/. Object Oriented Modeling
Abdus Sattar

Assistant Professor
Department of Computer Science and Engineering
Daffodil International University
Email: abdus.cse@diu.edu.bd

Daffodl

niversity

mailto:abdus.cse@diu.edu.bd

Discussion Topics:

0 UML diagram types

Q Structured diagram, Behavioral diagram

0 A Class description with elements

0 UML Relationship of Object interconnections

0 Practicing exercise on object model diagram
from case study

UML Diagram Types

UML Diagram Types

UML (Unified Modeling Language

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Component
Diagrams

Object Diagrams

Timing Diagrams

Behavioral Diagrams

State Machine Communication

Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction
overview Diagrams

Diagram Types

Q Structure diagrams show the things in the
modeled system. In a more technical term, they
show different objects in a system.

0 Behavioral diagrams show what should
happen Iin a system. They describe how the
objects interact with each other to create a
functioning system.

Diagram Types

0 Class diagram is a graph of classifier elements connected by
their various static relationships. A “class” diagram may also
contain interfaces, packages, relationships, and even instances,
such as objects and links.

0 Object diagram on the other hand iIs a graph of instances,
Including objects and data values. A static object diagram is an
Instance of a class diagram. It shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is
fairly limited, mainly to show examples of data structures.

Classes

O A class is a description of a set of
objects that share the same
attributes, operations, relationships,
and semantics.

a Graphically, a class Is rendered as a
rectangle, usually including its name,
attributes, and operations In
separate, desighated compartments.

Class Names

0 The name of the class is the only
- required tag in the graphical
representation of a class. It always
attributes appears in the top-most compartment.

operations

Class Attributes

QO An attribute is a named property of a
Person class that describes the object being
modeled.

Q In the class diagram, attributes appear
In the second compartment just below
the name-compartment.

_Class Attributes (Cont’d)

0 Attributes are usually listed in the form:
attributeName : Type

0 A derived attribute Is one that can be
computed from other attributes, but
doesn’t actually exist. For example, a
Person’s age can be computed from
his birth date. A derived attribute is
designated by a preceding /" as in:

Person

[age : Date

Class Attributes (Cont’d)

Person

mAttributes can be:
+ public
protected
- private
/ derived

10

Class Operations

Person

name : String
address : Address
birthdate : Date

SSN - Id

0 Operations describe the class

behavior and appear in the third
compartment.

11

Class Operations (Cont’d)

O You can specify an operation by stating its signature:
listing the name, type, and default value of all
parameters, and, in the case of functions, a return type.

12

Describing Classes

O When drawing a class, you needn’t show attributes
and operation in every diagram.

Class Responsibllities

O A class may also include its responsibilities in a class
diagram.

O A responsibility is a contract or obligation of a class to
perform a particular service.

14

Relationships

2 In UML, object interconnections (logical
or physical), are modeled as
relationships.

d There are three kinds of relationships in
UML.:

» dependencies
= generalizations
= associations

15

Dependency Relationships

O A dependency indicates a semantic/notational
relationship between two or more elements.

O The dependency from CourseSchedule to Course
exists because Course Is used in both the add and
remove operations of CourseSchedule.

16

Generalization Relationships

L
/\
e

O A generalization connects a
subclass to its superclass.

Q It denotes an Inheritance of
attributes and behavior from the
superclass to the subclass and
Indicates a specialization in the
subclass of the more general
superclass.

17

Generalization Relationships (Cont’d)

O UML permits a class to inherit from multiple super-
classes, although some programming languages
(e.g., Java) do not permit multiple inheritance.

.
—

18

Association Relationships

m If two classes in a model need to communicate with
each other, there must be link between them.

m An association denotes that link.

19

Association Relationships (Cont’d)

m \We can indicate the multiplicity of an association by

adding multiplicity adornments to the line denoting the
association.

m The example indicates that a Student has one or
more Instructors:

_ 1*_

20

Association Relationships (Cont’d)

m The example indicates that every Instructor has one
or more

m Students:

| Sudent [| Tostructor |

21

Association Relationships (Cont’d)

m \We can also indicate the behavior of an object in an
association

(.e., the role of an object) using rolenames.

_ teaches learns from
1..* 1. _

22

Association Relationships (Cont’d)

m \We can also name the association.

_ membership
x wm

23

Association Relationships (Cont’d)

m \We can specify dual associations.

member of

l..*

presidentof 1..%*

24

Association Relationships (Cont’d)

m Associations can also be objects themselves, called
link classes or an association classes.

Association Relationships (Cont’d)

m A class can have a self association.

next

previous

26

Association Relationships (Cont’d)

m \We can model objects that contain other objects by way of
special associations called aggregations and compositions.

m An aggregation specifies a whole-part relationship between
an aggregate (a whole) and a constituent part, where the part
can exist independently from the aggregate. Aggregations are
denoted by a hollow-diamond adornment on the association.

27

Association Relationships (Cont’d)

m A composition indicates a strong ownership and coincident
lifetime of parts by the whole (i.e., they live and die as a
whole).

m Compositions are denoted by a filled-diamond adornment on
the association.

28

Interfaces

m An interface is a named set of
operations that specifies the
behavior of objects without
showing their inner structure. It
can be rendered in the model by
a one- or two-compartment
rectangle, with the stereotype
<<interface>> above the
interface name.

29

Interface Services

m Interfaces do not get
iInstantiated. They have no
attributes or state. Rather, they
specify the services offered by
a related class.

30

Enumeration

® An enumeration is a user-
defined data type that consists
of a name and an ordered list of
enumeration literals.

31

Exceptions

Exceptions can be modeled
just like any other class.

Notice the <<exception>>
stereotype n the name
compartment.

32

Object Diagrams

= Model the instances of things described by a class.

= Each object diagram shows a set of objects and
their interrelationships at a point in time.

= Used to model a snapshot of the application.

= Each object has an optional name and set of
classes it is an instance of, also values for attributes
of these classes.

Jaelson:Instructor :Student

BillClinton

:Course

courseNo: sc340"

someone : description: "“OOAD"

Monica:Student

33

Multi objects

O A multi object is a set of objects, with an undefined

number of elements

p2:Instructor

cl:Course

:Studentw

T

cZ:Course

c3:Course

Multiobjects

:Studentw

34

Finding Inheritance

Advert

Hoarding"Advert

Press Advert

Video Advert

*Billboard

LAY
£

Newspaper Advert

Magazine Advert

35

Finding Inheritance

d Sometimes we find inheritance bottom-up: we have
several classes and we realize that they have attributes
and operations in common, so we group those attributes
and operations together in a common super-class.

U Define a suitable generalization of these classes and
redraw the diagram.

Book RecordCD
title title
author catalogue#
publisher publisher
ISEN artist
DeweyCode acguisition#
acquisition# Loan()
Loan () Return ()
Return() 36

Finding Inheritance

LoanItem
...The title
Solution... acquisition#
Loan ()
Return ()

A

Book
Author Record
DeweyCode artist
publisher catalogue#
TSBN recordCo

37

Restaurant example: Initial classes

Supply Handling SupplyOrder Supplies

Restaurant Menu Order

Bill

38

Restaurant example: Initial classes

Supply Han::l_li_ng SupplyOrdar Supplyltam
Iter Marme i
N Linit Prica
i —
CraditSupply () -
Elebit%ugplyt[:lj Cuantity
acercer
ProducaChack |) ProduceChack {)
Restaurant
- o—
SaleStat ()
Dascrapancy ()
Manu -] -P;!_nnul‘tnm
| I Num;_
Itam Mumbar
Price
Supplies Usaed
|
Cirdiar
—-_ 00000
ProducaeBill {)
Ciuantity
39

class Online Shopping)

Web User Customer
e 1 0.1 id: String {id}
login_id: String {id
:fss;mrd' Str?n{g } address: Address
state: UserState phone: Phone
email: String
i Payment
wenumerations 1 0.7 | id: String {id)
UserState paid: Date
Account total: Real
zz::fe details; String
Banned — | billing_address: Address {ordered, unique}
is_closed: Boolean
open: Date g,
closed: Date 1 * {ordered,
0.1 1 unigue}
Order
Shopping Cart
nurmber: String {id}
created: Date ordered: Date 1
p shipped: Date
ship_to; Address
status; OrderStatus
total: Real
Lineltem 1
* {ordered, unigue} | guantity: Integer * lordered, unigue}
price: Price -
line_item wenumerations
* OrderStatus
Mew
| Hold
Shipped
Product Delivered
Closed
id: String {id}
name: String
supplier: Supplier
PP PP & uml-diagrams.org

40

d:login

usemame
9. password

verify()

A\

d profileprocess
viewprofie ()
editPofie()
d:search i y
productname fsiel
sendQuery()
searchDB() viewQuernes()

d.giveAnswer

answer

sendAnsawer()
viewAnswers()

d:mgister

name
usemame
password
address
contfact

insertUser()

d:viewadd

ass d

fetchAdd()

d:Add_add

buy/sell
pr_name

new/old
price

addNewAdd ()

41

Ship & Cargo object model

Groups of propellers

+ + + + + + +

Diameter. double

Blade area ratio: double

Pifch ratio; double

Thrust coefficient Kt: Function
Torgue coefficient Kq: Function
Shaft power at propeller: double

1,7 | +provide movement

(argo handling

i

#EEME

Parameters of cargo handling

General cargo

Bulk cargo

equipment & o |

+ Loading rate: double
+ Unloading rate: double

Vessel

+for Cargo type

+ Wolume: double
+ Area: double
+ Weight double

+ Density: double

1

i

v

Cargo capacity: double
GRT: double

1. +can be in

Loading conditions

+ + + + + + +

Towing resistance: Function
Displacement. double
Watering length: double
Waterling breadth: double
Midship draft: double
Izebreaking capability: double

, 2R

+ + + 4+ + + +

Midship beam: double
Total shaft power: double
Vessel type: List

Length between perp.: double

Cargo type

+ Unit of measurement. Unit of measurement

+lor Cang space V 1

0. Tdmﬂ:lﬂ

Cargo space

Vessel cargo
space

+ Volume: double

>, Area: float

#i5 able to coniain

+has &
descnplion

|

Cargo space utilization coefficients

| __|+ related to volume: double
+ related to area: double

Cargo space description

"
+ Combined placement. boolean

Library Management object model

reading aorder

Book

abstract class

ISBM: String[0..1] {id}

==) Author attributes
"_ title: String 1" - wirole 1..*
——={ SUMIMary — — name: String 4_4//||| enurmaration
publisher iik biography: Stri "'EI—_ data type
publication date 1
number of pages K
language agnumerations
T multiplicity / AccountState
geneeralization _muses == Active
1
! Frozen
aantity: Book Item wantitye Al::cuunt/ : Closed
barcode: String [0..1] {id} |0..12 - borrowed number {id} X i
s1-c=rr:ﬂ'h_,'p£:_-::_:l_______*|;r tag: RFID [0..1] {id} history: History[0..*] -—— 1
class — isRafareancaCniy 0.3 - reserved opaened: Dabe
state: AccountState a e
e - accounts -
aggregation © nml-diagrams.org
association I."'__ - 1
- T’»I'II Lil Pat
- ibrary o
records
names narme
f - acdress susen - address
compositicon - -
1 winterfacan o=
e A= Search = - wuses Librarian
Catalog =TT T T =~ name
T T e =T address
—— - 8
T={ interfaces - — - cUsew positicn
Manage

interface realization

usage dependency

Air Ticket Reservation Design Model

I NN
= [dep=cp.dep->min() and
Connection arr=cp.arr->max()]

+ from: Location /' I

+to: Location | e Travel «Interface»
+/ dep: Time “~[+/ dep: Date TravelHandling
tfarsLime:) Lonn +/ arr: Date <trave—— +/ delay: Minutes
-stda(;us. String = "planned + class: String + numOfBag: int=0
#addOne(cp:ConnectionPart) dela e

+add(cp: ConnectionPart [0..*]) :- =2 Y0 {Query}

for all cp B' ’ ; 0
A T 3 : [de|3y=
¢ | o h.del
|____| addOne(cp) tsh.delay->sum()]
+out +return
{ordered,|unique, {ordered,unique,
< subs'ets i : subs?ts L,)
{sequence} travelHandling.tsh} travelHandling.tsh} ftsh {Linion}
1 RS 1.:* 0::X 1.*
ConnectionPart TravelStage «Interface»
+ flightNo: String {readOnly} maxDuration: int = 10 ‘ TravelStageHandling
~addOne(c: Connection) S Tl + delay: Minutes
{redifines addOne} + boardingGate: String

, Seminarenrallment ,
1 enrolledin 1* : * enrolled in " :
Student marksReceied seminar
name OetAverageToDate() seminarhumber
phoneMumber getFinalMark() waitingList
emailAddress *{urdered,FlFG} o .
studertumber 0. on waiting list 0.* | addStudentistudent)
averagehark dropStudentistudent)
isEligible tname, 0. 0
studenthumber)
getseminarsTakend) offering of ¥
nurchaseParkingPass(instructs
1
0.1
Course
Address Professar narme
Ives street name coursehumber
at i .
1 g?s:te Ives at phaneNurnber 0.1 fees
n0stalCode 1 0.1 g;r::ﬂﬂddress etFullMamed)
country "y
validate(getinfarmation]) advisor
autputasLabel) purchaseParkingPass(| o 4
associate| 0.7
offnentors

45

References

[Booch99] Booch, Grady, James Rumbaugh, Ivar Jacobson,

The Unified Modeling Language User Guide, Addison Wesley, 1999
[Rambaugh99] Rumbaugh, James, Ivar Jacobson, Grady Booch, The
Unified

Modeling Language Reference Manual, Addison Wesley, 1999
[Jacobson99] Jacobson, Ivar, Grady Booch, James Rumbaugh, The
Unified

Software Development Process, Addison Wesley, 1999

[Fowler, 1997] Fowler, Martin, Kendall Scott, UML Distilled
(Applying the Standard Object Modeling Language),

Addison Wesley, 1997.

[Brown99] First draft of these slides were created by James Brown.

46

