Nodeling Curved Surfaces

Curved Surfaces

The use of <u>curved surfaces</u> allows for a higher level of modeling, especially for the construction of highly realistic models.

There are several approaches to modeling curved surfaces:

 (1) Similar to <u>polyhedral models</u>, we model an object by using small <u>curved surface</u> <u>patches</u> (instead of polygons) placed next to each other.

(2) Another approach is <u>solid modeling</u>, that constructs a model using elementary solid objects (such as: polyhedra, spheres, cones etc.) as building blocks.

Curved Surfaces

There are two ways to construct a model: Additive Modeling

This is the process of building the model by assembling many simpler objects.

Subtractive Modeling

This is the process of removing pieces from a given object to create a new object.

For example, creating a (cylindrical) hole in a sphere or a cube.

We can represent curved surfaces using mesh of curves. So we learn to create curves first then move to curved surfaces.

Curved Surface Patch₃

Curve Representation

There are three ways to represent a curve • Explicit: y = f(x) $\mathbf{y} = \mathbf{x}^2$ y = mx + b(-) Must be a single valued function (-) Vertical lines, say x = d? • Implicit: f(x,y) = 0 $x^2 + y^2 - r^2 = 0$ (+) y can be multiple valued function of x (-) Vertical lines? • Parametric: (x, y) = (x(t), y(t)) $(\mathbf{x}, \mathbf{y}) = (\cos t, \sin t)$ (+) Easy to specify, modify and control (-) Extra hidden variable t, the parameter

Explicit Representation

Curve in 2D: y = f(x)
Curve in 3D: y = f(x), z = g(x)
Surface in 3D: z = f(x,y)

Problems:

• How about a vertical line x = c as y = f(x)?

• Circle $y = \pm (r^2 - x^2)^{1/2}$ two or zero values for x

Rarely used in computer graphics

Implicit Representation

Curve in 2D: f(x,y) = 0• Line: ax + by + c = 0• Circle: $x^2 + y^2 - r^2 = 0$ Surface in 3d: f(x,y,z) = 0• Plane: ax + by + cz + d = 0• Sphere: $x^2 + y^2 + z^2 - r^2 = 0$ f(x,y,z) can describe 3D object: • Inside: f(x,y,z) < 0• Surface: f(x,y,z) = 0• Outside: f(x,y,z) > 0

Parametric Form for Curves

Curves: single parameter u (e.g. time) • x = x(t), y = y(t), z = z(t)Circle:

• x = cos(t), y = sin(t), z = 0Tangent described by derivative

Parametric Form for Surfaces

Use parameters u and v
x = x(u,v), y = y(u,v), z = z(u,v)
Describes surface as both u and v vary
Partial derivatives describe tangent plane at each point p(u,v) = [x(u,v) y(u,v) z(u,v)]^T

Advantages of Parametric Form

Parameters often have natural meaning
 Easy to define and calculate

- Tangent and normal
- Curves segments (for example, $0 \le u \le 1$)
- Surface patches (for example, $0 \le u, v \le 1$)

Lagrange Polynomial

- Given n+1 points $(x_0, y_0), (x_1, y_1) \dots (x_n, y_n)$
- To construct a curve that passes through these points we can use Lagrange polynomial defined as follows:.

$$y = f(x) = \sum_{k=0}^{n} y_k L_{n,k}$$
$$L_{n,k} = \frac{(x - x_o)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_o)(x_k - x_1) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

Problems:

- // y=f(x), no multiple values
- Higher order functions tend to oscillate
- No local control (change any (x_i, y_i) changes the whole curve)
- Computationally expensive due to high degree.

Piecewise Linear Polynomial

- To overcome the problems with Lagrange polynomial
 - Divide given points into overlap sequences of 4 points
 - construct 3rd degree polynomial that passes through these points, p₀, p₁, p₂, p₃ then p₃, p₄, p₅, p₆ etc.
 - Then glue the curves so that they appear sufficiently smooth at joint points.

Questions: 1. Why 3rd Degree curves used? 2. How to measure smoothness at joint point?

Why Cubic Curves?

A curve is approximated by a <u>piecewise polynomial</u> curve.

- <u>Cubic polynomials</u> are most often used because:
- (1) Lower-degree polynomials offer too little flexibility in controlling the shape of the curve.
- (2) Higher-degree polynomials can introduce unwanted wiggles and also require more computation.

(3) No lower-degree representation allows a curve segment to be defined by two given endpoints with given derivative at each endpoints.

(4) No lower-degree curves are nonplanar in 3D.

Measure of Smoothness

<u> G^{0} Geometric</u> Continuity $\Leftrightarrow C^{0}$ Parametric Continuity If two curve segments join together.

<u>G¹ Geometric Continuity</u>

If the **directions** (but not necessarily the magnitudes) of the two segments' tangent vectors are equal at a join point.

C¹ Parametric Continuity

If the **directions and magnitudes** of the two segments' tangent vectors are equal at a join point.

C² Parametric Continuity

If the direction and magnitude of $Q^2(t)$ (curvature or **acceleration**) are equal at the join point.

Cⁿ Parametric Continuity

If the direction and magnitude of $Q^n(t)$ through the *n*th derivative are equal at the join point.

Measure of Smoothness

• By increasing parametric continuity we can increase smoothness of the curve.

- $Q_1 \& Q_2$ are C^1 and G^1 continuous
- Q₁& Q₃ are G¹ continuous only as Tangent vectors have different magnitude.
- Observe the effect of increasing in magnitude of TV

Desirable Properties of a Curve

- Simple control
 - Ines need only two points
 - curves will need more (but not significantly more)
- Intuitive control
 - Physically meaningful quantities like position, tangent, curvature etc.
- Global Vs. Local Control
 - Portion of curve effected by a control point.
- General Parameterization
 - Handle multi-valued x-y mapping

Desirable Properties of a Curve cont'd

- Interpolation Vs Approximation
- Axis Independent
 - Equation might change but the shape remain same under a coordinate transform
 - (translation, rotation, scaling) of a curve = (translation, rotation, scaling) of its control points.
- Degree of Smoothness.
 - May need more or less
 - May need varying degrees of smoothness in a single curve.

Interpolation Vs. Approximation Given n + 1 points $P_0(x_0, y_0)$, $P_1(x_1, y_1)$, ..., $P_n(x_n, y_n)$ we wish to find <u>a curve</u> that, in some sense, <u>fits the</u> <u>shape outlined by these points</u>.

Based on requirements we are faced with two problems:

Interpolation

If we require the curve to <u>pass through</u> all the points.

Approximation

If we require only that the curve be <u>near</u> these points.

Parametric Representation of Lines

Interpolation of two pointsIn Parametric form:

 $P(t) = P_1 + t \cdot (P_2 - P_1)$ $x(t) = x_1 + t \cdot (x_2 - x_1)$

 $y(t) = y_1 + t \cdot (y_2 - y_1)$

 $x(t) = TC_x = TMG_x = BG_x$ $y(t) = TC_y = TMG_y = BG_y$

Parametric Cubic Curves

$$Q(t) = [x(t) y(t) z(t)] \begin{cases} x(t) = a_x t^3 + b_x t^2 + c_x t + d_x, \\ y(t) = a_y t^3 + b_y t^2 + c_y t + d_y, \\ z(t) = a_z t^3 + b_z t^2 + c_z t + d_z, \quad 0 \le t \le 1 \end{cases}$$

$$\therefore Q(t) = \begin{bmatrix} t^3 & t^2 & t \\ T & T \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$

$$\therefore Q(t) = T \cdot C$$

Parametric Cubic Curves

✓ Now co-efficient matrix **C** can be expressed as a multiple of basis(weight) matrix **M** and geometry matrix **G**. $Q(t) = [x(t) y(t) z(t)] = T \cdot C = T \cdot M \cdot G$

- Each element of geometry vector G has 3 component for x, y and z.
- Components of G can be expressed as G_x, G_y and G_z.

Parametric Cubic Curves

Multiplying out only the x-component we get

$$x(t) = T \cdot M \cdot G_{x} = \begin{bmatrix} t^{3} & t^{2} & t \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} g_{1x} \\ g_{2x} \\ g_{3x} \\ g_{4x} \end{bmatrix}$$

$$x(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41})g_{1x}$$

+ $(t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{42})g_{2x}$
+ $(t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43})g_{3x}$
+ $(t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44})g_{4x}$
a blending function

The curve is a weighted sum of the elements of geometry matrix
 The weights are each cubic polynomials of t called *blending function*

Derivative of Q(t)

Construction of *Q(t)* is the parametric *tangent vector* of the curve.

$$\frac{dQ(t)}{dt} = Q'(t) = \begin{bmatrix} \frac{d}{dt}x(t) & \frac{d}{dt}y(t) & \frac{d}{dt}z(t) \end{bmatrix}$$
$$Q'(t) = \frac{d}{dt}T \cdot C = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \cdot C$$
$$Q'(t) = \begin{bmatrix} 3a_xt^2 + 2b_xt + c_x & 3a_yt^2 + 2b_yt + c_y & 3a_zt^2 + 2b_zt + c_z \end{bmatrix}$$

Curve Design : Determining C ____

A curve segment Q(t) is defined by <u>constraints</u> on:

- (1) endpoints
- (2) tangent vectors
- and (3) continuity between segments

Each cubic polynomial of *Q*(*t*) has <u>4 coefficients</u>, so <u>4 constraints</u> will be needed, allowing us to formulate <u>4 equations in the 4 unknowns</u>, then solving for the unknowns.

Hermit Curves R_1 P_1 P_4

```
A cubic <u>Hermite curve</u> segment interpolating the
endpoints P_1 and P_4 is determined by constraints
on
the endpoints P_1 and P_4
and
tangent vectors at the endpoints R_1 and R_4
```

The Hermite Geometry Vector: $G_H = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix}$

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x = T \cdot C_x = T \cdot M_H \cdot G_{H_x}$$
$$= \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} M_H \cdot G_{H_x}$$

The constraints on x(0) and x(1): $x(0) = P_{1x} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} M_H \cdot G_{H_x}$ $x(1) = P_{4x} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} M_H \cdot G_{H_x}$

$$x'(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} M_H \cdot G_{H_x}$$

Hence the tangent-vector constraints
$$x'(0) = R_{1x} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} M_H \cdot G_{H_x}$$
$$x'(1) = R_{4x} = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} M_H \cdot G_H$$

The 4 constraints can be written as:

$$\begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix}_x = G_{H_x} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} M_H \cdot G_{H_x}$$

6.

$$M_{H} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$Q(t) = [x(t) \quad y(t) \quad z(t)] = T \cdot M_H \cdot G_H = B_H \cdot G_H$$
$$= (2t^3 - 3t^2 + 1)P_1 + (-2t^3 + 3t^2)P_4$$
$$+ (t^3 - 2t^2 + t)R_1 + (t^3 - t^2)R_4$$

Indirectly specifies the endpoint tangent vectors by specifying two intermediate points that are not on the curve.

$$R_1 = Q'(0) = P_1 P_2 = 3(P_2 - P_1)$$

$$R_4 = Q'(1) = P_3 P_4 = 3(P_4 - P_3)$$

The Bézier Geometry Vector: $G_B = \begin{bmatrix} P_2 \\ P_2 \\ P_3 \end{bmatrix}$

$$G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \end{bmatrix} = M_{HB} \cdot G_{B}$$

$$Q(t) = T \cdot M_H \cdot G_H = T \cdot M_H \cdot (M_{HB} \cdot G_B)$$
$$= T \cdot (M_H \cdot M_{HB}) \cdot G_B = T \cdot M_B \cdot G_B$$

 P_1

 P_4

$$M_B = M_H \cdot M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$Q(t) = T \cdot M_B \cdot G_B$$

= $(1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t)P_3 + t^3 P_2$

The 4 polynomials in $B_B = T \cdot M_B$ are called the Bernstein polynomials.

A Bézier curve is bounded by the convex hull of its control points.

What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

Splines

Other Curves

- Natural Cubic Spline
 - C⁰, C¹ and C² continuous cubic polynomial
 - Smoother than previous curves which don't have C² continuity.
 - Interpolates all of the control points
- B-Splines
 - C⁰, C¹ and C² continuous cubic polynomial
 - Don't interpolate the control points
 - Varieties:
 - Uniform Vs Nonuniform
 - Rational Vs Non-rational
- Catmull-Rom splines
- And many more....

Catmull-Rom Splines

Interpolation splines i.e. Passes through all control points.
 Tangent at any control point is parallel to the line joining the control points adjacent to that point.

Curve Rendering

 Brute-Force method
 Forward differencing Recursive sub-division **Brute-Force method** t = 0;for (i=0; i <= 100; i++) { $x(t) = a_{x}t^{3} + b_{x}t^{2} + c_{x}t + d_{x}$ $y(t) = a_{u}t^{3} + b_{u}t^{2} + c_{u}t + d_{u}$ $x(t) = a_{z}t^{3} + b_{z}t^{2} + c_{z}t + d_{z}$ Plot3d(x(t), y(t), z(t));t += 0.01;

Curve Rendering Forward differencing method

$$f(t) = at^{3} + bt^{2} + ct + d$$

$$f(t+\delta) = a(t+\delta)^{3} + b(t+\delta)^{2} + c(t+\delta) + d$$

$$\Delta f(t) = f(t+\delta) - f(t)$$

$$= 3a\delta t^{2} + (3a\delta^{2} + 2b\delta)t + (a\delta^{3} + b\delta^{2} + c\delta)$$

$$\frac{f(t+\delta) = f(t) + \Delta f(t)}{\Delta f(t) = 3a\delta t^{2} + (3a\delta^{2} + 2b\delta)t + (a\delta^{3} + b\delta^{2} + c\delta)}$$

$$\Delta f(t+\delta) = 3a\delta(t+\delta)^{2} + (3a\delta^{2} + 2b\delta)(t+\delta) + (a\delta^{3} + b\delta^{2} + c\delta)$$

$$\Delta^{2} f(t) = \Delta f(t+\delta) - \Delta f(t)$$

$$= 6a\delta^{2}t + (6a\delta^{3} + 2b\delta^{2})$$

$$\Delta f(t+\delta) = \Delta f(t) + \Delta^{2} f(t)$$

Curve Rendering Forward differencing method

 $\Delta^{2} f(t) = 6a\delta^{2}t + (6a\delta^{3} + 2b\delta^{2})$ $\Delta^{2} f(t+\delta) = 6a\delta^{2}(t+\delta) + (6a\delta^{3} + 2b\delta^{2})$ $\Delta^{3} f(t) = \Delta^{2} f(t+\delta) - \Delta^{2} f(t)$ $= 6a\delta^{3}$ $\Delta^{2} f(t+\delta) = \Delta^{2} f(t) + \Delta^{3} f(t)$

$$f_o = d$$

$$\Delta f_o = a\delta^3 + b\delta^2 + c\delta$$

$$\Delta^2 f_o = 6a\delta^3 + 2b\delta^2$$

$$\Delta^3 f_o = 6a\delta^3$$

$$\begin{split} \delta &= 1 / n; \\ f &= d; \quad \Delta f = a \delta^3 + b \delta^3 + c \delta; \quad \Delta f^2 = 6a \delta^3 + 2b \delta^2; \quad \Delta f^3 = 6a \delta^3; \\ Plot(f.x, f.y, f.z); \\ for (i = 0; i <= n; i + +) \\ f &= f + = \Delta f; \quad \Delta f + = \Delta f^2; \quad \Delta f^2 + = \Delta f^3; \\ Plot(f.x, f.y, f.z); \end{split}$$

Curve Rendering Recursive sub-division

Void DrawCurveRecSub(curve, ε)

if (Straight(curve, ε) DrawLine(curve);

else {

SubdivideCurve(curve, leftCurve, rightCurve); DrawCurveRecSub(leftCurve, ε); DrawCurveRecSub(RightCurve, ε);

Sub-Division of Bézier Curves

Curved Surfaces

Planer Surfaces

Using bi-linear interpolation

Curved surface using cartesian product $Q(t) = at^3 + bt^2 + ct + d$ $Q(s,t) = (as^{3} + bs^{2} + cs + d)(a't^{3} + b't^{2} + c't + d')$ $= a_{33}s^{3}t^{3} + a_{32}s^{3}t^{2} + \Lambda \Lambda \Lambda + a_{10}s + a_{01}t + a_{00}$ $= \begin{bmatrix} s^{3} & s^{2} & s & 1 \end{bmatrix} \begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} \begin{bmatrix} a' & b' & c' & d' \end{bmatrix} \begin{vmatrix} t^{3} \\ t^{2} \\ t \\ 1 \end{vmatrix}$ $\therefore Q(s,t) = S \cdot C \cdot T^T$

Generalization of parametric cubic curves
 The elements of geometry matrix are curves themselves instead of constants.

$$Q(s,t) = S \cdot M_{s} \cdot G(t) = \begin{bmatrix} s^{3} & s^{2} & s & 1 \end{bmatrix} \cdot M_{s} \cdot \begin{bmatrix} G_{1}(t) \\ G_{2}(t) \\ G_{3}(t) \\ G_{4}(t) \end{bmatrix}$$

$$G_{i}(t) = T \cdot M_{t} \cdot \begin{vmatrix} g_{i1} \\ g_{i2} \\ g_{i3} \\ g_{i4} \end{vmatrix}$$

 $\therefore \begin{bmatrix} G_{1}(t) & G_{2}(t) & G_{3}(t) & G_{4}(t) \end{bmatrix} = T \cdot M_{t} \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix}$

 $\therefore \begin{bmatrix} G_{1}(t) \\ G_{2}(t) \\ G_{3}(t) \\ G_{4}(t) \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix} \cdot M_{t}^{T} \cdot T^{T}$

 $\Theta \left(A \cdot B \cdot C \right)^T = C^T \cdot B^T \cdot A^T$

$$Q(s,t) = S \cdot M_{s} \cdot \begin{bmatrix} G_{1}(t) \\ G_{2}(t) \\ G_{3}(t) \\ G_{4}(t) \end{bmatrix} = S \cdot M_{s} \cdot \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix} \cdot M_{t}^{T} \cdot T^{T}$$

 $\therefore Q(s,t) = S \cdot M_s \cdot G \cdot M_t^T \cdot T^T \qquad 0 \le s,t \le 1$ Written separately for each of x, y and z, the form is $x(s,t) = S \cdot M_s \cdot G_s \cdot M_t^T \cdot T$

$$y(s,t) = S \cdot M_s \cdot G_y \cdot M_t^T \cdot T$$

 $z(s,t) = S \cdot M_s \cdot G_z \cdot M_t^T \cdot T$

Hermite Surfaces

- Harmite Surfaces are completely defined by a 4X4 geometry Matrix
 G_H
- The surface is a stacking of (s) Curves
- Each (s) curve is a Harmite Curve
- With end points and end tangents as function of (t)

Hermite Surface

$$P(s) = \begin{bmatrix} s^{3} & s^{2} & s & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_{1}(t) \\ P_{4}(t) \\ P_{1}'(t) \end{bmatrix}$$

$$P_{1}(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} \frac{P_{0,0}}{P_{0,1}} \\ \frac{\partial P}{\partial t}_{0,0} \\ \frac{\partial P}{\partial t}_{0,1} \end{bmatrix}$$

$$P_{1}'(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} \frac{\partial P}{\partial s}_{0,0} \\ \frac{\partial P}{\partial t}_{0,0} \\ \frac{\partial P}{\partial t}_{0,1} \end{bmatrix}$$

$$P_{1}'(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} \frac{\partial P}{\partial s}_{0,0} \\ \frac{\partial P}{\partial t}_{0,0} \\ \frac{\partial P}{\partial t}_{0,1} \end{bmatrix}$$

$$P_{1}'(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} \frac{\partial P}{\partial s}_{0,0} \\ \frac{\partial P}{\partial t}_{0,0} \\ \frac{\partial P}{\partial t}_{0,1} \end{bmatrix}$$

$$P_{1}'(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} \frac{\partial P}{\partial s}_{0,0} \\ \frac{\partial P}{\partial s}_{0,0} \\ \frac{\partial P}{\partial s}_{0,1} \end{bmatrix}$$

Hermite Surface

$$\begin{bmatrix} P_{1}(t) & P_{4}(t) & P_{1}'(t) & P_{4}'(t) \end{bmatrix} = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} M_{h} \begin{bmatrix} P_{0,0} & P_{1,0} & \frac{\partial P}{\partial s_{0,0}} \\ P_{0,1} & P_{1,1} & \frac{\partial P}{\partial s_{0,1}} \\ \frac{\partial P}{\partial t_{0,0}} & \frac{\partial P}{\partial t_{1,0}} & \frac{\partial^{2} P}{\partial s \partial t_{0,0}} \\ \frac{\partial P}{\partial s \partial t_{0,0}} & \frac{\partial P}{\partial s \partial t_{0,0}} & \frac{\partial^{2} P}{\partial s \partial t_{0,0}} \end{bmatrix}$$

$$\begin{bmatrix} P_{0,0} & P_{1,0} & \frac{\partial P}{\partial s_{0,0}} & \frac{\partial P}{\partial s_{1,0}} \\ P_{0,1} & P_{1,1} & \frac{\partial P}{\partial s_{0,1}} & \frac{\partial P}{\partial s_{1,1}} \\ \frac{\partial P}{\partial t_{0,0}} & \frac{\partial P}{\partial t_{1,0}} & \frac{\partial^2 P}{\partial s \partial t_{0,0}} & \frac{\partial^2 P}{\partial s \partial t_{1,0}} \\ \frac{\partial P}{\partial t_{0,1}} & \frac{\partial P}{\partial t_{1,1}} & \frac{\partial^2 P}{\partial s \partial t_{0,1}} & \frac{\partial^2 P}{\partial s \partial t_{1,0}} \end{bmatrix}$$

Connecting Hermite Patches

To join two patches in **s** direction:

For C^1 continuity k = 1

Bézier Surface

- F Bézier geometry matrix G consists of 16 control points.
- ✓ Bézier bicubic formulation can be derived in exactly the same way as the Hermite cubic:

$$x(s,t) = S \cdot M_B \cdot G_{B_x} \cdot M_B^T \cdot T^T$$
$$y(s,t) = S \cdot M_B \cdot G_{B_y} \cdot M_B^T \cdot T^T$$

$$z(s,t) = S \cdot M_B \cdot G_{B_z} \cdot M_B^T \cdot T^T$$

