CURVE

REPRESENTATION




Representation

Non-parametric
form: vy = f(X)

Implicit form:
f(x,y) =0

Explicit form:
v=mx+Db

Parametric form:
X = x(t)
y = y(t)




2"d degree implicit representation:

ax’ +2bxy +cy’ +2dx+2ey+ f =0

Any guess, why the factor 2 is used ?

This form of the expression, with the
coefficients, provide a wide variety of 2D
curve forms called:

CONIC SECTIONS




Parabola- cutting plane
parallel to side of cone.

Circle and Ellipse Hyperbolas
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PARABOLA
y* =4ax;a >0

Focus : (a,0);
Directrix =—a.

eccentricity,e =1

x=at’;y==Fat.

or
x = tan” (§);
y= i2\/ atan(@).

CONIC SECTIONS

HYPERBOLA ELLIPSE
x2 y2
ar? b2
b* =a?(e?-1);
e >1; Foci : (ae,0).

Directrices : x =*a/ e;

b =a*(1-e?);
0<e<l.
Foci : (ae,0);

Directrices : x =t*a/e.

x = asec(t),
y =btan(?);

—-7m/2<t<rml2.

Rectangular 25 = eI,

Hyperbola : y = bsin(z);

e=J27x=ct;y=c/t. sl




o)

T

Ellipse (e=1/2), parabola (e=1) and hyperbola (e=2)
with fixed focus F and directrix.

For circle, 0.




Polar Equation of a conic (home assignment):

B e.L
1+ ecos(f)

4 ,  where, L =dist(F,d)

F - Focal Point; d — Directrix;

e — Eccentricity.

Condns: Focal point at Origin;

e.L = [; is called the “semi-latus rectum”.




ax’ +2bxy +cy’ +2dx+2ey+ f =0

If the conic passes through the origin: f = 0.

Assuming, one of the parameters to be a
constant, c=1.0,f=1.0

Remaining 5 Coeffs. may be obtained using

5 geometric conditions:

Say:
Boundary Conditions -
- two (2) end points
- slope of the curves at two (2) end points.
and
- one (1) intermediate point




fle)==z ssin(z” )+1
fiz) =sin(z® ) +22° seos(z”)

(2.8137, 3.8081)

(1.3552, 2.3076)




Generalized CONIC

ax’ +2bxy +cy” +2dx+2ey+ f =0

Re-organize:

as XSX' =0, Sissymmetric

=|x y 1] =0

or

XAX"+GX+ f=0




Special Conditions:

If b2 = ac, the equation represents
a PARABOLA;

If b2 < ac, the equation represents
an ELLIPSE;

If b2 > ac, the equation represents
a HYPERBOLA.




SPACE CURVE (3-D)

Explicit non-parametric representation:
X = X, y = f(x), z = g(x).

Non-parametric implicit representation:
f(x,y,z) =0, dg(x,y,2z)=0.

Intersection of the above two surfaces
represents a curve.

Examples:




A parametric space curve:

x = x(t), y = f(t), z=g(1).

o i x=A[a.cos(B+7m/4)—b.cos3(8+7/4)],

SEIp el y = pyla.sin(@+ 7/ 4)—b.sin3(6+ 7/ 4)],
baseball: 2 = c.sin(26).

A=1+d.sin(20) = 1+d(z/¢),

UL =1—d.sin(20) =1-d(z/ ¢);
0=2m0<t<1.0.

x =r.cos(t),y =r.sin(t), z = bt;
b#0,—c0<t<oo




PARAMETRIC CUBIC CURVES

x()=a’ +bt* +cit+d,

3 2
y()y=at’ +bt +cit+d,

z()=a t’ +bt’ +ct+d..

0W)=x® y@® zv)|=T.C,

where, T= [t3 t° t 1] and C =




C1 (Atlas)
C2 (Axis)
C3
4
C5
Co
7

s sacrum

Coceyx




tumning point, stationary point & local maximum (—6,9?2)

fix) = X3 - 332 - 144x + 432

y-intercept (432)

inflection point (1,286)
y=1(x)=3x*-6x- 144/
/
/

-----
------------
ause
pup i

“““““ ———
turning point, stationary paointi

& global minimum (1,-14 7):

|
turning point, stationary point & local minimum (8,400)
s\ ’

{x) curve concave downwards i X) curve concave upwards

CUBIC CURVE:
- identify geonetrical/mathematical
properties



PARAMETRIC CUBIC Splines

x(t) —agt +bt’+ct+d Spline curve refers to
X X X X -
g8 any composite curve, formed
_ 3 2 with Polynomial sections,
y(t) - ayt +byt T Cyt T dy, satisfying specific continuity
3 5 conditions (1st and 2nd
z(t)=a t +bt +ct+d,. FE O e,
of the pieces.

P@®)=lxt) y@t) z())|=T.CF

where, T= [t3 t* ot 1] and CF =




Cubic spline Quadratic spline
With 6 Polynomial
segments

With 7
Polynomial
segments




P@®)=[x®) y) z@|=TCF,

where, T= [t3 t* 1] and CF =

RQ.. O &R
A0 & 8
&0 & 8
| |

You need four (4) boundary conditions ??

P(t)=At + Bt +Ct+D; 0<¢<]1.

A
1B Hermite Boundary Conditions:
P(t)=[t3 t* ot 1 o f
D P(0)= B; P(1) = B;

P'(0)=DF,; P'(1) = DR;

PO)=p 2« 1 0




P(t)=At> + Bt +Ct+D; 0<¢t<1.

A
P(0)=P;; P(1) = P: Poy=le ¢ o]
P'(0)=DP,; P'(1)= DP; D
e
Solve to get: P'(t):[3t2 ot 1 O: f’ ;
_D_

0
£(1)
DP(0)
DP(1)







In general:

Q) =[x(t) y@) zv)]=T.M.G,
Where,T=[t3 t2 t 1],

M=[mij]4x4andG=[g1 8 83 g4]T

M is a 4x4 basis matrix and G is a four

element column vector of geometric
constants, called the geometric vector.

The curve is a weighted sum of the
elements of the geometry matrix.

The weights are each cubic polynomials
of t, and are called the blending functions:
B=T.M.




CUBIC SPLINES

P(t) is the

g position vector of
any point on the
cubic spline
segment.

P(t) = [x(t), y(t), z(t)] Cartesian

or [r(t), 6(t), z(t)] Cylindrical

or [r(t), 0(t), ¢(t)] Spherical




Use boundary
conditions

to evaluate the
coeficients

P@®)=B,+B,t+B.t’ +B,t’,
t, <t<t,




P'@®)=>) (i-1)B;t-

i=1

=B,+2B,t+3B,t?

P(0)=P; P@t,)=P,
P'(0)=P'; P'(t,)=P,.




B, =P; B, = PI".
Solutions: B, +B,t,+ B.t}+ B,t; = P(t,);

B,+2B,t,+3B,t} = P'(t,);




Equation of a single cubic spline segment:

4

3(P,-P) 2P P

P(f)= P, + Pt + £2
(t1)=P + Pt+] % : : ]
2P, -P,) P P
+[ ( 1 - 2)+ 1 + 2 ]t3,°
z ty ty Rewrite as:

P(t)=P (2t =3t>+1)+ P, (=2t + 3t°)

+ Pl'(t3 —2¢% + 1) + PZ’(t3 —t%)

Various other

e Normalized Cubic splines
approaches

e Blending
e Weighting functions.

used are:



Equation of a

normalized cubic spline segment:
B=T.M;

P(t)=T.M.G=

Remember,
The derivation:




Equation of a single cubic spline segment:

3P,—P) 2P _ P,
t22 t2 t2

4

P(t)=P + P/t +]

4

4
+[2(P1_P2)+P1 +P—2]t3'
£3 2 20’
2 2 2

P@)=[x(t) y() z(t)|=T-M.G=BG,
Where,T:[t3 t? ¢ 1], M:[m

I ]4x4

T.
>

andG=|g, g g gl

For piece-wise continuity for complex
curves, two or more curve segments are
joined together.

In that case, use second derivative

P,”’(t) at end-points (joints).



Cubic Polynomial - why and how ?

The degree three polynomial - known as a cubic polynomial
- is the one that is most typically chosen for constructing smooth
curves in computer graphics.

It is used because:

1. it is the lowest degree polynomial that can support an inflection
- so we can make interesting curves, and

2. it is very well behaved numerically - that means that the curves
will usually be smooth like this: N

and not jumpy like this:

a+br+er® +dr' =y JNGHPIEOE)NEREFI TR EA)

control points:

Solution for the Coefficients can be given as:




What do we do here - even 3" degree is insufficient.

3

What about degree five, with how many extra control points ??

Three factors in the design:

« Actual Degree/order in the response of the system ??
* No. of Control Points
- Degree of the Polynomial ?

Piecewise polynomial curves:

/\/+




P," and P;° known,
But what about P,’ ?

P)=Y (i~ 1)~ 2)B e

i=1

= 2B, +6B,t

At the beginning of

the second segment :
P" =2B,;

(t=0)




P'(t,)=2B,+6B,t, = P"(0)=2B; -

_3®,-P) 2P P

t22 t2 t2 ,
2P -P,) P P

B, = % 2)+—1+—2;
t; 2 %;

2P, -P)) P, Py| |3(P,-P;) 2P, P,| 3(Py-P,) 2P, P,
6t2 3 + 2+ > +2 5 g - =2 5 - -
b H 4§ t 2 2] 3 3 3]

Multiplying both sides by t5t;



Generalized equation for any two adjacent

cubic spline segments, P, (t) and P, ,(t) :

For first seg 3(P. — P p’  p
Pk(t)= Pk +Pk't+[ ( k+1 k)_ k" k+1 1¢2
ti1 Ly Lyit
4 4
+[2(Pk;Pk+1)+ P, +Pk+1]t3;
Lyt tivi  lin
For seco ' '
3P,.,—P 2P P
segment: Pk+1(t)= Pk+1 +Pk’+1t+[ ( k+22 k+1)_ k+1  ~ k+2 ]tZ
Licta Lyt Lyt
2(P P,
+[ ( k+13 k+2) : _|_ :+2 ]t3
tk+2 tk+2 tk+2

Curvature Continuity ensured as:
3

k +lrk +2

’ ’ 2 2
teabx + 200+ 2) Pty Fn = i (Feaz =Byt (B — Fi)]



Equation of a
normalized cubic spline segment:

F=T.N;

P(t)=T.N.G =

For curvature Continuity:

Ijk '+4])k'+1 + IDk'+2 — 3[I)k+2 - Pk]




The Hermite P(t)=P1(2t3—3t2+1)+
Splines PZ(—2t3 +3t2)

+ P (=2t + 1)

+ Pz'(t3 —t7)




For curvature Continuity: ' ' . .
})k +4})k+1 T })k+2 — 3[})k+2 - })k]

For three control points (knots) this works as:
! ' !
b =3(K-R)-h -B]/4

3

k +ltk +2

In general:

tt+2Pk’ + z(thl +tk+2)l{+l +tt+ll{+2 = [tlzﬂ(PhZ - ﬂ+l)+ttz+2(ﬂ+l - ﬂ)]

For N points ??

For 3 points - 1 Eqn. (& 1 unknown)
For 4 points - 2 eqns. (& 2 unknowns)

For N points — (N-2) eqns. (& N-2 unknowns)

Write the eqn. set for N = 5; in matrix form.




0
by ¢
az bo

(i3

b

I

[r, 2(t, +1,) 1, |'| 0

I, 2(t, +1,

0

AL

Cn—1

by,

ﬂﬂ : -
Ly~ 7

3
—[5a-R)+

4

[’3—1(& - Pn—l)"

I
L "o~1"0 3

L4

2,+1) 1
dy| T4 fy

b2

dp

F

3
—|2p,-p)+i3(P,- B))
i

2 [~ B)+2(B- P
14,

k2P~ P )+e2P - Py

I-l‘l

A, +t5) ¢,

t; 2(:,-;-:,_,) t;_.
0 1 AP

Solve using
Forward-
backward
substitutio




' S Let lve for N = 4;
Ijlc'+41)k+1+1)k+2 _3[13k+2_1)k] =ES SOIE 1oL

Re-arrange to get:

Problem: The position vectors of a normalized cubic
spline are givenas (00), (1 1), (2-1) and (3 0).
The tangent vectors at the ends are both (1 1).

Soln: The 2 internal tangent vectors are
calculated, and both are equal to (1 -0.8).
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14+

12

10 |

Cuhic

No use of 2nd
derivative
smoothing

Cubiz

piecewise
cubic

spline
segments

Using 2nd
derivative
smoothing

|
16

12+

10+

|
10

1
12

|
14

|
16




Cubic spline curve

151 Il No use of 2nd
derivative
i il smoothing

Cubic spline curnse

Examples of spline
interpolation

Using 2nd
derivative
smoothing




Other Variants:

- Cardinal Splines;

- Catmul-Rom splines
- Irvine-Hall Splines
- T-spline

- B-spline




BEZIER CURVES

e Basis functions are real

e Degree of polynomial is one less than the
number of points

e Curve generally follows the shape of the
defining polygon

e First and last points on the curve are
coincident with the first and last points of the
polygon

e Tangent vectors at the ends of the curve have
the same directions as the respective spans

e The curve is contained within the convex hull
of the defining polygon

e Curve is invariant under any affine
transformation.




A few typical examples qf
cubic polynomials for Bezier

B o e
ENEEEEREEREEERR

IIIIII...III.III..:‘




BEZIER CURVES

Equation of a parametric Bezier curve:

P(ty=Y BJ, (t); 0<r<1
i=0

B.'s are called the control points;




where the Bezier or Bernstein basis or
blending function is:

Binomial Coefficients:
(ith, nth-order Bernstein basis function)

n l n—i
Jn,i(t): it(l_t) )

n n!

i) iln—i)




J,.,i(t) is the ith, nth order Bernstein
basis function.

N is the degree of the defining
Bernstein basis function (polynomial

curve segment).

This is one less than the number of
points used in defining Bezier polygons.




P@®)=) BJ,®); 0<t<1
=0

n,). ;
J,,,,,-(t)=£ijt’(1—t)” 4 Limits for

_ n! 00 1.
Jo(0) == 0°(1-0)" =1,

0'(1-0)"" =0;




Jn,n(l) — l,i =n; Thus:
P(0)=B,J

Jn,i(l) — O,l Z . n,()(o) — BO'

P(1)=B,J,,(1)=B,.

n* nn

For any t:

Also Verify:

(1=0).J 0, (O +1T

(n—l),(i—l)(t); n>i=1




Below are some examples of BBF
(Bezier /Bernstein blending functions:

o 1/3 0.5 2/3 1
t->
n = 3 (cubic)




J,o()=1"(1-1) =(1-1)’;
J, () =3t(1-1);

J,,(t)=3.1".(1-1);

J, ()=t




- P®)=(1-t’B, +3¢(1-1)°B, +3t°(1-t)B, + B,
us, _

for 1 3 -3 1]|B,
Cubic
Bezier: i FERrC A DN it ;n=3.
-3 3 0 0|B,
0 0 0|B,




Po=lt* © r ¢ 1}

1
—4
6
—4
1

—4
12
—-12
4
0

6 -4
~12 4
6 0
0
0

J (D]




n-—j
_l_

j(—l)” i 0<(i+j)<n

otherwise




n\ . .
J, (1) = L .Jt’ (I-)"";
l

n n!

] l(n—1)!
Computation of ( )
successive binomial coefficients:

=

Get the expressions of J,; and J,;

Home Assignment:




Bezier Basis Functions




Bezier Curve Examples




Recursive geometric definition of
BEZIER CURVES




Recursive Bezier Curve Example




Iterative Bezier Curve Anlmatlon




Iterative Higher-order Bezier Curve
Animation










More to follow:

o B-splines represented as blending functions

e Conversion between one format to another.
e Knots and control points.

e When B-spline becomes a Bezier?

QUADRICS - 3-D analogue of conics:




Basis Splines (B-splines):
- a generalisation of a Bézier curve, avoids the Runge
phenomenon without increasing the degree of the B-spline

The green curve is a 9th-order interpolating
polynomial (using ten equally-spaced
interpolating points).

At the interpolating points, the error
between the function and the interpolating
polynomial is (by definition) zero.

Between the interpolating points (especiall
in the region close to the endpoints 1 and
-1), the error between the function and the
interpolating polynomial gets worse for
higher-order polynomials.




Limitations of Bezier Curves:
- Not enough flexibility
- Higher degree with more No. of control points

- Larger degree has instability, nhumerical errors, and
computational costly

- Not enough local control (global effect of change).




In mathematics, a splineis a
special function defined piece-
wise by polynomials.

Spline interpolation is often
preferred to polynomial
interpolation because it yields
similar results, even when using
Iow_-d_egree polynomials, while Periodic uniform B-spline
avoiding Runge's phenomenon basis, with k= 3, p = 3;
for higher degrees. Uniform Knots: [0 12 3 45 6];

N; . (i-th B-spline blending function, of order k) is a
polynomial of order k (degree k-1) on each interval:

k must be at least 2 (linear) and can be not more,
than p+1 (the number of control points = n in Fig. above).

A knot vector (t,, t,, ... , t,,,) must be specified.
Across the knots basis, functions are C%2 continuous.




The form of a B-spline curve is very similar to that of a
Bézier curve. However, unlike a Bézier curve, a B-spline curve
involves more information, namely:

- a set of P control points,
- a knot vector of M knots, and
- adegree N (i.e. order n+1).

Note that n, m and p must satisfym = n + p + 1.

More precisely, if we want to define a B-spline curve of degree
n with p control points, we have to supply n + p + 1 knots:

to, t1, EmEmy tn+p+1-

On the other hand, if a knot vector of m knots and p
control points are given, the degree of the B-spline curve is:
n=m-p-1 or m - (p+1).




Basis Splines (B-splines):
e Degree is independent of the No. of control Points

e Local Control over Shape

e More complex than Bezier

Given m values , called knots, with A RS S

a B-spline of degree I is a parametric curve <k

composed of linear combination of basis B-splines b,-,n

of degree n): mon—s ——
S S(t)= > Pibialt) , t €[t tm-n-1] Isns<p;
=0 / * unnecessary

The P; are called control points or de Boor points
(there are m-n-1 control points). A polygon can be
constructed by connecting the de Boor points with lines,
starting with Py and finishing with P,,,_,,_>. This polygon is
called the de Boor polygon.




The m-n-1 basis B-splines of degree n
forn =0,1,...,(m-2), can be defined using the Cox-de Boor
recursion formula: L 1 if t;<t<ty

otherwise

(J+n+1) can not exceed m-1, which limits both j and n.

The above recursion formula specifies how to construct nth-
order function from two B-spline function of order (n-1).

No. of Control Points: (M — n - 1);
(m-n-1=4=n+1; n=3) - If B-
Degree of Spline: n; splinehas[0 000111 1]knot
vector, we get Bezier basis.
No. of Knots: m ( = No. of Control Points + degree + 1);




B-splines

OPEN CLAMPED CLOSED
The above figures have p control points (p=10) and n =
3. Then, m must be 14, so that the knot vector has 14 knots.

To have the clamped effect, the first n+1 = 4 and the
last 4 knots must be identical. The remaining 14-(4 +4) =6
knots can be anywhere in the domain (giving non-periodic structure).

In fact, the central curve is generated with knot vector:
v={o0,0,0,0,0.14, 0.28, 0.42, 0.57,0.71,0.85,1,1,1,1 }.

Note that except for the first four and last four knots,
the middle ones are almost uniformly spaced. In fact, the little
triangles are the knot points. Periodic structure gives closed
curves. Avoid multiplicty at ends for open unclamped curves.




The “Standard Knot Vector” for a B-spline of
order (n + 1) begins and end with a knot of “multiplicity”
(n+1) and uses unit spacing for the remaining knots.

Let, No. of control points: m-n-
and for a cubic (n=3) B-spline: n +

So, m = 12; The “Standard Knot Vector” is”

[0000 1234 5555]

Periodic, 3,
Cubic B-spline Bo,3(f) =(1-1)" /6,
Blending functions : 3 5

B; .(t) is non-zero only Iin B1,3(t) — (3-t — 61" + 4) / 6,

the int I:
€ Interva Bys(t)= (3.2 +36> +31+1)/6;

Hence it spans the knots:

ti,ti+1,ti+2 i+n+1] B3,3(0 — t3 /6




The recursion for integer knots
(n)B, (1) =
(t=)B,,(O)+n+1+j-10)B,, , (1)

Lets solve for, the B-spline function of order 2
(degree n=1) beginning at n=0, the recursion is ??

Degree is “"N” and orderis "Mm” = n + 1.
1 if f.j < f < tj_
0 otherwise




Now Plot B, (f) from
Two Boxes B,,(f) and B, (1)

By (X) + (2-X)By4(x)

B,(t) is a tent function



= B-splines of order 2 are tent
functions, starting at a knot,

rising linearly to 1 at the next
knot, and decaying linearly to 0
two knots over.

They (B, & B, ;) are
continuous.

Order 2 implies a continuous
derivative of order 0.

Order 2 knots are piecewise
linear




Order 3 - B,,(f) from Two Tent Functions

(n)Bjn (¢) =(t - j)Bj,n—l(t) +(n+1+ _t)Bj+1,n—1(t)
-]



1,

a(z‘):?f 0<r<li

3 3
b(t)=—— (@t -=)1<tr<?2
(1) 2 { 2)

c(f)Z%(3—t)2 2<t<3

__—joint

1
support
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Joints: Values of functions at
adjacent segments;

Knot — Values of t, where
segments meet




Constant B-spline: b: (1)
Js

— llt:i 1] =

Linear B-spline: t—t,; .
P tg__l_l_"’t_ if ; 1 <ijp

1+2— 3 : i
Tir2—Ti11 if tj_|_1 ":_:t <. tj_|_

) otherwise

—(t — i)+ (=t )+ 1 i St <ty
3(1 = (t = tj12))? tiva =t =ty
otherwise




For the special case of the cubic B-spline (k = 4). the basis functions are

( 1(s—i)3
T g(s—i— 1)% +3(s —i— 12 3(s—i— 1) +
BL}{S:I:{ E[S{S—T—QJ G{S—?—)) ‘|—f-l]
- (s—i-3)
0

fi+l1<s<i1+2
fi+2<s<i+3
fi+3<s<i+4

ifi<s<i+1

otherwise

A Convenlent Representation

Because of the local support property. we can rewrite the equation for a cubic B-spline as

]

p(s) = 5 [(1 = (s — ) piailtte

where i < 5 << 1+ 1. A simila O 3(1) (1 t) /6

B y()=(3.6 —6t"+4)/6;
g et i 9 <41 32,3(9 = (3.0 +3t° +3t+1)/6;

33(f)_f /6.

We can also include the placement matrix G;:

p(s)=[1 s 52 SE]Ban‘p,

FR S ¥ LV

Apica+ (s —1)°pi]

ds



B-Spline Examples

Eal)

Order 4, Degree 3, Knots = 5, Poly pieces = 4.

0 3¢ - =
Order 5, Degree 4, Knots = 6, Poly pieces =




A B-Spline of Order 4, and the
Four Cubic Polynomials from
which it is made.

Knot Sequence:
[012 34]




A B-Spline of Order 4, and the Four Cubic Polynomials
from which It Is Made

Knot Sequence: [0 1.5 2.3 4 5]




When the knots are equidistant we say the B-
spline is uniform, otherwise we call it non-uniform.

NURBS: Non-uniform Regularized B-Splines

Uniform B-spline

When the B-spline is uniform, the basis B-splines for a given
degree n are just shifted copies of each other. An alternative
non-recursive definition for the m—n-1 basis B-splines is:

When the number of
Control points is the same as
the order, the B-Spline
degenerates into a Bézier

(t—t)" ift 21,
0 | if + < ¢, The shape of the HENS
| %L  functions is determined by

is the truncated power function. the position of the knots.







For
Bezier:

For

ic B-splines, with
orm Knot vector: 1

3 42 —
2 t.1]El

i(t) =

PO=lF & ¢ 1
Bo,s(f):(l_tf/@
Bia(t)= (3.0 =6° +4)/6;

Cubic-splines:Bm(t) (— 3.5 +3¢° +3t+1)/6;
P(t) =

t

B3,3(l,:t3 /6
| 1

U

U

-3 1] B,
3 0| B
0| B,
0| B;

)
Pk+1
P’

» 1

U J|_Pk+1'_
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4
P@®) => Bt <t<t,.

i=1

3
.P(u) = Z g H (u)
k=0

P(t)= P (2t> —=3t> +1)+ P, (=2t +3t°)
CUBIC SF

P (P =2t )+ P, (80— t?)

PO =S BJ,0; 0<t<1 =Al= L=

=P M s
’ I ] i/(n —1i)!

m—rn—

I::t) = Z Pibi,ﬂ[t) , T € [t“’tm_“] » Iine

E]j:ﬂl:t) — 1 if tj E t < f-j_|_

0 otherwise FRSH S PN Ep ) j=0,1,...,m-n-2
t—1; 1 —
L ] j+n+1
bin(t) = T——"bjm-1(t) + —bjr1n1(f)
jtn T by j+n+1 7 t541
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cubic B-spline
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Figure 2. Spatial rational closed B-spline curves, only the curves of order k = 2 + 34,
Figure 1. Spatial B-spline curves, only the curves of order k£ ¢ = 0,1,... are drawn. The weight of the control point marked with filled dot is 4,
are drawn. while that of the rest is 1.






QUADRIC SURFACES

Some trivial examples:

(x—a)’ +(y=>b) +(z—c)" =r’;

X =17.C08Q.Cos0, —% < ¢g%

SPHERE

y=r.cosg.smb, —rt<P<rx

z =r.sIng.




Y+ +(5) =1
da b C

X =a.cos@.cosb, —%s¢g%

y=b.cos@d.sinf@, —r<P<rx

ELLIPSOID

2

+(E) =1,
C

x=a.(r+cos@).cosl, —t<P<rx
y=>b.(r+cos@).sml, —r<P<nx

z=c.sIng.




SUPERELLIPSOID

)+ ) =
a b c

X=a.cos" ¢.cos” 6, —% <P< %
y=b.cos' ¢.sin" @8, —w<¢p<rx
z =c.sIn s, Q.

SUPERQUADRICS:




General expression of a Quadric Surface
Ax?*+ By?* + Cz2 + Dxy+ Eyz + Fxg
+Gx+ Hy+Jz+ K = (.

The above is a generalization of the general
conic equation in 3-D. In matrix form, it is:

XSXT =0,

=[xy oz 1jan)




Parametric forms of the quadric surfaces, are often
used in computer graphics
Ellipsoid : Elliptic Cone:

x=acos(0).sin(@); 0<0<27m;|x=apcos(@); 0<0<2xw
y=bsin(8).sin(@); 0<P<27; | y=b@sin(0); . <P<P
2 = ccos(9); 2= cf

Hyperbolic  Paraboloid : Elliptic ~ Paraboloid :

x=agcosh(0); —w<O<7m [|x=apdcos(8); 0<O<2x
y=b¢sinh(0);8,,, <0<, | y=bgsin(0); 0<9<g,,
7= ¢? z=¢?

Hyperboloi d: Parabolic  Cylinder

x =acos(@)cosh(@); 0<0<2x x=a60?; 0<0<0,,

y =bsin()sinh(9); —w<gp=<rx y=2a0; ¢, <P=<9,,,
z = sinh(¢@) =0




Some examples of Quadric Surfaces

' #///. yperboloid
iy

g

)

e Paraboli
j% g)r/?inZI:;

Elliptic
Paraboloid

Hyperbolic
Paraboloid




BEZIER Surfaces

e Degree of the surface in each parametric
direction is one less than the number of
defining polygon vertices in that direction

e Surface generally follows the shape of the
defining polygon net

e Continuity of the surface in each parametric

direction is two less than the number of
defining polygon net

e Only the corner points of the defining
polygon net and the surface are coincident

e The surface is contained within the convex
hull of the defining polygon

e Surface is invariant under any affine
transformation.




Equation of a parametric Was(E " wi(l—u)-i;
Bezier surface: e I

n n!

) it m—i)!

O(u,w) =
i i Pi,jJn,i (u)Km,j (w);

i=0 j=0




BEZIER Surfaces

0, w) =YY P J. (WK, (w)

i=0 j=0

= i [i Pi,jJn,i(”)] Km,j(w)§




BEZIER Surface in matrix form:

O(u,w)=U.N.B.M™W
where,
U=[u" wu"!

W — [wm wm—l

BO,O




4x4 bicubic BEZIER Surface in matrix form:




-12 -12 4 0

—4

Non-squa
4x4 bicubi
BEZIER
Surface

in matrix
form:




i,jPi,kBi,m (M)Bk,n (v)

i, i D m(u)Bk n(V)







End of Lectures on

CURVES

and SURFACE
REPRESENTATION




