
1

7. Object Oriented Modeling

Abdus Sattar
Assistant Professor

Department of Computer Science and Engineering
Daffodil International University
Email: abdus.cse@diu.edu.bd

mailto:abdus.cse@diu.edu.bd

2

Discussion Topics:

 UML diagram types

 Structured diagram, Behavioral diagram

 A Class description with elements

 UML Relationship of Object interconnections

 Practicing exercise on object model diagram

from case study

3

UML Diagram Types

UML (Unified Modeling Language)

4

Diagram Types

 Structure diagrams show the things in the

modeled system. In a more technical term, they

show different objects in a system.

 Behavioral diagrams show what should

happen in a system. They describe how the

objects interact with each other to create a

functioning system.

5

Diagram Types

 Class diagram is a graph of classifier elements connected by

their various static relationships. A “class” diagram may also

contain interfaces, packages, relationships, and even instances,

such as objects and links.

 Object diagram on the other hand is a graph of instances,

including objects and data values. A static object diagram is an

instance of a class diagram. It shows a snapshot of the detailed

state of a system at a point in time. The use of object diagrams is

fairly limited, mainly to show examples of data structures.

6

Classes

 A class is a description of a set of

objects that share the same

attributes, operations, relationships,

and semantics.

 Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations in

separate, designated compartments.

7

Class Names

 The name of the class is the only

required tag in the graphical

representation of a class. It always

appears in the top-most compartment.

8

Class Attributes

 An attribute is a named property of a

class that describes the object being

modeled.

 In the class diagram, attributes appear

in the second compartment just below

the name-compartment.

9

Class Attributes (Cont’d)

 Attributes are usually listed in the form:

attributeName : Type

 A derived attribute is one that can be

computed from other attributes, but

doesn’t actually exist. For example, a

Person’s age can be computed from

his birth date. A derived attribute is

designated by a preceding ‘/’ as in:

/ age : Date

10

Class Attributes (Cont’d)

Attributes can be:

+ public

protected

- private

/ derived

11

Class Operations

 Operations describe the class

behavior and appear in the third

compartment.

12

Class Operations (Cont’d)

 You can specify an operation by stating its signature:

listing the name, type, and default value of all

parameters, and, in the case of functions, a return type.

13

Describing Classes

 When drawing a class, you needn’t show attributes

and operation in every diagram.

14

Class Responsibilities

 A class may also include its responsibilities in a class

diagram.

 A responsibility is a contract or obligation of a class to

perform a particular service.

15

Relationships

 In UML, object interconnections (logical

or physical), are modeled as

relationships.

There are three kinds of relationships in

UML:

 dependencies

 generalizations

 associations

16

Dependency Relationships

 A dependency indicates a semantic/notational

relationship between two or more elements.

 The dependency from CourseSchedule to Course

exists because Course is used in both the add and

remove operations of CourseSchedule.

17

Generalization Relationships

 A generalization connects a

subclass to its superclass.

 It denotes an inheritance of

attributes and behavior from the

superclass to the subclass and

indicates a specialization in the

subclass of the more general

superclass.

18

Generalization Relationships (Cont’d)

 UML permits a class to inherit from multiple super-

classes, although some programming languages

(e.g., Java) do not permit multiple inheritance.

19

Association Relationships

 If two classes in a model need to communicate with

each other, there must be link between them.

 An association denotes that link.

20

Association Relationships (Cont’d)

 We can indicate the multiplicity of an association by

adding multiplicity adornments to the line denoting the

association.

 The example indicates that a Student has one or

more Instructors:

21

Association Relationships (Cont’d)

 The example indicates that every Instructor has one

or more

 Students:

22

Association Relationships (Cont’d)

 We can also indicate the behavior of an object in an

association

(i.e., the role of an object) using rolenames.

23

Association Relationships (Cont’d)

 We can also name the association.

24

Association Relationships (Cont’d)

 We can specify dual associations.

25

Association Relationships (Cont’d)

 Associations can also be objects themselves, called

link classes or an association classes.

26

Association Relationships (Cont’d)

 A class can have a self association.

27

Association Relationships (Cont’d)

 We can model objects that contain other objects by way of

special associations called aggregations and compositions.

 An aggregation specifies a whole-part relationship between

an aggregate (a whole) and a constituent part, where the part

can exist independently from the aggregate. Aggregations are

denoted by a hollow-diamond adornment on the association.

28

Association Relationships (Cont’d)

 A composition indicates a strong ownership and coincident

lifetime of parts by the whole (i.e., they live and die as a

whole).

 Compositions are denoted by a filled-diamond adornment on

the association.

29

Interfaces

 An interface is a named set of

operations that specifies the

behavior of objects without

showing their inner structure. It

can be rendered in the model by

a one- or two-compartment

rectangle, with the stereotype

<<interface>> above the

interface name.

30

Interface Services

 Interfaces do not get

instantiated. They have no

attributes or state. Rather, they

specify the services offered by

a related class.

31

Enumeration

 An enumeration is a user-

defined data type that consists

of a name and an ordered list of

enumeration literals.

32

Exceptions

33

Object Diagrams

 Model the instances of things described by a class.

 Each object diagram shows a set of objects and

their interrelationships at a point in time.

 Used to model a snapshot of the application.

 Each object has an optional name and set of

classes it is an instance of, also values for attributes

of these classes.

34

Multi objects

 A multi object is a set of objects, with an undefined

number of elements

35

Finding Inheritance

36

Finding Inheritance

 Sometimes we find inheritance bottom-up: we have

several classes and we realize that they have attributes

and operations in common, so we group those attributes

and operations together in a common super-class.

 Define a suitable generalization of these classes and

redraw the diagram.

37

Finding Inheritance

38

Restaurant example: Initial classes

39

Restaurant example: Initial classes

40

41

42

Ship & Cargo object model

43

Library Management object model

44

Air Ticket Reservation Design Model

45

46

References

[Booch99] Booch, Grady, James Rumbaugh, Ivar Jacobson,

The Unified Modeling Language User Guide, Addison Wesley, 1999

[Rambaugh99] Rumbaugh, James, Ivar Jacobson, Grady Booch, The

Unified

Modeling Language Reference Manual, Addison Wesley, 1999

[Jacobson99] Jacobson, Ivar, Grady Booch, James Rumbaugh, The

Unified

Software Development Process, Addison Wesley, 1999

[Fowler, 1997] Fowler, Martin, Kendall Scott, UML Distilled

(Applying the Standard Object Modeling Language),

Addison Wesley, 1997.

[Brown99] First draft of these slides were created by James Brown.

