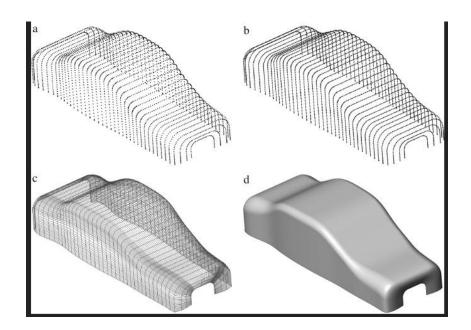
Curves and Surfaces

To do

- Continue to work on ray programming assignment
- Start thinking about final project

Curved Surfaces

- Motivation
 - Exact boundary representation for some objects
 - More concise representation that polygonal mesh
 - Easier to model with and specify for many man-made objects and machine parts (started with car bodies)



Curve and surface Representations

- Curve representation
 - Function: y = f(x)
 - Implicit: f(x, y) = 0
 - Subdivision: (x, y) as limit of recursive process
 - Parametric: x = f(t), y = g(t)
- Curved surface representation
 - Function: z = f(x, y)
 - Implicit: f(x, y, z)=0
 - Subdivision: (x, y, z) as limit of recursive process
 - Parametric:

$$x = f(s, t), y=g(s, t), z = h(s, t)$$

Parametric Surfaces

- Boundary defined by parametic function
 - x = f(u, v)
 - y = f(u, v)
 - Z = f(u, v)
- Example (sphere):
 - $X = \sin(\theta) \cos(\phi)$
 - $Y = \sin(\theta) \sin(\phi)$
 - $Z = cos(\theta)$

Parametric Representation

- One function vs. many functions (defined piecewise)
- Continuity
- A parametric polynomial curve of order n:

$$x(u) = \sum_{i=0}^{n} a_i u^i$$
$$y(u) = \sum_{i=0}^{n} b_i u^i$$

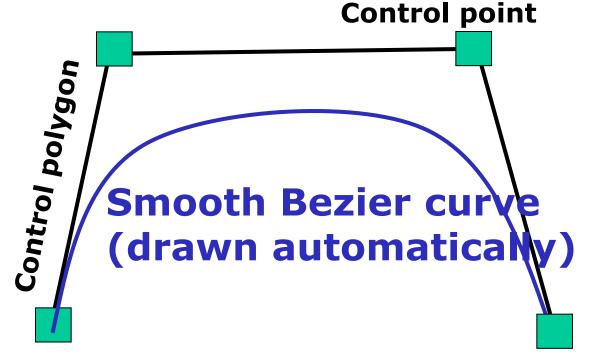
- Advantages of polynomial curves
 - Easy to compute
 - Infinitely differentiable everywhere

Spline Constructions

- Cubic spline is the most common form
- Common constructions
 - Bezier: 4 control points
 - B-splines: approximating C², local control
 - Hermite: 2 points, 2 normals
 - Natural splines: interpolating, C², no local control
 - Catmull-Rom: interpolating, C¹, local control

Bezier Curve

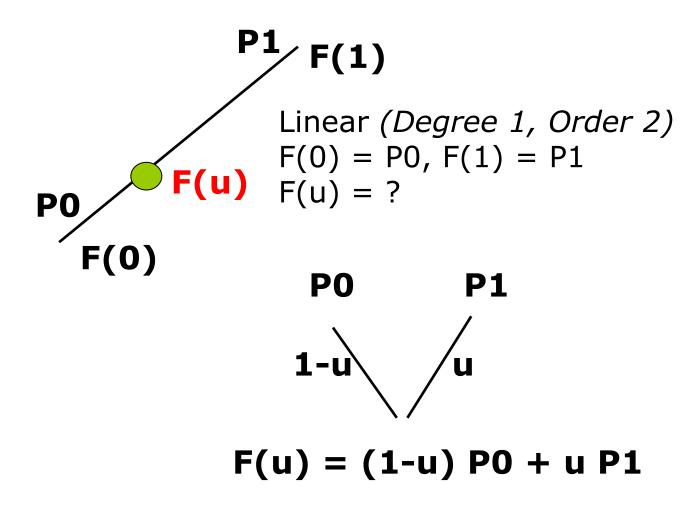
 Motivation: Draw a smooth intuitive curve (or surface) given a few key user-specified control points



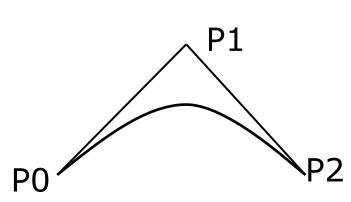
- Properties:
 - Interpolates is tangent to end points
 - Curve within convex hull of control polygon

Linear Bezier Curve

 Just a simple linear combination or interpolation (easy to code up, very numerically stable)



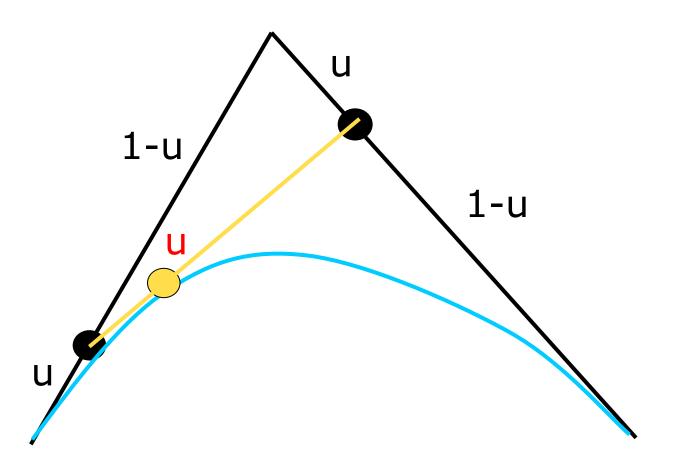
deCastljau: Quadratic Bezier Curve



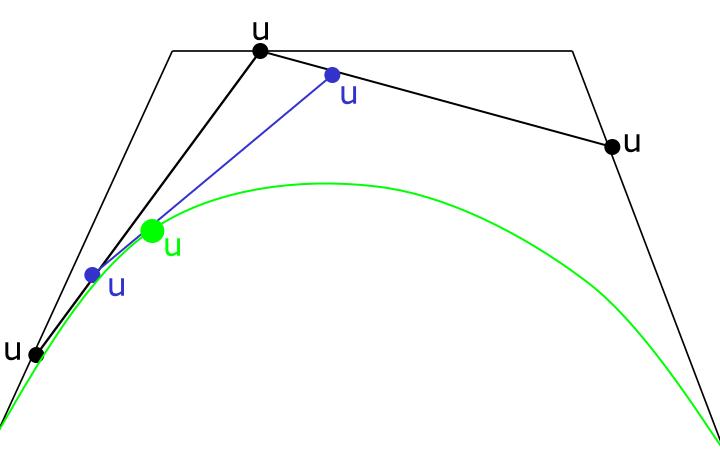
Quadratic Degree 2, Order 3 F(0) = P0, F(1) = P2F(u) = ?

$$F(u) = (1-u)^2 PO + 2u(1-u) P1 + u^2 P2$$

Geometric Interpretation: Quadratic

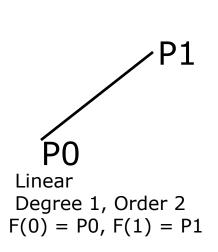


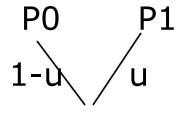
Geometric Interpolation: Cubic

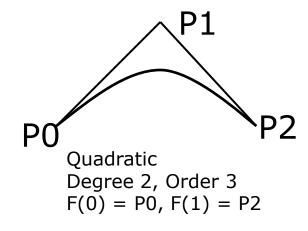


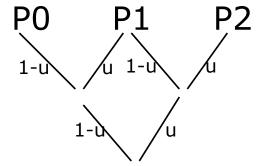
Summary: deCasteljau Algorithm

A recursive implementation of curves at different orders









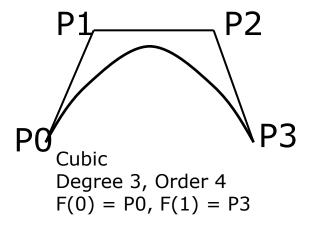
F(u) = (1-u) P0 + u P1 $F(u) = (1-u)^2 P0 + 2u(1-u) P1 + u^2 P2$

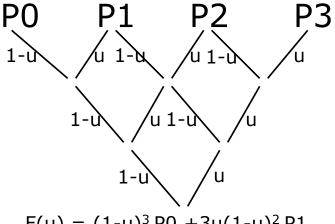
Summary: deCasteljau Algorithm

 A recursive implementation of curves at different orders

Further consideration: polar

coordinates





 $F(u) = (1-u)^3 PO + 3u(1-u)^2 P1 + 3u^2(1-u) P2 + u^3 P3$

Bezier: Disadvantages

- Single piece, no local control (move a control point, whole curve changes)
- Complex shapes: can be very high degree, difficult to deal with
- In practice: combine many Bezier curve segments
 - But only position continuous at the joint points since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points

Piecewise polynomial curves

Ideas:

 Use different polynomial functions for different parts of the curve

Advantage:

- Flexibility
- Local control

Issue

Smoothness at joints

(G: geometry continuity:

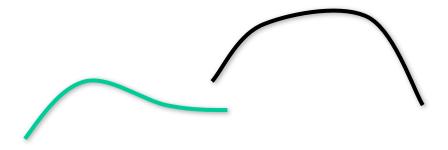
C: derivative continuity)

Continuity

 Continuity C^k indicates adjacent curves have the same kth derivative at their joints

- C⁰ continuity: Adjacent curves share
 - Same endpoints: $Q_i(1) = Q_{i+1}(0)$

• C⁻¹: discontinuous curves

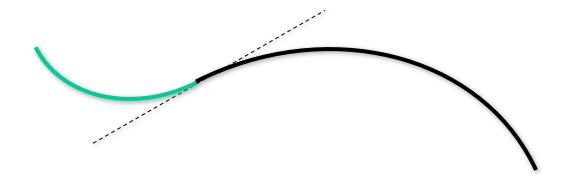


Continuity

- C¹ continuity: Adjacent curves share
 - Same endpoints: Q_i(1) = Q_{i+1}(0) and
 - Same derivative: Q_i(1) = Q_{i+1}(0)
- C² continuity:
 - Must have C¹ continuity, and
 - Same second derivatives:

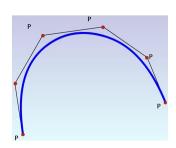
$$Q_{i}''(1) = Q_{i+1}''(0)$$

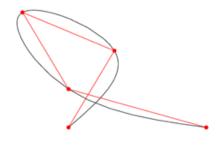
 Most engineering applications (e.g., those in car and airplane industry) require at least C¹ continuity



Splines

- More useful form of representation compared to the Bezier curve
- How they work: Parametric curves governed by control points
- Mathematically: Several representations to choose from. More complicated than vertex lists. See chapter 22 of the book for more information.
 Simple parametric representation:





- Advantage: Smooth with just a few control point
- Disadvantage: Can be hard to control
- Uses:
 - representation of smooth shapes. Either as outlines in 2D or with Patches or Subdivision Surfaces in 3D
 - animation Paths
 - approximation of truncated Gaussian Filters

A Simple Animation Example

• Problem: create a car animation that is driving up along the y-axis with velocity [0, 3], and arrive at the point (0, 4) at time t=0. Animate its motion as it turns and slows down so that at time t=1, it is at position (2, 5) with velocity [2, 0].

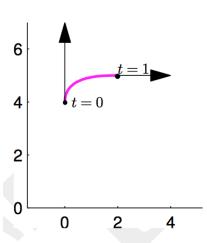


Figure 22.1: Animating a car's motion. Given the initial and final point and velocity, we want to find a path like the magenta curve.

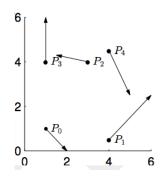
Solution

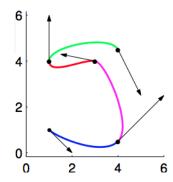
- First step: generate a mathematical description.
- Second step: choose the curve representation
 - Hermite curve: r(t)=GMT(t)
- Exercise: Bezier curve representation?

Catmull Rom Spline

Can be used to solve the following problem.

Figure 22.4: A sequence of points and vectors; we want a curve that passes through the points with the given vectors as velocities.





- Solution:
 - Math representation
 - Curve construction
 - Catmull Rom spline to construct the vectors from the two or three neighbors

take home exercise: read chap 22 in the book and construct the curve and the B-spline using the Chen code.

Subdivision curves

- A simple idea
 - Using the midpoint of the edge from one point to the next, replace that point with a new one to create a new polygon to construct a new curve.
 - problem with this?
- Further readings:
 - Laplacian interpolation and smoothing (Gabriel Taubin @ Brown)
 - Joe Warren@ Rice (on mesh)

Surfaces

- Curves -> Surfaces
- Bezier patch:
 - 16 points
 - Check out the Chen code for surface construction

