CSE444: Introduction to Robotics
Lesson 2a,3a: Working and Sensors
Summer 2019
Overview

• What are Sensors?
• Detectable Phenomenon
• Physical Principles – How Do Sensors Work?
• Need for Sensors
• Choosing a Sensor
• Sensor Descriptions
 – Temperature Sensor
 – Accelerometer
 – Light Sensor
 – Magnetic Field Sensor
 – Ultrasonic Sensor
 – Photogate
 – CO₂ Gas Sensor
Sensors

Definition: a device for sensing a physical variable of a physical system or an environment

Classification of Sensors
- *Mechanical quantities:* displacement, Strain, rotation velocity, acceleration, pressure, force/torque, twisting, weight, flow
- *Thermal quantities:* temperature, heat.
- *Electromagnetic/optical quantities:* voltage, current, frequency, phase; visual/images, light; magnetism.
- *Chemical quantities:* moisture, pH value
Specifications of Sensor

- **Accuracy**: error between the result of a measurement and the true value being measured.
- **Resolution**: the smallest increment of measure that a device can make.
- **Sensitivity**: the ratio between the change in the output signal to a small change in input physical signal. Slope of the input-output fit line.
- **Repeatability/Precision**: the ability of the sensor to output the same value for the same input over a number of trials
Accuracy vs. Resolution

True value

measurement
Accuracy vs. Precision

Precision without accuracy

Accuracy without precision

Precision and accuracy
Specifications of Sensor

- **Dynamic Range**: the ratio of maximum recordable input amplitude to minimum input amplitude, i.e. D.R. = 20 log (Max. Input Ampl./Min. Input Ampl.) dB
- **Linearity**: the deviation of the output from a best-fit straight line for a given range of the sensor
- **Transfer Function** (Frequency Response): The relationship between physical input signal and electrical output signal, which may constitute a complete description of the sensor characteristics.
- **Bandwidth**: the frequency range between the lower and upper cutoff frequencies, within which the sensor transfer function is constant gain or linear.
- **Noise**: random fluctuation in the value of input that causes random fluctuation in the output value
Attributes of Sensors

- **Operating Principle**: Embedded technologies that make sensors function, such as electro-optics, electromagnetic, piezoelectricity, active and passive ultraviolet.
- **Dimension of Variables**: The number of dimensions of physical variables.
- **Size**: The physical volume of sensors.
- **Data Format**: The measuring feature of data in time; continuous or discrete/analog or digital.
- **Intelligence**: Capabilities of on-board data processing and decision-making.
- **Active versus Passive Sensors**: Capability of generating vs. just receiving signals.
- **Physical Contact**: The way sensors observe the disturbance in environment.
- **Environmental durability**: Will the sensor robust enough for its operation conditions
What makes a machine a robot?

Sensing

Planning

Acting

information about the environment

action on the environment

where is the truck?

where should I dig?
Why do robots need sensors?

What is the angle of my arm?

internal information
What is Sensing?

- Collect information about the world

- Sensor - an electrical/mechanical/chemical device that maps an environmental attribute to a quantitative measurement
 - attribute mixtures - often no one to one map
 - hidden state in environment

- Each sensor is based on a *transduction principle* - conversion of energy from one form to another

- Also known as transducers
Why do robots need sensors?

Where am I?

localization
Why do robots need sensors?

Will I hit anything?

obstacle detection
Sensing for specific tasks

Where is the cropline?

Autonomous harvesting
Sensing for specific tasks

Where are the forkholes?

Autonomous material handling
Sensing for specific tasks

Where is the face?

Face detection & tracking
What are Sensors?

- American National Standards Institute (ANSI) Definition
 - A device which provides a usable output in response to a specified measurand

- A sensor acquires a physical parameter and converts it into a signal suitable for processing (e.g. optical, electrical, mechanical)

- A transducer
 - Microphone, Loud Speaker, Biological Senses (e.g. touch, sight,...ect)
Detectable Phenomenon

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic</td>
<td>Wave (amplitude, phase, polarization), Spectrum, Wave Velocity</td>
</tr>
<tr>
<td>Biological & Chemical</td>
<td>Fluid Concentrations (Gas or Liquid)</td>
</tr>
<tr>
<td>Electric</td>
<td>Charge, Voltage, Current, Electric Field (amplitude, phase, polarization), Conductivity, Permittivity</td>
</tr>
<tr>
<td>Magnetic</td>
<td>Magnetic Field (amplitude, phase, polarization), Flux, Permeability</td>
</tr>
<tr>
<td>Optical</td>
<td>Refractive Index, Reflectivity, Absorption</td>
</tr>
<tr>
<td>Thermal</td>
<td>Temperature, Flux, Specific Heat, Thermal Conductivity</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Position, Velocity, Acceleration, Force, Strain, Stress, Pressure, Torque</td>
</tr>
</tbody>
</table>
Physical Principles

• Amperes’s Law
 – A current carrying conductor in a magnetic field experiences a force (e.g. galvanometer)

• Curie-Weiss Law
 – There is a transition temperature at which ferromagnetic materials exhibit paramagnetic behavior

• Faraday’s Law of Induction
 – A coil resist a change in magnetic field by generating an opposing voltage/current (e.g. transformer)

• Photoconductive Effect
 – When light strikes certain semiconductor materials, the resistance of the material decreases (e.g. photoresistor)
Need for Sensors

• Sensors are omnipresent. They embedded in our bodies, automobiles, airplanes, cellular telephones, radios, chemical plants, industrial plants and countless other applications.

• Without the use of sensors, there would be no automation !!
 – Imagine having to manually fill Poland Spring bottles
Choosing a Sensor

<table>
<thead>
<tr>
<th>Environmental Factors</th>
<th>Economic Factors</th>
<th>Sensor Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>Cost</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Humidity effects</td>
<td>Availability</td>
<td>Range</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Lifetime</td>
<td>Stability</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td>Repeatability</td>
</tr>
<tr>
<td>Overrange protection</td>
<td></td>
<td>Linearity</td>
</tr>
<tr>
<td>Susceptibility to EM interferences</td>
<td></td>
<td>Error</td>
</tr>
<tr>
<td>Ruggedness</td>
<td></td>
<td>Response time</td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td>Frequency response</td>
</tr>
<tr>
<td>Self-test capability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of Sensors

• Active
 – send signal into environment and measure interaction of signal w/ environment
 – e.g. radar, sonar

• Passive
 – record signals already present in environment
 – e.g. video cameras
Types of Sensors

• Classification by medium used
 – based on electromagnetic radiation of various wavelengths
 – vibrations in a medium
 – concentration of chemicals in environment
 – by physical contact
Types of Sensors

• Exteroceptive: deal w/ external world
 – where is something?
 – how does it look? (camera, laser rangefinder)

• Proprioceptive: deal w/ self
 – where are my hands? (encoders, stretch receptors)
 – am I balanced? (gyroscopes, INS)
Types of Sensors

• **Interoceptive**
 – what is my thirst level? (biochemical)
 – what is my battery charge? (voltmeter)

• For the most part we’ll ignore these in this class
Simple Practical Sensors
that we can purchase

- Touch sensors
- Tilt sensors
- Encoders
- Bend sensors
- Light sensors
- Temperature sensors
- Potentiometers
- Laser rangefinders
- Cameras
Touch sensors

a simple switch

force

electrical flow

voltage measurement
Tilt sensors

another simple switch

gravity
Encoders

- Encoders measure rotational motion.

- They can be used to measure the rotation of a wheel.

- **Servo motors**: Used in conjunction with an electric motor to measure the motor’s position and, in turn, control its position.
Encoders

Important spec:
Number of counts per revolution

Voltage square wave

1 on
2 off
3 on
4 off

...
Sample problems

Sensor Analysis

- How far does the wheel travel for 1 encoder count?
- What happens if we change the wheel diameter?
- How many counts are there per meter of travel?

16 counts per rev.
10 cm wheel diameter

10 cm
Sample problems

\[C = \pi D \]

\[C = 10\pi \text{ cm} \]

\[
\frac{10\pi \text{ cm}}{1 \text{ rev}} \times \frac{1 \text{ rev}}{16 \text{ counts}} = \frac{1.96 \text{ cm}}{\text{count}}
\]
Sample problems

Suppose I want 1.0 cm / count.
What should my wheel diameter be?

\[
\frac{1.0 \text{ cm}}{\text{count}} \times \frac{16 \text{ counts}}{1 \text{ rev}} = \frac{16 \text{ cm}}{\text{rev}}
\]

\[C = 16 \text{ cm} \]

\[D = \frac{C}{\pi} = \frac{16}{\pi} = 5.09 \text{ cm} \]
Sample problems

For my 10 cm wheel, how many encoder counts will there be for 1 meter of travel?

\[
\frac{1.96 \text{ cm}}{\text{count}} \times \frac{1 \text{ meter}}{100 \text{ cm}} = \frac{0.0196 \text{ m}}{\text{count}}
\]

\[
\frac{1}{0.0196 \text{ m/ct}} = 51 \text{ counts/m}
\]
Ohm’s Law

\[V = I \times R \]

- Voltage
- Current
- Resistance

Example:

\[9 = 0.009 \times 1000 \]

(9 Volts)

R (1000 Ohms)

(0.009 Amps)

V (9 Volts)
Electrical analogy

- Voltage
- Current
- Resistance

A larger pipe is less resistance, so more water.

A smaller pipe is more resistance, so less water.
Bend sensor

a variable resistor

resistance changes as it bends

\[V = I \times R \]

assuming constant current, the measured voltage changes with resistance
Light sensor

photo-resistor

resistance changes with light intensity
Temperature sensor

thermal resistor
“thermistor”

resistance changes with temperature
Potentiometer

another rotational sensor

resistance changes with position of dial
Sample problem

Bend sensor specs:

100 Ω when straight
1000 Ω when bent

Given a 5 V source, what is the min. and max. current that is drawn?

\[V = I \times R \]
\[I = \frac{V}{R} \]

\[
\begin{align*}
\text{min} &= \frac{5}{1000} = 5 \text{ mA} \\
\text{max} &= \frac{5}{100} = 50 \text{ mA}
\end{align*}
\]
Sensors Based on EM Spectrum

• Basically used for ranging

• Light sensitive
 – eyes, cameras, photocells etc.

• Operating principle
 – CCD - charge coupled devices
 – photoelectric effect

• IR sensitive - FLIR
 – sense heat differences and construct images
 – night vision application
EM Spectrum

• Radio and Microwave
 – RADAR: Radio Detection and Ranging
 – Microwave radar: insensitive to clouds

• Coherent light
 – all photons have same phase and wavelength
 – LASER: Light Amplification by Stimulated Emission of Radiation
 – LASER RADAR: LADAR - accurate ranging
The SICK Laser Rangefinder
EM Spectrum

• Nuclear Magnetic Resonance (NMR)
 – heavy duty magnetic field lines up atoms in a body
 – now expose body to radio signals
 – different nuclei resonate at different frequencies which can be measured leading to an image
Local Proximity Sensing in EM

- Infrared LEDs
 - cheap, active sensing
 - usually low resolution - normally used for presence/absence of obstacles rather than ranging
 - operate over small range
Sensors Based on Sound

- **SONAR:** Sound Navigation and Ranging
 - bounce sound off of something
 - measure time for reflection to be heard - gives a range measurement
 - measure change in frequency - gives the relative speed of the object (Doppler effect)
 - bats and dolphins use it with amazing results
 - robots use it w/ less than amazing results
Sonar and IR Proximity
Odor Sensors

• Detection of chemical compounds and their density in an area
 – spectroscopy - mostly lab restricted
 – fibre-optic techniques - recently developed
 – chemical detection - sniffers and electronic noses via “wet chemistry on a chip”

• No major penetration in robotics yet applications are vast (e.g. mine detection)
Touch Sensors

• Whiskers, bumpers etc.
 – mechanical contact leads to

• closing/opening of a switch

• change in resistance of some element

• change in capacitance of some element

• change in spring tension
• ...

Proprioceptive Sensors

• Encoders, Potentiometers
 – measure angle of turn via change in resistance or by counting optical pulses

• Gyroscopes
 – measure rate of change of angles
 – fiber-optic (newer, better), magnetic (older)

• Compass
 – measure which way is north

• GPS: measure location relative to globe
Propriceptive Sensors
Problem: Sensor Choice

• What sensors to employ?
• E.g. mapping
 – ranging - laser, sonar, IR, stereo camera pair
 – salient feature detection - doors using color
• Factors
 – accuracy, cost, information needed etc etc.
Problem: Sensor Placement

• Where do you put them?
• On/off board (e.g. localization using odometry vs. localization using beacons)
• If onboard - where?
 – Reasonable arrangements - heuristic
 – Optimal arrangements - mathematically rigorous
Temperature Sensor

• Temperature sensors appear in building, chemical process plants, engines, appliances, computers, and many other devices that require temperature monitoring

• Many physical phenomena depend on temperature, so we can often measure temperature indirectly by measuring pressure, volume, electrical resistance, and strain
Temperature Sensor

• Bimetallic Strip

\[L = L_0[1 + \beta(T - T_0)] \]

• Application
 – Thermostat (makes or breaks electrical connection with deflection)
Temperature Sensor

• Resistance temperature device.

\[R = R_0[1 + \alpha(T - T_0)] \]

\[R = R_0 e^{\gamma \left[\frac{1}{T} - \frac{1}{T_0} \right]} \]
Accelerometer

- Accelerometers are used to measure along one axis and is insensitive to orthogonal directions

- **Applications**
 - Vibrations, blasts, impacts, shock waves
 - Air bags, washing machines, heart monitors, car alarms

- **Mathematical Description** is beyond the scope of this presentation. See me during lunch if interested
Light Sensor

- Light sensors are used in cameras, infrared detectors, and ambient lighting applications.

- Sensor is composed of photoconductor such as a photoresistor, photodiode, or phototransistor.
Magnetic Field Sensor

- Magnetic Field sensors are used for power steering, security, and current measurements on transmission lines.

- Hall voltage is proportional to magnetic field.

\[V_H = \frac{I \cdot B}{n \cdot q \cdot t} \]
Ultrasonic Sensors

- Ultrasonic sensors are used for position measurements.
- Sound waves emitted are in the range of 2-13 MHz.
- **Sound Navigation And Ranging (SONAR)**
- **Radio Detection And Ranging (RADAR)** – Electromagnetic Waves!!

\[15° - 20°\]
Photogate

- Photogates are used in counting applications (e.g. finding period of period motion)
- Infrared transmitter and receiver at opposite ends of the sensor
- Time at which light is broken is recorded
CO₂ Gas Sensor

- CO₂ sensor measures gaseous CO₂ levels in an environment
- Measures CO₂ levels in the range of 0-5000 ppm
- Monitors how much infrared radiation is absorbed by CO₂ molecules

![Diagram of CO₂ Gas Sensor with Infrared Source and IR Detector](image)