
WEEK 3 LESSON 1

CHAPTER 4 PART-1

INTRODUCTION TO ASSEMBLY LANGUAGE

PREPARED BY

AHMED AL MAROUF

LECTURER

DEPT. OF CSE

DAFFODIL INTERNATIONAL UNIVERSITY 1

OUTLINE

 Assembly Instructions Syntax

 Name Field

 Operation Field

 Operands Field

 Comment Field

 Program Data

 Variables

 Byte, Word and Array Variables

 Named Constants

 Few Basic Instructions

 MOV and XCHG

2

ASSEMBLY INSTRUCTION SYNTAX

 Assembly language programs are translated into machine language instructions by an

assembler.

 They must be written to confirm to the assembler’s specifications (syntax).

 Assembly language code is generally not case sensitive

 but we use upper case to differentiate code from the rest of the text.

 Here, we are going to use the Microsoft Macro Assembler (MASM).

3

ASSEMBLY STATEMENTS

 Programs consist of statements, one per line.

 Each statement is either an instruction or an assembler directive.

 Assembler directives instruct the assembler to perform some specific task, such as

allocating memory space for a variable or creating a procedure.

 Generic fields for each instructions:

Name Operation Operand (s) Comment

4

Optional OptionalMandatory Depends on the

operation

NAME FIELD

 The name field is used for instruction labels, procedure

names and variable names.

 The assembler translates names into memory addresses.

Rules:

 Can be from 1 to 31 characters long

 May consist of letters, digits and the special characters (?, @,

_, %), except “&” sign

 Embedded blacks are not allowed

 If a period (full stop) is used, it must be the first character.

 May not begin with a digit.

 The assembler does not differentiate between upper and

lower case in a name.

5

Legal Names:

 COUNTER1

 ?character

 SUM_OF_DIGITS

 $1000

 DONE?

 .TEST

Illegal Name:

 TWO WORDS (contains a blank)

 2abc (begins with a digit)

 A45.28 (. Not the first character)

 YOU&ME (contains an illegal character)

OPERATION FIELD

 For an instruction, the operation field contains a symbolic operation code (opcode).

 The assembler translates a symbolic opcode into a machine language opcode.

 Opcode symbols often describe the operations function

 For Example, MOV, ADD, SUB

 For an assembler directive, the operation field contains a pseudo-operation code (pseudo-op)

 Pseudo-ops are not translated into machine code.

 They simple tell the assembler to do something.

 For example, PROC pseudo-op is used to create a procedure. 6

OPERANDS FIELD

 For an instruction, the operand field specifies the data that are to be acted on by the operation.

 An instruction may have zero, one, or two operands.

For Example,

NOP ; no operands; does nothing

INC AX ; one operand; adds 1 to the contents of AX

ADD AX, BX ; two operand, adds the contents of AX and BX, stores in AX

Operation Operand1, Operand2

7

Destination Source

COMMENT FIELD

 It is an optional field.

 Starts with a semicolon (;)

 Works only for one line comments.

 No multiple line comments available for 8086. We have to use semicolon for each

line.

Example:

MOV CX, 0 ; move 0 to CX

8It is a comment

PROGRAM DATA

 The processor operates only on binary data.

 The assembler translate all data representation into

binary numbers.

 However, in an assembly language program we may

express data as binary, decimal, or hex

numbers, and even as characters.

 Let us know about the following program data

types: Numbers and Characters

 Characters and strings must be enclosed in single

or double quotes.

 For example: “A” or ‘Hello’

 Characters are translated into ASCII codes by the

assembler, So, “A” is same as 41h in a program.

9

Notations for Numbers:

 Numbers ending with “B” or “b” are in binary

 Numbers ending with “D” or “d” are in decimal

 Numbers ending with “H” or “h” are in hexadecimal

 Octal numbers are not allowed in 8086.

LETS FIND THE TYPE AND VALIDITY OF THE FOLLOWING NUMBERS

Numbers Type

11011 Decimal

11011B Binary

64223 Decimal

-21843D Decimal

1,234 Illegal-contains a non-digit

character

1B4DH Hexadecimal

1B4D Illegal hex number- doesn’t

end with “H” or “h”

FFFFH Illegal hex number- doesn’t

begin with a decimal digit

0FFFFH Hexadecimal

10

VARIABLES AND NAMED CONSTANTS

 DB (Define Byte), DW (Define Word), DD (Define Doubleword), DQ (Define

quadword) and DT (Define tenbytes) are the pseudo-ops for variables.

 EQU (equates) is used for named constants.

 To be covered in LAB in details.

11

FEW BASIC INSTRUCTIONS

MOV instruction:

 The MOV instruction is used to transfer data between registers, between a register
and a memory location, or to move a number directly into a register or memory
location.

Syntax: MOV destination, source

Example:

MOV AX, WORD1 ; moving the value/content of word1 into AX

MOV AX, BX ; moving the content of BX register into AX

MOV AX, ‘A’ ; moving the ASCII value (41h) of character ‘A’
12

SWAPPING/EXCHANGING CONTENTS OF TWO REGISTERS

 Lets say AX contains 1234h and BX contains 5678h. How we have to swap/exchange

the values of AX and BX.

 Possible way to do this: Using another register (CX or DX) for temporary use

MOV CX, AX

MOV AX, BX

MOV BX, CX

13Or lets see how XCHG works….

XCHG INSTRUCTION

 Syntax: XCHG destination, source

 Example: XCHG AH, BL

 To do the same task of the last swapping example,

we can simply write,

XCHG AX, BX
14

DO EXERCISE

15

THANK YOU

16

