where

Hx(hx) =

1 hx 0
0 1 0
0 0 1

45

Viewport

Window

World
Device

Figure 6.6: Window to viewport mapping

Similarly, a y direction shearing relative to the y-axis with shearing parameter hy is
represented by:

P ′ = Hy(hy) · P

where

Hy(hy) =

1 0 0
hy 1 0
0 0 1

6.7 Applying transformations

Transformations can be applied to polygons simply by transforming the polygon vertices, and
then joining them with lines in the usual way. However, with the exception of translation and
reflection, transformation of circles, ellipses, and bitmap images is not so straightforward.
For example:

• when a circle or ellipse is sheared, its symmetrical properties are lost;

• if a circle or bitmap is scaled by applying the scaling transformation to each plotted
pixel, this could result in gaps (if the scale factor > 1) or the same pixel being plotted
several times (if the scale factor < 1), possibly leaving the wrong colour in the case of
bitmaps;

In general, algorithms for transforming bitmap images must ensure that no holes appear
in the image, and that where the image is scaled down, the colour chosen for each pixel
represents the best choice for that particular area of the picture.

To simplify transformation of circles and ellipses, these are often approximated using
polygons with a large number of sides.

6.8 The 2D viewing pipeline

Viewing involves transforming an object specified in a world coordinates frame of reference
into a device coordinates frame of reference. A region in the world coordinate system which
is selected for display is called a window. The region of a display device into which a window
is mapped is called a viewport.

The steps required for transforming world coordinates (or modelling coordinates) into
device coordinates are referred to as the viewing pipeline. Steps involved in the 2D viewing
pipeline:

46

(w , w)
(0,0)

(1,1)

(v , v)x0 y0

xmin ymin

(w , w)xmax ymax

M

M

Mwv

vn

ymaxxmax(v , v)

xmin ymin(v , v)

nd

Figure 6.7: Example of viewing pipeline

1. Transforming world coordinates into viewing coordinates, usually called the viewing
transformation.

2. Normalising the viewing coordinates.

3. Transforming the normalised viewing coordinates into device coordinates.

• Given 2D objects represented in world coordinates, a window is specified in terms of a
viewing coordinate system defined relative to the world coordinate system.

• The object’s world coordinates are transformed into viewing coordinates and usually
normalised so that the extents of the window fit in the rectangle fit in the rectangle
with lower left corner at (0, 0) and the upper right corner at (1, 1).

• The normalised viewing coordinates are then transformed into device coordinates to
fit into the viewport.

6.8.1 Example of a Window to Viewport Transformation

Consider a viewing coordinate system defined as a Cartesian coordinate system with the
origin having world coordinates (u0, v0). The axis of the viewing coordinate system makes
an angle of θ with the world coordinate system x-axis. The transformation Mwv transforms
a point with world coordinates Pw into viewing coordinates Pv. This transformation can be
achieved by first translating by (−u0,−v0) and then rotating by −θ. So

Pv = Mwv · Pw

47

where

Mwv = R(−θ) · T (−u0,−v0)

The window is defined as the rectangle having bottom-left corner at (xl, yb), the opposite
corner at (xr, yt), and edges parallel to the viewing coordinate axes.

The normalising transformation Mvn is obtained by first translating by (−xl,−yb) and
then scaling with factors 1

xr−xl
and 1

yt−yb
, so that the lower left and upper right vertices of

the window have normalised viewing coordinate (0, 0) and (1, 1) respectively.
So a point with viewing coordinates Pv has normalised viewing coordinates:

Pn = Mvn · Pv

where

Mvn = S(
1

xr − xl
,

1

yt − yb
) · T (−xl,−yb)

Transforming into the device coordinates is accomplished by the matrix Mnd. If the
viewport is a rectangle with the lower left and upper right corners having device coordinates
(ul, vb) and (ur, vt) respectively, then Mnd is achieved by first scaling with factors (ur − ul)
and (vt − vb) and then translating by (ul, vb):

Pd = Mnd · Pn
Mnd = T (ul, vb) · S(ur − ul, vt − vb)

Thus, the whole viewing pipeline can be achieved by concatenating the three matrices:

Mwd = Mnd · Mvn · Mwv

= T (ul, vt) · S(ur − ul, vt − vb)

·S(
1

xr − xl

,
1

xr − xl

) · R(−θ) · T (−u0,−v0)

= T (ul, vt) · S(
ur − ul

xr − xl

,
vt − vb

xr − xl

)

·R(−θ) · T (−u0,−v0)

Defining

sx =
ur − ul
xr − xl

sy =
vt − vb
yt − yb

If sx 6= sy, Mwd scales objects differentially; however if we want objects to be scaled
uniformly during the viewing process and that all objects in the window are mapped into
the viewport, then we define

s′ = min(sx, sy)

and scale using S(s′, s′) instead of S(sx, sy).

48

Old coordinate system

New coordinate system

Figure 6.8: Change in coordinate system using T (5, 3)

Old coordinate system

New coordinate system

Figure 6.9: Change in coordinate system using R(45)

Old coordinate system

New coordinate system

Figure 6.10: Change in coordinate system using S(−1)

49

6.9 Transformation as a change in coordinate system

Rather than thinking of transformations as operations which manipulate graphic objects,
it is sometimes useful to think of them as representing changes in coordinate system. This
is especially useful when multiple objects, each defined relative to its own local coordinate
system, are to be combined in a ‘higher-level’ object expressed in terms of a single global
coordinate system (we will use this when we use SPHIGS).

Examples:

• the transformation T (5, 3) effects a change in coordinate system whereby the origin
of the new coordinate system corresponds to the point (−5,−3) in the old system
(figure 6.8);

• the transformation S(2, 2) gives us a new coordinate system in which each unit value
is half the size of that in the old system;

• the transformation R(45) gives us a new coordinate system in which the x-axis makes
an angle of −45◦ with the old x-axis (figure 6.9);

• the transformation S(−1,−1) gives us a new coordinate system in which x and y values
respectively increase to the left and downwards instead of to the right and upwards
(figure 6.10).

6.10 3D transformations

3D transformations are just an extension of 2D ones. Just like 2D transformations are
represented by 3× 3 matrices, 3D transformations are represented by 4× 4 matrices.

Translation by (tx, ty, tz) is represented by the matrix:

T (tx, ty, tz) =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

Scaling by the factors sx, sy and sz, along the co-ordinate axes is given by the matrix:

S(sx, sy, sz) =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

Rotation about the x-axis:

Rx(θ) =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

Rotation about the y-axis:

Ry(θ) =

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

50

Rotation about the z-axis:

Rz(θ) =

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

Twisting is a purely 3D transformation (ie no 2D equivalent). For twisting along along the
z-axis use:

x′ = x cos(αz)− y sin(αz)

y′ = x sin(αz) + y cos(αz)

z′ = z

6.11 Exercises

1. Implement a matrix library.

2. Use the matrix library to create routines that scale, rotate, translate, shear and reflect
2D objects.

3. Create an application for displaying and animating a mechanical arm made up of two
rectangles. Each rectangle represents a section of the arm. Add functions that rotate
and move the entire arm, and a function to rotate the lower part of the arm only. Note
that changes to the upper arm must be reflected in the forearm.

51

Chapter 7

Viewing in 3D

7.1 Preliminaries

7.1.1 3D co-ordinate systems

A point in 3D space can be referenced relative to an RHS or LHS cartesian coordinate system
(figure 7.1) using three coordinate values. This can be represented as a 1× 3 matrix, (or as
a 1× 4 matrix for homogenous transformations). We will normally be working with an RHS
system.

The transformation S(1, 1,−1) can be used to transform from a right-handed 3D Carte-
sian coordinate system to a left-handed one and vice-versa.

7.1.2 Representation of 3D objects

One way of representing a 3D object is as a list of 2D polygons in 3D space. For example, a
pyramid consists of a square base and four triangles.

• Curved surfaces may be approximated using polygons, although there are techniques
which represent curved surfaces more accurately, including generalisations of bezier
and spline curves.

• If 3D objects are represented as lists of edges (as opposed to polygons), then this allows
rendering of ‘see-through’ wireframe images. However, hidden-line removal for more

y

x

Right−handed system

z

y

x

z

Left−handed system

Figure 7.1: RHS and LHS coordinate systems

52

y

x

z

VRP

VPN u

n

v

VUP

Figure 7.2: 3D view reference coordinate system

realistic images is not possible because this requires knowledge of the surfaces of the
object.

7.2 The 3D viewing pipeline

Three dimensional viewing is more complex than 2D viewing because, while the world co-
ordinate systems is three dimensional, the device on which they are displayed is usually two
dimensional. This requires an additional transformation, namely the projection transforma-
tion, in the viewing pipeline, whereby 3D coordinates are transformed into 2D.

The basic steps involved in 3D viewing are:

1. transforming world coordinates into viewing coordinates;

2. transforming viewing coordinates into projection coordinates (the projection transfor-
mation);

3. transforming projection coordinates into device coordinates.

The first step effectively defines a position and orientation for a virtual camera, whereas
the second step determines the kind of picture to be taken,

Note that whereas clipping in 2D is carried out before applying the viewing pipeline, in
3D it is often delayed to just before the third step. This is because in 3D clipping has to be
performed against a view volume which may be of an awkward shape e.g. a frustrum in the
initial stages. After carrying out the projection transformation, the view volume is a regular
parallelepiped which is much easier to clip against.

7.2.1 The view reference coordinate system

The viewing-reference coordinate system (VRC) is defined in terms of a view reference point

(VRP) which represents the origin, a view-plane normal vector (VPN) and a view-up vector
(VUP). This is analogous to placing a camera (or an eye) at the VRP pointing in the direction
given by the VPN. The camera is then rotated around the perpendicular to the plane that
passes through it (the camera) so that the VUP is vertical.

53

The coordinate system uvn (figure 7.2) is set up so that n lies in the direction of the
VPN, and v is in the direction of the vector which is in the same plane of the VPN and
VUP, is perpendicular to the VNP and makes an acute angle with the VUP. u is chosen so
that uvn is right-handed.

The orthogonal unit vectors u, v and n corresponding to the VRC can be constructed as
follows:

n =
1

|V PN |V PN

u =
1

|V UP × V PN |V UP × V PN

v = n× u

Let the VRP have world coordinates (x0, y0, z0), and let

u = (ux, uy, uz)

v = (vx, vy, vz)

n = (nx, ny, nz)

Transforming from world coordinates to viewing coordinates can be achieved by first
translating by (−x0,−y0,−z0) and then aligning the coordinate axes by rotation. Thus if P
is a point with world coordinates Pw, its viewing coordinates Pv can be obtained using:

Pv = Mwv · Pw

where

Mwv = Ruvn · T (−x0,−y0,−z0)

Ruvn =

ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

7.2.2 Projections

In general, a projection is a transformation from an n dimensional space to anm dimensional
space, where m < n. In this section, we concentrate on projections from a 3D Cartesian
coordinate system to a 2D one.

Consider a set of points (xi, yi, zi) in viewing coordinates. To carry out a projection,
a line (called a projector) is drawn from each point to a fixed point called the centre of

projection (COP). The projectors intersect the view plane (which is perpendicular to zv) at
the points (x′i, y

′
i, 0). Projections that can be represented as

J : (xi, yi, zi) 7−→ (x′i, y
′
i)

are called planar geometric projections.
The following parameters must be supplied to fully describe a projection:

54

Parallel projection

Perspective projection

Figure 7.3: Parallel and perspective projections

• a window in the view plane that defines the boundaries of the picture to be taken—this
is specified in VRC coordinates and is usually, though not necessarily, taken to be a
rectangle with the VRP at the centre;

• a COP towards which all projectors converge;

• front and back clipping planes: the front and back clipping planes define cut-off points
beyond which graphic objects are not considered for projection, effetively eliminating
objects which are too close to (or behind) the camera, or too far away from it.

The position of the COP may tend to infinity; in such cases the projectors are parallel
to each other and their direction is referred to as the direction of projection. A planar
geometric projection constructed using parallel projectors is called a parallel projection. If
the projectors intersect at the centre of projection, the projection is called a perspective

projection (see figure 7.3).
Parallel projections preserve all parallel lines as well as the angles in any plane parallel

to the plane of projection. Perspective projections preserve parallel lines and angles only in
the planes parallel to the plane of projection. However, scenes produced using a perspective
projection appear realistic because distant objects appear smaller than near ones. In a scene
produced by parallel projection, distant objects have the same size as near ones.

Perspective projections of parallel lines are either parallel lines themselves (if they are
parallel to the view plane) or intersect at a vanishing point.

7.3 Parallel projections

If the projectors are perpendicular to the plane of projection, the resulting parallel projection
is called orthographic, otherwise it is called oblique.

7.3.1 Orthographic projections

A useful set of views produced by orthographic projections are the front elevation, side
elevation and plan view of an object. Such views are produced when the plane of projection
is parallel to one of the planes defined by any two principal axes of the world coordinate

55

Centre of projection

Parallel projection

Perspective projection

Figure 7.4: Effect of parallel and perspective projections

system, or equivalently, the plane of projection intersects with only one world coordinate
principal axis.

The front elevation othographic parallel projection can be represented by the following
transformation:

xp = xv

yp = yv

or by the matrix:

JFrontElevation =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

If the projection is orthographic and the plane of projection intersects with more than one
world coordinate axis, then the resulting view is termed axonometric. One useful axonometric
projection is the isometric projection, which is produced when the projection plane intersects
each principal axis at the same distance from the origin. The projected edges of an isometric
view of a cube aligned along the world co-ordinate axes have equal length.

7.3.2 Oblique projections

Oblique parallel projections are produced when the projectors are not perpendicular to the
plane of projection. The direction of projection (DOP) may be given by 2 angles: α and φ.
α is defined as the angle each projector makes with the plane of projection, and φ as the
angle the horizontal makes with the line that joins the projection with the corresponding
orthographic projection (figure 7.5). φ is usually chosen to be 30◦ or 45◦.

56

P

P’Q

 l
DOP

n

v

u

Figure 7.5: Oblique projection

7.3.3 Parallel projection transformation

Consider the point P with view coordinates (xv, yv, zv) projected to the point P ′ with coor-
dinates (xp, yp).

Let Q be the orthographic projection of P on the plane, and l be the length of line QP ′.
Then

l =
zv

tanα

and the coordinates of P ′ are:

xp = xv + l cosφ

= xv + zv
cosφ

tanα
yp = yv + l sinφ

= yv + zv
sinφ

tanα

Oblique parallel projections can thus be obtained using the transformation matrix:

JOblique =

1 0 cosφ
tanα 0

0 1 sinφ
tanα 0

0 0 0 0
0 0 0 1

In the case of an orthographic projection, we have φ = 0 and α = 90, giving us the
transformation:

JOrthogonal =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

57

P

P’

v

COP
n

cz
zv

vy

Figure 7.6: Perspective projections

Note that in the orthogonal case we simply discard the z coordinate.
Note also that when using the matrix representations of these transformations we still

end up with a vector representing a point in 3D space, albeit with a z value of 0.

7.4 Perspective Projections

Let us consider a point P with viewing coordinates (xv, yv, zv). The point is projected to P ′

with coordinates (xp, yp). We will consider the special case where the centre of projection
lies on the zv-axis at the point (0, 0, cz). The projection is given by the transformation:

xp = xv
−cz

zv − cz

= xv
1

− zv

cz
+ 1

yp = yv
−cz

zv − cz

= yv
1

− zv

cz
+ 1

Multiplying by a value dependent on zv causes the size of objects to vary depending on their
distance from the origin. Note that a value zv = cz, will cause problems as the projected
point will be at infinity i.e. objects are infinitely large at the view plane. Normally we will
clip points for which zv ≤ cz.

We can write the transformation in matrix form:

JPerspective =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 − 1

cz
1

This gives us the coordinate
[

xv yv 0 1− zv

cz

]T
, which which when homogenized gives

us the point
[

xv

− zv

cz
+1

yv

− zv

cz
+1

0 1
]T

.

58

Orthogonal

Oblique

Figure 7.7: View volume for parallel projection

Figure 7.8: View volume for perspective projection

7.5 Clipping in 3D

The part of our world which is to be captured by our 2D image is determined by the projection
window, the front and back clipping planes and the centre of projection. Together these
define a view volume corresponding to that portion of the world to be displayed. This view
volume and has the shape of a parallelepiped for parallel projection views and the shape of
a frustrum for the case of perspective projections.

As in the case of 2D, objects lying (partially) outside the view volume must be clipped,
leaving only those (parts of) objects that are relevant to the view under consideration. This
clipping operation can be performed before or after applying the projection transformation.

For oblique and perspective projections the clipping and subsequent projection are made
much simpler if the view volume is normalised, or transformed into a regular parallelepiped
(ie cuboid) view volume. We will use a normalized view volume defined by the six planes
x = −1, x = 1, y = −1, y = 1, z = 0, z − 1

We will use the following approach:

59

N

 View
volume

N

 View
volumeShear

Figure 7.9:

N N N

 View
volume

 View
volume

 View
volume

Figure 7.10:

• transform view volume into a normalized view volume;

• clip lines about the normalized volume, using a more general form of the Cohen-
Sutherland algorithm.

Subsequently the normalized view volume may be mapped onto a 2D viewport using an
orthogonal projection. This step may also involve other operations, including hidden surface
removal, and colour shading.

Note that in the case of orthographic projections, the view volume is already a regular
parallelepiped (although this is not normalized).

7.5.1 Normalisation of view volume

Three cases:

1. parallel orthographic: translate and scale to fit normalized view volume;

2. parallel oblique: shear view volume to align projection direction with normal to pro-
jection plane N, then translate and scale to fit normalized view volume;

3. perspective projection:

(a) translate view volume to bring COP to the origin;

(b) shear view volume to align centre line of view volume with n axis (figure 7.9);

(c) scale view volume relative to COP, to obtain a canonical view volume bounded by
the planes x = z, x = −z, y = z, y = −z, z = zmin, z = −1 where −1 < zmin < 0.

(d) scale view volume to obtain normalized view volume, using a varying scaling factor
which is inversely proportional to the distance from the COP (figure 7.10);

In order to deal with parallel and perspective projections in a uniform manner, it is
useful to define the notion of a projection reference point (PRP). In the case of perspective
projections, this is defined to be the centre of projection. In the case of parallel projections,

60

it is defined such that a line drawn from the centre of the window to the PRP is in the
direction of the DOP.

The following derivations for oblique and perspective normalisation transformations as-
sume

• a projection window W in the uv plane bounded by minimum and maximum u and v

values ul, vb, ur and vt, with window centre CW =
[

ul+ur

2
vb+vt

2 0 1
]T

;

• a PRP defined as
[

prpu prpv prpn 1
]T

;

• front and back clipping planes defined by z = F , z = B.

Parallel projection normalisation

The direction of projection (DOP) is given by CW−PRP . The shear transformation matrix
required is of the form:

SHpar = SHxy(shxpar)(shypar)

=

1 0 shxpar 0
0 1 shypar 0
0 0 1 0
0 0 0 1

which leaves the n coordinate unaffected as desired.
We require the values for shxpar and shypar such that:

SHpar ·DOP =

0
0

−prpz
0

= DOP ′

whereDOP ′ corresponds to direction of projection along the n axis. Solving this equation
gives us:

shxpar =
prpu − ur+ul

2

prpz

shypar =
prpv − vt+vb

2

prpz

Finally we translate and scale to fit the normalized view volume (this is similar to the
2D case). The transformations required are:

Tpar = T

(

−ur + ul
2

,−vt + vb
2

,−F
)

Spar = S

(

2

ur − ul
,

2

vt − vb
,

1

F −B

)

The complete transformation for parallel projections (starting from world coordinates)
is therefore given by:

Npar = Spar · Tpar · SHpar ·R · T (−V RP)

61

Figure 7.11:

Perspective projection normalisation

The first step involves translating the PRP to the origin using T (−prpu,−prpv,−prpn).
Next we need to shear the volume to align the line passing through the translated window

centre and the origin with the n-axis i.e. the direction CW − PRP and the n axis. This is
exactly the same as for the parallel case, and can be achieved using SHpar.

After this shear, the situation is as follows:

• the window (and hence the view volume) is centred around the z axis;

• the VRP, previously at the origin has been translated and sheared to get V RP ′ =

SHpar · T (−PRP) ·
[

0 0 0 1
]T

.

Next we need to scale the view volume to obtain a perspective canonical view volume.
This can be done in two steps: first scale using S(2·prpn

ur+ul
, 2·prpn

vt+vb
, 1) to bring x and y coordinates

between −1 and 1. Then scale by S(1
prpn−B

) to align the back clipping plane with z = −1.
At this stage it is possible to clip against this canonical volume. However we will perform

one last step to obtain a parallel canonical view volume, thereby making it possible to use
the same clipping and rendering techniques as for parallel projections. It can be shown that
the transformation to do this is:

M =

1 0 0 0
0 1 0 0
0 0 1

1+zmin

−zmin

1+zmin

0 0 −1 0

Note that this transformation produces coordinates which are NOT homogenized.
Thus for perspective projections, the complete transformation (starting from world co-

ordinates) is given by:

Nper = M · Sper · SHpar · T (−PRP) · R · T (−V RP)

7.5.2 3D version of Cohen-Sutherland clipping algorithm

The 3D version of the Cohen-Sutherland algorithm is simply a generalisation of the 2D
version, using a 6-bit code instead of a 4-bit one (figure 7.11), to enable clipping against the

62

sides of a regular parallelepiped. Note that here lines are clipped against planes instead of
lines. It is useful to make use of the parametric equation of a line:

x = x1 + (x2 − x1)u

y = y1 + (y2 − y1)u

z = z1 + (z2 − z1)u

0 ≤ u ≤ 1

Example: to clip against z = zmin, substitute u = zmin−z1
z2−z1

in the equations for x and y.

7.6 Mapping into a 2D viewport

Having constructed a normalised view volume in the shape of a regular parallelepiped, a
2D image can be constructed by projecting the volume orthographically. In the process of
doing this, various other operations may be carried out: invisible edges and surfaces may be
eliminated, and colouring and shading algorithms may be applied to produce a more realistic
image. Techniques for rendering the final image are discussed in later lectures.

63

Chapter 8

Hidden surface and hidden line
removal

Hidden surface (line) removal is the process of removing surfaces (lines) which are not visible
from the chosen viewing position. Hidden surface/line algorithms are often classified as one
of the following:

• object space: algorithms which work on object definitions directly;

• image space: algorithms which work on the projected image.

There is no one place in the viewing pipeline where these algorithms should be used—the
ideal position in the pipeline is often specific to the particular algorithm. Some algorithms
do not perform hidden surface/line-removal completely, but are designed to do some of the
work early on in the pipeline, thereby reducing the amount of surfaces to be processed.

A word of caution: it does not always make sense to say that one surface is behind
another! One surface may contain points both behind and in front of another surface (fig-
ure 8.1).

8.1 Back-face culling

Back-face culling is an object-space algorithm designed to be used early on in the pipeline
just before the projection transformation is applied. It is useful when the objects in the scene
consist of solid polyhedra i.e. polyhedra whose edges are all used in exactly two surfaces, so
that the inside faces of the polyhedra are never visible.

In back-face culling, the direction of the surface normal is used to determine whether
the surface should be kept or eliminated. The direction of the surface normal is such that it

Figure 8.1: Alternately overlapping polygons

64

B
(x2,y2)

(x1,y1)

x1

y1

y2

x2

z1

z2

z3

A

C

z4

Processing order B, A, C:
Entry for (x1,y1) changes from maxdepth to z2 to z1
Entry for (x2,y2) changes from maxdepth to z4

Figure 8.2: z-buffer algorithm

points towards a viewer from whose perspective the listed vertices appear in anti-clockwise
order (this is the case with SPHIGS).

Back-face culling eliminates all those surfaces whose normals point away from the COP, in
the knowledge that such surfaces would be completely hidden by other front-facing surfaces
of the same polyhedron. This can be tested for by computing the dot product of the surface
normal, and a vector from the COP to any point on the polygon. If this is > 0 then the
surface is eliminated.

In case of polyhedra with missing or clipped front-faces, back-face culling leads to the
creation of misleading images. One solution is to have two surfaces in opposite directions
defined for each polygon. This is also useful for enabling the surface to have different colours
on either of its two sides.

8.2 Depth-buffer (or z-buffer) method

This image space algorithm makes use of a depth buffer and a refresh buffer. The depth
buffer stores a depth value for each pixel in the projection window, whereas the refresh
buffer specifies the colour for each pixel in the projection window.

Assuming that the view volume has been converted to a regular parallelepiped with the
z-coordinate varying from 0 to 1, the algorithm proceeds as follows:

1. Set all values in the depth buffer to 1 (ie furthermost depth).

2. Set all values in the refresh buffer to the background colour.

3. Loop through all the surfaces to be drawn, applying the following procedure to each
projected point (x, y) (typically obtained through scan-line algorithm):

(a) calculate z-value for (x, y) (using equation of plane of polygon);

(b) if this z-value is less than the current value stored for (x, y) in the z-buffer, update
the buffer to this new z-value and update the (x, y) slot in the refresh buffer to
reflect the current polygon’s colour (possibly adjusted to reflect the depth).

4. Display the refresh buffer.

Comments:

65

z

x
No depth overlap

z

x

Figure 8.3: Testing for depth overlap

• Easy to implement

• Reasonably fast—no sorting required

• Requires additional depth buffer—memory hungry

Optimizations:

• Divide the projection window into horizontal segments and work on each, one at a
time, to reduce the z-buffer size. This slightly complicates the algorithm because we
cannot deal with each surface in one loop, but have to return to it for each window
segment.

• Rather than calculate the value of z for each (x, y) from scratch, we can do this in-
crementally. If we know that the depth value at (x, y) for a polygon S is z(S, x, y),
and the equation of the plane of S is Ax + By + Cz = D, then using the following
equations:

z(S, x, y) =
Ax−By −D

C

z(S, x+ 1, y) =
−A(x+ 1)−By −D

C

z(S, x+ 1, y − 1) =
−Ax−B(y − 1)−D

C

we can derive:

z(S, x+ 1, y) = z(S, x, y)− A

C

z(S, x, y − 1) = z(S, x, y) +
B

C

8.3 Scan-line method

This algorithm processes all polygons simultaneously, one scan-line at a time. Essentially
this is an extension of scan-line filling for polygons: as each scan line is processed, all polygon
surfaces intersecting with that line are examined to determine which surfaces are visible. At
each position, the depth-value for each intersecting polygon is worked out, and the colour

66

z

x
No depth overlap

z

x

Figure 8.4: Testing for need to re-order

of the nearest polygon is chosen. Of course there is no need to calculate the depth value if
only one polygon is active at a particular point.

As long as polygons do not intersect each other, this algorithm can be optimized sig-
nificantly by only making depth calculations whenever a polygon edge is activated or de-
activated, and the number of active polygons is greater than 1.

8.4 Depth-sorting method (painter’s algorithm)

This algorithm makes use of both image-space and object-space techniques. The basic steps
are:

1. Sort surfaces in order of decreasing greatest depth (object-space).

2. Scan-convert surfaces in order, starting with the surface of greatest depth (image-
space).

Of course, problems occur when polygons overlap in depth. Before a polygon S is scan-
converted, the next polygon in the list should be checked for depth overlap (figure 8.3). If
there is none, the polygon surface can be processed, and the process can be applied to the
next polygon in the list. If there is overlap however, some extra checks are required and
re-ordering of polygons may be necessary. The following tests (figure 8.4) are carried out
until one is found to succeed, in which case no re-ordering is necessary, or all of them fail,
in which case additional processing is required.

1. The bounding rectangles in the xy plane for the two surfaces do not overlap.

2. Surface S is on the outside of the overlapping surface, relative to the view plane.

3. The overlapping surface is on the inside of surface S, relative to the view plane.

4. The projections of the two surfaces onto the view plane do not overlap (check for edge
intersections).

Note that these tests are ordered so that they become progressively more computing inten-
sive.

67

If all four tests fail, the two surfaces are swapped, and the process is re-started for the
new current polygon. If two surfaces alternately obscure each other, the polygons should
be flagged when swapped so as to avoid infinite re-shuffling of polygons. In such cases, the
offending polygon can be split into two at the intersection of the two planes under comparison.

8.5 Hidden-line removal

Many hidden-surface removal techniques, including scan-line and depth-sorting, can be
adapted to perform hidden-line removal in wire-frame graphics. Instead of colouring sur-
faces with the surface colour, the background colour is used instead, and only edges are
drawn in some specified foreground colour.

68

