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Curved. Surfaces

The use of curved surfaces allows for a higher level of
modeling, especially for the construction of highly
realistic models.

There are several approaches to modeling
curved surfaces:

(1) Similar to polyhedral models,
we model an object by using small curved surface

patches (instead of polygons) placed next to each
other.

(2) Another approach is solid modeling,
that constructs a model using elementary solid

objects (such as: polyhedra, spheres, cones etc.) as
building blocks.




Curved. Surfaces

There are two ways to construct a model:
Additive Modeling

This is the process of building the model by
assembling many simpler objects.

Subtractive Modeling

This is the process of removing pieces from a given
object to create a new object.

For example, creating a (cylindrical) hole in a sphere
or a cube.

We can represent curved surfaces
using mesh of curves. So we learn
to create curves first then move to
curved surfaces.

Curved Surface Patch,




Curve Representation .

There are three ways to represent a curve
» Explicit: y = f(X)
v=mx+Db y = x2

(=) Must be a single valued function

(=) Vertical lines, say x = d?
» Implicit: f(x,y) = 0

x2+y2-r2=0
(+) y can be multiple valued function of x
(-) Vertical lines?

» Parametric: (x, y) = (x(t), y(t))
(x, Y) = (cosit sint)
(+) Easy to specify, modify and control
(—) Extra hidden variable t, the parameter
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- Explicit-Representation _ -
Curve in 2D: y = f(x)
Curve in 3D: y = f(Xx), Z = g(X)
Surface in 3D: z = f(X,y)

Problems:
» How about a vertical line x = casy = f(x)?
» Circle y = + (r2 — x2)/2 two or zero values for x

e Rarely used in computer graphics
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> Impficit‘RQpre,s‘eﬁtzition —

Curve in 2D: f(x,y) = 0
» Line:ax + by +c =0
» Circle: X2 +y2—-r2 =0
Surface in 3d: f(x,y,z) =0
» Plane: ax + by +cz+d =0
» Sphere: X2 +y2+722-r2=0
f(x,y,z) can describe 3D object:
» Inside: f(x,y,z) < 0
» Surface: f(x,y,z) = 0
» Outside: f(x,y,z) >0
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Parametric Form for Curves

Curves: single parameter u (e.g. time)
v X =X, y = Wt), z=Z(1)
Circle:
» x = cos(t), y =sin(t) z=20
Tangent described by derivative
()
X(g aot) | eyt

dt dt

2L dz(t)

Magnitude is “velocity” L @

p(t)=

<




Parametric-Form for Surfaces

Use parameters u and v

' X=X(U/V)/ y=y(U,V), "4 =Z(U/V)
Describes surface as both u and v vary

Partial derivatives describe tangent plane at
each point p(u,v) = [x(u,v) y(u,v) z(u,v)]"

op(u,v)

ou

ou
oy (u,v)

ou
oz(u,v)

ou

- ox(u,v) |

op

(u,v)

oV

- ox(u,v) |
oV
oy(u.v)




7 Advanta;;eS{)f Parat}fetficF orm -

»

Parameters often have natural meaning

Easy to define and calculate
» Tangent and normal
» Curves segments (for example, 0 <u<1)
» Surface patches (for example, 0 <u,v < 1)




- Lagrange Polynomial _ -

Given n+1 points (Xg, Yg), (X1, Y1) «eeeeees (X,, Y)
To construct a curve that passes through these points we
can use Lagrange polynomial defined as follows:.

y = f(I) = zykLn,ﬁ:
k=0

L _ (I—.I”)(I—I]}”'(I—Ik_]}(.x_Iﬂ,ﬂ)”‘(.}:—l'”}

e, —x )X, —x,) (=X, )X, — X, ) (X, — X))

Problems:
y=f(x), no multiple values
Higher order functions tend to oscillate

No local control (change any (Xx;, y;) changes the whole
curve)

Computationally expensive due to high degree.
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Piecewise Linear Polynomial

To overcome the problems with Lagrange

polynomial
» Divide given points into overlap sequences of 4 points
» construct 3™ degree polynomial that passes through
these points, py, P1, P2, P3 then ps, ps, Ps, Pe €tc.
» Then glue the curves so that they appear sufficiently
smooth at joint points.

pﬂ p1 pd ‘E';#
P

Questions:
1. Why 3@ Degree curves used?

2. How to measure smoothness at joint point?
11



Why Cubic Curves?

A curve is approximated by a piecewise polynomial
curve.

Cubic polynomials are most often used
because:

(1) Lower-degree polynomials offer too little flexibility
in controlling the shape of the curve.

(2) Higher-degree polynomials can introduce unwanted
wiggles and also require more computation.

(3) No lower-degree representation allows a curve
segment to be defined by two given endpoints with
given derivative at each endpoints.

(4) No lower-degree curves are nonplanar in 3D.
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Measure of Smoothness

GY Geometric Continuity < C°Parametric Continuity
If two curve segments join together.

G! Geometric Continuity

If the directions (but not necessarily the magnitudes)
of the two segments’ tangent vectors are equal at a
join point.

C! Parametric Continuity

If the directions and magnitudes of the two
segments’ tangent vectors are equal at a join point.

C?Parametric Continuity

If the direction and magnitude of Q?(f) (curvature or
acceleration) are equal at the join point.

Cm™Parametric Continuity

If the direction and magnitude of Q*(f) through the
nth derivative are equal at the join point.

CO mp- -

Cl mp-;

C2 mll ;
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Measure of Smoothness

CZ

By increasing parametric
continuity we can
increase smoothness of
the curve.

Joint Point

TV,=2*TV,

e Q,& Q, are C! and G!
continuous

e Q,& Q; are G! continuous
only as Tangent vectors
have different magnitude.

 Observe the effect of
increasing in magnitude
of TV 14




" Desirable Pitop‘erti,es’of"a\CurV.e ]

Simple control
» lines need only two points

» curves will need more (but not significantly
more)

Intuitive control

» Physically meaningful quantities like position,
tangent, curvature etc.

Global Vs. Local Control
» Portion of curve effected by a control point.

General Parameterization
» Handle multi-valued x-y mapping

o
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“Desirable Properties of a Cutve conca

.

Interpolation Vs Approximation

Axis Independent

» Equation might change but the shape remain
same under a coordinate transform

» (translation, rotation, scaling) of a curve =
(translation, rotation, scaling) of its control
points.

Degree of Smoothness.
» May need more or less

» May need varying degrees of smoothness in a
single curve.
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Interpolation Vs. Approximation
Given n + 1 points Py(x,, Yo), Pi(X%;, Y1), ---» PolxX,, Y,)

we wish to find a curve that, in some sense, fits the
shape outlined by these points.

Based on requirements we are faced with
two problems:

Interpolation

If we require the curve to pass through
all the points.

Approximation

If we require only that the curve be near
these points.

17



Parametric Representation of Lines

Interpolation of two points p,
In Parametric form: 3

P(t)=P +t-(P,-PR)

x(t) =TC, =TMG, = BG,
X(T) =X, +1-(X, =X
it ) y(t)=TC, =TMG, = BG,

y() =y, +t-(Y, — 1)

X, =% | =T L B
X(t):[’[ ]_]I Gl =[’[ 1]‘ 1 :[1_,[ tJ. 1
Parameter 3 e 2 e Blend!ng - Sy
T Ee? Basis Mtry Function
< Matrix G

M
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Parametric Cubic Curves

3 2
x(t)=at +bt +c,t+d,,
3 2
=[x(t) y(t)z(t)] {y(t)=a,t” +b,t +ct+d,,
z(t)=a2t3+bzt2+czt+dz, 0<t<l

\

g
b, b, Db
. e 3 2 X y Z
= 0t) E t Tt 1 e
d, dy dz_
C

~Qt)=T-C
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Parametric Cubic Curves

Now co-efficient matrix C can be expressed as a multiple
of basis(weight) matrix M and geometry matrix G.

Qt)=[xt) y&) z0)l =T-c=T-M -G

-

o=k t* t 1]

3
IS
3
=
® O O

3
My My My My | |Gy

basis matr ix geometry
vector

Each element of geometry vector G has 3 component for
X, Yy and z.

Components of G can be expressed as G,, G, and G,.

20



Parametric Cubic Curves

Multiplying out only the x-component we get

x(t)=T-|\/|-GX=E3 |

o 2
X(t)_ ([ m, +t™m,, +tm,;, +m,, blx
3 2
+([ m;, +1"m,, +tm,;, +m,, be
3 2
+([ My =17 My, + Mgy + My, be

T (t3m14 +t2m24 +tm34 3 m44 b4x

a blending  function

m12 m13 m14 glx
m22 m23 m24 g2x
m32 m33 m34 g3x
m42 m43 m44__g4x_

The curve is a weighted
sum of the elements of
geometry matrix

The weights are each
cubic polynomials of t
called blending function

21



Derivative of Q1)

Derivative of Q(t)is the parametric tangent vector of the
curve.

Q'(t)=%T-C:[3t2 il G

Qt)=[3at? +2bt+c, 3Bat’+2bt+c, 3at’+2bt+c,]

22



Curve Design : Determining C

A curve segment Q(f) is defined by constraints on:

(1) endpoints
(2) tangent vectors

and (3) continuity between segments

Each cubic polynomial of Q(f) has 4 coefficients,
so 4 constraints will be needed,

allowing us

to formulate 4 equations in the 4 unknowns,
then solving for the unknowns.

23



Hermit Curves

A cubic Hermite curve segment interpolating the
endpoints P, and P, is determined by constraints
on

the endpoints P, and P,

and

tangent vectors at the endpoints R, and R,

24



Hermit Curves

The Hermite Geometry Vector: G, =

Py

4

3 2
x(t)=a,t +bt +ct+d, =T-C, =T-M -G,

3 2

The constraints on x(0) and x(1):

x0)=P.=[0 0 0 1M, -G,
x(1)=P, =1 1 1 1M, -G,

X

25



Hermit Curves

x’(t):[Btz gl O}MH-GHX

Hence the tangent-vector constraints:

X(0)=R,=[0 0 1 0M, -G,
X(1)=R,, =[3 2 1 0M, -Gy,

The 4 constraints can be written as:

PP HoOP o
P, s S i

=G, = My -Gy
R, <100 10 x
R, | Foi2eenlny6

26



Hermit Curves

0 00 1 e ]
e o v R aseaaeay
MH: =
0 010 @ =
BB i ek e e g e

Q(t): [X(t) y(t) Z(t)]:T My -G, =B, -G,
(Zt3 —3t* +1)F’1 4 (— 2t° +3t2)P4

+(t -2 +t)R, + (t° —t? R,

2



Hermit Curves

f(t)
1 Pl P4

Ry

The Hermite Blending Functions

28



Bézier Curves

P

Indirectly specifies the endpoint tangent vectors by
specifying two intermediate points that are not on
the curve.

R, = Q'(O): PP, = 3(P2 = Pl)
R, = Q'(l): P3Py = 3(P4 = Ps)

29



Bézier Curves

30
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Bézier Curves

SR e
Sl T
SR e meie
T 02200

Q(t):T Mg -Gg
—(1-t)’R +3t(1-t)]R, +3t2(1—t)P3 +t3P4

The 4 polynomials in Bg= T . Mgare called the
Bernstein polynomials.
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Bézier Curves

f(t)
1

The Bernstein Polynomials

A Beézier curve is bounded by the convex hull of its
control points.

32



What's a Spline?
Smooth curve defined by some control
points

Moving the control points changes the
curve

33



Splines

The ducks and
spline are
used to make
tighter curves

spline
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‘Other_Cu,r\‘ré s

Natural Cubic Spline
» CY, C1 and C? continuous cubic polynomial

» Smoother than previous curves which don’t have C2
continuity.

» Interpolates all of the control points

- B-Splines

» CY9, C1 and C? continuous cubic polynomial
» Don't interpolate the control points

» Varieties:
« Uniform Vs Nonuniform
« Rational Vs Non-rational

- Catmull-Rom splines
“And many more....

35



Catmull-Rom Splines

Interpolation splines i.e. Passes through all control points.

Tangent at any control point is parallel to the line joining
the control points adjacent to that point.

P Pf+2 P .'= Pi+4 _Pi+2 Q(t):T : MCR .GBSi

i+3

2 ) R pZ
P e | P

0 0 1 0 (Pi—l_ i—3)/2

P B 00 (B P 25

Hermite Basis

i Ry P M= 5
o e e B N

= SO | B
P, B R T ey = |




Curve Rendefing

Brute-Force method
Forward differencing
Recursive sub-division

Brute-Force method

t =0;

SJor (i=0; i <= 100; i++){
x(t) = a t3+ b t?+ c t+ d,
Y = GET B ot d
x(t) = a,t®+ b,t?+ c,t+ d,
Plot3d( x(t), y(t), z(t) );
t += 0.01;
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Curve Rendefing
Forward differencing method
f(=at’ +bt’ +ct+d
ft+8)=a(t+8) +b(t+8) +c(t+8)+d

Af ()= f(t+0)— f(1)
=3adt’ +(3ad” +2b5)t+(ad + b5 +¢d)

J(1+0)= () +Af(1)

Af(t)=3ad’ +(3ad* +2b0)t +(ad” +bO* +¢d)
Af(t+8)=3a8(t+0) +(3ad* +2b8)(t+8)+(ad” + b5 +¢9I)
Nf(t)=Af(1+6)—Af (1)

=6ad’t+(6ad” +2b5%)

A (1+6) =AM () + N f(1)

38



Curve Rendefing
Forward differencing method

N f(t)=6adt +(6ad’ +2b67)
ANf(t+8)=6ad> (t+8)+(6ad” +2b5%)
Nf(O)=Nf{t+6)-Nf(1)

Jo=d
Af =ad’ +bd” +cd

—6aS Nf =6ad’ +2bd"
NFt+8)=AF)+Af1) ANf =6ad’
0=1/n;

f=d; Af=ad®+ bs3+ cd; Af 2= 6as®+ 2b5?; Af 3= 6ad°;
Plot(f.x, f.y, f-z );
Sor (i=0; i <= n; i++){
f+=Af; Af +=Af % Af 2+= Af 3;
Plot(f.x, f.y, f-z );

39



Curve Rendefing
Recursive sub-division

Void DrawCurveRecSub(curve, ¢ )

{

P ds P

if (Straight(curve, ¢ ) = Zdz : ¢
DrawLine(curve); Straight if d, < eandd;<e
else {
SubdivideCurve(curve, leftCurve, rightCurve);

DrawCurveRecSub(leftCurve, ¢ );
DrawCurveRecSub(RightCurve, ¢ );

40



Sub-Division of Bézier Curves

41



Curved Surfaces



Planer Surfaces

Using bi-linear interpolation

43



Parametric Bicubic¢ Surfaces

curved surface using cartesian product
Q(t) = at® +bt* +ct+d
Q(s,t) = (as® +bs? +cs+d fat’ +b't> +ct+d’)

=a,.5°t° +a,5t° +A A A +a,,5+a,t+a,,

[as=h= et

T et 2
e G Gy Gott] - Q(S,)=S-C-T
Sl na 2 ]

_[S S S 1_(;13 e P by S C:MSGMt
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Parametric Bicubic¢ Surfaces

Generalization of parametric cubic curves

The elements of geometry matrix are curves
themselves instead of constants.

Gy(t)
Q(s,t)=S-M -G(t)z[s3 s? s 1]-M |G
S " | G,(D)
s G, (1)
Ji1
Gi(t):T'Mt' i
Jis
 is |
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Parametric Bicubic¢ Surfaces

1 Y921 Y 9a
9. U U Yup
O3 Uz Usz Y3
U4 Y2z UYss Yus

~G®) Gt Git) G,(1)]=T-M,-

e e s s o oy
G| {921 92 Gas Gas |
o EC e s e P
GC,(0)| |91 92 9 G

®(A-B-C)' =C"-B"- A’
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Parametric Bicubic¢ Surfaces

(G, (t) | Ol 0 =0
G, (t
os=s-M. |GV gy |92 9z Oz Gu| v o
G;(t) Os; O3 O3 Oy
G, (1) IO ROt e o =
S Q(s,t)=S-M_-G-M/ -T' 0<s,t<1

written separately for each of

X, y and z, the form i1s
x(s,t)=S-M_-G_-M/-T
y(s,t):S-MS-Gy-MtT-T

2(s,1)=S-M,-G, M| -T
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Hermite Surfaces ~ -

Harmite Surfaces are
completely defined by

a 4X4 geometry Matrix / L)
G, \ _
Me=1),,
The surface is a (= —
. (051) FFTTF s
stacking of (s) Curves Fis=0),, :

Each (s) curve is a
Harmite Curve

With end points and
end tangents as
function of (t)

(0,0)
pe=0 s (L0) oo

- ar

- Em.m = E
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- -
L L[ P ]
-2 =1 P1)
L0 || A ()
0 0 |l P(D)
N _ [ o P
E‘.':-' g0
d P
Py = [-I'-‘ T f |].'|,,J1r ﬁ a%j;g'l
dsdiga
agip
_a-"'alru.l_
S apr
E'.]i. L.
d P
Py = [f-‘ 'L ]]-H ) afi:'!.;J,_,
dsdig
ap
| dsdi |
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L7, (1)

Folr)

Fh(t)

Hermite Surface

P,y ]= [r"'

f X

end tangents

d P
J”-.._-. P, .
i, 1.1 ﬁ_'; -
P orn 2
5w
Y TN P ar 3°p
o f [l a i 1.0 {-'.|'.‘|'I:T.i'.f||_||
d P d P d° P
| o f 0l a i 1.1 a.‘l'a'.fu_L
positions end tangents
o P o P
fr'." L1} f.] ] ‘ ‘
o ' I:T.:'.'&' [T {-'.I'.'li 1.4
Py p, | U df
o5 0.1 o 8 L1
dr ar g P g P
EI,I' {i i El.l' 1. {-'.I'.'liI:TJI'.I'u_u_'- f-':l.‘l'a.fl_-:n
d P d P d P I
i o i I df 1.1 a.‘l'a'.fu_] a.ﬁ'a‘.fl_-:._

twist vectors

d P

o s 1,0
d P

ds
g P
dsdie
g°*pP
dsdio ]

M
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Connecting Hermite Patches

To join two patches in s direction:
Patchl Patch 2

- o™ = r~ 924 Py 923 924

1 92 Yoz O b -~ e A

> > .- .- kg 41 kg 42 kg 43 kg 44
_941 Os2 s 944_ ok = = =

s
Patch 1
0

For C! continuity k = 1

od



Bezier Surface

Bézier geometry matrix G consists of 16 control
points.

Bézier bicubic formulation can be derived in
exactly the same way as the Hermite cubic:

X(5,1)=S-Mg -G, -M{ T’

Y(s,t)=S-My Gy -Mj-T’

2(s,)=S-My -Gy -M] -TT
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