Defect international University	Daffodil International University Department of Computer Science and Engineering (CSE) Course Outline		nal Engineering	
Course Code:	CSE 332			
Course Title:	Compiler Design Lab			
Program:	B.Sc. in CSE			
Faculty:	Faculty of Science and Information Technology (FSIT)			
Semester:	Summer	Year:	2020	
Credit:	1.00	Contact Hour:	3.00 Hrs. / Week	
Course Level:	L3T3	Prerequisite:	CSE 123, CSE135, CSE 232	
Course Category:	Core Engineering.			

1.1.Course Objective

This laboratory course is intended to make the students experiment on the basic techniques of compiler construction and tools that can used to perform syntax-directed translation of a high-level programming language into an executable code. Students will design and implement language processors in C by using tools to automate parts of the implementation process. This will provide deeper insights into the more advanced semantics aspects of programming languages, code generation, machine independent optimizations, dynamic memory allocation, and object orientation.

1.2.Course Outcomes (CO's)

CO1	The ability to research, understand and implement computer programs in the areas related to algorithms
CO2	The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.
CO3	The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.

Upon the completion of Compiler Design practical course, the student will be able to:

- **Understand** the working of lex and yacc compiler for debugging of programs.
- **Understand** and define the role of lexical analyzer, use of regular expression and transition diagrams.

- Understand and use Context free grammar, and parse tree construction.
- Learn & use the new tools and technologies used for designing a compiler.
- **Develop** program for solving parser problems.
- Learn how to write programs that execute faster.

1.3. Program Outcomes (PO's)

Program Outcomes		
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	
	fundamentals,	
PO2	Problem analysis: Identify formulate review research literature and analyze complex.	
102	anging problems reaching substantiated conclusions using first principles of	
	methamatics natural sciences	
	and engineering sciences.	
PO3	Design/development of solutions : Design solutions for complex engineering problems	
	and design system components or processes that meet the specified needs with	
	appropriate consideration for	
	the public health and safety, and the cultural, societal, and environmental	
	considerations.	
PO4	Conduct investigations of complex problems: Use research-based knowledge and	
	research methods including design of experiments, analysis and interpretation of data,	
	and synthesis of the information	
PO5	to provide valid conclusions.	
105	modern angingering and IT tools including prediction and modeling to complex	
	anging activities with on	
	understanding of the limitations	
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to	
100	assess societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the	
	professional engineering practice.	
PO7	Environment and sustainability : Understand the impact of the professional	
	engineering solutions in societal and environmental contexts, and demonstrate the	
	knowledge of, and need for sustainable	
	development.	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities	
	and norms of the engineering prestice	
PO9	Individual and team work: Function effectively as an individual and as a member or	
10)	leader in diverse	
	teams, and in multidisciplinary settings.	
PO10	Communication : Communicate effectively on complex engineering activities with the	
	engineering community and with society at large, such as, being able to comprehend	
	and write effective reports	
	and design documentation, make effective presentations, and give and receive clear	
	instructions.	

PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in
	independent and life-long learning in the broadest context of technological change.

1.4.Course Plan/Lesson Plan

Sl No.	List of Experiments
1	Design a lexical analyzer for given language and the lexical analyzer should ignore redundant spaces, tabs and new lines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the
	length to some reasonable value. Simulate the same in C language.
2	Write a C program to identify whether a given line is a comment or not.
3	Write a C program to recognize strings under 'a', 'a*b+', 'abb'.
4	Write a C program to develop a lexical analyzer to recognize a few patterns in C.
5	Write a C program to test whether a given identifier is valid or not.
6	Implementation Of Symbol Table
7	Write a C program for implementing the functionalities of predictive parser for the mini language.
8	Write a C program for constructing of LL (1) parsing.
9	Write a C program to implement Shift-Reduce Parser.
10	Write a C program to construct of DAG (Directed Acyclic Graph)
11	Generation of a code for a given intermediate code

1.5.CO-PO Mapping

Exp. No.	Experiment	Program Outcomes Attained	Program Specific Outcomes Attained
1	Design a lexical analyzer for given language and the lexical analyzer should ignore redundant spaces, tabs and new lines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the length to some reasonable value. Simulate the same in C language.	PO1, PO2, PO3	CO1
2	Write a C program to identify whether a given line is a comment or not.	PO1	CO1
3	Write a C program to recognize strings under 'a', 'a*b+', 'abb'.	PO1, PO2	CO1, CO2
4	Write a C program to develop a lexical analyzer to recognize a few patterns in C.	PO1, PO2	CO1, CO2
5	Write a C program to test whether a given identifier is valid or not.	PO1	CO1
6	Implementation Of Symbol Table	PO1, PO2, PO3	CO1, CO2
7	Write a C program for implementing the functionalities of predictive parser for the mini language.	PO1, PO2	CO1
8	Write a C program for constructing of LL (1) parsing.	PO1, PO2, PO4, PO5	CO1
9	Write a C program to implement Shift-Reduce Parser.	PO1, PO2, PO3, PO4	CO1, CO2
10	Write a C program to construct of DAG (Directed Acyclic Graph)	PO1, PO2, PO4	CO1
11	Generation of a code for a given intermediate code	PO1, PO2	CO1, CO2

1.6.Assessment Methods

Lab Course		
✤ Class Attendance: 10%		
✤ Lab Submissions: 40%		
✤ Lab Performance: 25%		
Report Submission: 25%		

1.7. Grading System

Numerical Grade	Letter Grade	Grade Point
80-100	A+	4.00
75-79	А	3.75
70-74	A-	3.50
65-69	B+	3.25
60-64	В	3.00
55-59	В-	2.75
50-54	C+	2.50
45-49	С	2.25
40-44	D	2.00
Less than 40	F	0.00

1.8.Additional Support for Students

- Student Portal: <u>http://studentportal.diu.edu.bd/</u>
- Academic Guidelines
 <u>https://daffodilvarsity.edu.bd/article/academic-guidelines</u>
- Rules and Regulations of DIU
 <u>https://daffodilvarsity.edu.bd/article/rules-and-regulation</u>
- Career Development Center: <u>https://cdc.daffodilvarsity.edu.bd/</u>
- For general queries: <u>http://daffodilvarsity.edu.bd/</u>