ADVANCED COMPUTER GRAPHICS

Curves and Surfaces
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To do

e Continue to work on ray
programming assignment

e Start thinking about final project
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Curved Surfaces

e Motivation

= Exact boundary representation for
some objects

= More concise representation that
polygonal mesh

= Easier to model with and specify for
many man-made objects and
machine parts (started with car
bodies)

a
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ADVANCED COMPUTER GRAPHICS

Curve and surface
Representations

e Curve representation
= Function: y = f(x)
= Implicit: f(x, y) =0
= Subdivision: (X%, y) as limit of
recursive process

= Parametric: x = f(t), y = g(t)
e Curved surface representation
= Function: z = f(Xx, y)
= Implicit: f(x, y, z)=0
= Subdivision: (X, y, z) as limit of
recursive process

= Parametric:
x = f(s, t), y=9(s, t), z = h(s, t)
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ADVANCED COMPUTER GRAPHICS

Parametric Surfaces

e Boundary defined by parametic

function

= X = f(u, v)
=y =f(u, v)
= Z = f(u, v)

e Example (sphere):
= X = sin (06) cos (¢)
= Y = sin (0) sin (¢)
= 7 = cos(0)
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ADVANCED COMPUTER GRAPHICS

Parametric Representation

¢ One function vs. many functions
(defined piecewise)

e Continuity
e A parametric polynomial curve of
order n:
n .
x(u)=) au'
i=0
n .
y(u) = Zbi”'
=0

e Advantages of polynomial curves
» Fasy to compute
= Infinitely differentiable everywhere

CMSC 635 January 15, 2013  Spline curves 6/23




ADVANCED COMPUTER GRAPHICS

Spline Constructions

e Cubic spline is the most common
form

e Common constructions
= Bezier: 4 control points
= B-splines: approximating C?, local
control
= Hermite: 2 points, 2 normals

= Natural splines: interpolating, C?,
no local control

= Catmull-Rom: interpolating, C?,
local control
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ADVANCED COMPUTER GRAPHICS

Bezier Curve

e Motivation: Draw a smooth intuitive
curve (or surface) given a few key
user-specified control points

Control point

Smooth Bezier cur
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e Properties:

= Interpolates is tangent to end
points

= Curve within convex hull of control
polygon
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ADVANCED COMPUTER GRAPHICS

Linear Bezier Curve

e Just a simple linear combination or
interpolation (easy to code up, very
numerically stable)

Pl F(1)
Linear (Degree 1, Order 2)

F(O) = PO, F(1) = P1
PO F(u) F(u) =7?

F(0) PO P1

F(u) = (1-u) PO +uPl1
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ADVANCED COMPUTER GRAPHICS

deCastljau: Quadratic Bezier
Curve

Quadratic

P1 Degree 2, Order 3
F(O) = PO, F(1) = P2
F(u) =7

PO P2

NYAWE
R

F(u) = (1-u)2P0 + 2u(1-u) P1 + u2 P2

CMSC 635 January 15, 2013  Spline curves 10/23




ADVANCED COMPUTER GRAPHICS

Geometric Interpretation:
Quadratic
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ADVANCED COMPUTER GRAPHICS

Geometric Interpolation: Cubic
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ADVANCED COMPUTER GRAPHICS

Summary: deCasteljau
Algorithm

e A recursive implementation of curves
at different orders

P1
P1
P P2
Quadratic
Liml;(r) E(eog)riepzd, C;Ecllirjpz

Degree 1, Order 2
F(0) = PO, F(1) = P1

0 g1 AN
RV S /A

F(u) = (1-u) PO+ uP1 F(u) = (1-u)2P0 + 2u(1-u) P1 + u?2 P2
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ADVANCED COMPUTER GRAPHICS

Summary: deCasteljau
Algorithm

e A recursive implementation of curves
at different orders

e Further consideration: polar
coordinates » P>

P3

Cubic
Degree 3, Order 4
F(0) = PO, F(1) = P3

DA S A
S AN
5

F(u) = (1-u)3P0 +3u(1-u)2P1
+3u?(1-u) P2 + u3 P3
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ADVANCED COMPUTER GRAPHICS

Bezier: Disadvantages

e Single piece, no local control (move
a control point, whole curve
changes)

o Complex shapes: can be very high
degree, difficult to deal with

e In practice: combine many Bezier
curve segments

= But only position continuous at the
joint points since Bezier curves
interpolate end-points (which match
at segment boundaries)

= Unpleasant derivative (slope)
discontinuities at end-points
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ADVANCED COMPUTER GRAPHICS

Piecewise polynomial curves

e Ideas:

= Use different polynomial functions
for different parts of the curve

e Advantage:

= Flexibility
= | ocal control
e Issue

= Smoothness at joints
(G: geometry continuity:
C: derivative continuity)
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ADVANCED COMPUTER GRAPHICS

Continuity

e Continuity Ck indicates adjacent
curves have the same kth derivative
at their joints

e CO continuity: Adjacent curves shaye
= Same endpoints: Q;(1) = Q,,,(0)

/~ N\

e C-lidiscontinuous curves

2
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Continuity

e C! continuity: Adjacent curves share
= Same endpoints: Q,(1) = Q;;1(0) and
= Same derivative: Q. (1) = Q;,1/(0)

e C2 continuity:
= Must have C! continuity, and
= Same second derivatives:

Qi "(1) = Q11 "(0)

e Most engineering applications (e.g.,
those in car and airplane industry)
require at least C! continuity

-
-
-
-
-
-
-
-
-
-
-
-
-
P
4
-
-
-
-

CMSC 635 January 15, 2013  Spline curves 18/23




ADVANCED COMPUTER GRAPHICS

Splines

e More useful form of representation compared to the
Bezier curve

e How they work: Parametric curves governed by
control points

e Mathematically: Several representations to choose
from. More complicated than vertex lists. See
chapter 22 of the book for more information.

Simple parametric representation:

=

P

e Advantage: Smooth with just a few control point
e Disadvantage: Can be hard to control
e Uses:

= representation of smooth shapes. Either as
outlines in 2D or with Patches or Subdivision
Surfaces in 3D

= animation Paths
= approximation of truncated Gaussian Filters
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ADVANCED COMPUTER GRAPHICS

A Simple Animation Example

e Problem: create a car
animation that is driving up °© .
along the y-axis with o,
velocity [0, 3], and arrive at
the point (0, 4) at time t=0. 2
Animate its motion as it .
turns and slows down so o 2 4
that at time t=1, it is at o G the et o fimed

point and velocity, we want to find

pOSithn (2, 5) Wlth VeIOCIty a path like the magenta curve.
[2, O].

e Solution

= First step: generate a mathematical
description.

= Second step: choose the curve
representation

= Hermite curve: r(t)=GMT(t)

o EXxercise: Bezier curve representation?
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Catmull Rom Spline

e Can be used to solve the following
problem.

Figure 22.4: A sequence of points
and vectors; we want a curve that
passes through the points with the
given vectors as velocities.
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e Solution:
— Math representation
— Curve construction

e Catmull Rom spline to construct the
vectors from the two or three
neighbors

take home exercise: read chap 22 in the book

and construct the curve and the B-spline
using the Chen code.
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ADVANCED COMPUTER GRAPHICS

Subdivision curves
e A simple idea

= Using the midpoint of the
edge from one point to the
next, replace that point with a
new one to create a new
polygon to construct a new
curve.

= problem with this?
e Further readings:

= |Laplacian interpolation and
smoothing (Gabriel Taubin @
Brown)

= Joe Warren@ Rice (on mesh)
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ADVANCED COMPUTER GRAPHICS

Surfaces

e Curves -> Surfaces
e Bezier patch:
= 16 points

» Check out the Chen code for
surface construction
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