Exception Handling in Java
The Exception Handling in Java is one of the powerful mechanism to handle the runtime errors so that normal flow of the application can be maintained. Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException, IOException, SQLException, , etc.
[image:]
Hierarchy of Java Exception classes
The java.lang.Throwable class is the root class of Java Exception hierarchy which is inherited by two subclasses: Exception and Error. A hierarchy of Java Exception classes are given below:
[image: hierarchy of exception handling]

Types of Java Exceptions
There are mainly two types of exceptions: checked and unchecked. Here, an error is considered as the unchecked exception. According to Oracle, there are three types of exceptions:

Checked Exception
Unchecked Exception
Error

Difference between Checked and Unchecked Exceptions
1) Checked Exception

Checked exceptions − A checked exception is an exception that is checked (notified) by the compiler at compilation-time, these are also called as compile time exceptions. These exceptions cannot simply be ignored, the programmer should take care of (handle) these exceptions.

For example, if you use FileReader class in your program to read data from a file, if the file specified in its constructor doesn't exist, then a FileNotFoundException occurs, and the compiler prompts the programmer to handle the exception
The classes which directly inherit Throwable class except RuntimeException and Error are known as checked exceptions e.g. IOException, SQLException etc. Checked exceptions are checked at compile-time.

2) Unchecked Exception
The classes which inherit RuntimeException are known as unchecked exceptions e.g. ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at compile-time, but they are checked at runtime.
Unchecked exceptions − An unchecked exception is an exception that occurs at the time of execution. These are also called as Runtime Exceptions. These include programming bugs, such as logic errors or improper use of an API. Runtime exceptions are ignored at the time of compilation.

For example, if you have declared an array of size 5 in your program, and trying to call the 6th element of the array then an ArrayIndexOutOfBoundsExceptionexception occurs.

3) Error
Errors − These are not exceptions at all, but problems that arise beyond the control of the user or the programmer. Errors are typically ignored in your code because you can rarely do anything about an error. For example, if a stack overflow occurs, an error will arise. They are also ignored at the time of compilation.
Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Java Exception Keywords
There are 5 keywords which are used in handling exceptions in Java.

[image:]

Java Exception Handling Example
Let's see an example of Java Exception Handling where we using a try-catch statement to handle the exception.

public class JavaExceptionExample{
 public static void main(String args[]){
 try{
 //code that may raise exception
 int data=100/0;
 }catch(ArithmeticException e){System.out.println(e);}
 //rest code of the program
 System.out.println("rest of the code...");
 }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code...
}

Common Scenarios of Java Exceptions
There are given some scenarios where unchecked exceptions may occur. They are as follows:

1) A scenario where ArithmeticException occurs
If we divide any number by zero, there occurs an ArithmeticException.
int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs
If we have a null value in any variable, performing any operation on the variable throws a NullPointerException.
String s=null;
System.out.println(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs
The wrong formatting of any value may occur NumberFormatException. Suppose I have a string variable that has characters, converting this variable into digit will occur NumberFormatException.

String s="abc";
int i=Integer.parseInt(s);//NumberFormatException

4) A scenario where ArrayIndexOutOfBoundsException occurs
If you are inserting any value in the wrong index, it would result in ArrayIndexOutOfBoundsException as shown below:

int a[]=new int[5];
a[10]=50; //ArrayIndexOutOfBoundsException
image1.png
Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application. An exception normally disrupts the
normal flow of the application that is why we use exception handling. Let's take a scenario:

statement 1;
statement 2;
statement 3;
statement 4;
statement 5;//exception occurs
statement 6;
statement 7;
statement 8;
statement 9;

statement 10;

‘Suppose there are 10 statements in your program and there occurs an exception at statement 5, the rest of the code will not be
executed i.e. statement 6 to 10 will not be executed. If we perform exception handling, the rest of the statement will be executed.
That is why we use exception handling in Java.

image2.png

image3.png
Java Exception Keywords

There are 5 keywords wl

Keyword

try

catch

finally

throw

throws

h are used in handling exceptions in Java.

Description

The "try" keyword is used to specify a block where we should place exception code. The try block must be followed
by either catch or finally. It means, we can't use try block alone.

The "catch” block is used to handle the excey

n. It must be preceded by try block which means we can't use
catch block alone. It can be followed by finally block later.

The "

inally” block is used to execute the important code of the program. It is executed whether an exception is
handled or not.

The "throw" keyword is used to throw an exception.

The "throws" keyword i used to declare exceptions. It doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used with method signature.

