
1

7. Object Oriented Modeling

Abdus Sattar
Assistant Professor

Department of Computer Science and Engineering
Daffodil International University
Email: abdus.cse@diu.edu.bd

mailto:abdus.cse@diu.edu.bd

2

Discussion Topics:

 UML diagram types

 Structured diagram, Behavioral diagram

 A Class description with elements

 UML Relationship of Object interconnections

 Practicing exercise on object model diagram

from case study

3

UML Diagram Types

UML (Unified Modeling Language)

4

Diagram Types

 Structure diagrams show the things in the

modeled system. In a more technical term, they

show different objects in a system.

 Behavioral diagrams show what should

happen in a system. They describe how the

objects interact with each other to create a

functioning system.

5

Diagram Types

 Class diagram is a graph of classifier elements connected by

their various static relationships. A “class” diagram may also

contain interfaces, packages, relationships, and even instances,

such as objects and links.

 Object diagram on the other hand is a graph of instances,

including objects and data values. A static object diagram is an

instance of a class diagram. It shows a snapshot of the detailed

state of a system at a point in time. The use of object diagrams is

fairly limited, mainly to show examples of data structures.

6

Classes

 A class is a description of a set of

objects that share the same

attributes, operations, relationships,

and semantics.

 Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations in

separate, designated compartments.

7

Class Names

 The name of the class is the only

required tag in the graphical

representation of a class. It always

appears in the top-most compartment.

8

Class Attributes

 An attribute is a named property of a

class that describes the object being

modeled.

 In the class diagram, attributes appear

in the second compartment just below

the name-compartment.

9

Class Attributes (Cont’d)

 Attributes are usually listed in the form:

attributeName : Type

 A derived attribute is one that can be

computed from other attributes, but

doesn’t actually exist. For example, a

Person’s age can be computed from

his birth date. A derived attribute is

designated by a preceding ‘/’ as in:

/ age : Date

10

Class Attributes (Cont’d)

Attributes can be:

+ public

protected

- private

/ derived

11

Class Operations

 Operations describe the class

behavior and appear in the third

compartment.

12

Class Operations (Cont’d)

 You can specify an operation by stating its signature:

listing the name, type, and default value of all

parameters, and, in the case of functions, a return type.

13

Describing Classes

 When drawing a class, you needn’t show attributes

and operation in every diagram.

14

Class Responsibilities

 A class may also include its responsibilities in a class

diagram.

 A responsibility is a contract or obligation of a class to

perform a particular service.

15

Relationships

 In UML, object interconnections (logical

or physical), are modeled as

relationships.

There are three kinds of relationships in

UML:

 dependencies

 generalizations

 associations

16

Dependency Relationships

 A dependency indicates a semantic/notational

relationship between two or more elements.

 The dependency from CourseSchedule to Course

exists because Course is used in both the add and

remove operations of CourseSchedule.

17

Generalization Relationships

 A generalization connects a

subclass to its superclass.

 It denotes an inheritance of

attributes and behavior from the

superclass to the subclass and

indicates a specialization in the

subclass of the more general

superclass.

18

Generalization Relationships (Cont’d)

 UML permits a class to inherit from multiple super-

classes, although some programming languages

(e.g., Java) do not permit multiple inheritance.

19

Association Relationships

 If two classes in a model need to communicate with

each other, there must be link between them.

 An association denotes that link.

20

Association Relationships (Cont’d)

 We can indicate the multiplicity of an association by

adding multiplicity adornments to the line denoting the

association.

 The example indicates that a Student has one or

more Instructors:

21

Association Relationships (Cont’d)

 The example indicates that every Instructor has one

or more

 Students:

22

Association Relationships (Cont’d)

 We can also indicate the behavior of an object in an

association

(i.e., the role of an object) using rolenames.

23

Association Relationships (Cont’d)

 We can also name the association.

24

Association Relationships (Cont’d)

 We can specify dual associations.

25

Association Relationships (Cont’d)

 Associations can also be objects themselves, called

link classes or an association classes.

26

Association Relationships (Cont’d)

 A class can have a self association.

27

Association Relationships (Cont’d)

 We can model objects that contain other objects by way of

special associations called aggregations and compositions.

 An aggregation specifies a whole-part relationship between

an aggregate (a whole) and a constituent part, where the part

can exist independently from the aggregate. Aggregations are

denoted by a hollow-diamond adornment on the association.

28

Association Relationships (Cont’d)

 A composition indicates a strong ownership and coincident

lifetime of parts by the whole (i.e., they live and die as a

whole).

 Compositions are denoted by a filled-diamond adornment on

the association.

29

Interfaces

 An interface is a named set of

operations that specifies the

behavior of objects without

showing their inner structure. It

can be rendered in the model by

a one- or two-compartment

rectangle, with the stereotype

<<interface>> above the

interface name.

30

Interface Services

 Interfaces do not get

instantiated. They have no

attributes or state. Rather, they

specify the services offered by

a related class.

31

Enumeration

 An enumeration is a user-

defined data type that consists

of a name and an ordered list of

enumeration literals.

32

Exceptions

33

Object Diagrams

 Model the instances of things described by a class.

 Each object diagram shows a set of objects and

their interrelationships at a point in time.

 Used to model a snapshot of the application.

 Each object has an optional name and set of

classes it is an instance of, also values for attributes

of these classes.

34

Multi objects

 A multi object is a set of objects, with an undefined

number of elements

35

Finding Inheritance

36

Finding Inheritance

 Sometimes we find inheritance bottom-up: we have

several classes and we realize that they have attributes

and operations in common, so we group those attributes

and operations together in a common super-class.

 Define a suitable generalization of these classes and

redraw the diagram.

37

Finding Inheritance

38

Restaurant example: Initial classes

39

Restaurant example: Initial classes

40

41

42

Ship & Cargo object model

43

Library Management object model

44

Air Ticket Reservation Design Model

45

46

References

[Booch99] Booch, Grady, James Rumbaugh, Ivar Jacobson,

The Unified Modeling Language User Guide, Addison Wesley, 1999

[Rambaugh99] Rumbaugh, James, Ivar Jacobson, Grady Booch, The

Unified

Modeling Language Reference Manual, Addison Wesley, 1999

[Jacobson99] Jacobson, Ivar, Grady Booch, James Rumbaugh, The

Unified

Software Development Process, Addison Wesley, 1999

[Fowler, 1997] Fowler, Martin, Kendall Scott, UML Distilled

(Applying the Standard Object Modeling Language),

Addison Wesley, 1997.

[Brown99] First draft of these slides were created by James Brown.

