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Discussion Topics:

 UML diagram types

 Structured diagram, Behavioral diagram

 A Class description with elements

 UML Relationship of Object interconnections

 Practicing exercise on object model diagram

from case study
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UML Diagram Types

UML (Unified Modeling Language)
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Diagram Types

 Structure diagrams show the things in the

modeled system. In a more technical term, they

show different objects in a system.

 Behavioral diagrams show what should

happen in a system. They describe how the

objects interact with each other to create a

functioning system.
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Diagram Types

 Class diagram is a graph of classifier elements connected by

their various static relationships. A “class” diagram may also

contain interfaces, packages, relationships, and even instances,

such as objects and links.

 Object diagram on the other hand is a graph of instances,

including objects and data values. A static object diagram is an

instance of a class diagram. It shows a snapshot of the detailed

state of a system at a point in time. The use of object diagrams is

fairly limited, mainly to show examples of data structures.
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Classes

 A class is a description of a set of

objects that share the same

attributes, operations, relationships,

and semantics.

 Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations in

separate, designated compartments.
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Class Names

 The name of the class is the only 

required tag in the graphical 

representation of a class. It always 

appears in the top-most compartment.
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Class Attributes

 An attribute is a named property of a 

class that describes the object being 

modeled.

 In the class diagram, attributes appear 

in the second compartment just below 

the name-compartment.
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Class Attributes (Cont’d)

 Attributes are usually listed in the form:

attributeName : Type

 A derived attribute is one that can be 

computed from other attributes, but 

doesn’t actually exist. For example, a 

Person’s age can be computed from 

his birth date. A derived attribute is 

designated by a preceding ‘/’ as in:

/ age : Date
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Class Attributes (Cont’d)

Attributes can be:

+ public

# protected

- private

/ derived
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Class Operations

 Operations describe the class 

behavior and appear in the third 

compartment.
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Class Operations (Cont’d)

 You can specify an operation by stating its signature: 

listing the name, type, and default value of all 

parameters, and, in the case of functions, a return type.
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Describing Classes

 When drawing a class, you needn’t show attributes 

and operation in every diagram.
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Class Responsibilities

 A class may also include its responsibilities in a class 

diagram.

 A responsibility is a contract or obligation of a class to 

perform a particular service.
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Relationships

 In UML, object interconnections (logical 

or physical), are modeled as 

relationships.

There are three kinds of relationships in 

UML:

 dependencies

 generalizations

 associations
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Dependency Relationships

 A dependency indicates a semantic/notational

relationship between two or more elements.

 The dependency from CourseSchedule to Course

exists because Course is used in both the add and

remove operations of CourseSchedule.
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Generalization Relationships

 A generalization connects a

subclass to its superclass.

 It denotes an inheritance of

attributes and behavior from the

superclass to the subclass and

indicates a specialization in the

subclass of the more general

superclass.
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Generalization Relationships (Cont’d)

 UML permits a class to inherit from multiple super-

classes, although some programming languages

(e.g., Java) do not permit multiple inheritance.
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Association Relationships

 If two classes in a model need to communicate with 

each other, there must be link between them.

 An association denotes that link.
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Association Relationships (Cont’d)

 We can indicate the multiplicity of an association by 

adding multiplicity adornments to the line denoting the 

association.

 The example indicates that a Student has one or 

more Instructors:
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Association Relationships (Cont’d)

 The example indicates that every Instructor has one 

or more

 Students:
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Association Relationships (Cont’d)

 We can also indicate the behavior of an object in an 

association

(i.e., the role of an object) using rolenames.
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Association Relationships (Cont’d)

 We can also name the association.
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Association Relationships (Cont’d)

 We can specify dual associations.
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Association Relationships (Cont’d)

 Associations can also be objects themselves, called 

link classes or an association classes.
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Association Relationships (Cont’d)

 A class can have a self association.
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Association Relationships (Cont’d)

 We can model objects that contain other objects by way of 

special associations called aggregations and compositions.

 An aggregation specifies a whole-part relationship between 

an aggregate (a whole) and a constituent part, where the part 

can exist independently from the aggregate. Aggregations are 

denoted by a hollow-diamond adornment on the association.
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Association Relationships (Cont’d)

 A composition indicates a strong ownership and coincident 

lifetime of parts by the whole (i.e., they live and die as a 

whole).

 Compositions are denoted by a filled-diamond adornment on 

the association.
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Interfaces

 An interface is a named set of 

operations that specifies the 

behavior of objects without 

showing their inner structure. It 

can be rendered in the model by 

a one- or two-compartment 

rectangle, with the stereotype 

<<interface>> above the 

interface name.
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Interface Services

 Interfaces do not get 

instantiated. They have no 

attributes or state. Rather, they 

specify the services offered by 

a related class.
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Enumeration

 An enumeration is a user-

defined data type that consists 

of a name and an ordered list of 

enumeration literals.
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Exceptions
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Object Diagrams

 Model the instances of things described by a class.

 Each object diagram shows a set of objects and 

their interrelationships at a point in time.

 Used to model a snapshot of the application.

 Each object has an optional name and set of 

classes it is an instance of, also values for attributes 

of these classes.
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Multi objects

 A multi object is a set of objects, with an undefined 

number of elements
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Finding Inheritance
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Finding Inheritance

 Sometimes we find inheritance bottom-up: we have 

several classes and we realize that they have attributes 

and operations in common, so we group those attributes 

and operations together in a common super-class.

 Define a suitable generalization of these classes and 

redraw the diagram.
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Finding Inheritance
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Restaurant example: Initial classes
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Restaurant example: Initial classes
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Ship & Cargo object model
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Library Management object model
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Air Ticket Reservation Design Model
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