
Chapter 4
Part-3
Assembly Program Structure &
I/O Instructions
PR EPA R ED BY

A HMED A L MA ROUF

LEC T UR ER , DEPT. OF CSE

DA FFODIL I N T ER N AT ION AL UN I VERS I TY

1

Outline:
 Program Structure
 Memory Models

 Data Segment

 Stack Segment

 Code Segment

 Putting All Together

 Input-Output Instructions
 Interrupt instruction

 INT 21h Operations

2

Program Structure
 Each machine language programs consist of code, data and stack. Each part occupies a memory
segment.

 The same organization is reflected in an assembly language program.

 In assembly program, the code, data and stack are structures as program segments.

Each segment is translated into a memory segment by the assembler.

 In 8086 microprocessor Bus Interface Unit (BIU) there are four different segments present:
 Data Segment (DS)

 Stack Segment (SS)

 Code Segment (CS) and

 Extra Segment (ES)

3

Memory Model (1/2)
 The size of the code and data a program can have is determined by specifying a
memory model using .MODEL directive.

Syntax: .MODEL memory_model

 The most frequently used memory models are SMALL, MEDIUM, COMPACT
and LARGE.

 Unless there is a lot of code or data, the appropriate model is SMALL.

 The MODEL directive should come before any segment definition.

4

Memory Model (2/2)

 Unless there is a lot of code or data, the appropriate model is SMALL.

 The MODEL directive should come before any segment definition.

5

Data Segment
 A program’s data segment contains all the variable definitions.

 Constant definitions are often made here as well.

 However, they may be placed elsewhere in the program since no memory allocation is involved.

 To declare a data segment, we use the directive .DATA, followed by variables and constant
declarations.

Example:

6

Stack Segment
 The purpose of the stack segment declaration is to set aside a block of memory to store the
stack.

 The stack area should be big enough to contain the stack at its maximum size.

 Syntax: .STACK size

where size is an optional number that specifies the stack area size in bytes.

 Example: .STACK 100h

 This sets aside 100h bytes for the stack area.

 If size is omitted, 1 KB is set aside for the stack area.

7

Code Segment
 The code segment contains a program’s instructions.

 Syntax: .CODE name

where name is the optional name of the segment.

 Inside a code segment, instructions are organized as procedures.

Example:

8

Putting it Together

9

Input-Output Instructions using Interrupt

 INT Instruction:

 To invoke a DOS or BIOS routine, the INT (interrupt) instruction is used.

 Syntax: INT interrupt_number

where interrupt_number is a number that specifies a routine.

 For example, INT 16h invokes a BIOS routine that performs keyboard input

10

INT 21h Operations
 INT 21h is used to invoke a large number of DOS functions such as input and output.

Function
Number

Task Functionality

1 Single-key input Input: AH = 1
Output: AL = ASCII code if character key is pressed

AL = 0, if non-character key is pressed

2 Single-character
output

Input: AH = 2
DL = ASCII code of the display character or control character

Output: AL = ASCII code of the display character or control character

9 Character string
output

Input: DX = offset address of string
The string must end with a “$” character

11

INT 21h functions
 Single-key input:

MOV AH, 1 ;input key function

INT 21h ;ASCII code in AL

Single Character Output:

MOV AH, 2 ;display character function

MOV DL, ‘A’ ;character is ‘A’

INT 21h ;display character

12

LEA (Load Effective Address)

13

INT 21h functions
 Character String Output:

14

Program Segment Prefix

15

Example

16

Thank You

17

