

Daffodil International University (DIU) Department of Electrical and Electronic Engineering

EEE 422: Measurement and Instrumentation Lab

EXPERIMENT NO: 09

NAME OF THE EXPERIMENT: ELECTRONIC OHMMETER.

Theory:

A basic electronic ohmmeter is shown in the figure below

Fig.1: Electronic Ohmmeter

As can be seen by this circuit uses an Op-Amp configured as a non-inverting amplifier with a gain of one. The very much input impedance seen looking into the non-inverting input of the Op-Amp effectively isolates the meter movement from the resistive circuitry of the ohmmeter. The terminals to which a resistor of unknown value should be connected are identified as x and x`. This circuit is best analyzed by use of Thevenin's Theorem to find an equivalent circuit for the resistive network as seen at points A and. We must either disconnect op=amp or treat is as am infinite impedance, which we can justifiably do since it does represent a very high impedance. Thevenin's equivalent voltage is computed as

$$V_{TH} = V \frac{R2}{R1 + R2}$$

And Thevenin's equivalent resistance is computed as

$$R_{TH} = \frac{R1R2}{R1 + R2}$$

The Thevenin's equivalent circuit if the ohmmeter is shown in the below

Fig. 2: Thevenin Equipment Circuit of Electronic Ohmmeter

By observation, it is obvious that if points x and x1 are shorted together, which represent a measurement of zero ohm, the input voltage to the op-amp is 0V. Therefore voltmeter reading shows an indication of 0 ohm. In addition, if test points are indicating an infinite resistance, the voltmeter should read the Thevenin's voltage VTh. If there is an unknown resistance Rx, the voltmeter reading follows from the equation:

V'0	V_0	R'x	Rx
(calculated)	(measured by	(multimeter)	(calculated from V ₀)
	multimeter)		
1. 0V			
2. (½ Vcc)			
3.			
4.			
5.			
6.			
7.			

List of Equipment:

1.	IC 741	1
2.	10K resistor	2
3.	Resistor of different values	10

- 4. DC power supply
- 5. DC voltmeter

Procedure:

- 1. Connect the circuit as shown in fig.1. R1 and R2 should be equal.
- 2. Power up the circuit.
- 3. Short the test points x and x` and observe the voltmeter reading. The reading should be zero.
- 4. Place a resistance of value equal to RTh between the test points. Voltmeter reading should be half of the Thevenin's voltage VTh.
- 5. If the observation seen in step 2, 3 and 4 do not match with the expected output then check the circuit connection to correct the error.
- 6. Now calibrate the reading of the voltmeter with the help of five various known resistors and complete Table 1.

Report:

1. Fill up the following table

Sl. No.	Actual Meter Reading	Calibrated value of	Measured value of the
No.	(V)	the meter(K ohm)	known resistor(K ojm)

- 2. Plot calibrated meter reading vs. measured resistance. Comment on this plot(Attach the graph).
- 3. Calculate resistive error for each reading using the following equation: Relative Error = (Rcalibrated Rmeasured)/Rmeasured

Plot relative error vs. measured resistance (attach the graph).

4. Discussion