
WEEK 3 LESSON 1

CHAPTER 4 PART-1

INTRODUCTION TO ASSEMBLY LANGUAGE

PREPARED BY

AHMED AL MAROUF

LECTURER

DEPT. OF CSE

DAFFODIL INTERNATIONAL UNIVERSITY 1

OUTLINE

 Assembly Instructions Syntax

 Name Field

 Operation Field

 Operands Field

 Comment Field

 Program Data

 Variables

 Byte, Word and Array Variables

 Named Constants

 Few Basic Instructions

 MOV and XCHG

2

ASSEMBLY INSTRUCTION SYNTAX

 Assembly language programs are translated into machine language instructions by an

assembler.

 They must be written to confirm to the assembler’s specifications (syntax).

 Assembly language code is generally not case sensitive

 but we use upper case to differentiate code from the rest of the text.

 Here, we are going to use the Microsoft Macro Assembler (MASM).

3

ASSEMBLY STATEMENTS

 Programs consist of statements, one per line.

 Each statement is either an instruction or an assembler directive.

 Assembler directives instruct the assembler to perform some specific task, such as

allocating memory space for a variable or creating a procedure.

 Generic fields for each instructions:

Name Operation Operand (s) Comment

4

Optional OptionalMandatory Depends on the

operation

NAME FIELD

 The name field is used for instruction labels, procedure

names and variable names.

 The assembler translates names into memory addresses.

Rules:

 Can be from 1 to 31 characters long

 May consist of letters, digits and the special characters (?, @,

_, %), except “&” sign

 Embedded blacks are not allowed

 If a period (full stop) is used, it must be the first character.

 May not begin with a digit.

 The assembler does not differentiate between upper and

lower case in a name.

5

Legal Names:

 COUNTER1

 ?character

 SUM_OF_DIGITS

 $1000

 DONE?

 .TEST

Illegal Name:

 TWO WORDS (contains a blank)

 2abc (begins with a digit)

 A45.28 (. Not the first character)

 YOU&ME (contains an illegal character)

OPERATION FIELD

 For an instruction, the operation field contains a symbolic operation code (opcode).

 The assembler translates a symbolic opcode into a machine language opcode.

 Opcode symbols often describe the operations function

 For Example, MOV, ADD, SUB

 For an assembler directive, the operation field contains a pseudo-operation code (pseudo-op)

 Pseudo-ops are not translated into machine code.

 They simple tell the assembler to do something.

 For example, PROC pseudo-op is used to create a procedure. 6

OPERANDS FIELD

 For an instruction, the operand field specifies the data that are to be acted on by the operation.

 An instruction may have zero, one, or two operands.

For Example,

NOP ; no operands; does nothing

INC AX ; one operand; adds 1 to the contents of AX

ADD AX, BX ; two operand, adds the contents of AX and BX, stores in AX

Operation Operand1, Operand2

7

Destination Source

COMMENT FIELD

 It is an optional field.

 Starts with a semicolon (;)

 Works only for one line comments.

 No multiple line comments available for 8086. We have to use semicolon for each

line.

Example:

MOV CX, 0 ; move 0 to CX

8It is a comment

PROGRAM DATA

 The processor operates only on binary data.

 The assembler translate all data representation into

binary numbers.

 However, in an assembly language program we may

express data as binary, decimal, or hex

numbers, and even as characters.

 Let us know about the following program data

types: Numbers and Characters

 Characters and strings must be enclosed in single

or double quotes.

 For example: “A” or ‘Hello’

 Characters are translated into ASCII codes by the

assembler, So, “A” is same as 41h in a program.

9

Notations for Numbers:

 Numbers ending with “B” or “b” are in binary

 Numbers ending with “D” or “d” are in decimal

 Numbers ending with “H” or “h” are in hexadecimal

 Octal numbers are not allowed in 8086.

LETS FIND THE TYPE AND VALIDITY OF THE FOLLOWING NUMBERS

Numbers Type

11011 Decimal

11011B Binary

64223 Decimal

-21843D Decimal

1,234 Illegal-contains a non-digit

character

1B4DH Hexadecimal

1B4D Illegal hex number- doesn’t

end with “H” or “h”

FFFFH Illegal hex number- doesn’t

begin with a decimal digit

0FFFFH Hexadecimal

10

VARIABLES AND NAMED CONSTANTS

 DB (Define Byte), DW (Define Word), DD (Define Doubleword), DQ (Define

quadword) and DT (Define tenbytes) are the pseudo-ops for variables.

 EQU (equates) is used for named constants.

 To be covered in LAB in details.

11

FEW BASIC INSTRUCTIONS

MOV instruction:

 The MOV instruction is used to transfer data between registers, between a register
and a memory location, or to move a number directly into a register or memory
location.

Syntax: MOV destination, source

Example:

MOV AX, WORD1 ; moving the value/content of word1 into AX

MOV AX, BX ; moving the content of BX register into AX

MOV AX, ‘A’ ; moving the ASCII value (41h) of character ‘A’
12

SWAPPING/EXCHANGING CONTENTS OF TWO REGISTERS

 Lets say AX contains 1234h and BX contains 5678h. How we have to swap/exchange

the values of AX and BX.

 Possible way to do this: Using another register (CX or DX) for temporary use

MOV CX, AX

MOV AX, BX

MOV BX, CX

13Or lets see how XCHG works….

XCHG INSTRUCTION

 Syntax: XCHG destination, source

 Example: XCHG AH, BL

 To do the same task of the last swapping example,

we can simply write,

XCHG AX, BX
14

DO EXERCISE

15

THANK YOU

16

