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Discussion Topics:

0 UML diagram types

Q Structured diagram, Behavioral diagram

0 A Class description with elements

0 UML Relationship of Object interconnections

0 Practicing exercise on object model diagram
from case study
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Diagram Types

Q Structure diagrams show the things in the
modeled system. In a more technical term, they
show different objects in a system.

0 Behavioral diagrams show what should
happen Iin a system. They describe how the
objects interact with each other to create a
functioning system.



Diagram Types

0 Class diagram is a graph of classifier elements connected by
their various static relationships. A “class” diagram may also
contain interfaces, packages, relationships, and even instances,
such as objects and links.

0 Object diagram on the other hand iIs a graph of instances,
Including objects and data values. A static object diagram is an
Instance of a class diagram. It shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is
fairly limited, mainly to show examples of data structures.



Classes

O A class is a description of a set of
objects that share the same
attributes, operations, relationships,
and semantics.

a Graphically, a class Is rendered as a
rectangle, usually including its name,
attributes, and  operations In
separate, desighated compartments.




Class Names

0 The name of the class is the only
- required tag in the graphical
representation of a class. It always
attributes appears in the top-most compartment.

operations




Class Attributes

QO An attribute is a named property of a
Person class that describes the object being
modeled.

Q In the class diagram, attributes appear
In the second compartment just below
the name-compartment.




_Class Attributes (Cont’d)

0 Attributes are usually listed in the form:
attributeName : Type

0 A derived attribute Is one that can be
computed from other attributes, but
doesn’t actually exist. For example, a
Person’s age can be computed from
his birth date. A derived attribute is
designated by a preceding /" as in:

Person

[ age : Date




Class Attributes (Cont’d)

Person

mAttributes can be:
+ public
# protected
- private
/ derived
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Class Operations

Person

name : String
address : Address
birthdate : Date

SSN - Id

0 Operations describe the class

behavior and appear in the third
compartment.
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Class Operations (Cont’d)

O You can specify an operation by stating its signature:
listing the name, type, and default value of all
parameters, and, in the case of functions, a return type.
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Describing Classes

O When drawing a class, you needn’t show attributes
and operation in every diagram.




Class Responsibllities

O A class may also include its responsibilities in a class
diagram.

O A responsibility is a contract or obligation of a class to
perform a particular service.
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Relationships

2 In UML, object interconnections (logical
or physical), are modeled as
relationships.

d There are three kinds of relationships in
UML.:

» dependencies
= generalizations
= associations
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Dependency Relationships

O A dependency indicates a semantic/notational
relationship between two or more elements.

O The dependency from CourseSchedule to Course
exists because Course Is used in both the add and
remove operations of CourseSchedule.
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Generalization Relationships

L
/\
e

O A generalization connects a
subclass to its superclass.

Q It denotes an Inheritance of
attributes and behavior from the
superclass to the subclass and
Indicates a specialization in the
subclass of the more general
superclass.
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Generalization Relationships (Cont’d)

O UML permits a class to inherit from multiple super-
classes, although some programming languages
(e.g., Java) do not permit multiple inheritance.

.
—
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Association Relationships

m If two classes in a model need to communicate with
each other, there must be link between them.

m An association denotes that link.
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Association Relationships (Cont’d)

m \We can indicate the multiplicity of an association by

adding multiplicity adornments to the line denoting the
association.

m The example indicates that a Student has one or
more Instructors:

_ 1*_
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Association Relationships (Cont’d)

m The example indicates that every Instructor has one
or more

m Students:

| Sudent [ | Tostructor |
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Association Relationships (Cont’d)

m \We can also indicate the behavior of an object in an
association

(.e., the role of an object) using rolenames.

_ teaches learns from
1..* 1. _

22



Association Relationships (Cont’d)

m \We can also name the association.

_ membership
x wm
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Association Relationships (Cont’d)

m \We can specify dual associations.

member of

l..*

presidentof  1..%*
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Association Relationships (Cont’d)

m Associations can also be objects themselves, called
link classes or an association classes.




Association Relationships (Cont’d)

m A class can have a self association.

next

previous
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Association Relationships (Cont’d)

m \We can model objects that contain other objects by way of
special associations called aggregations and compositions.

m An aggregation specifies a whole-part relationship between
an aggregate (a whole) and a constituent part, where the part
can exist independently from the aggregate. Aggregations are
denoted by a hollow-diamond adornment on the association.

27




Association Relationships (Cont’d)

m A composition indicates a strong ownership and coincident
lifetime of parts by the whole (i.e., they live and die as a
whole).

m Compositions are denoted by a filled-diamond adornment on
the association.
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Interfaces

m  An interface is a named set of
operations that specifies the
behavior of objects without
showing their inner structure. It
can be rendered in the model by
a one- or two-compartment
rectangle, with the stereotype
<<interface>> above the
interface name.
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Interface Services

m Interfaces do not get
iInstantiated. They have no
attributes or state. Rather, they
specify the services offered by
a related class.
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Enumeration

®  An enumeration is a user-
defined data type that consists
of a name and an ordered list of
enumeration literals.
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Exceptions

Exceptions can be modeled
just like any other class.

Notice the <<exception>>
stereotype n the name
compartment.
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Object Diagrams

= Model the instances of things described by a class.

= Each object diagram shows a set of objects and
their interrelationships at a point in time.

= Used to model a snapshot of the application.

= Each object has an optional name and set of
classes it is an instance of, also values for attributes
of these classes.

Jaelson:Instructor :Student

BillClinton

:Course

courseNo: sc340"

someone : description: "“OOAD"

Monica:Student
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Multi objects

O A multi object is a set of objects, with an undefined

number of elements

p2:Instructor

cl:Course

:Studentw

T

cZ:Course

c3:Course

Multiobjects

:Studentw
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Finding Inheritance

Advert

Hoarding"Advert

Press Advert

Video Advert

*Billboard

LAY
£

Newspaper Advert

Magazine Advert
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Finding Inheritance

d Sometimes we find inheritance bottom-up: we have
several classes and we realize that they have attributes
and operations in common, so we group those attributes
and operations together in a common super-class.

U Define a suitable generalization of these classes and
redraw the diagram.

Book RecordCD
title title
author catalogue#
publisher publisher
ISEN artist
DeweyCode acguisition#
acquisition# Loan()
Loan () Return ()
Return() 36




Finding Inheritance

LoanItem
...The title
Solution... acquisition#
Loan ()
Return ()

A

Book
Author Record
DeweyCode artist
publisher catalogue#
TSBN recordCo
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Restaurant example: Initial classes

Supply Handling SupplyOrder Supplies

Restaurant Menu Order

Bill
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Restaurant example: Initial classes

Supply Han::l_li_ng SupplyOrdar Supplyltam
Iter Marme i
N Linit Prica
i —
CraditSupply () -
Elebit%ugplyt[:lj Cuantity
acercer
ProducaChack | ) ProduceChack { )
Restaurant
- o—
SaleStat ()
Dascrapancy ()
Manu - ] -P;!_nnul‘tnm
| I Num;_
Itam Mumbar
Price
Supplies Usaed
|
Cirdiar
—-_ 00000
ProducaeBill { )
Ciuantity
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class Online Shopping )

Web User Customer
e 1 0.1 id: String {id}
login_id: String {id
:fss;mrd' Str?n{g } address: Address
state: UserState phone: Phone
email: String
i Payment
wenumerations 1 0.7 | id: String {id)
UserState paid: Date
Account total: Real
zz::fe details; String
Banned — | billing_address: Address {ordered, unique}
is_closed: Boolean
open: Date g,
closed: Date 1 * {ordered,
0.1 1 unigue}
Order
Shopping Cart
nurmber: String {id}
created: Date ordered: Date 1
p shipped: Date
ship_to; Address
status; OrderStatus
total: Real
Lineltem 1
* {ordered, unigue} | guantity: Integer * lordered, unigue}
price: Price -
line_item wenumerations
* OrderStatus
Mew
| Hold
Shipped
Product Delivered
Closed
id: String {id}
name: String
supplier: Supplier
PP PP & uml-diagrams.org

40



d:login

usemame
9. password

verify()

A\

d profileprocess
viewprofie ()
editPofie()
d:search i y
productname fsiel
sendQuery()
searchDB() viewQuernes()

d.giveAnswer

answer

sendAnsawer()
viewAnswers()

d:mgister

name
usemame
password
address
contfact

insertUser()

d:viewadd

ass d

fetchAdd()

d:Add_add

buy/sell
pr_name

new/old
price

addNewAdd ()
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Ship & Cargo object model

Groups of propellers

+ + + + + + +

Diameter. double

Blade area ratio: double

Pifch ratio; double

Thrust coefficient Kt: Function
Torgue coefficient Kq: Function
Shaft power at propeller: double

1,7 | +provide movement

(argo handling

i

#EEME

Parameters of cargo handling

General cargo

Bulk cargo

equipment & o |

+ Loading rate: double
+ Unloading rate: double

Vessel

+for Cargo type

+ Wolume: double
+ Area: double
+ Weight double

+ Density: double

1

i

v

Cargo capacity: double
GRT: double

1. +can be in

Loading conditions

+ + + + + + +

Towing resistance: Function
Displacement. double
Watering length: double
Waterling breadth: double
Midship draft: double
Izebreaking capability: double

, 2R

+ + + 4+ + + +

Midship beam: double
Total shaft power: double
Vessel type: List

Length between perp.: double

Cargo type

+ Unit of measurement. Unit of measurement

+lor Cang space V 1

0. Tdmﬂ:lﬂ

Cargo space

Vessel cargo
space

+ Volume: double

>, Area: float

#i5 able to coniain

+has &
descnplion

|

Cargo space utilization coefficients

| __|+ related to volume: double
+ related to area: double

Cargo space description

"
+ Combined placement. boolean




Library Management object model

reading aorder

Book

abstract class

ISBM: String[0..1] {id}

== ) Author attributes
"\\_ title: String 1" - wirole 1..*
——={ SUMIMary — — name: String 4_4//||| enurmaration
publisher iik biography: Stri "'EI—_ data type
publication date 1
number of pages K
language agnumerations
T multiplicity / AccountState
geneeralization _muses == Active
1
! Frozen
aantity: Book Item wantitye Al::cuunt/ : Closed
barcode: String [0..1] {id} |0..12 - borrowed number {id} X i
s1-c=rr:ﬂ'h_,'p£:_-::_:l_______*|;r tag: RFID [0..1] {id} history: History[0..*] -—— 1
class — isRafareancaCniy 0.3 - reserved opaened: Dabe
state: AccountState a e
e - accounts -
aggregation © nml-diagrams.org
association I."'__ - 1
- T’»I'II Lil Pat
- ibrary o
records
names narme
f - acdress susen - address
compositicon - -
1 winterfacan o=
e A= Search = - wuses Librarian
Catalog =TT T T =~ name
T T e =T address
—— - 8
T={  interfaces - — - cUsew positicn
Manage

interface realization

usage dependency



Air Ticket Reservation Design Model

I NN
= [dep=cp.dep->min() and
Connection arr=cp.arr->max()]

+ from: Location /' I

+to: Location | e Travel «Interface»
+/ dep: Time “~[+/ dep: Date TravelHandling
tfarsLime: ) Lonn +/ arr: Date <trave—— +/ delay: Minutes
-stda(;us. String = "planned + class: String + numOfBag: int=0
#addOne(cp:ConnectionPart) dela e

+add(cp: ConnectionPart [0..*]) :- =2 Y0 {Query}

for all cp B' ’ ; 0
A T 3 : [de|3y=
¢ | o h.del
|____| addOne(cp) tsh.delay->sum()]
+out +return
{ordered,|unique, {ordered,unique,
< subs'ets i : subs?ts L, )
{sequence} travelHandling.tsh}  travelHandling.tsh} ftsh {Linion}
1 RS 1.:* 0::X 1.*
ConnectionPart TravelStage «Interface»
+ flightNo: String {readOnly} maxDuration: int = 10 ‘ TravelStageHandling
~addOne(c: Connection) S Tl + delay: Minutes
{redifines addOne} + boardingGate: String




, Seminarenrallment ,
1 enrolledin 1* : * enrolled in " :
Student marksReceied seminar
name OetAverageToDate() seminarhumber
phoneMumber getFinalMark() waitingList
emailAddress *{urdered,FlFG} o .
studertumber 0. on waiting list 0.* | addStudentistudent)
averagehark dropStudentistudent)
isEligible tname, 0. 0
studenthumber)
getseminarsTakend) offering of ¥
nurchaseParkingPass( instructs
1
0.1
Course
Address Professar narme
Ives street name coursehumber
at i .
1 g?s:te Ives at phaneNurnber 0.1 fees
n0stalCode 1 0.1 g;r::ﬂﬂddress etFullMamed)
country "y
validate( getinfarmation]) advisor
autputasLabel) purchaseParkingPass(| o 4
associate| 0.7
offnentors
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