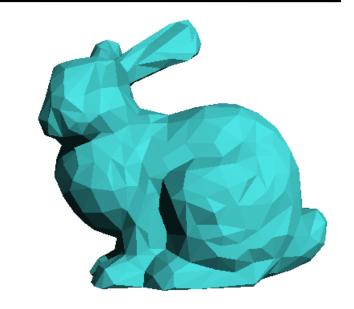
Curves & Surfaces

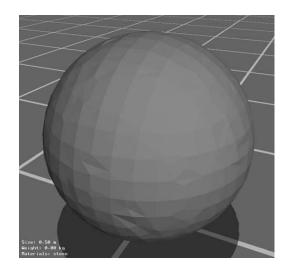
Today

- Review
- Motivation
 - Limitations of Polygonal Models
 - Phong Normal Interpolation
 - Some Modeling Tools & Definitions
- Curves
- Surfaces / Patches
- Subdivision Surfaces
- Procedural Texturing

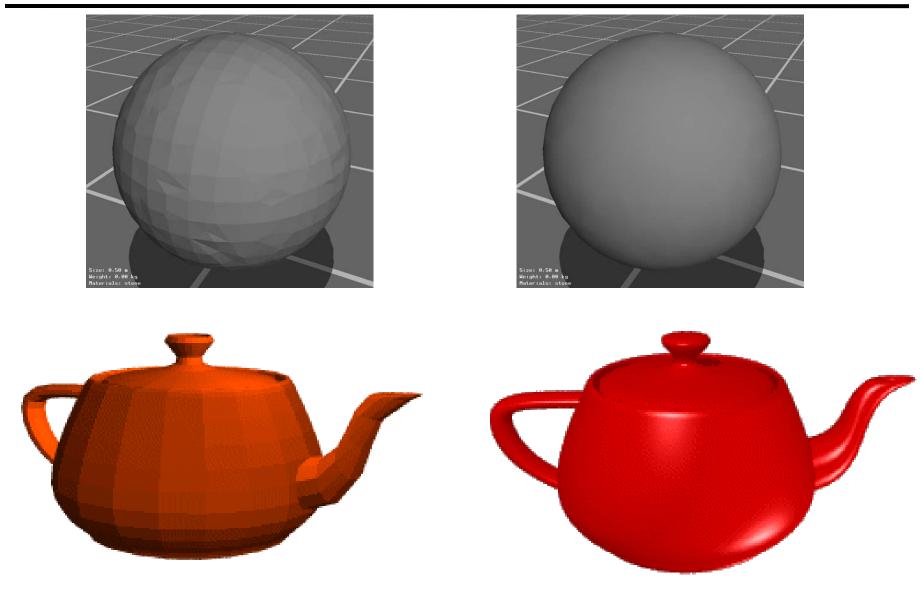
Limitations of Polygonal Meshes

- planar facets
- fixed resolution
- deformation is difficult
- no natural parameterization





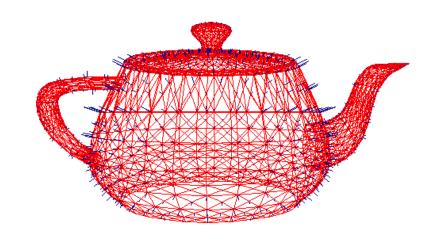
Can We Disguise the Facets?



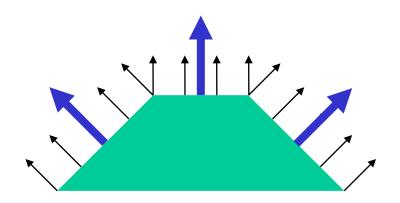
MIT EECS 6.837, Durand and Cutler

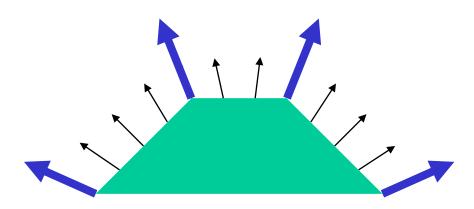
Phong Normal Interpolation

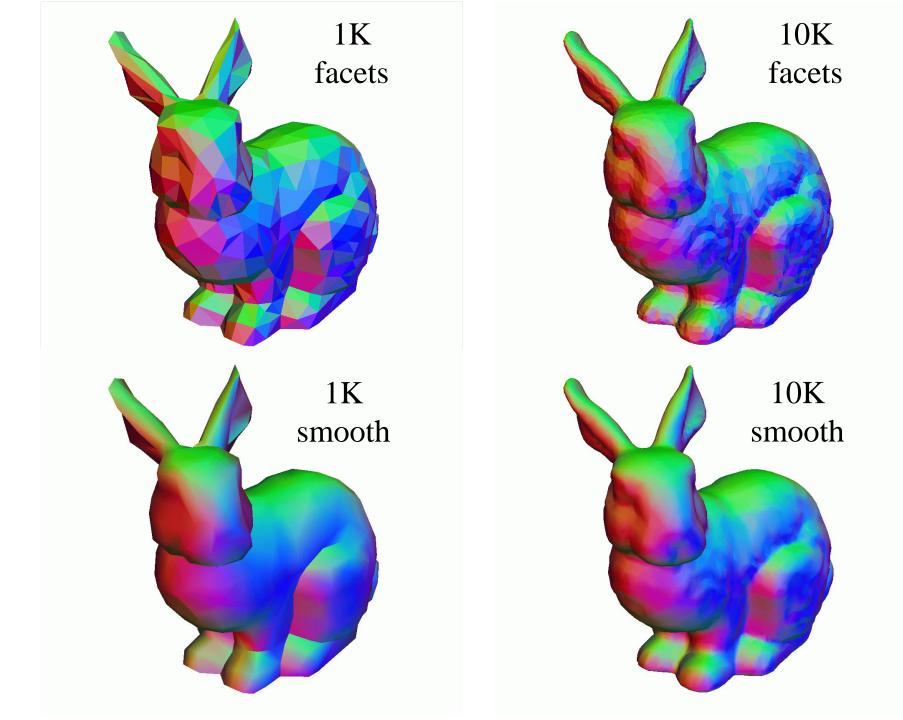
- Not Phong Shading from Assignment 3
- Instead of using the normal of the triangle, interpolate an averaged normal at each vertex across the face



Must be renormalized

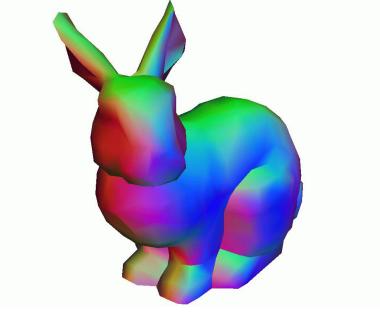




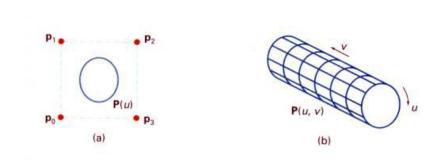


Better, but not always good enough

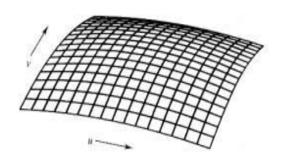
- Still low resolution (missing fine details)
- Still have polygonal silhouettes
- Intersection depth is planar
- Collisions in a simulation
- Solid Texturing
- •



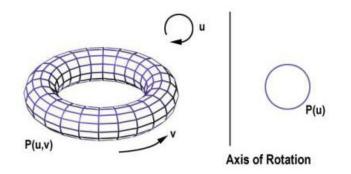
Some Non-Polygonal Modeling Tools



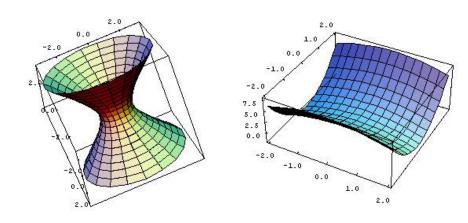
Extrusion



Spline Surfaces/Patches



Surface of Revolution



Quadrics and other implicit polynomials

Continuity definitions:

• C⁰ continuous

curve/surface has no breaks/gaps/holes

- "watertight"

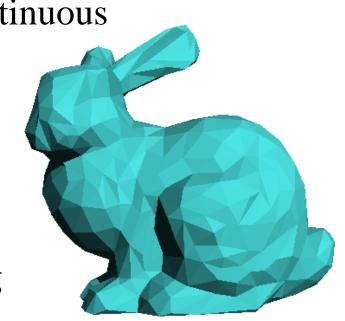
• C¹ continuous

curve/surface derivative is continuous

- "looks smooth, no facets"

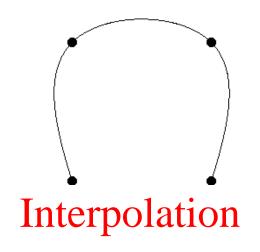
• C² continuous

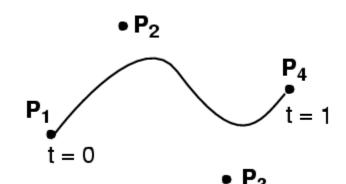
- curve/surface 2nd derivative is continuous
- Actually important for shading



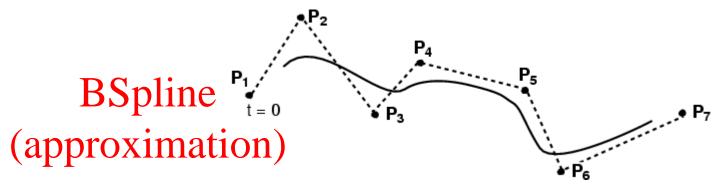
Definition: What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

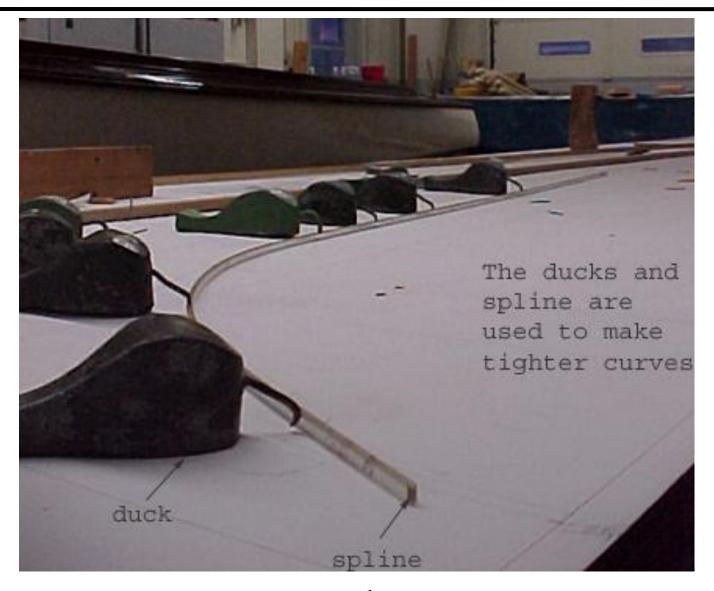




Bézier (approximation)



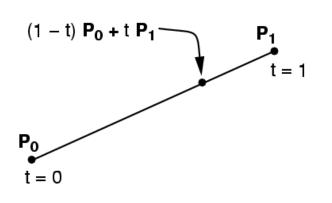
Interpolation Curves / Splines

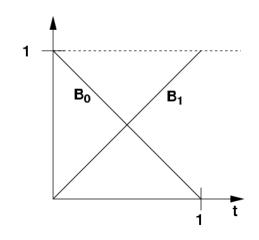


www.abm.org

Linear Interpolation

Simplest "curve" between two points





$$Q(t) = \left(egin{array}{c} Q_x(t) \ Q_y(t) \ Q_z(t) \end{array}
ight) = \left(egin{array}{c} (P_0) & (P_1) \end{array}
ight) \left(egin{array}{c} -1 & 1 \ 1 & 0 \end{array}
ight) \left(egin{array}{c} t \ 1 \end{array}
ight)$$

$$Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$$

Interpolation Curves

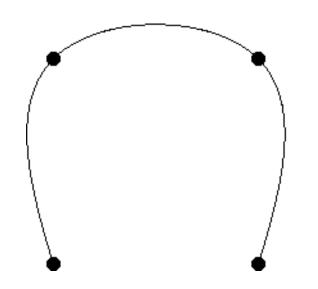
- Curve is constrained to pass through all control points
- Given points P_0 , P_1 , ... P_n , find lowest degree polynomial which passes through the points

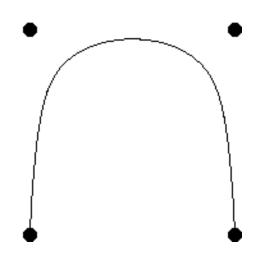
$$x(t) = a_{n-1}t^{n-1} + \dots + a_2t^2 + a_1t + a_0$$

$$y(t) = b_{n-1}t^{n-1} + \dots + b_2t^2 + b_1t + b_0$$

$$Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$$

Interpolation vs. Approximation Curves





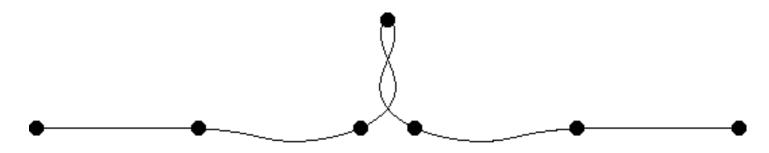
Interpolation

curve must pass through control points **Approximation**

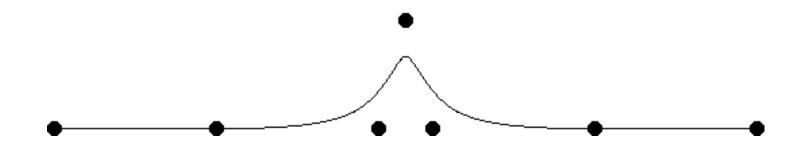
curve is influenced by control points

Interpolation vs. Approximation Curves

 Interpolation Curve – over constrained → lots of (undesirable?) oscillations

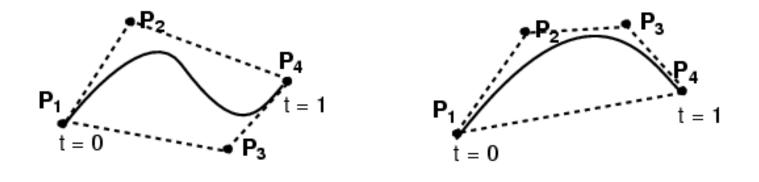


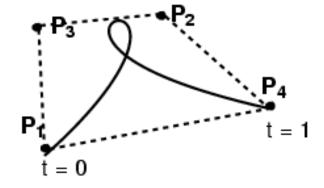
• Approximation Curve – more reasonable?



Cubic Bézier Curve

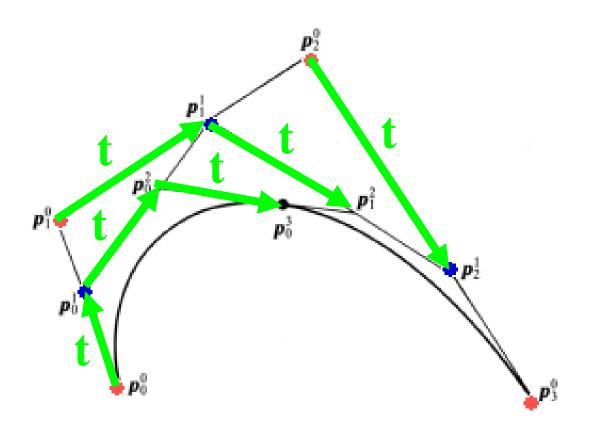
- 4 control points
- Curve passes through first & last control point
- Curve is tangent at P_0 to (P_0-P_1) and at P_4 to (P_4-P_3)



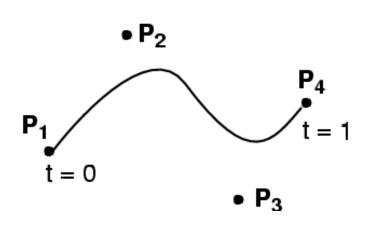


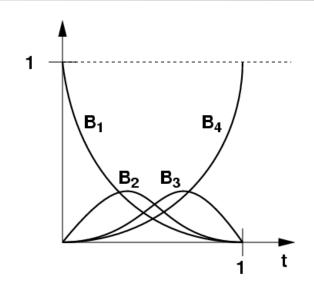
Cubic Bézier Curve

 de Casteljau's algorithm for constructing Bézier curves



Cubic Bézier Curve



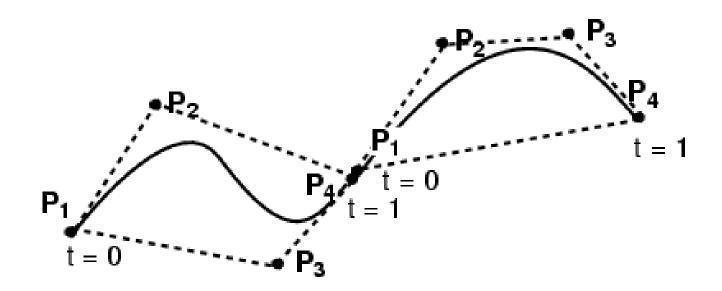


$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

$$Q(t) = \mathbf{GBT(t)}$$
 $B_{Bezier} = egin{pmatrix} -1 & 3 & -3 & 1 \ 3 & -6 & 3 & 0 \ -3 & 3 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}$

$$B_1(t) = (1-t)^3$$
; $B_2(t) = 3t(1-t)^2$; $B_3(t) = 3t^2(1-t)$; $B_4(t) = t^3$

Connecting Cubic Bézier Curves



- How can we guarantee C0 continuity (no gaps)?
- How can we guarantee C1 continuity (tangent vectors match)?
- Asymmetric: Curve goes through some control points but misses others

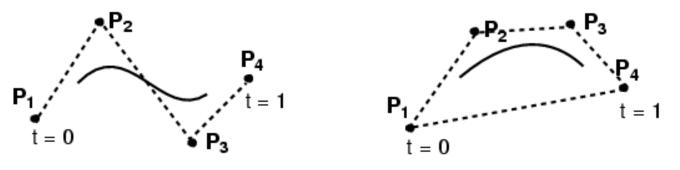
Higher-Order Bézier Curves

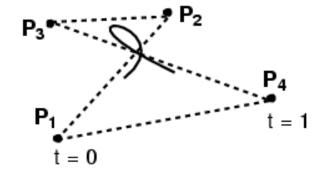
- > 4 control points
- Bernstein Polynomials as the basis functions

$$B_i^n(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}, \qquad 0 \le i \le n$$

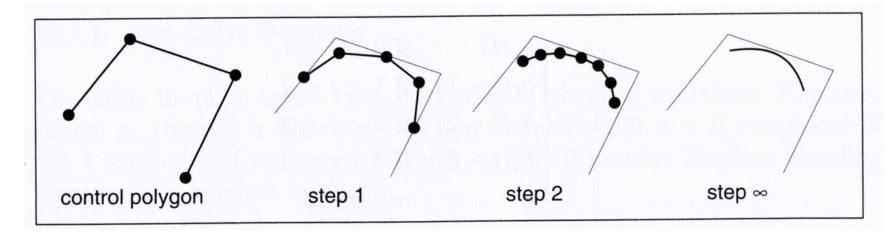
- Every control point affects the entire curve
 - Not simply a local effect
 - More difficult to control for modeling

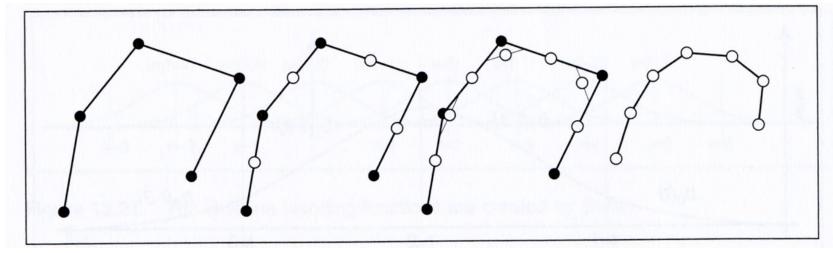
- \geq 4 control points
- Locally cubic
- Curve is not constrained to pass through any control points



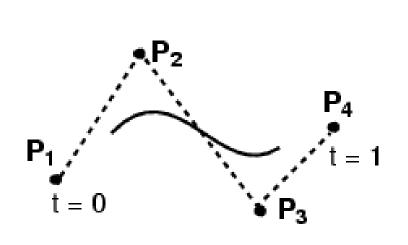


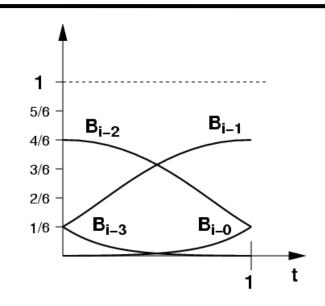
• Iterative method for constructing BSplines





Shirley, Fundamentals of Computer Graphics

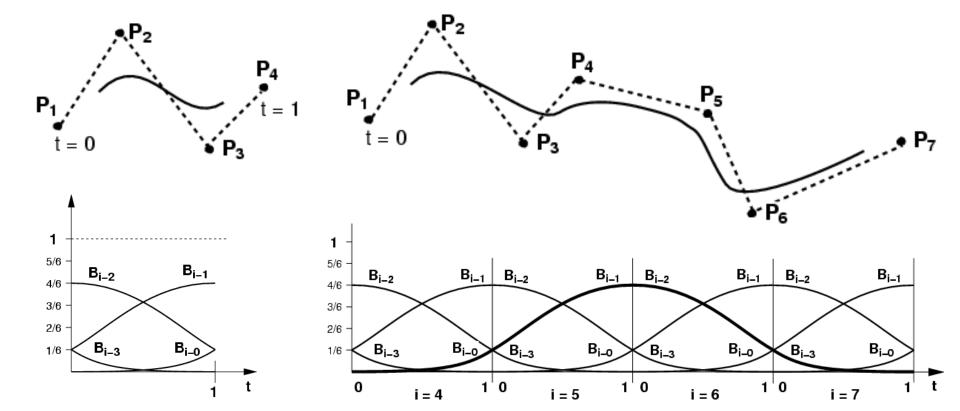




$$Q(t) = \frac{(1-t)^3}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i$$

$$Q(t) = \mathbf{GBT(t)} \qquad B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix}$$

- can be chained together
- better control locally (windowing)

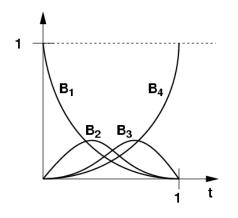


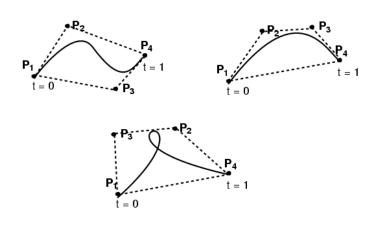
MIT EECS 6.837, Durand and Cutler

Bézier is not the same as BSpline

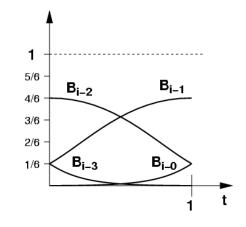
• Relationship to the control points is different

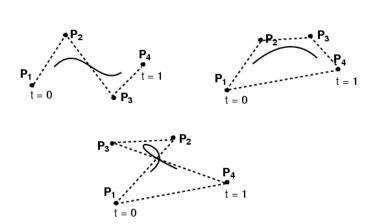
Bézier





BSpline





Bezier is not the same as Bspline

• But we can convert between the curves using the basis functions:

$$B_{Bezier} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix}$$

$$Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$$

NURBS (generalized BSplines)

• BSpline: uniform cubic BSpline

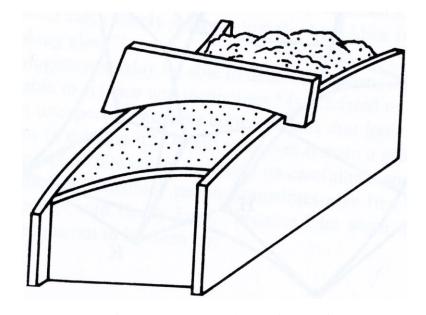
- NURBS: Non-Uniform Rational BSpline
 - non-uniform = different spacing between the blending functions, a.k.a. knots
 - rational = ratio of polynomials (instead of cubic)

Tensor Product

• Of two vectors:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{bmatrix}$$

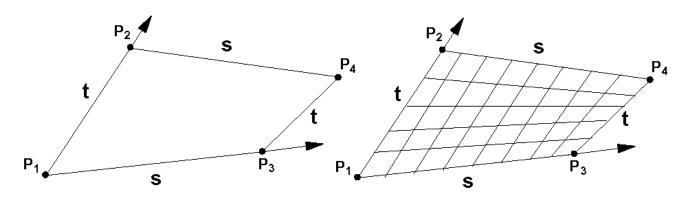
• Similarly, we can define a surface as the tensor product of two curves....



Farin, Curves and Surfaces for Computer Aided Geometric Design

Bilinear Patch

Bi-lerp a (typically non-planar) quadrilateral

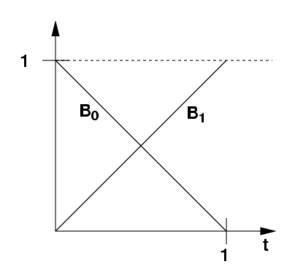


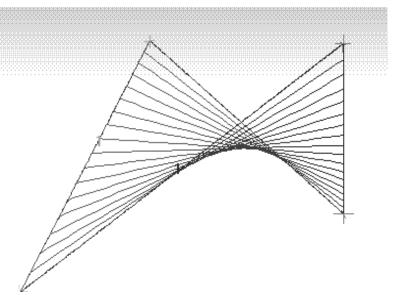
Notation: $\mathbf{L}(P_1, P_2, \alpha) \equiv (1 - \alpha)P_1 + \alpha P_2$

$$Q(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), L(P_3, P_4, t), s)$$

Bilinear Patch

• Smooth version of quadrilateral with non-planar vertices...





- But will this help us model smooth surfaces?
- Do we have control of the derivative at the edges?

Bicubic Bezier Patch

Notation: $\mathbf{CB}(P_1, P_2, P_3, P_4, \alpha)$ is Bézier curve with control points P_i evaluated at α

Define "Tensor-product" Bézier surface

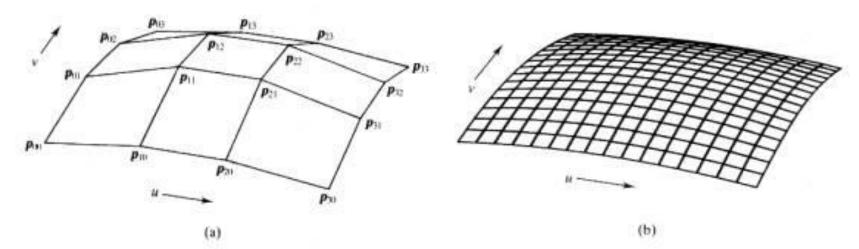
$$Q(s,t) = \mathbf{CB}(\quad \mathbf{CB}(P_{00}, P_{01}, P_{02}, P_{03}, t),$$

$$\mathbf{CB}(P_{10}, P_{11}, P_{12}, P_{13}, t),$$

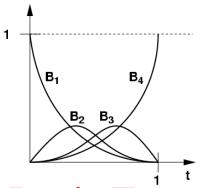
$$\mathbf{CB}(P_{20}, P_{21}, P_{22}, P_{23}, t),$$

$$\mathbf{CB}(P_{30}, P_{31}, P_{32}, P_{33}, t),$$

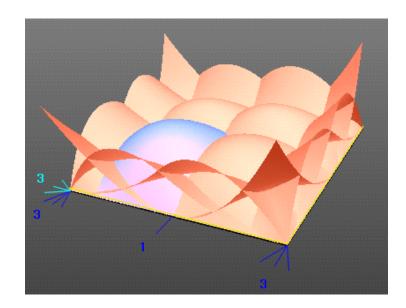
$$s)$$



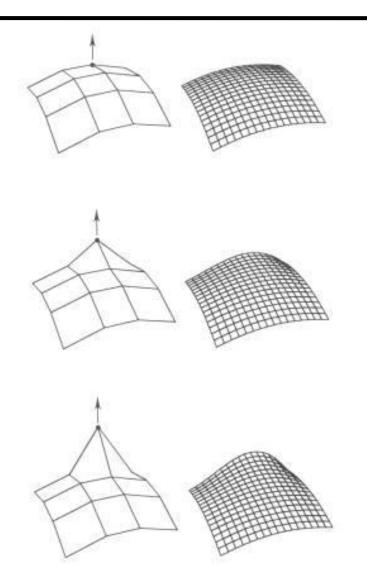
Editing Bicubic Bezier Patches



Curve Basis Functions

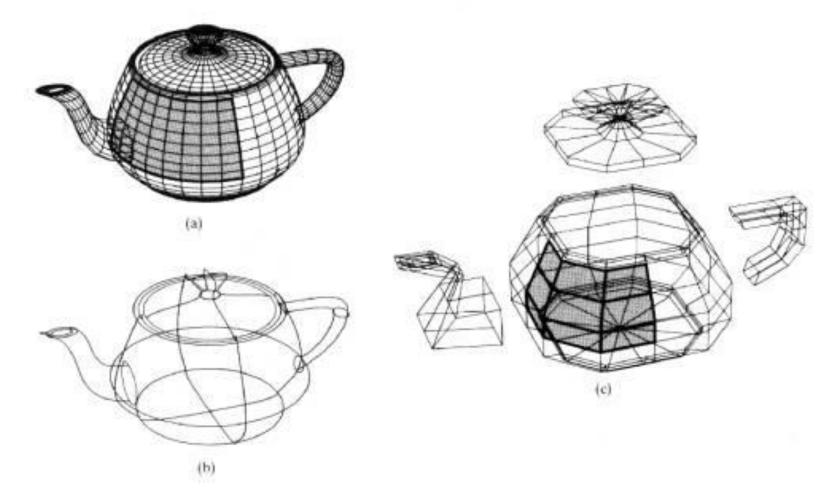


Surface Basis Functions



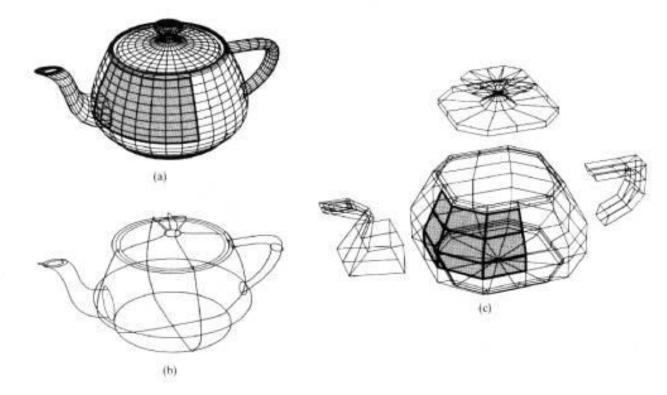
Modeling with Bicubic Bezier Patches

Original Teapot specified with Bezier Patches

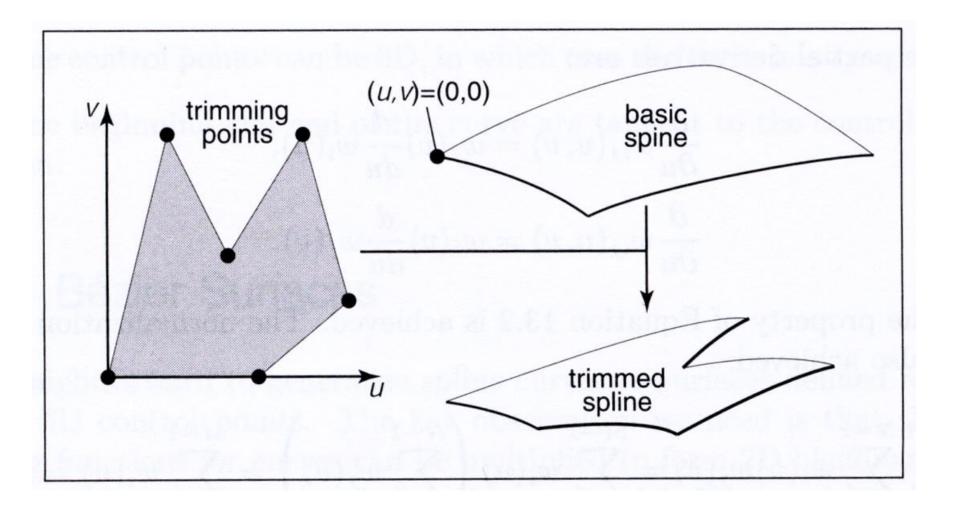


Modeling Headaches

• Original Teapot model is not "watertight": intersecting surfaces at spout & handle, no bottom, a hole at the spout tip, a gap between lid & base

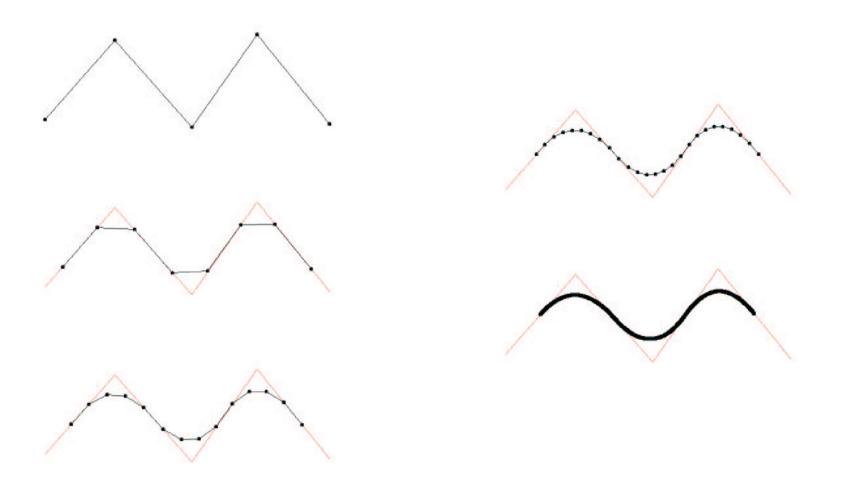


Trimming Curves for Patches



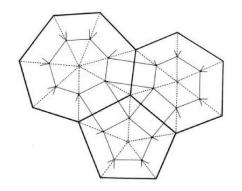
Shirley, Fundamentals of Computer Graphics

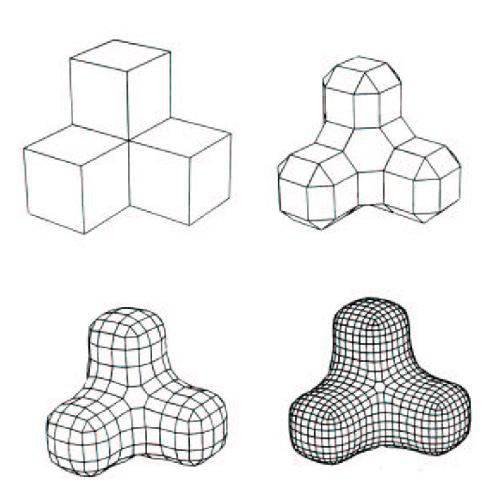
Chaikin's Algorithm



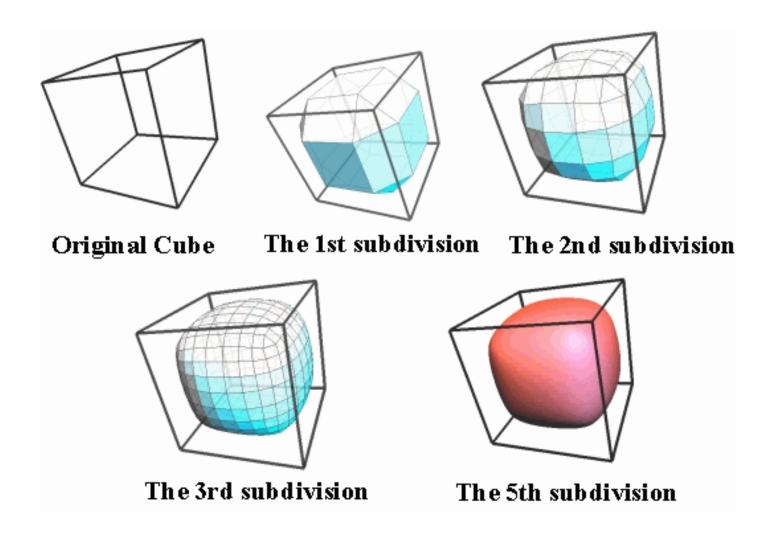
Doo-Sabin Subdivision

Idea: introduce a new vertex for each face At the midpoint of old vertex, face centroid



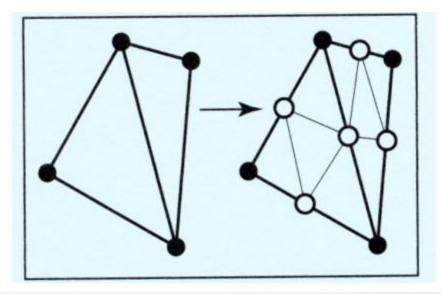


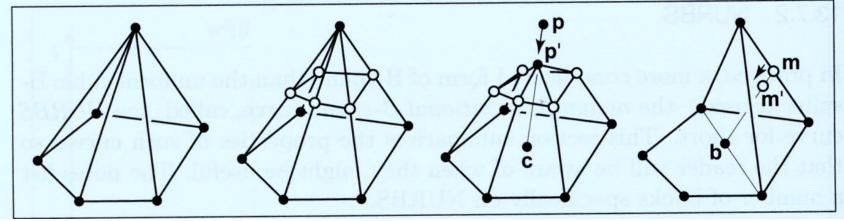
Doo-Sabin Subdivision



http://www.ke.ics.saitama-u.ac.jp/xuz/pic/doo-sabin.gif

Loop Subdivision

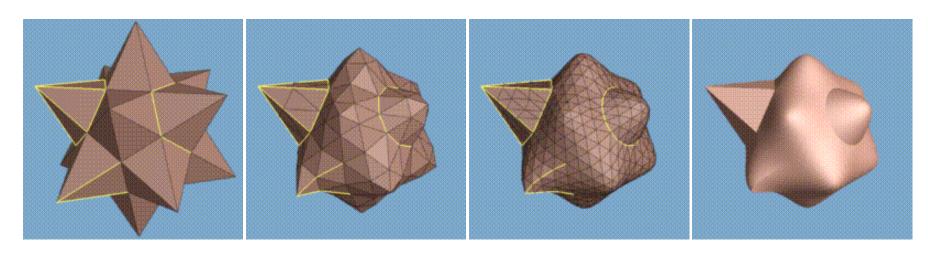




Shirley, Fundamentals of Computer Graphics

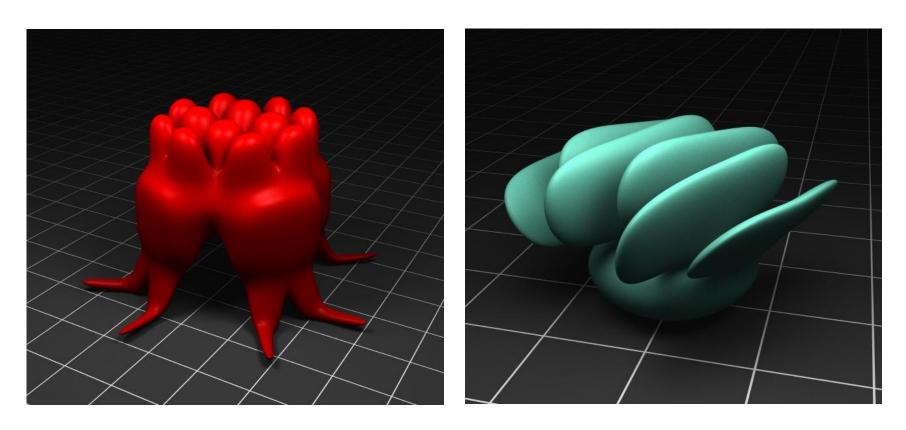
Loop Subdivision

• Some edges can be specified as crease edges



http://grail.cs.washington.edu/projects/subdivision/

Weird Subdivision Surface Models



Justin Legakis

Procedural Textures

 $f(x,y,z) \rightarrow color$

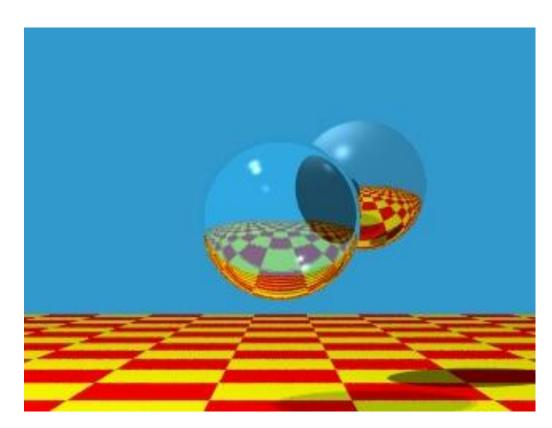
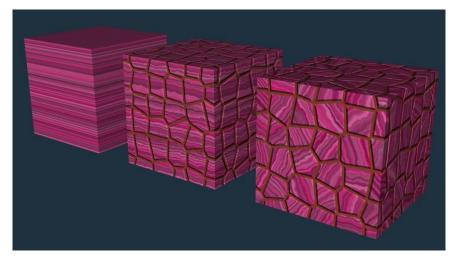


Image by Turner Whitted

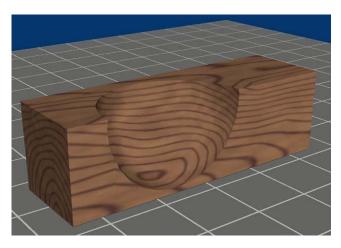
Procedural Solid Textures

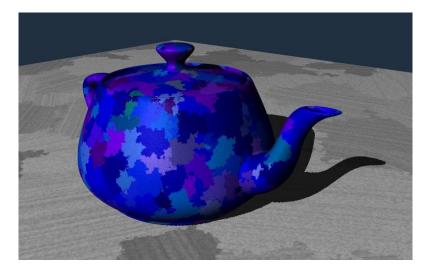
- Noise
- Turbulence

Ken Perlin



Justin Legakis





Justin Legakis

That's All