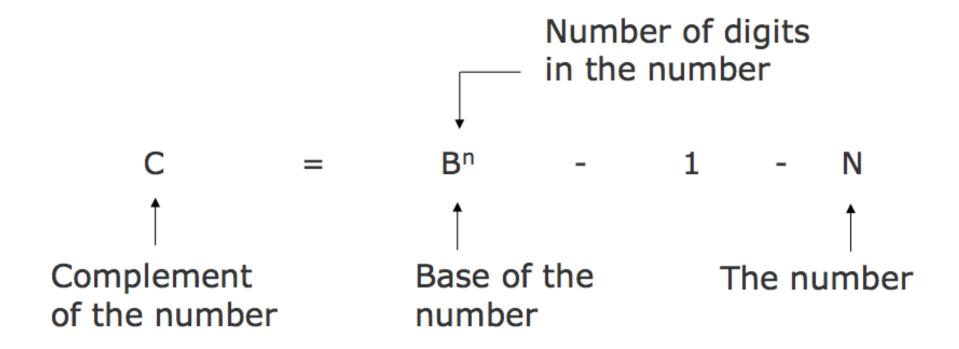
Spring 2019

CSE 112 (Computer Fundamentals Topic: Addition and Subtraction with Two's Complement

Department of Computer Science and Engineering Daffodil International University



Computer Fundamentals by Pradeep K. Sinha, 6th Edition. [Chapter 5]

Fundamentals of Computers by V. Rajaraman and N. Adabala, 6th Edition. [Chapter 6]

Complement of a Number

Complement of a Decimal Number

Example

Find the complement of 37₁₀

Solution

Since the number has 2 digits and the value of base is 10, (Base)ⁿ - 1 = 10^2 - 1 = 99 Now 99 - 37 = 62

Hence, complement of $37_{10} = 62_{10}$

Complement of a Octal Number

Example

Find the complement of 68

Solution

Since the number has 1 digit and the value of base is 8, $(Base)^n - 1 = 8^1 - 1 = 7_{10} = 7_8$ $Now 7_8 - 6_8 = 1_8$

Hence, complement of $6_8 = 1_8$

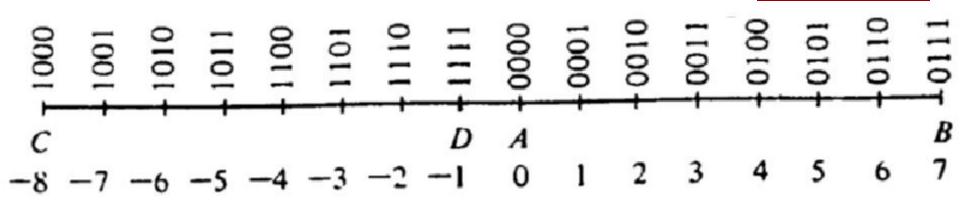
Complement of a Binary Number (1's Complement)

Complement of a binary number can be obtained by transforming all its 0's to 1's and all its 1's to 0's

Example

Complement of	1	0	1	1	0	1	0	is
	↓	↓	↓	Ļ	↓	Ļ	Ļ	
	0	1	0	0	1	0	1	

Note: Verify by conventional complement


Complement of a Binary Number (2's Complement)

- In a computer, all numbers are represented in a uniform fashion using a fixed number of bits.
- Thus, for an n-bit machine, the range of numbers it can handle is 0 to 2ⁿ - 1.
- Of the n bits of the complement representation, (n 1) bits represent the magnitude.
- For simplicity, consider a 4-bit machine. Sixteen numbers (0 to 15) can normally be represented using these four bits.

Complement of a Binary Number (2's Complement)...

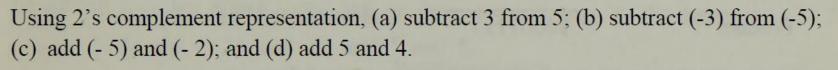
Figure 2.3

The two's complement representation. Note that there are more negative values than positive.

Complement of a Binary Number (2's Complement)...

- There is a simple procedure to obtain the 2's complement of a binary number.
- We first complement each bit of the number (i.e., replace '1' by '0' and '0' by '1').
- Now we add a '1' to the number.
- For example, consider the number 5 whose binary representation is 0101.
- Bit complementation yields 1010. Now adding a '1' to this number gives 1011 which is the 2's complement representation for - 5.

Complement of a Binary Number (2's Complement)...


- Yet another method of obtaining the 2's complement of a binary number is to scan the number from right to left and complement all bits appearing after the first appearance of a '1'.
- For example the 2's complement of 0010 is 1110 and that of 0011 is 1101.

Addition/Subtraction of Numbers in 2's Complement Notation

- Represent all negative numbers in 2's complement form.
- Now we have the same procedure for addition and subtraction.
- Subtraction of a number is achieved by adding the 2's complement of the number.
- This is illustrated in the following example where the carry, if any, from the most significant bit, during addition, should be ignored.
- The result has to be interpreted appropriately using the same convention.

Addition/Subtraction of Numbers in 2's Complement Notation... Example 6.4

SOLUTION;

(a) 5	- 0101	(b)	- 5	1011
	3 1101		+ 3	0011
	10010			1110
	ignore carry Answer = + 2			Answer $=$ - 2
(c) - 5	5 1011	(d)	5	0101
- 2	1110		4	0100
	11001			1001
	ignore carry			incorrect answer
	Answer = -7			

In the last example we get an incorrect answer because the sum 9 exceeds the range of numbers (0 to 7) we had stipulated in the beginning.

The End