WEEK 3 LESSON |
CHAPTER 4 PART-|
INTRODUCTION TO ASSEMBLY LANGUAGE

PREPARED BY

AHMED AL MAROUF

LECTURER

DEPT. OF CSE

DAFFODIL INTERNATIONAL UNIVERSITY

OUTLINE

= Assembly Instructions Syntax
= Name Field
= Operation Field
= Operands Field
= Comment Field
" Program Data
= Variables

= Byte,Word and Array Variables

Named Constants

= Few Basic Instructions

= MOV and XCHG

ASSEMBLY INSTRUCTION SYNTAX

Assembly language programs are translated into machine language instructions by an
assembler.

They must be written to confirm to the assembler’s specifications (syntax).

Assembly language code is generally not case sensitive

= but we use upper case to differentiate code from the rest of the text.

Here, we are going to use the Microsoft Macro Assembler (MASM).

ASSEMBLY STATEMENTS

= Programs consist of statements, one per line.
= Each statement is either an instruction or an assembler directive.

= Assembler directives instruct the assembler to perform some specific task, such as
allocating memory space for a variable or creating a procedure.

= Generic fields for each instructions:

Name Operation Operand (s) Comment

I I I

Optional Optional

NAME FIELD

= The name field is used for instruction labels, procedure Legal Names:
names and variable names. = COUNTERI

= The assembler translates names into memory addresses. = Icharacter

Rules: = SUM_OF_DIGITS

= Can be from | to 31 characters long = $1000

= May consist of letters, digits and the special characters (?, @, = DONE
_, %), except “&” sign = TEST

= Embedded blacks are not allowed lllegal Name:

= |f a period (full stop) is used, it must be the first character. = TWO WORDS (contains a blank)

= May not begin with a digit. = 2abc (begins with a digit)

= The assembler does not differentiate between upper and " A45.28 (. Not the first character) 5
lower case in a name. = YOU&ME (contains an illegal character)

OPERATION FIELD

= For an instruction, the operation field contains a symbolic operation code (opcode).
= The assembler translates a symbolic opcode into a machine language opcode.

= Opcode symbols often describe the operations function

= For Example, MOV, ADD, SUB

= For an assembler directive, the operation field contains a pseudo-operation code (pseudo-op)
= Pseudo-ops are not translated into machine code.

= They simple tell the assembler to do something.

" For example, PROC pseudo-op is used to create a procedure. 6

OPERANDS FIELD

= For an instruction, the operand field specifies the data that are to be acted on by the operation.
= An instruction may have zero, one, or two operands.

For Example,

NOP ; no operands; does nothing

INCAX ; one operand; adds | to the contents of AX

ADD AX,BX ; two operand, adds the contents of AX and BX stores in AX

Operation Operandl, Operand2

| | 7

Destination Source

COMMENT FIELD

= |t is an optional field.
= Starts with a semicolon (;)
= Works only for one line comments.

= No multiple line comments available for 8086.We have to use semicolon for each
line.

Example:

MOV CX,0 |;move 0 to CX
‘x

" It is a comment 8

PROGRAM DATA

The processor operates only on binary data.

The assembler translate all data representation into
binary numbers.

However, in an assembly language program we may
express data as binary, decimal, or hex
numbers, and even as characters.

Let us know about the following program data
types: Numbers and Characters

Characters and strings must be enclosed in single
or double quotes.

For example:“A” or ‘Hello’

Characters are translated into ASCII codes by the
assembler, So,“A” is same as 4|h in a program.

Notations for Numbers:

Numbers ending with “B” or “b” are in binary
Numbers ending with “D” or “d” are in decimal
Numbers ending with “H” or “h” are in hexadecimal

Octal numbers are not allowed in 8086.

LETS FIND THE TYPE AND VALIDITY OF THE FOLLOWING NUMBERS

Nombes TR

11011 Decimal
[1011B Binary
64223 Decimal
-21843D Decimal
1,234 lllegal-contains a non-digit
character
|B4DH Hexadecimal
|B4D lllegal hex number- doesn’t
end with “H” or “h”
FFFFH lllegal hex number- doesn’t
begin with a decimal digit 0

OFFFFH Hexadecimal

VARIABLES AND NAMED CONSTANTS

= DB (Define Byte), DW (Define Word), DD (Define Doubleword), DQ (Define
quadword) and DT (Define tenbytes) are the pseudo-ops for variables.

= EQU (equates) is used for named constants.

= To be covered in LAB in details.

FEWV BASIC INSTRUCTIONS

MOV instruction:

= The MOV instruction is used to transfer data between registers, between a register

and a memory location, or to move a humber directly into a register or memory
location.

Syntax: MOV destination, source

Example:
MOV AX,WORD| ; moving the value/content of word| into AX
MOV AX, BX ; moving the content of BX register into AX

MOV AX,'A’ ; moving the ASCII value (41h) of character ‘A’

SWAPPING/EXCHANGING CONTENTS OF TWO REGISTERS

= |ets say AX contains 1234h and BX contains 5678h. How we have to swap/exchange
the values of AX and BX.

= Possible way to do this: Using another register (CX or DX) for temporary use
MOV CX,AX
MOV AX, BX
MOV BX, CX

XCHG INSTRUCTION

= Syntax: XCHG destination, source r Before After 1
1A 0o 05 00
| AH AL AH AL ,
* Bample: XCHGAH,BL R o |]
BH BL;- 8H EL'-_

" To do the same task of the last swapping example,
we can simply write,

XCHG AX,BX

DO EXERCISE

Exercises

1. Which of the following names are legal in IBM PC assembly
language?
a. TWO_WORDS
b. 21 R 2. Which of the following are legal numbers? If they are legal, tell

whether they are binary, decimal, or hex numbers.

C. Two words 246
d. .e? , a.
e. $145 246h
f. LET’S_GO 1oo;

+ - . 1,101
g T =

b

C

d

e. 2A3h

f. FFEEh

g. OAh

h. Bh

i. '1110b s

THANKYOU

