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Preface to the first edition

Physics plays a large part in textile technology. But, while there are many applications
to textile processing, these are diverse and cannot usefully be studied except as part
of the technology of the processes themselves; however, the study of the structure
and physical properties of fibres, yarns, and fabrics forms the unified subject that is
legitimately called textile physics, and which is an essential part of the education of
any textile technologist. The present book deals only with the fibre properties, augmented
by an introductory chapter on fibre structure. While it was conceived as the first part
of a trilogy, it remains to be seen whether it will be possible to write the companion
volumes on yarns and fabrics.

This book is primarily a text book, based on our teaching experience, and intended
for textile students in universities and colleges. While a full understanding of the
whole of the text demands a wide knowledge of physics and mathematics, much of
it is suitable for those who have not studies physics far beyond Ordinary G.C.E.
level*. With this point in mind, the subject matter has been subdivided and arranged
so that the more advanced theoretical treatments may be omitted without detriment
to an understanding of the rest of the book.

We also hope that the book will prove useful to those preparing for the Associateship
examinations of the Textile Institute; to graduates in science entering direct into the
industry; and to the large body of technologists, already following a career in the
industry, who wish to have available a survey of this particular part of textile technology.

We would like to emphasize that this book is not intended to be a comprehensive
treatise, including a reference to every relevant research publication; on the contrary, our
aim has been to provide a background of knowledge and understanding of the subject,
much of which is unlikely to change radically with the passage of time, and which
will therefore serve as a basis for more detailed study by reference to current literature.

We wish to take this opportunity of gratefully acknowledging the invaluable help
that we have received from Miss Shirley Smith in the preparation of the illustrations;
and from Professor R. Meredith, Mr. G. E. Cusick, and Dr. D. W. Saunders in reading
and criticizing sections of the manuscript.

Manchester College of Science and Technology
W. E. M.

J. W. S. H.

* Now GCSE, a British school examination taken at age 15–16.

xi

© Woodhead Publishing Limited, 2008



Preface to the fourth edition

It is 50 years since I started writing my contribution to the first edition of this book.
By then, the ancient craft of manufacturing textiles from wool, cotton, flax and other
natural fibres had been supplemented by 50 years of scientific research into their
physical properties. Rayon had been around for 50 years and new synthetic fibres
were entering the market. Nylon and polyester were expensive ‘miracle fibres’. Now
polyester has replaced cotton as the cheap, general-purpose fibre. The high-performance
fibres were not to come for another 20 years.

The 1960s saw the high-water mark of fibre research. Changes were rapid and a
revised edition was needed in the 1970s. The third edition in 1993 was a reprint of the
second edition with two extra chapters on ‘High Performance Fibres’ and ‘Flex
Fatigue and other Forms of Failure’. A full revision was overdue. In this fourth
edition, I have followed the approach described in the preface to the second edition.

We need to add little to our previous preface: the general character and aims of the
book are unchanged, and the continuing demand shows that our approach has, as
we hoped, stood the test of time. There is, indeed, a body of knowledge of fibre
physical properties which is basic in the education of a textile technologist, and
this is what we aim to present.

The changes in this edition result, in part, from a closer adherence to the
essential character of the book: some of the details of theories and experimental
techniques, which seemed important at the time, have been omitted [since then,
developments in electronics and digital processing have transformed experimental
methods]. The book is now more concentrated on the fundamentals of the subject;
some digressions on topics less directly concerned with physical properties have
been dropped.

The other source of change is new knowledge. When the first edition was
published, ideas of fibre structure were in a state of disturbance and controversy,
partly reflected in what we wrote. Now, it is possible to take a more stable view
of the subject, and the first chapter contains substantial changes. Theories of
mechanical properties, as related to structure, have also developed considerably in
recent years. In experimental work, much has been published on time-dependent
properties, though this has not radically changed the picture, and some valiant
studies of the anisotropy of fibre mechanical properties have been made. However,
the topic which has been most advanced is the study of thermal properties: this has
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made it possible to write a much more useful and coherent account of experimental
results, their interpretation, and their relation to the technology of heat-setting.

The general pattern of the book in this fourth edition is as it has been, but there has
been some reorganisation. Partly this results from the increasing dominance of
manufactured fibres. Fibre fineness is now a more important quality than fibre length.
Thermomechanical responses and fibre failure now have their own chapters. High-
performance fibres take their place through the book, instead of being Band-Aid at
the end.

In the preface to the third edition, I wrote the following:

Since the second edition was published, my co-author, W.E. Morton, has died.
During over forty years as a Professor of Textile Technology in Manchester, he did
a great deal to advance the scientific study of fibres and textiles. He also gave
great encouragement and help to those of us who joined him as young men on the
staff or as research students. I remember with great affection his many kindnesses,
not least by inviting me to join him in writing the first edition of this book 35 years
ago.

After 60 years of research in fibres and textiles, I owe a debt to too many people
to name. My introduction to textile fibres started in 1946 with the distinguished
scientists at the Shirley Institute. Since then I have interacted with researchers in
many universities, research institutes and industrial companies. Without them this
book could not have been written. Finally, the writing and publication of this edition
has been made much easier by the generous professional help of the staff of Woodhead
Publishing and Macfarlane Book Production Services.

Mellor, Greater Manchester
John W. S. Hearle
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1

1.1 General introduction

1.1.1 The nature of matter

Fibre physics is the study of the structure and physical properties of fibres. These two
aspects are not, however, independent: the properties must be explained by the structure,
which they also help to elucidate. Because of this connection, it is appropriate to start
this book on the physical properties of fibres with a review of what is known about
their structure. There is much detail, only partly superseded by more recent work, in
the book edited by Hearle and Peters [1] and the review by Hearle and Greer [2].
Other information is in the general references given at the end of the chapter.

Matter is composed of atoms linked together by bonds of varying strength. It is the
arrangement of these atoms and the strength of the bonds between them that determine
the physical properties of materials. Thus with light atoms, such as those of helium,
attracted to one another by very weak forces, the energy of the atoms is sufficient
(except at very low temperatures) to cause them to move about independently, and
the material is a gas. The material will also be a gas (though with a higher liquefaction
point) if it is made up of heavier atoms, or of molecules composed of two or three
atoms held together by strong forces (valency bonds), provided that the forces between
the individual molecules are weak. These weak forces are often called van der Waals
forces, since they are the cause of one of the deviations of a real gas from an ideal
gas, which were considered by van der Waals in his modification of the gas laws. If
the molecules are heavy enough, and the attractive forces strong enough, then the
atoms will not have sufficient energy at room temperature to move freely away from
one another, and the substance will be a liquid or a solid.

Some materials are made up of giant molecules. For example, in a crystal of
diamond, all the atoms are linked to one another by valency bonds in a regular three-
dimensional network. This gives a very hard, non-fusible material. In graphite, which
is also pure carbon, the atoms are linked only in single planes by valency bonds; the
forces between the planes are weak, so the material is one that easily splits up into
sheets, and these will slide over one another, giving a lubricating action. In linear
polymers, the linking is in only one dimension. If there is flexibility in the main-
chain covalent bonds and only weak bonding between the long-chain molecules,
there is nothing to prevent thermal energy from causing the chains to take up a
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Physical properties of textile fibres2

disordered, random, tangled arrangement, as suggested in Fig. 1.1(a). When the
material is tensioned, the molecules straighten out, giving a large extension, Fig.
1.1(b). This extension is reversible, since on releasing the tension the molecules
return to the random tangle. This is the rubbery state, though some crosslinks are
introduced in vulcanisation to give cohesion to the material. At lower temperatures or
with stronger bonding, such an amorphous polymer material is a glassy plastic. Other
linear polymers can crystallise into regular lattices to give plastics such as polyethylene
of intermediate stiffness. From these examples, we see that the characteristics of
matter are determined by its molecular arrangement.

1.1.2 Intermediate bonds: hydrogen bonding

In addition to the ordinary covalent bonds that link atoms in a molecule and the usual
weak van der Waals interactions between molecules, there is another class of bonds
of intermediate strength, which are very important in influencing fibre properties.
The best-known example is the hydrogen bond, which forms between hydroxyl
(—OH) groups. Figure 1.2(a) gives a schematic representation of this bond, and Fig.
1.2(b) illustrates, in a very inexact manner, the way in which it might arise by a
sharing of electrons from the outer rings of the hydrogen and oxygen atoms.

Water illustrates the importance of hydrogen bonding, both in its own properties
and in its occurrence as the commonest ‘fibre plasticiser’. Below 0 °C, the hydrogen
bonds are strong enough to hold the water molecules together as a crystalline solid,
although the mass of the molecules is less than that of many substances (propane,
butane, hydrogen sulphide, chlorine, nitrogen, oxygen, to name but a few) that are
gases at this temperature. At atmospheric pressure, between 0 and 100 °C, water is a
liquid of limited volume in equilibrium with water vapour. The water molecules are

(a) (b)

1.1 (a) Disordered arrangement of long-chain molecules in rubber. (b)
Oriented arrangement of molecules in stretched rubber.

(a) (b)

1.2 Two schematic representations of a hydrogen bond: (a) bonding; (b)
electron arrangement in outer rings.
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An introduction to fibre structure 3

in a mobile dynamic equilibrium, with hydrogen bonds continually breaking and re-
forming. Above 100 °C (at atmospheric pressure), all the molecules disperse into a
gas. At ordinary temperatures, therefore, hydrogen bonds are in a very sensitive state:
they are on the verge of breaking and thus are easily affected by changes of temperature,
by applied stresses and by chemical and structural changes. Deliberately or inevitably,
this results in considerable effects in some fibre materials, such as cellulose and
nylon. This affects fibre behaviour, processing and usage; the fibre molecules under
various conditions may be held rigidly together, be free to move in a dynamic equilibrium
or be completely free of one another, except for chain entanglements.

Hydrogen bonds can also form, as illustrated in Fig. 1.3, between —CO·NH—
groups, which are found in polyamide and protein fibres.

In some fibres, there may be other bonds of intermediate strength. Thus, in the
acrylic fibres, the asymmetry of electron arrangement in the —C≡≡N group, illustrated
in Fig. 1.4, results in a moderately strong electrical interaction. In polyester fibres,
and others based on aromatic polymers, there is an interaction between benzene
rings.

1.1.3 The nature of fibres

Fibres have been defined by the Textile Institute [3] as units of matter characterised
by flexibility, fineness and a high ratio of length to thickness. To these characteristics
might be added, if the fibre is to be of any use for general textile purposes, a sufficiently
high temperature stability and a certain minimum strength and moderate extensibility.

The characteristic dimensions of fibres are the basis of their use and need to be
stressed: individual fibres (or elements of a continuous filament) weigh only a few
micrograms, and their length/width ratio is at least 1000:1, so that a single cotton
fibre scaled up to be as thick as a thumb would be 100 m long. In addition to the need
to be made of materials that can be produced in this special form with adequate
stability for use, ordinary textile fibres must be, at least partly, elastic up to breaking
extensions between 5 and 50%. This is an unusual intermediate range of extensibility,
since glasses and crystalline solids are less extensible, whereas rubbers are much
more extensible. The materials that meet these needs are almost all partially oriented,

H N

OC H N

C O

1.3 Schematic indication of hydrogen bonds between —CO · NH— groups.

NC

1.4 Electric dipoles in the acrylonitrile side group.
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Physical properties of textile fibres4

partially crystalline, linear polymers. A remarkable fact is that almost all the general
textile fibre market is met by six polymer types: the natural polymers, cellulose and
proteins, and the synthetic (manufactured) polymers, polyamide, polyester, polyolefin
and vinyl (including acrylic).

The above comments relate to fibres for the traditional textile uses. More recently,
a second generation of high-performance fibres has been introduced for functional
applications. They have high strength and low extensibility. Some of these are linear
polymer fibres. Others are inorganic networks, which, provided that they are fine
enough, have the necessary flexibility. Glass and asbestos (which is no longer used
because it is a health hazard) are the two older fibres in this group. At the other
extreme, elastomeric fibres are used where a high stretch is specially needed.

There are other sorts of fibres, which fall outside the main theme of the book.
There are fibres in living organisms, of interest to biologists: these include wood
fibres, used in paper but too short for textiles, and a variety of connective tissues. Of
commercial interest, there are fibres with special properties for particular uses. Metal
fibres may be used for decorative purposes or for special purposes, such as reducing
static electricity. Other fibres are used medically, for example to assist wound-healing.
Finally, there are ‘smart fibres’, which can be used as transducers or change with the
environment.

1.2 Methods of investigation of structure

1.2.1 Sources of evidence

The elucidation of fibre structure has been based on many sources of information,
which include:

• the chemistry of the fibre material – its preparation, composition, molecular
formula and reactions;

• the absorption of infrared radiation;
• Raman scattering of light;
• optical and X-ray diffraction studies;
• optical microscopy;
• electron microscopy and electron diffraction;
• nuclear magnetic resonance;
• optical properties;
• thermal analysis;
• density;
• general physical properties.

Of these, the chemistry is a subject of its own, of which the results will be assumed
here; the optical, thermal, density and general physical properties are the subject of
the remaining chapters of this book; and optical microscopy is a subject of which the
general principles are well known and the techniques are covered in specialised
textbooks. The remaining sources are specialised techniques, which it may be useful
to describe briefly here.
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An introduction to fibre structure 5

A general comment should first be made. All the techniques are subject to errors
and artefacts, and a direct unambiguous interpretation of experimental results is
rarely possible. Indeed, there is a danger of a vicious circle: detailed calculations
based on a particular model of structure may unjustifiably be taken as evidence in
support of the model. Views on fibre structure have therefore to be built up from a
collection of largely circumstantial, possibly unreliable, evidence. Unfortunately, no
individual is an expert in evaluating all the techniques; and it is easy to place most
reliance on the stated results of techniques with which one is less familiar and so less
aware of the difficulties of interpretation. However, despite these difficulties, there is
a general consensus on many aspects of fibre structure.

1.2.2 Absorption of infrared radiation and Raman scattering

When electromagnetic waves interact with matter, they are scattered and absorbed. In
infrared spectroscopy, radiation with wavelengths between 1 and 15 µm is absorbed
at certain characteristic frequencies, which yield structural information. Elastic scattering
does not give molecular information, though light scattering does give larger-scale
information. Raman spectroscopy results from the few photons that are inelastically
scattered.

By using an infrared spectrometer, the variation in absorption can be found and
plotted against wavelength, or, more commonly, its reciprocal, the wavenumber. This
is illustrated in Fig. 1.5, which is the absorption spectrum of nylon. The peaks occur
where the frequency of the electromagnetic waves corresponds with the natural
frequency of vibration between two atoms in the material. If these are associated with
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1.5 Infrared absorption spectrum of nylon: Full-line: electric vector
perpendicular to fibre axis. Broken line: electric vector parallel to fibre axis.
Inset: Crystal structure of nylon 6.6 (Bunn and Garner [5]). (After Bamford, et
al. [4]).

© Woodhead Publishing Limited, 2008

Red
Highlight

Red
Highlight

Red
Highlight

Red
Highlight



Physical properties of textile fibres6

an electric dipole, then the variations in the electric field set up the vibration, and
energy is absorbed from the radiation. The fundamental oscillations occur at
wavenumbers less than 4000 cm–1. These give strong absorptions and so can be
studied only in very thin films or fibres. At higher wavenumbers, nearer optical
frequencies, absorptions will occur that are due to harmonics of the fundamental
frequencies. The absorption spectrum in this range is more complex and less used,
but, since the absorptions are weaker, thicker specimens, such as fibre bundles, can
be studied.

The wavenumber at which absorption takes place depends primarily on the nature
of the two atoms and of the bond between them. Thus there will be absorption

frequencies characteristic of such groupings as C H, C O, C O ,

O H, N H, C C C C,  and so on. To a smaller extent, the

absorption frequency is influenced by the other groups in the neighbourhood: for
example, the absorption frequency for a carbon–hydrogen bond in a terminal group,
—CH3, is different from that for the same bond in a chain, —CH2—.

The first use of infrared absorption is therefore as an aid to the identification of the
presence of certain groups in the molecule, leading to the determination of its chemical
formula. The method can also be used in routine analysis to identify and estimate
quantitatively the presence of given substances, even in small quantities in a mixture,
by observation of their characteristic spectrum. For instance, it can be used to determine
the amount of water in fibres.

Other structural information can also be obtained. If the infrared radiation is
polarised, then the oscillation of the atoms will vary from a maximum for one orientation
to a minimum for an orientation at right angles. The variation in the absorption
spectrum with the direction of polarisation can therefore be used to investigate the
degree of orientation of the molecules in a fibre. For example, in nylon, the >N—H,
>CH2 and >C==O absorption bands all show weak absorption when the vibration
direction of the electric vector is along the molecular chain and strong absorption
when it is vibrating perpendicular to the chain axis. The curves in Fig. 1.5 demonstrate
the high molecular orientation of drawn nylon.

In addition to determining the degree of orientation of the molecules as a whole,
polarised infrared may also be used to find the direction in which a particular group
points in a molecule of unknown form. For example, two different forms, α and β, of
the synthetic polypeptide poly-L-alanine show a difference. It is deduced that the
>C==O and >N—H bonds move from a transverse direction between molecules in β
towards a direction parallel to the chain axis between coils within α molecules. This
is useful in determining the molecular configuration in polypeptides and proteins
(see Section 1.6.3).

An advantage of the infrared absorption method is that it is influenced by all the
molecules in the fibre, in both the crystalline and non-crystalline regions, whereas
the X-ray diffraction method gives detailed information only about the crystalline
regions of the fibre. For example, the infrared spectrum gives evidence of the presence
of α- and β-forms of protein molecules in the non-crystalline regions of protein
fibres.
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An introduction to fibre structure 7

In some materials, owing to the influence of the surroundings, an absorption will
occur in the crystalline regions but not in the non-crystalline regions. Polyethylene,
for example, shows a strong double peak at 725 cm–1. In shorter-chain paraffin
hydrocarbons, this double peak is found in the solid (crystalline) state, but only one
component is present in the liquid (non-crystalline) state. The presence of a doublet
is thus evidence of crystalline material. From an examination of the relative magnitudes
of the two peaks, the proportion of crystalline material can be estimated. Furthermore,
by using polarised infrared, the orientation in the two regions could be separately
determined.

In a similar way, Sandeman and Keller [6] have found absorption bands in the
infrared spectrum of nylon that are characteristic of crystalline order, and these may
be used to determine the degree of crystallinity. Other bands are characteristic of
chain folds [7].

One special technique that may be useful is the exposure of a material to the
vapour of heavy water, D2O. This may lead to the replacement of hydrogen atoms in
the material by deuterium atoms, which can be detected by the change in the infrared
absorption, consequent on the greater weight of the deuterium atom. This technique
has been applied to viscose rayon and other forms of cellulose [8], in which the
—OH groups in the cellulose molecule are replaced by —OD groups. Only the non-
crystalline regions are accessible to the heavy water, and consequently the infrared
absorption spectra of the hydroxyl groups in the crystalline and non-crystalline regions
are separated and can be studied independently.

In Raman spectroscopy, the incidence of the photons shifts electrons from one
state to another. The energy of the change comes from the photon. Consequently the
scattered photon has a different energy and hence a different frequency. The effects
are manifested in the visible region. Broadly speaking, Raman spectra are influenced
by material structure in a way similar to that described for infrared absorption spectra,
but the greater complication of the interaction yields more directional information.
Raman spectroscopy has become a powerful tool for investigating fibre structure as
a result of the development of Raman microscopes. With a spot size less than a fibre
diameter, spectra can be obtained from single fibres. If the fibre is mounted on an
extension stage in the microscope, it is possible to observe the shift in the spectral
lines with fibre extension [9]. In this way it is possible to show which parts of the
structure are changing. An account of the use of Raman spectroscopy in various ways
in the study of aramid, polyester and carbon fibres is given by Young [10].

1.2.3 Optical and X-ray diffraction studies

Diffraction may be viewed as a problem in information theory. For example, when a
beam of light is passed through a photographic slide, the light is scattered in many
directions. By using a lens in the right place, we can recombine this scattered information
about the picture into an image on a screen. But the information is there before it is
recombined, and diffraction is the science of understanding and using this information
in all sorts of ways. Image formation is thus merely one branch of diffraction in its
most general sense, and there are many circumstances in which images cannot be
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Physical properties of textile fibres8

formed or are not the most useful means of obtaining the required information about
the object.

In a narrower sense, diffraction is the study of the particular patterns that may be
found when waves pass through or round objects (or holes) of particular shape. For
example, there is a characteristic diffraction pattern from a single slit. The difference
between the image that must be focused at a particular place and the angular diffraction
pattern that can be intercepted anywhere is shown in Fig. 1.6.

An example of the use of optical diffraction in fibre physics is shown in Fig. 1.7
taken from work by Lynch and Thomas [11]. A single fibre will diffract a parallel
beam of light into a pattern of fringes that gives a means of measuring its diameter
accurately or of showing up changes in diameter. If the fibre is gold-coated, as in Fig.
1.7(a), the pattern is relatively simple, since all the scattering is from the edge of the
fibre; but if light also passes through the fibre and is scattered internally, a much
more complicated pattern (Fig. 1.7(b)), is found. In this pattern, there must be a great
deal of useful information on internal fibre structure The problem is how to understand
the phenomenon in sufficient detail to extract this information.

The scattering of a fine beam of light is another diffraction phenomenon that can
be used to obtain information about the internal structure of polymer films [12],
which may be related to fibre structure. This is analogous to the formation of a halo
round the moon when it is seen through a cloud. The radius and breadth of the halo
give some information about the distribution of spacings between the particles that
scatter the light, for example, the crystallites within a fibre. More complicated patterns
can also be made to yield information about the shape of the scattering particles and
differences in spacing in different directions.

(a)

(b)

Light
Dark
Light

Dark

Light

Dark

Light
Dark
Light

1.6 (a) Formation of image of a slit. (b) Diffraction pattern of slit.
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An introduction to fibre structure 9

The use of polarised light in either of the above two techniques changes the pattern
and thus, in principle, increases the available information about structure if it can be
interpreted.

The diffraction patterns from objects with some regular repetitive structure are
more simple and immediately useful. Thus a diffraction grating of regularly spaced
lines, illuminated normally by parallel light, will give a set of fringes, with the
maxima of the bright bands at angles φ defined by the relation:

(a)

(b)

1.7 Diffraction pattern of a nylon fibre: (a) as received; (b) coated with gold to
minimise effects of internal structure. From Lynch and Thomas [11].
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Physical properties of textile fibres10

nλ = a sin φ (1.1)

where n is an integer, λ the wavelength of light and a the spacing of the lines in the
grating.

Measurements of φ enable values of a to be found (though, more usually, in
ordinary physics a grating with known spacing is used to find λ or to disperse light
into a spectrum with φ varying according to the value of λ). Any distortion in the
grating will cause a disturbance in the diffraction pattern. In the extreme, an irregular
grating would give a very complicated pattern: but the structural information would
still be there if it could be extracted.

Equation (1.1) illustrates two general features of diffraction effects. Firstly, the
angle varies inversely with the spacing, so wide-angle patterns give information on
close spacings, and narrow-angle patterns give information on more distant spacings.
Secondly, since sin φ cannot be greater than 1 and n cannot be less than 1 (for the first
fringe away from the centre), the smallest possible value of the spacing a for which
a solution can be obtained is the wavelength λ. The limit of resolution is thus of the
order of magnitude of the wavelength of the light used1. Optical-diffraction effects,
including optical microscopy, even by using ultraviolet radiation, will therefore give
information only on relatively coarse features of fibre structure with spacings greater
than about 0.1 µm. Indeed, optical microscopy becomes very difficult as soon as one
approaches 1 µm, which is not much less than typical fibre diameters.

Atomic and molecular spacings are more than a thousand times smaller than this:
typical values lie between 0.1 and 0.5 nm. Consequently, in order to obtain information
about the fine structure of fibres, we need to use much shorter electromagnetic
waves, namely X-rays. X-ray diffraction is a most important tool for the study of
fibre structure, firstly because it gives information at the most important level of fine
structure, and secondly because focusing of X-rays is not possible, so that diffraction
methods have to be used.

As before, wide-angle diffraction will give information on the finest inter-atomic
spacings, and narrow-angle diffraction will give information on longer spacings, of
the order of 10–100 nm. As before, an irregular structure will give a complicated
pattern, which is difficult to interpret from the image on a photographic plate. However,
three advances have made the technique more powerful than was available to the
pioneers of X-ray diffraction: arrays of detectors give enhanced quantitative information
on the diffraction pattern; computer software then enables the data to be analysed and
interpreted; and the increased power of synchrotron radiation reduces exposure times
and allows small spot sizes to be used. Dynamic X-ray diffraction is possible, for
example on a moving threadline.

As with optical diffraction, the simplest diffraction patterns arise when the X-rays
are scattered from a regular, repetitive lattice. This is the subject of X-ray diffraction
by crystals, which has proved an immensely powerful tool since the first patterns
were observed by von Laue in 1912.

1A detailed plot of intensity variation over the central fringe will bring the limit down a little below
λ. The limit of resolution of an optical microscope at its best is usually taken to be 0.6λ.
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An introduction to fibre structure 11

A crystal can be regarded as made up of layers of atoms, themselves regular in
their two-dimensional plan, stacked regularly on top of one another2. Although analysis
of the diffraction from such a three-dimensional lattice is more complicated than for
a simple grating, it does result in a very similar equation; for it can be shown that, if
a beam of X-rays is directed at a crystal, it is strongly reflected whenever it strikes
layers of atoms at an angle θ, shown in Fig. 1.8, such that:

nλ = 2d sin θ (1.2)

where n is an integer, λ the wavelength of the X-rays and d the distance between the
atomic layers. Under these conditions, the reflections from the individual layers
reinforce one another: at other angles, they interfere with one another. Since, as is
illustrated in Fig. 1.9, one can find many layers of atoms of varying density in

θ θ

θθ
A C

d

B

1.9 Planes of atoms in a cubic crystal.

1.8 Reflection of X-rays from a crystal lattice. Retardation of rays reflected
from successive layers = AB + BC = 2d sin θ.

2The concept of atomic layers must not be interpreted too literally. Except in special cases, it does
not mean that there are sheets of matter separated by spaces: it is merely a means of describing a
repetitive structure, in which the atoms will be fairly uniformly distributed in three-dimensional
space.
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Physical properties of textile fibres12

different directions, there will be a series of characteristic angles of incidence (relative
to the crystal axes) at which strong reflections will be obtained. From these angles
and from the variation in intensity of the reflections, the general crystal structure can
be worked out, and particular atoms can be identified in position. The details of the
diffraction pattern will be influenced by the whole form of the atomic arrangement
in three dimensions; and there are a variety of methods available to help in the
difficult problem of deducing the crystal lattice structure from the diffraction pattern.

In fibres, however, we are not dealing with single crystals: we have a mass of
small crystallites. These will usually be oriented parallel to the fibre axis, but it is
simpler to consider first the diffraction pattern that is found when there is no preferred
orientation. This is what we get if we pass an X-ray beam through powdered crystals
and is called a powder photograph.

The condition that a particular reflection should occur is that the layer of atoms
should make the required angle with the X-ray beam. This will happen for a series of
orientations of the crystals distributed around a cone. The X-rays will be reflected
around a cone of twice this angle, as shown in Fig. 1.10. Furthermore, since all
orientations of the crystals are present, all the other reflections will occur, with the
appropriate layers of atoms distributed round cones giving the characteristic angles
of incidence. The powder photograph is given by the intersection of a photographic
plate with these cones and will be a series of circles, subtending angles determined
by the distances between layers of atoms in the structure. An example is the X-ray
diffraction photograph of Ardil, a regenerated protein fibre of a type no longer produced
(shown later in Figure 1.13(a)).

If there is a preferred orientation of the crystals, then the pattern is different. We
may suppose that all the crystals are lined up with one of the crystal axes parallel to
the fibre axis. Now, layers of atoms giving rise to a particular reflection will make a
constant angle, φ, with this crystal axis, but, if there is no preferred orientation
perpendicular to the fibre axis, the layers can occur at a series of positions distributed
around the fibre axis on a cone, as shown in Fig. 1.11. If an X-ray beam is directed

θ

Directions of
similar layers of

atoms  in
different crystals

X-ray beam

Reflection of
X-rays

1.10 Reflection of X-rays from powdered crystals. Atomic layers giving a
characteristic reflection angle are distributed around a cone.
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An introduction to fibre structure 13

at right angles to the fibre axis, the reflections will now occur, not round a whole
cone, but only at those four angles at which the cone of Fig. 1.10 (defining the
characteristic angles of reflection) intersects with the cone of Fig. 1.11 (defining the
angles at which the particular layers of atoms occur). This is illustrated in Fig. 1.12.
The restriction on the angles at which the crystals lie has reduced the X-ray diffraction
pattern from the full circles of the powder photograph to the sets of four spots
occurring symmetrically in each of the four quadrants of the fibre photograph. Each
of the layers of atoms will contribute different sets of four spots, and these will be
repeated at different spacings for different values of n in equation (1.2). There are
two special cases: if φ = π/2, then the cone of Fig. 1.11 becomes a plane cutting the
other cone in only two places, and the reflections occur as two spots on the equator
of the photograph; and, if φ = (π/2 – θ), the two cones just touch, and the four spots

Fibre axis

Layers of
atoms

φ

1.11 Distribution of a particular layer of atoms at angles on a cone round the
fibre axis.

Fibre axis

X-ray beam

1.12 Intersection of the two cones, giving fibre diagram of four spots.
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coalesce into two, this time at the poles. If φ < (π/2 – θ), no reflections occur.
Although they were made around 50 years ago, the various X-ray diffraction

patterns found in fibres are well illustrated in Fig. 1.13 by a set of comparative
pictures. Figure 1.13 (n) is an example of a pattern of a completely crystalline,
completely oriented fibre, namely, asbestos. The symmetrical pattern of sharp spots
is clearly apparent. The other patterns in Fig. 1.13 are much less sharp, but the way
in which they deviate from the idealised pattern yields extremely valuable information
about fibre structure. For example, if the orientation is not completely perfect, one
can get reflections over a range of angles, and the spots broaden out into arcs. The
transition from a fibre with no preferred orientation of the crystals, through a moderately
oriented fibre, to a highly oriented one is shown in Figs 1.13(a), (b) and (c) for a
regenerated-protein fibre, wool and silk, respectively.

The X-ray diffraction photographs of fibres may be used for various purposes.
Since the patterns for each type of fibre are different, as illustrated in Fig. 1.13, they
may be used for identification, but their main use is to give information about fibre
structure. If the position of a large enough number of spots is known with sufficient
accuracy, then the exact crystal structure in which the molecules are packed can be
worked out, and this has been done for several fibres. Even when there is not sufficient
information to do this, one can deduce much that is useful. If the patterns are different,
then the crystal structure must be different. For example, there is a slight difference
in the spacing of the spots in Figs 1.13(d) and (e) for hemp and Fortisan3, respectively.
This shows up the difference in the crystal structures of native and regenerated
celluloses.

The broadening of the spots into arcs shows a decrease in the degree of orientation.
This is illustrated in Figs 1.13(e), (f), and (g) for Fortisan, high-tenacity viscose
rayon and ordinary viscose rayon. The arcs in these photographs gradually diminish
in intensity as the distance from the middle of the arc increases. But, in the photograph
for cotton (Fig. 1.13(h)), the arcs end sharply: this is due to the fact that the crystals
are arranged on spirals round the fibre axis, so the range of orientations relative to the
fibre axis is sharply defined. From the angles subtended by the arcs, one can calculate
the spiral angle in the fibre.

Mercerised cotton (Fig. 1.13(i)) is interesting because it shows a double pattern
with the spacings characteristic of both natural and regenerated cellulose. Similarly,
in delustred viscose rayon (Fig. 1.13(j)), there is a faint ring outside the main pattern,
which is due to reflection from the titanium dioxide present. Another circumstance in
which a double pattern is obtained occurs with almost all fibres; this is the superposition
on the characteristic crystal-diffraction pattern of a diffuse background due to scattering
from non-crystalline regions of the fibre. From a study of the relative intensities of
the two effects, estimates of the degree of crystallinity can be made.

Broadening of the spots into arcs is characteristic of poor orientation, but a broadening
along a radius of the pattern is characteristic of crystallites that are either very small
or very imperfect, so that the characteristic angle of reflection from a layer of atoms

3Fortisan, which is no longer produced, was a highly oriented cellulose fibre, produced by regeneration
from cellulose acetate.
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(a) Regenerated protein fibre
(Ardil)

(b) Wool (c) Silk (d) Hemp

(e) Fortisan (regenerated
cellulose)

(f) High-tenacity viscose
rayon

(g) Standard viscose rayon (h) Cotton

1.13 X-ray-diffraction photographs of fibres (photographs by J. A. Howsmon, American Viscose Corporation).
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1.13 (Continued)

(i) Mercerised cotton (j) Dull viscose rayon (k) Unannealed Dacron
polyester fibre

(l) Annealed Dacron
polyester fibre

(m) Glass fibre (n) Asbestos (o) Acetate (p) Nylon
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1.13 (Continued)

(q) Orlon acrylic fibre (r) Saran copolymer fibre (s) Polyethylene
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is less sharply defined. An example is the X-ray diffraction pattern of unannealed
polyester fibre (Fig. 1.13(k)): after annealing, the spots are sharper (Fig. 1.13(l)). We
may similarly compare the photographs for two mineral fibres, glass and asbestos
(Figs 1.13(m) and (n)); the first is a single halo, characteristic of a completely amorphous
material, and the second contains a large number of sharp spots, characteristic of a
highly crystalline material.

The reflections giving the patterns discussed above occur at angles up to about
10°, but one can obtain other useful information from the reflections that occur at
very small angles, close to the X-ray beam. It follows from equation (1.2) that, since
sin θ will be nearly zero, these must be due to the occurrence of much larger values
of d. Studies have been made with θ as small as 10 seconds, corresponding to
d = 2000 nm. In a few special materials, such as porcupine quills, sharp reflections
have been obtained, indicating the presence of some repeat in the structure at a large
spacing, but usually a diffuse halo is found. This is due to the scattering of X-rays by
small crystallites in the fibre. A detailed study of these narrow-angle photographs can
therefore lead to information about the size, shape and arrangement of the crystallites.

1.2.4 Electron microscopy and related techniques

Electrons, although usually regarded as particles, can act as if they were waves with
a wavelength of the order of 0.005 nm. They can be focused by bending their paths
in electric and magnetic fields in the same way that light rays are bent by lenses.
Electron microscopes can form an image with a limit of resolution that is far smaller
than is possible with an optical microscope. A limitation is that the specimens must
be in a vacuum.

Obtaining sufficient contrast is one of the many technical difficulties in electron
microscopy, and fibres are not the easiest specimens to deal with. The specimens
used in ordinary transmission electron microscopy must be very thin (less than 0.1 µm
thick), both to allow the passage of electrons and to avoid confusion arising from the
great depth of focus. With some difficulty, it is possible to cut fibre sections of this
thickness in order to make direct observations of the internal fine structure. Staining
with heavy-metal compounds may be used to enhance contrast. A danger in this work
is that some of the features that are observed may be caused by the section-cutting
itself.

A great deal of useful information has come from the study of replicas, either of
a cut face of the fibre or of the fibre surface, made in some suitable material. The
contrast is often emphasised by a technique that consists of depositing heavy-metal
atoms on the specimen from a given angle to give the appearance of shadows.
Internal detail may also be shown by peeling a layer off the fibre to expose a new
internal surface for replication. Another technique that may be used is to examine the
fragments that are left behind after mechanical or chemical degradation of fibres. The
polymers of which fibres are composed may also be examined as thin films.

As well as focusing an image, the electron-diffraction pattern of crystal lattices
can be obtained. In general, this gives much the same sort of information about
orientation and crystallinity as comes from X-ray diffraction, but with the advantage
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that it can be obtained from a particular area of an electron microscope picture, rather
than from the whole of a bulky specimen. In dark-field electron microscopy, an
image is formed from a particular selected band of diffracted electrons. This technique
can therefore be used to show up the presence of crystalline regions, which will
diffract in the selected direction and appear light against a dark background (or the
reverse in negative contrast).

As an alternative to the method of viewing thin specimens in transmission, it is
possible to form an image from electrons reflected from a surface. However, this
cannot be done very effectively in a conventional, direct electron microscope, although
some interesting studies of surface damage were made in the 1950s. A much better
method for examining surface detail is scanning electron microscopy (SEM). The
principle of this method is that a fine spot of electrons is traversed across the specimen
and some response is used to form an image on what is, essentially, a television
screen scanned synchronously with the spot. In the usual mode of operation, where
the scattered electrons picked up by a collector are used to generate the image, the
picture looks like an ordinary enlarged image of the specimen as viewed along the
column followed by the electrons forming the spot. There are other modes of use that
give further information. The main use of scanning electron microscopy in fibre
science has been in the range of medium to high magnification, which is near or
beyond the limit of the optical microscope. The scanning electron microscope has the
great advantage of a much larger depth of focus.

The early applications of electron microscopy to fibres are discussed by Chapman
[13], Hearle and Greer [2], Hearle and Simmens [14] and Hearle et al. [15]. Since
then there have been important advances in techniques. Some of these come from the
general developments in electronics, digital processing and information technology.
Spot sizes have been reduced in scanning electron microscopy and scanning has been
applied to the transmission mode. Resolution has been improved, so that, in appropriate
samples, individual atoms in a crystal can be seen. Increased sensitivity reduces
exposure times and limits radiation damage.

An order of magnitude increase in voltage has enabled high-voltage electron
microscopes to be used with thicker specimens. Bryson et al. [16] have used tomography
to make a quantitative determination of the twist angles in the helical assembly of the
intermediate filaments (microfibrils) in the macrofibrils of the ortho-cortex of wool,
as shown later in Figs 1.45 and 1.46. If a specimen is observed at a series of tilt
positions, a three-dimensional tomograhic reconstruction can be produced. Computer
graphics then enables this to be viewed at any angle and measurements to be made.

Scanning allows images to be formed from other signals. Atomic force microscopy
is a useful way of examining fibres. In its simplest form, a probe with a minute tip
mounted on a cantilever arm rests on the surface of the specimen. As it moves across
the surface, the tip rises and falls and the deflection of the cantilever is a measure of
force. This can be viewed as a line showing the surface profile or scanning over an
area and conversion of the response to a grey scale gives an image of the surface
topography. Atomic force microscopy can be used in other modes. For example the
tapping mode gives a measure of the stiffness of the material. This can be used to
show differences in elastic modulus in different parts of a fibre cross-section [17]. An
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example of the use of the atomic force microscope is a study of the morphology,
nano-mechanical properties and effects of moisture absorption in cotton by Maxwell
et al. [18].

1.2.5 Nuclear magnetic resonance (NMR)

The nuclei of many atoms possess a magnetic moment. As a result, the nucleus can
be caused to resonate if it is put into an appropriate alternating magnetic field.
Typical values would be a field of 1.5 tesla oscillating at 60 MHz. Structural information
comes from the influence of the fields of neighbouring atoms on the resonance.
When the atoms can resonate independently, as in a liquid, they all do so at the same
frequency, though high resolution shows that there is really a set of separate finely
spaced frequencies, which give information on the structure of the molecules themselves.
In a solid, however, the rigidity of the system causes a strong interaction between
neighbouring molecules, and this results in a broadening of the frequency response.
This effect will be greatest in a crystalline region and less in a non-crystalline region.

As usual in resonance phenomena, the energy absorbed can be caused to vary in
two ways: in this system, either by scanning through a range of frequencies, with a
maximum at the resonant frequency, or by running through a change of magnetic
field at constant frequency. The latter procedure is usually adopted, and a typical
response for a solid polymer is shown in Fig. 1.14. Differentiation of the curve aids
interpretation. The ratio of the intensity of the broad band to the intensity of the
narrow band gives a measure of the crystalline/non-crystalline ratio in the material.

Absorption
curve

Derivative
curve

Matrix rigidity

Ho H

    

A
B

 = peak ratio

A B

1.14 Nuclear magnetic resonance curve for a solid polymer. From Statton [19].

© Woodhead Publishing Limited, 2008



An introduction to fibre structure 21

What is even more interesting is the fact that the width of the broad band gives a
measure of the rigidity of the more highly ordered material. Statton [19] has shown
that this decreases with temperature owing to the increasing thermal oscillation in the
crystal lattice, but it is also interesting that it increases on drawing nylon and increases
still more on hot stretching.

Statton, as indicated in Fig. 1.14, terms the parameter derived from the broadband
width the matrix rigidity, since the width depends on how firmly the resonating atom
is held within the surrounding matrix of highly ordered material. In a perfect crystal,
the width would be great; in a small or defective crystal, it would be less. In a similar
way, the width of the narrow band could indicate how firmly individual atoms are
held within their matrix of less ordered regions.

1.3 Approaches to polymer fibre structure

1.3.1 Requirements for fibre formation from linear polymers

An essential requirement in fibre structure is some means of ensuring continuity, and
strength, along the length of the fibre. Because of the fineness of fibres, transverse
strength is of much less importance. In the linear polymer fibres, it is the long-chain
molecules that provide this continuity. In considering what type of molecular
arrangement of linear macromolecules will be necessary in a fibre-forming structure,
we can be helped by considering the larger-scale problem of how a textile yarn is
made up.

A mass of raw cotton consists of a large number of long, fine fibres, arranged
irregularly and tangled up, just like the molecules in rubber (Fig. 1.1(a)). In order to
make this into a yarn, we must cause the fibres to line up more or less parallel to one
another and then insert twist, which leads to lateral compression in the yarn and so
causes frictional forces to hold the parallel fibres together. However, the twist must
not bind the fibres together into a solid rod, which would destroy the flexibility and
porosity required in the textile yarn.

From this, we can see by analogy that the basic requirements for fibre formation
would be:

• long-chain molecules, corresponding to the long fibres that make up yarns: if the
molecules or fibres are too short, there will be a loss of strength as illustrated in
Fig. 1.15;

• a more or less parallel arrangement of the molecules;
• lateral forces to hold the molecules together and give cohesion to the structure;

(a) (b)

1.15 Effect of length of fibres (or molecules) on strength: (a) long fibres
showing a cohesion; (b) short fibres, showing possibility of easy breakage.
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• some measure of freedom of molecular movement in order to give the necessary
extensibility to the fibre and some openness to give room for moisture absorption
and uptake of dyes.

It will be noted that twist is not included, since it is not a fundamental requirement
but only a means of bringing lateral frictional forces into play in yarns.

In fibres, the lateral forces serve a second purpose, that of maintaining the oriented
arrangements of the molecules. Without them, there would be a return to the disordered
arrangement characteristic of rubbers.

1.3.2 Order and disorder in fibre structure

Fibres, as well as sheets or blocks of the same polymers, do not have the macroscopic
form of crystals, but the X-ray diffraction patterns of most fibres show sharp spots in
a four-point diagram, which is characteristic of an oriented crystal lattice, accompanied
by an amorphous halo. This indicates that the fibres consist of partially oriented,
partially crystalline, linear polymers. There is no problem in understanding partial
orientation as a structure in which the chain molecules approach but do not fully
achieve an alignment parallel to the fibre axis. However, there are many different
ways in which crystallinity can be incomplete. The literature contains a great diversity
of pictures. To some extent, these are interpretations that differ for different fibres.
However, they are all two-dimensional or quasi-two-dimensional views of three-
dimensional structures; few have a quantitative basis; and all reflect the ideas and
graphical skills of the authors.

The diffraction evidence that the structure was a mixture of order and disorder was
supported by values of density and moisture uptake and by other analytical techniques.
However estimates of the relative amounts of order and disorder differ according to
method used, as shown in Table 1.1. What is fairly consistent is that there is twice as
much disorder in regenerated cellulose as in cotton. Another measure is accessibility

Table 1.1 Percentage of disordered material in various celluloses (approximate average
values from published literature†)

Technique Cotton Wood Mercerised Regenerated
pulp cotton cellulose

X-ray diffracton 27 40 49 65
Density 36 50 64 65
Deuteration 42 55 59 72
Moisture regain (sorption ratio) 42 49 62 77
Hailwood Horrobin 33 45 50 65
Non-freezing water 16 – 23 48
Acid hydrolysis 10 14 20 28
Alcoholysis 10 15 25 –
Periodate oxidation 8 8 10 20
Dinitrogen tetroxide oxidation 23–43 – – 40–57
Formylation 21 31 35 63
Iodine sorption 13 27 32 52

†Values summarised by Jeffries et al. [20].
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(Table 1.2), which indicates the availability of internal surfaces, volumes or —OH
groups in cellulose. Again there is uncertainty because values differ according to the
agent used (Table 1.3).

The dimensions of the crystalline regions, deduced from the diffraction data, are
of the order of 10 nm, which is around 1000 times less than the length of the molecules.
This suggested a fringed-micelle model of fibre structure. Figure 1.16(a) shows an
early view of the structure after crystallisation from a melt . One can see how this sort
of structure would arise if one considers a large pile of beads on strings arranged in
a tangled mass. If the beads have hooks on them and several people start fastening
them together, each person will build up a compact region of strings of beads fastened
together in regular order. But, after a time, the actions of one person will begin to
interfere with those of another: it will not be possible for some chains to be fastened

Table 1.2 Percentage accessibilities of celluloses measured by exchange of hydroxyl
hydrogens for deuterium†

Celulose Accessibility Cellulose Accessibility

Bleached cotton 44 Kenaf 49
Mercerised cotton 66 Flax 50
Finely ground cotton 87 Cotton linters 50
Sulphite pulp 57 Ramie 53
Mercerised sulphite pulp 70 Rayon 78
Jute 48 Potato starch‡ 97

Birch xylan‡ 99

†From results of Skachkov and Sharkov [21] by a modified method of Sepal and Mason
[22].
‡Soaked to the point of no more swelling in the H2O–D2O mixture. These highly accessible
non-cellulosic polysaccharides are included for comparison.

Table 1.3 Accessibility and molecular weight

Measurement Purified cotton Mercerised cotton
(%) (%)

Periodate oxidation: potential accessibility 40 –
without crystal disruption†

Water  (D O):2
18  some crystal penetration‡ 48.8 63.9

Water (D2O): readily accessible§ 36.0–37.2 48.1
N,N-Diethylaziridinium chloride: readily 19–21 32–33

accessible¶
Diphenyl Fast Red 5BL: readily accessible|| 2.5 4.5

(5.4 m2/g††) (9.9 m2/g††)

† Rowland and Cousins [23].
‡ Guthrie and Heinzelman [24].
§ Rousselle and Nelson [25].
¶ Bose et al. [26].
|| Johnson et al. [27].
†† Percentages calculated from an estimated 220 m2/g of surface for completely accessible

cellulose chains.
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up any further because they are already fixed elsewhere. The hooking-together of the
strings continues until finally there are several regions of beads fastened together,
whereas between them the strings go off in various directions and can be fastened
together only where two beads happen to pass close to one another. This is an exactly
analogous arrangement to that shown in Fig. 1.16(a). There are the crystalline regions
of regular order and the non-crystalline region, where the molecules can only be
linked together in a few places. The process of formation is also analogous for, if an
irregular mass of chain molecules is crystallising, crystallites will form at various
places and continue to grow until they interfere with one another. The drawing
process for melt-spun fibres would leads to orientation, as indicated in Fig. 1.16(b).

Figure 1.16 was proposed in the context of nylon and polyester fibres, but is now
directly relevant only to stiffer molecules such as cellulose. Note that all the molecules
fringe off at the edge of the crystallites to continue as tie-molecules to other crystallites.
Chain folding occurs only in the amorphous regions between the crystallites. Academic
studies of slow crystallisation in laboratory conditions showed other forms.

It was found that polymers, including those used in fibres, could be crystallised
from dilute solution so as to give single crystals. In these lamellar crystals, the chain
molecules are folded back and forth as illustrated schematically in Fig. 1.17. Similar
folding may occur in fibres, and this has led to the suggestion of a modified fringed-
micelle structure, in which there is a mixture of fringing and folding at the end of
each micelle. Figure 1.18(a) illustrates this form of structure, but was drawn with
angled ends to the crystallites in order to explain a feature of the crystal lattice of
nylon 6.6 (see Fig. 1.47). Typically, Fig. 1.18(a) is too uniform a structure. There

(a) (b)

1.16 Fringed micelle structures: (a) in unoriented (undrawn) fibre; (b) in
oriented (drawn) fibre. From Bunn [28].
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would be some variation in crystal size and packing as indicated in Fig. 1.18(b),
which is based on X-ray diffraction studies of nylon 6 [30].

Two general points should be made. Firstly, because the structure consists of
blocks within a matrix, a typical crystallinity of 50% requires that the spacing between
crystallites averages one-third of the crystallite dimensions. Such tight packing is not
compatible with a random placing of crystallites and leads to the quasi-fibrillar form
shown in Fig. 1.18(a,b). The driving force to crystallisation will lead to the tie-
molecules being somewhat extended and not random coils. Secondly, as discussed in
Chapter 18, rapid quenching may lead to a more uniform structure as illustrated in
Fig. 1.18(c) [31]. Large crystals have a lower internal energy than small crystals, so
that annealing tends to give a growth in crystal size. For polymers, in contrast to
metals, where defects can move and eliminate boundaries between crystals, this

1.17 Schematic illustration of chain-folding in a single crystal.

1.18 Views of fine structure of nylon fibres. (a) A common working model
proposed by Hearle and Greer [29]. Angled ends are based on small angle X-
ray diffraction pattern of nylon 66. (b) From Murthy et al. [30], based on X-ray
diffraction studies of nylon 6. (c) An alternative form, from Hearle [31].

(a) (b) (c)
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requires the small crystals to melt and reform as new larger crystals. This major
change is not possible when the crystals have grown to a certain size. Consequently.
the crystal size, which depends on processing conditions, is limited to a maximum of
about 10 nm.

Bulk crystallisation of polymers from the melt or from more concentrated solution
leads to a spherulitic structure. Such a structure starts from crystallisation as folded-
chain lamellae on separate nuclei; the crystals then grow with successive branching,
until the spherical region is established. Ultimately, the separately growing spherulites
meet. Fringed-micelle structures are the limiting form of spherulitic crystallisation
when the number of nuclei becomes so large that they are very close together and
there is no room for the spherulitic branching to develop. This is typical in fibre
production, with rapid solidification, but there are circumstances in which occluded
spherulites occur in nylon fibres. After drawing, they become ellipsoids.

With stiffer molecules, fibrillar textures are observed in electron microscopy. For
low crystallinity fibres, as in cellulose, Hearle [32, 33] proposed a fringed-fibril
structure, as-illustrated in Fig. 1.19. This combines (a) a fibrillar form and (b) the
ideas inherent in the fringed-micelle structure of distinct crystalline and non-crystalline
regions with chain molecules running continuously through each type of region. The
highly crystalline high-performance fibres have a more tightly packed fibrillar structure.

Polymers such as polyethylene have been found to crystallise in lamellar forms
linked by tie-molecules.

1.19 Fringed-fibril structure.
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In natural fibres, genetic control leads to the lay-down of specific fibrillar forms.
As discussed later, cotton may be completely crystalline, with disorder coming from
imperfect register between fibrils, and wool contains fibrils separated by a chemically
different matrix.

A more radical difference in views of fibre structure results from a questioning of
the concept of well-defined crystalline and non-crystalline regions. Even in 1930,
there had been those who regarded the structure as uniformly partly ordered. This
view was revived by Kargin [34], who suggested an amorphous structure with some
correlation between the positions of neighbouring chains. Hosemann [35, 36], on the
other hand, suggested a paracrystalline structure in which the lattice parameters are
subject to a more-or-less random disturbance. This leaves the crystal lattice locally
somewhat distorted, and certainly without any long-range order.

Others have taken over ideas from metal physics and suggested that the disorder
is due to crystal defects (vacancies, folds, chain ends, extra units, crossing of and
twisting chains, and so on) at particular points within the crystal. These last two
models substitute internal imperfections in the crystallites as a source of disorder
instead of separate non-crystalline regions. Reneker and Mazur [37] have proposed
explicit models for defects in polyethylene. An additional —CH2— group or a switch
between neighbouring chains would be local disturbances within a continuous distorted
crystal lattice. However the molecules in most textile fibres have much longer repeats
(38 atoms in 14 goups in nylon 66), so that an additional repeat unit could not be
incorporated without destroying the crystal.

The above comments briefly describe the diverse forms of polymer crystallisation.
The experimental evidence on disorder could also be explained by the size of crystalline
regions. Small crystals imperfectly packed together would give a poor X-ray diffraction
pattern, a lower density and accessibility to the surfaces of the crystallites or crystalline
fibrils. It is now recognised that because different fibres are made of different polymers
and are produced in different ways, there may be major structural differences, and
one should not look for a single form of structure. In particular, there will be differences
between natural fibres, which grow very slowly as living cells or are slowly extruded
as silks, and manufactured fibres, formed by high-speed extrusion and drawing.

1.3.3 A general view

A more general approach to the problem can be made by considering what parameters
are needed to give a reasonable specification of fibre structure. Because the structure
is intermediate between one that can be specified by a unit cell and one that can be
specified by statistical parameters, a complete description would need the position of
almost all the atoms to be individually stated, namely, around 1016 parameters per
fibre. This is obviously impossible. Fortunately, we can select a limited number of
parameters, which characterise the most important features. The list proposed by
Hearle and coworkers [2, 38–40] is:

• degree of order;
• degree of localisation of order;
• length/width ratio of localised units;
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• degree of orientation;
• size of localised units;
• molecular extent.

The first three can be taken together in a triaxial plot, as shown in Fig. 1.20(a), and
the other three then regarded as applying to any structure defined by the first three.
The various forms of structure already discussed are indicated by their positions on
the plot. In Fig. 1.20(b), the likely positions of various fibres are marked.

Degree of order would be theoretically defined as the mean value of some correlation
function relating the position of neighbouring chains. Practically, it could be defined
in terms of density by the expression:

degree of order = 
ρ ρ

ρ ρ
 –  

–  
am

cr am
(1.3)

where ρ is the fibre density, ρam the density of amorphous (non-crystalline) material
and ρcr the density of crystalline material.

The values of degree of order would range from zero for a completely amorphous
fibre to unity for a perfectly crystalline fibre. The experimental methods of density
determination will be discussed in Chapter 5. Alternatively, estimates of degree of
order could be obtained by other methods, such as X-ray diffraction, accessibility,
infrared absorption or NMR studies.

Figure 1.21 illustrates a range of degrees of order. In a continuous structure, the
whole material would be of the same degree. However, a given average value, say
50%, could correspond to many other different combinations, as indicated by the
three distributions of local degree of order shown in Fig. 1.22.

Degree of localisation of order would be theoretically defined by some measure of
the spread of values of degree of order taken over zones a few molecules wide. The
uniform distribution A in Fig. 1.22, would have a low value, B would be larger, and
C would have the largest value, since it represents a split into separate ordered and
disordered regions. Experimentally, values of the degree of localisation of order must
be estimated from indirect evidence, such as electron microscope views of the fine
structure.

The length/width ratio of the units is a more straightforward parameter, ranging
from infinity for very long fibrils down to unity for cubic micelles and to zero (or
minus infinity on a logarithmic scale) for extensive flat sheets. It is tacitly assumed
here that the ‘length’ refers to the direction of the chain axis. In lamellar crystals, the
ratio would be more commonly regarded as thickness/width.

An important point to stress is that all the parameters can vary continuously and
there are no sharp boundaries between the various forms of structure indicated in Fig.
1.20(a). One form merges into another. At some point, the disorder in a paracrystalline
structure becomes too great to pick out the regular lattice and the structure is better
regarded as amorphous with correlation. As correlation varies from place to place, it
may become distinct enough to discern separate regions of high and low order, which
will eventually be so distinct that they are to be regarded as crystalline and amorphous.
The uniform disorder of the paracrystal can be replaced by distributed point defects;
and then, if these defects come together, they may eventually be so large that they are
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1.20 (a) Schematic representation of fibre structure in terms of three major
variables. (b) Possible location of various materials on the plot: (1) wool and
other hair fibres; (2) silk; (3) cotton and other plant fibres; (4) model rayon
and lyocell; (5) ordinary rayon; (6) triacetate; (7) secondary acetate; (8)
regenerated-protein fibres; (9) polyester fibre; (10) polyamide fibre; (11)
polypropylene fibre; (12) linear polyethylene fibre; (13) branched polyethylene
fibre; (14) acrylic fibre; (15) polyvinyl chloride fibre; (16) spandex fibre; (17)
rubber, atactic polystyrene. From Hearle [38]. The newer high-modulus fibres
would be further out along the line ➀-➁-➂.
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better regarded as amorphous regions. As fibrils become shorter, they are eventually
better regarded as elongated micelles; and then flattened micelles merge into small
lamellae.

The two parameters, degree of orientation, defined theoretically by a mean angle
between the chain molecules and the fibre axis, and size of localised units, indicating
the difference between a coarse and a fine texture, do not give rise to any basic
conceptual difficulties of definition and experimental estimates can be made.

Molecular extent is more difficult. Direct measurement is not possible and it is not
included in drawings of structure, except for simple examples such as Fig. 1.15. As
shown by an analogous example at a larger scale, it has a major effect on strength.
The strength of a textile yarn depends not only on fibre length but also on the extent
to which the fibre is folded back on itself. Drafting is used to remove folds. In highly

Perfect crystal

Paracrystalline

Amorphous with
correlation

Wholly amorphous

1.21 Range of degrees of order of packing of chain molecules, as drawn by
Howsmon and Sisson [41], with identification of forms by Hearle [38].

1.22 Three of many possible distributions of degree of order in a 50%
crystalline fibre: A, uniform intermediate order; B, all degrees of order equally
represented in different regions; C, mixture of highly ordered and highly
disordered regions. From Hearle and Greer [2].

C

B

A

C
Frequency of
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form

Amorphous
Degree of

order

Crystal
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folded forms, as shown in Fig. 1.23, molecular extent approximates to fold length.
With few folds, fibre length is more important.

In addition to the six listed, there are other aspects of fine structure that could be
specified and that may be important in some circumstances. There are other features
of the shape of localised units. Fibrils may be cylindrical or ribbon-like. There are
fine details of packing, such as the relative extent of fringing and folding. There are
the details of interconnection between crystalline regions. There may be distributions
of values of the length/width ratio, degree of orientation and size of localised units
parameters; and so on. However, with adequate means of theoretical analysis, it
becomes possible to predict many fibre properties from a knowledge of the chemistry
of the chain molecule, of the six parameters of fine structure, and of any special
larger-scale structural features.

1.3.4 Order, orientation and extent

Degree of order, degree of orientation and molecular extent are often confused. This
is because, at the extremes, they do come together as high or low values (Fig. 1.24(a),
(f)). A perfectly ordered structure must be perfectly oriented with fully extended
chains, and a completely disordered structure must be completely disoriented with
short fold lengths. But these are not practical cases. In intermediate situations the
three parameters are unrelated. Figure 1.24(b–e) illustrates this. A very highly ordered
structure may be completely disoriented because it is composed of separate crystals
pointing in all directions. A very low degree of order can occur owing to chain
entanglement and lack of register with very little angular deviation from perfect
orientation. A highly oriented structure may have short chain folds. A sequence of
semicircular folds can give high extent and zero orientation. Other conflicting
combinations can be found.

1.3.5 Limiting values of parameters

In ordinary substances composed of small molecules, it is possible to work disorder
out of the system. If faults come to the edge of the crystal, they disappear. A large

Extent

1.23 Extent of a long chain in a structure.
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crystal grain can grow by rearrangement of atoms near its boundary until it eliminates
a smaller grain. This is not possible in polymer systems, since, if one crystallite is
caused to grow, then the connections along the polymer chains cause a disturbance
elsewhere. It is easy to imagine this if one thinks of packing a tangle of string into
aligned regions corresponding to crystals. Once the initial stage of ordering is over,
an improvement in one place can only come with an upset somewhere else.

As a result, once fibres have crystallised with a given degree of order, it is very
difficult to make more than marginal improvements (say, from 50 to 60%) in the
degree of order by any treatment. On thermodynamic grounds, it is clear that there
will be (below the melting point) a driving force towards increased order, which
brings the structure closer to the ideal of a single crystal, and that this will continue
until further progress is blocked by the complexity of molecular entanglement.
Nevertheless, significant rearrangements, such as an increase in size of crystalline
regions and of the space between them, or the pushing out of defects from inside a
crystal into non-crystalline regions, or major mechanical deformation of the structure,
can be made without much change in the overall degree of order.

With the polymers that are used for most fibres (although not necessarily with
polyethylene), it also seems likely that there will be a driving force towards localisation
of order. The reasons for this were discussed by Hearle and Greer [2]. The argument
is that a uniform intermediate degree of order is not very favourable in either entropy

(a) (b) (c)

(d) (e) (f)

1.24 (a) Maximum order, orientation and extent. (b) Higher order, zero
orientation. (c) Low order, high orientation. (d) High orientation, low extent.
(e) Zero orientation, high extent. (f) Minimum order, orientation and extent.
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S or internal energy U. Given the above restriction that the average degree of order
cannot increase, there would probably be a lowering of free energy (U – TS) by part
of the material becoming more highly ordered, with much lower internal energy and
not too large a decrease in entropy, and the other half becoming more disordered,
with a large increase in entropy and with very little change in internal energy.
Mechanistically, we can imagine crystalline regions growing and pushing the disorder
out ahead to pile up in larger amorphous regions.

The requirements listed are satisfied in the common textile fibres. But, in specialised
fibres, there are differences: for example, in the high-modulus inorganic fibres, continuity
is achieved in other ways, and, in elastomeric fibres, orientation is not required.

1.4 Cellulose fibres

1.4.1 Cellulose

We now turn to individual fibre types and discuss their chemical constitution, fine
structure and larger-scale morphology. Cellulose fibres, particularly cotton since it
continues to account for a major share of the world’s fibre usage, will be covered
first.

The cellulose molecule consists of a series of glucose rings joined together, with
the formula:

It is instructive to consider a simple schematic representation of its essential features.
It is a long-chain molecule (Fig. 1.25(a)), made up of groups that are linked together
by valency bonds. The strength of these bonds is such that, if the whole strength of
the chain could be utilised, it would have a strength more than ten times as great as
that of the strongest commercial cellulose fibre. The chain can be extended in length
indefinitely. A minor feature that is worth noting is that the chain has direction, owing
to the asymmetry of the atoms in the glucose rings. Protruding from the chain are
—OH (hydroxyl) groups, which can link up with other hydroxyl groups by means of
hydrogen bonds (see Section1.1.2). This results in the linking together of neighbouring
chains as shown in Fig. 1.25(b). Water molecules can also be attached by the same
sort of bond. The chains have a strong preference to assemble into crystals (Fig.
1.25(c)). In non-crystalline regions, hydrogen bonds will form within the disordered
assembly of chain segments.

The cellulose molecule is ribbon-like in form. Although stiff in comparison with
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a molecule such as polyethylene, the ribbon does have considerable freedom to bend
and twist in the way indicated in Fig. 1.26. As shown in Fig. 1.27, the hydrogen
bonding is partly intramolecular and partly intermolecular. An important feature is
that the bonding is only in one plane, which gives sheets of molecules only weakly
linked between the sheets by van der Waals forces.

Because of the problems of dissolving cellulose, exact determination of the
distribution of molecular weights is difficult [43]. In native cellulose fibres, the
chains are estimated to contain about 104 glucose rings. The complete chain is,
therefore, about 5 µm long by 8 × 10–4 µm wide. This ratio of length to width is about
the same as that in a cotton fibre (3 × 104 µm long by 15 µm wide). In making a
viscose solution for spinning into rayon, the chain length is considerably reduced.
This demonstrates a general dilemma in manufactured fibre production. Increased
chain length in the fibre would give better properties, but if the molecules are too
long, extrusion into fibres is not possible.

The crystal structure of native cellulose is known as cellulose I, but there is still
some uncertainty about its exact form. A slightly modified version of the structure
proposed by Meyer and Misch [44] is shown in Fig. 1.28 and gives the features
needed to understand structure–property relations. Different studies give the following

5 × 10–4 µm

(a)

(b)

OH

OH

(c)

1.25 Essential features of the cellulose molecule: (a) the chain; (b) crosslinking
by hydrogen bonds; (c) schematic representation of a crystal.
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Twist

(a)

(b)

Bend

(c)

Twist and bend

1.26 Ways in which a ribbon-like molecule can be deformed by twisting and
bending.

1.27 Hydrogen bonding between cellulose molecules. C1, O1, etc., are
positions of carbon and oxygen atoms; hydrogen atoms complete the
valencies; hydrogen bonds are shown by dotted lines. From French (42).
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ranges for the cell dimensions [42]: a, 0.814–0.825; b, 0.778–0.786; c, 1.033–1.038 nm.
When these fibres are mercerised, by treatment with strong caustic soda, a second X-
ray diffraction pattern appears superimposed on the original one, replacing it as
mercerisation becomes complete. This corresponds to a structure known as cellulose
II. The a and b dimensions are close to those for cellulose I, but the c value is
0.914 nm and the angle between b and c is 62° compared with 84° for cellulose I.
Regenerated-cellulose fibres also contain cellulose II. It is generally thought that
cellulose I is a parallel structure with chains pointing in the same direction but
cellulose II is anti-parallel. Other crystal forms are found after some treatments [42].

Mercerisation also results in a reduction in the proportion of crystalline material
present in the fibres. In addition to mercerisation, which is a fairly old process, there
are other forms of modification of cellulose fibres, particularly cotton, that are of
commercial importance. Various chemical treatments replace the hydroxyl groups in
the non-crystalline regions by other groups in order to modify such properties as
electrical resistance, moisture absorption and rot resistance. However, the most important
treatments are those that cause a resin to polymerise and react with the hydroxyl
groups inside the cotton. This results in chemical crosslinks (sequences of covalent
bonds) between the cellulose molecules. This stabilises the structure, gives it a set
and, in fabric form, reduces the likelihood of creasing and wrinkling. Resin-treated
crosslinked cottons of this type are now of great importance.

1.4.2 An integrated view of the fine structure of cotton

The evidence from many sources that cotton and other natural cellulose fibres are
‘two-thirds crystalline, one-third non-crystalline’ is somewhat misleading. One should
really say that the X-ray-diffraction pattern (density, accessibility, etc.) is such that it
is equivalent to that of a mixture of large crystalline regions and large amorphous
regions in the ratio 2:1. Other interpretations are possible. Hearle [38] has pointed
out that the X-ray diffraction results could be explained by the small size of the

1.03 nm

0.78 nm

0.82 nm
84°

1.28 A schematic view of the crystal lattice of cellulose I, adapted from the
drawing by Meyer and Misch [44], which has anti-parallel chains. Hydrogen
bonded sheets are in the plane of the paper. The sheets in the middle of the
cell are staggered with respect to those on the front and back faces.
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An introduction to fibre structure 37

crystalline fibrils, the density by imperfect packing and the accessibility by the fibril
surfaces. The current consensus is that natural cellulose fibres are essentially 100%
crystalline and that the disorder is mainly due to the fact that very small crystalline
units are imperfectly packed together. The amount of actual material in any region
that is not part of a crystal lattice is probably small.

An important feature of natural cellulose is that it is aggregated into fine microfibrils.
A coarse fibrillar structure was observed many years ago under the optical microscope,
as shown in Fig. 1.29, and is rather clearly shown in SEM pictures, such as the fibre
fracture shown in Fig. 19.14 on page 517. The examination of surface replicas or
disintegrated material showed up the presence of the ultimate microfibrillar texture.
The biological evidence is that, in growing cells, enzyme complexes join glucose
molecules into long-chain cellulose molecules. These naturally form microfibrils
with thicknesses of about 4 nm. All the molecules will point in the same direction in
the parallel crystal lattice of cellulose I without chain folding. The fine structure is an
assembly of fine microfibrils without amorphous regions as proposed by Manley
[45]. The crystallisation is driven by minimisation of the free energy. Since the
strongest attractions are at the edges of the molecules, as indicated in Fig. 1.30(a), the
minimum energy form is likely to be a ribbon-like crystal of the type shown in Fig.
1.30(b). At this scale, the proposed units can be identified with the observed microfibrils.

1.29 Fibrillar structure of cotton, as shown by an optical microscope.
Photograph by W. L. Balls.

(b)(a)

1.30 (a) Schematic representation of single cellulose molecule. (b) Assembly
in microfibril.
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Physical properties of textile fibres38

The fibrils themselves have many of the characteristics of molecules. They are
relatively small in cross-section (less than an order of magnitude greater than a single
molecule), they are relatively flexible, and they are attracted to one another strongly
by the possibility of hydrogen bonding at the edges and more weakly by van der
Waals forces between the faces. The fibrils can thus be expected to ‘crystallise’ into
flat sheets or lamellae, which will then stack in parallel layers. There is evidence of
long standing of coarse concentric lamellae observed in the optical microscope, and
a lamellar association of fibrils on a finer scale is also found in electron microscope
studies.

The model described above is one that commands confidence because it can be
derived either from a theoretical consideration of how the system would be expected
to behave or by deduction from experimental observations of real cellulose fibres.
But the model is too simple and tidy. It omits the disorder that is known to be present.

As it stands, the whole assembly of molecules would be regarded as coalescing
into one single crystal, in which the identity of the original fibrils was lost. Remembering
that the crystal lattice has not been settled, one is tempted to speculate whether, as in
some other systems, such as asbestos, there is some special feature of the cellulose
crystal lattice that gives an identity to the fibrils. The problem has an analogy in the
behaviour of yarns. If two zero-twist continuous filament yarns are brought together,
they merge, and it becomes impossible to say to which yarn a given fibre belongs.
However, if the individual yarns have some twist, they retain their separate identities.

Detailed experimental evidence on disorder comes from the electron diffraction
studies of Ingram [46], which show that, whereas there is often crystallographic
register between adjacent fibrils, this does break down in places, and also that, at
intervals along the fibres, there are positions in which the crystal lattice is defective.
It remains a matter of speculation whether these discontinuities are due to chance
fluctuations in the system, to some structural feature such as is hinted at in the last
paragraph, or to an occasional chemical discontinuity in the cellulose molecules.

There is one source of disturbance of the simple model that is clearer. The fibrils
are laid down on the inner surface of cell walls in a helical orientation. Even in a
single layer, this must give rise to some strain and possible splitting between fibrils.
In some plant cells, the successive layers run in different directions, so that the
register between layers would be lost. Even when a similar helical orientation persists
through the thickness, as in the secondary wall of cotton, complete crystallographic
register is impossible between successive layers, since each layer must contain fewer
chains and fibrils as the circumference is reduced. Splitting between lamellae will be
relatively easy.

Finally, but perhaps most important of all, the influence of water in leading to
disorder must be considered. In the presence of water, the minimisation of free
energy by crystallisation is always in competition with minimisation by forming
hydrogen bonds by association with water, in other words by swelling, by the attempt
to go into solution.

The formation of the fibre occurs in the wet state, and it is thus highly swollen.
When drying does occur, the fibrils will associate, as already suggested, but, like any
crystallisation of long-chain units, appreciable disorder might be introduced owing to
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An introduction to fibre structure 39

some entanglement or mismatching of fibrils. Subject to these limitations, the material
would be expected to collapse down to a somewhat disordered modification of the
model already discussed, which, in its idealised form without any disorder, would be
the presumed minimum energy state for dry natural cellulose.

What happens on re-exposure to water? Experimentally, it is known that there is
a progressive increase in absorption as humidity increases and that in liquid water
there is limited swelling but not solution of the material. One can suggest three
reasons why the fibrillar network does not dissociate completely in water:

1. Once strain is relieved by some opening up of the structure, regions where fibrils
are in crystallographic register with one another may remain as stable entities.

2. There may be that a dynamic equilibrium, in which there are always some fibrils
associated together, although the actual groups are continually changing.

3. There may be some tie-molecules linking separate fibrils together.

At any ordinary relative humidity, the network would be partly opened up, whereas
in water, where much chemical processing is done, the fibre would be much more
highly swollen. Crosslinking reactions will serve to stabilise the structure by linking
the fibrils together permanently: this gives rise to increased resistance to plastic
deformation.

1.4.3 The gross morphology of cotton

The cotton fibre appears as a long, irregular, twisted, and flattened tube, tapering
somewhat at its tip. Figure 1.31(a) is a typical illustration of the middle portion of a
cotton fibre, showing the presence of convolutions. These are more strikingly shown
in an SEM picture (Fig. 1.31(b)). Hearle and Sparrow [47] showed, by comparison
with observations of a rubber tube, that the formation of convolutions was a natural
consequence of the collapse of a helical structure. For American Upland cottons,
measurements with an opto-electronic sensor show 11 to 13 crimps/cm [48].

In cross-section, mature fibres have the form shown in Fig. 1.32. On the outside
there are a thin cuticle and primary cell wall and in the centre there is a narrow
collapsed lumen, but the bulk of the fibre is made up of the secondary cell wall.
During growth, this is deposited on the inside of the primary cell wall, in a series of
daily growth-rings as shown in Fig. 1.33. Figure 1.34 shows a schematic representation
of the various layers of which the fibre is composed. The layers themselves will be
made up of stacks of the lamellae described in the last section.

Hebert [50] reports that the primary wall has a ‘basket-weave orientation or alignment
of the fibrils’. Studies of fibres at two weeks post-anthesis (after flowering) indicate
that the primary wall has a crystallinity index of 30% and a fibril diameter of 2.98 nm,
compared with 70% and 4.22 nm for mature fibres at seven weeks post-anthesis [51].

In the thick secondary wall (S2 layer), there is a helical orientation of molecules
and fibrils. It may be noted that the helical orientation can be shown up in various
ways: optical birefringence, for direction of the chain molecules; X-ray diffraction,
for the axis of the crystal lattice; electron microscopy, for the microfibrils; optical
microscopy, for the coarse fibrils. There has been some uncertainty as to whether the
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Physical properties of textile fibres40

pitch or the angle of the helix remains constant: the evidence now indicates that the
angle is almost constant through the fibre. At intervals along the fibre, the sense of
the helix reverses, as shown in Fig. 1.35. It was once thought that the helix angle
varied with fibre variety, but Hebert et al. [52] and Morosoff and Ingram [53] indicated
that, if a correction is made for the effect of convolutions, the helix angle is always
the same, independent of genetic variety, and through most of the thickness a value
in the range 20–23°, though it may be up to 35° in the outer layers. On drying, the
fibre collapses to give the typical cross-sectional shape shown in Fig. 1.36. Kassenbeck
[54] has pointed out that, after collapse, the different regions of the cotton fibre,
indicated in Fig. 1.37, have important differences in structure. As can be expected
from the collapse of a cylinder composed of concentric lamellae, and is easily

(a)

(b)

1.31 Cotton fibre: (a) portion of cotton fibre (photograph by E. Slattery);
(b) scanning electron micrograph of convolutions is mature cotton fibre,
bar = 18.9 µm.
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demonstrated by collapsing a roll of adhesive tape, there will be: (a) an appreciable
opening up of structure in the regions C and N, where there is reversal of curvature,
and thus an excess circumferential length; (b) a tightening in region A, where there
is an intensification of curvature; and (c) little change in tightness in region B.
Kassenbeck has shown that regions C and N are the most susceptible to chemical
reaction and that A is the least susceptible.

1.4.4 Other natural cellulose fibres

Other cellulose fibres, such as flax, hemp, jute and sisal, differ from cotton in several
ways. They often contain a larger proportion of non-cellulosic impurities. They are
all multicellular fibres, with very small individual cells bonded together into long
strands in the plant stem or leaf. During the preparation of the material for processing,

1.32 Typical cross-sections of mature cotton fibres.

1.33 Cross-section of swollen cotton fibre showing daily growth rings.
Photograph by US Department of Agriculture, after Kerr [49].
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Fats Pectin
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1.34 Morphological structure of the cotton fibre. From Jeffries et al. [20].

1.35 Scanning electron micrograph showing reversal adjacent to back of a
cotton fibre.

the strands are broken down into shorter fibres. The fibre dimensions are, however,
somewhat indeterminate, since the extent of breakdown may vary. In all natural
cellulose fibres, the molecules are highly oriented parallel to one another in fibrils,
but they spiral round the fibre, thus reducing the degree of orientation parallel to the
fibre axis. In flax, ramie, hemp and other bast fibres, the spiral angle is small, less
than 6°, so that these fibres are highly oriented and give high strength and low
extensibility.
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An introduction to fibre structure 43

1.5 Regenerated and modified celluloses

1.5.1 Manufactured cellulosic fibres

Since the first production of regenerated cellulose fibres at the end of the 19th
century, many different forms have been produced, as shown in Table 1.4. The degree

A A

C
N N

B

1.37 Zones A, B, C and N in a
mature cotton fibre. From
Kassenbeck [54].

Table 1.4 Different forms of regenerated cellulose and modified cellulose fibres

Type Process and structure-determining factors

Nitrocellulosea Regeneration of cellulose nitrate
Cuprammonium Solution in cuprammonium hydroxide; coagulation in water
First viscose rayon Sodium cellulose xanthate in caustic soda into acid bath
Viscose, regularb Zinc salt added to acid bath, giving skin–core structure
Lilienfelda Viscose into 65% sulphuric acid with concurrent stretch
Fortisana Regenerated from highly stretched acetate fibres
High-tenacity (HT) viscoseb High zinc and modifiers in solution; ‘all skin’
Modal staplec Modifications to viscose and weak acid bath
Polynosicc High-viscosity viscose allowing gel formation
Crimped staple Viscose modifications cause skin bursting
Cordenka HT yarn Addition of formaldehyde to viscose process
Lyocell, e.g. Tencel Regeneration from solution in an amine oxide
Liquid-crystal routesd Cellulose derivatives in organic solvents or inorganic acids
Fibre Be Liquid crystal solution in phosphoric acid into acetone
Acetate Secondary cellulose acetate dry spun from acetone solution
Triacetate Cellulose triacetate dry spun form CH2·CCl2 solution

aNot now commercial.
bCoagulation + regeneration → stretch.
cCoagulation + stretch → regeneration
dVarious patented processes, not commercialised.
eLaboratory process by Boerstel [55].

5 µm

1.36 Scanning electron micrograph of
cotton fibre cross-section. Picture by J. T.
Sparrow.
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of polymerisation in ordinary rayon is of the order of 500, which is less than one-
tenth of the length of the molecules in native cellulose, but may be higher in improved
forms. The crystal structure of regenerated-celluloses is cellulose II. The proportion
of crystalline material present is low, being about one-third of the total, except for the
experimental liquid-crystal fibres. The degree of orientation of regenerated-cellulose
fibres depends on the extent to which they have been stretched during spinning.
Values of the optical orientation factor (that is, the ratio of the birefringence of the
fibre to the birefringence of a fibre with perfect axial orientation of the molecules)
are given in Table 1.5, together with those of some natural fibres for comparison.
With fibres of such a low degree of order, there must be substantial non-crystalline
regions, and the most likely view of the fine structure of ordinary viscose rayon is the
fringed-micelle structure, as discussed in Section 1.3.2 and shown in Fig. 1.16. The
stiffness of the cellulose molecule would inhibit chain folding at the ends of crystallites.
The disorder in the solution will result in chains folding back on themselves in non-
crystalline regions. There are other forms of viscose rayon, and we must consider the
diversity.

1.5.2 The diverse forms of viscose rayon

Figure 1.38 shows various routes of regeneration of fibres from a viscose solution. In
the ordinary process, the resulting fibre has an irregular cross-section with a marked
difference between skin and core, as shown in Fig. 1.39. The skin forms immediately
after extrusion and then collapses as solvent is removed. The lateral pressures push
the ribbon-like molecules into what starts as radial orientation in the plane of the
cross-section, though this swings round to a perpendicular direction in the cusps of
the serrations. The orientation effects are shown up by examination in polarised light,
as in Fig. 1.39.

The skin is believed to have a finer texture than the core and to be stronger. It is
formed by regeneration through the intermediate zinc cellulose xanthate. The rates of
the alternative reactions are such as to favour this route over direct regeneration of
the sodium salt by the acid, but it is prevented in the core because the low mobility
of the zinc ions prevents them from getting in fast enough. The finer texture of the
material regenerated indirectly is probably due to the fact that the bivalent zinc ions
will attract the molecules into a network before regeneration.

Table 1.5 Optical orientation factors of cellulose fibres, (after
Hermans [56]

Fibre Orientation factor

Viscose rayon, low stretch 0.54
Viscose rayon, high stretch 0.88
Cuprammonium rayon 0.74
Ramie 0.97
Sea Island cotton 0.72
American cotton 0.62
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As shown in Fig. 1.40, various modifications of the process have led to an increase
in skin thickness and, ultimately, to all-skin fibres with a round cross-section. These
are the high-tenacity rayons, introduced first for tyre cords but now also used for
other textile purposes. There is also attention to other details, such as the distribution
of chain lengths, in the later high-tenacity rayons. In another modification, an

Viscose solution

Extrude into bath
of acid + Zn2+

Coagulation,
regeneration,
crystallisation

Stretch

‘Ordinary rayon’

Skin Core

Fine
micellar

Coarse
micellar

High-tenacity
rayon

Crimped
rayon

asymmetric
skin

Intermediate

Carpet
rayon

Modify
ordinary
process

Extrude into
weak acid bath

Coagulation of
derivative

Stretch

Regeneration,
crystallisation

High-wet-modulus
rayon polynosic

Fibrillar texture

1.38 Schematic representation of fibres produced by the viscose process.

(a) (b)

1.39 Section of viscose rayon fibre, dyed with Sky-Blue FF, showing optical
dichroism when viewed in polarised light. The dark patches in the skin
correspond to orientation of the crystallites parallel to the direction of
polarisation: (a) plane of polarisation is N–S; (b) plane of polarisation is E–W.
After Joshi and Preston [57].
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asymmetrical skin, caused by the first skin bursting open, is produced; these are the
crimped rayons.

A greater difference occurs in the production of high-wet-modulus (modal or
polynosic) rayons. A solid fibre of a cellulose derivative is first formed and oriented
by stretching. Regeneration of cellulose and crystallisation then occur in what is
already a solid, oriented fibre. The resulting structure is fibrillar in texture, and the
fringed-fibril structure (Fig. 1.19), is probably the best model. Lyocell fibres such as
Tencel [59], which are directly regenerated from an organic solvent of cellulose, are
fibrillar in texture. The bonding between fibrils is weak, so that fibrillation occurs
easily. This can be a defect, but can also be exploited to make a soft fabric.

In all these forms of rayon, the degree of orientation can be varied by altering the
amount of stretch, though there are limits to the extent to which this is possible. A
higher orientation can be produced in the more weakly bonded acetate fibres, and
regeneration of cellulose was then used to make Fortisan, which was a highly oriented,
high-modulus fibre that is no longer made. High crystallinity and high orientation
can be achieved by liquid crystal routes, similar to those used for aramid fibres, but
the side groups on the cellulose molecule mean that the achievable mechanical properties
are less good.

Cellulose fibres may also be modified by additives, e.g. delustring by titanium
dioxide, or by chemical reactions used to crosslink the cellulose molecules.

1.5.3 Cellulose acetate

In acetate fibres, the most important of the chemically modified cellulose fibres, the
cellulose is chemically treated in solution so that the hydroxyl groups are replaced by

(a) (b)

(c) (d)

1.40 Cross-sectional shapes of viscose fibres with differential dyeing of skin:
(a) regular viscose rayon; (b) Tenasco, early high-tenacity rayon with thicker
skin; (c) Tenasco Super 108, an ‘all-skin’ fibre; (d) crimped staple viscose
rayon with asymmetric skin. From Woodings [58].
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acetyl (CH3·CO·O—) groups. In ordinary commercial acetate (more exactly known
as secondary cellulose acetate), about five out of six of the hydroxyl groups are
replaced in this way. Fibres made of this material contain a smaller proportion of
crystalline material than do regenerated celluloses. There are three reasons for this
reduction in crystallinity: (a) the acetyl groups are comparatively inert, hydrogen
bonding is not possible, and thus the attractive forces between the molecules are
weaker; (b) the acetyl groups are bulky, preventing the close approach of the chain
molecules; and (c) the structure is irregular, with some acetyl and some hydroxyl
groups protruding from the chain, so preventing the formation of a regular crystalline
order. As a consequence of these effects, acetate fibres are weaker, more extensible,
and less dense and absorb less water than cellulose fibres. They also have a low
softening point, whereas unmodified cellulose fibres cannot be melted and decompose
first.

The large-scale production of secondary cellulose acetate was largely a historical
accident arising from difficulties in the early processing of a fully acetylated cellulose.
These difficulties have been overcome, and triacetate fibres, in which all the hydroxyl
groups are replaced by acetyl groups, have been produced. Because of the greater
regularity of structure, these fibres are more highly crystalline than ordinary acetate
fibres. They also absorb less water because of the removal of all the hydrophilic
hydroxyl groups. Their practical advantages are a higher softening point, greater
dimensional stability, and the fact that materials made from them are crease-resistant
and can be heat-set.

1.5.4 Alginate and other fibres

Alginic acid, which can be obtained from seaweed, has the formula:

Highly oriented and highly crystalline alginic acid fibres can be obtained, but they
are subject to degradation because of their acidity. The acid may be neutralised to
give metallic salts, which will also form fibres. Calcium alginate is soluble in soap
and water and can be exploited as removable scaffolding threads in fabrics. Crosslinking
is needed to give stability for ordinary use.

Various other polysaccharides, such as chitin and its derivative chitosan, are made
into fibres for medical uses.
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1.6 Protein fibres

1.6.1 Protein chemistry

Proteins are formed by the polymerisation of amino acids (with the general formula
NH2·CHR·COOH) by means of peptide links (—CO·NH—) to give long-chain
molecules with the general formula:

Twenty amino acids are named and represented by three or one letter designations.
They contain different side groups (R1, R2, etc.). It is the variation in the order and
amount of these groups that determines the properties of the material and gives rise
to the large number of natural proteins that play a vital part in animal and plant life.
In effect, there is an ‘alphabet’ of side groups. Advances in proteomics and the link
to DNA have enabled the amino acid sequences in proteins to be accurately determined.
An old estimate in Table 1.6, which is adequate for our purposes, gives comparative
proportions occurring in the raw materials of various protein fibres. This is a list of
18 amino acids because the amides asparagine and glutamine are included with
aspartic and glutamic acids. It should be noted that these figures are approximate,
since the chemical constitution of the protein may vary from fibre to fibre, or even
from one part of a fibre to another. More recent figures for wool are given by Höcker
[61].

Two forms differ from the simple formula. Proline has a ring of three —CH2—
groups, which join on to replace —H in the neighbouring —NH group and distort the
form that the molecule can take. Cystine, which links neighbouring chains, is derived
from cysteine, R = —CH2·SH, which is the amino acid, by a subsequent reaction.

There are various sorts of crosslinks that can form between neighbouring protein
molecules.

• Hydrogen bonds can form between the —NH— and —CO— groups, linking
neighbouring main chains together:

H

H H

HO

O

CN

CC N

C

R1

R2

. . .
. . .

amino acid
residue peptide link
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Table 1.6 Side groups in protein fibres (after Harris [60])

Proportion (g amino acid
per 100 g protein) in:

Type Side group Amino acid Silk Wool Casein
fibroin keratin

Inert —H Glycine 43.8 6.5 1.9
—CH3 Alanine 26.4 4.1 3.5
—CH(CH3)2 Valine 3.2 5.5 6.02
—CH2·CH(CH3)2 Leucine 0.8 9.7 10.55
—CH(CH3)·CH2·CH3 Isoleucine 1.37 — 5.27
—CH2·C6H5 Phenylalanine 1.5 1.6 6.46

Acidic† —CH2·COOH Aspartic acid 3.0 7.27 6.70
—CH2·CH2·COOH Glutamic acid 2.03 16.0 22.03

Basic† —CH2·CH2·CH2·CH2·NH2 Lysine 0.88 2.5 8.25
—(CH2)3·NH·C(NH)NH2 Arginine 1.05 8.6 3.94

—CH2

N:CH

C:CH
NH Histidine 0.47 0.7 3.24

Hydroxyl —CH2OH Serine 12.6 9.5 5.87
—CH(OH)·CH3 Threonine 1.5 6.6 4.53
—CH2·C6H4OH Tyrosine 10.6 6.1 6.28

Ring‡

—CH2

—CH2

CH2 Proline 1.5 7.2 10.54

Double§ —CH2·S.S·CH2— Cystine — 11.8 0.40

Miscellaneous —CH2·CH2·S·CH3 Methionine — 0.35 3.50

—CH2·C

CH

NH

Tryptophane — 0.7 1.37

†May be present in ionised forms, e.g. —CH2·COO and —(CH2)4·  NH3
+. The acids may also be

present as acid amides, e.g. —Ch2·CONH2.
‡Fits into the chain molecule as:

This results in some distortion and loss of flexibility in the chain.
§Joins on between two protein chain molecules or between two positions in the chain.
There may also be small amounts of the related cysteine, cysteinic acid, lanthionine and
thiocysteine groups.

—N

O

CH

CH2CH2

C

CH2
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• Hydrogen bonds may form between hydroxyl groups present in the side chains.
• Since there are both acidic and basic side chains, salts may form between them,

holding the side chains together by electrovalent forces. A typical example would
be:

• The cystine linkage is a covalent crosslink between adjacent chains, which turns
the many chain molecules into a single network molecule. The linkage is:

All these crosslinks play an important part in determining the form of the protein. For
example, single long-chain molecules may fold up into a compact ball held together
by internal crosslinks; these are known as globular proteins, and their large molecules
will crystallise in the same way as inorganic molecules. Alternatively, the molecules
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may be more or less extended and linked to their neighbours; these are the fibrous
proteins. Globular proteins may be unfolded, or denatured, by heat or other chemical
treatments and can then be drawn into fibres.

1.6.2 Silk

The two most important protein fibres for textile uses are silk and wool. The main
constituent of silk is one of the simpler proteins, fibroin. The figures in Table 1.6
show that almost all the side groups are of four simple types: —H, —CH3, —CH2OH
and —CH2C6H5OH. The sulphur-containing side groups are almost completely absent,
and the others are present only in small quantities. The links between molecules will
therefore be mostly main-chain hydrogen bonds, with a few hydrogen bonds and salt
linkages between side chains.

Examination of the X-ray diffraction pattern of silk shows that molecules in the
crystalline regions must be present as fully extended chains of the sort shown in
Fig. 1.41. This is a zigzag form because of the limitation on the angles between
adjacent valency bonds. There is an axial repeat of 0.7 nm, corresponding to two
amino acid residues. The molecules in silk are fairly highly oriented parallel to the
fibre axis, and the material is moderately highly crystalline. The general structure is
believed to be composed of crystalline and non-crystalline regions in the same way
as cellulose, though the mode of formation may mean that there is little or no folding
of chains back on themselves.

It has been suggested [62] that in the fibroin molecule, which is about 140 nm
long, there are two segments, about 17 nm long, in which all the tyrosine and other
bulky side groups are concentrated, the rest of the molecule being entirely of glycine,
alanine and serine side groups. The segments with bulky side groups would not

RHC CHR RHC

HNC  O

O   C

O   C

C   O

C   O

O   C

C   O

C   O

C   O

HN

NH

HN

HN

HN

NH

HN

NH

RHC

CHR

CHR

CHR

RHC

RHC

1.41 Extended-chain molecules of silk fibroin and β-keratin, packed in sheets
in crystal.
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crystallise so easily and would therefore form the major part of the non-crystalline
regions, while the crystalline regions would be made up from the parts of the molecules
with simple, easily and regularly packed side groups. This would make silk a natural
block copolymer (see Section 1.7.1), composed partly of crystallisable and partly of
non-crystallisable segments. Thus, in considering effects occurring mainly in the
non-crystalline regions (for example, moisture absorption), the presence of certain side
groups in much higher proportions than in the silk as a whole must be taken into account.

The silk fibre, as it is spun by the silkworm, consists of two triangular filaments
of fibroin, stuck together with a gum called sericin.

1.6.3 Molecular form and assembly in wool (levels 2 to 6)

Wool and hair have the most complicated structures of any textile fibres (Fig. 1.42),
with ten levels of structure from fundamental particles to the whole fibre (Fig. 1.43)
[63]. The specific features start at level 2, the molecular constitution. Table 1.6 shows
that almost all possible side groups are present in appreciable proportions. Many of
these contain active groups so that side-chain linkages are important. The values in
Table 1.6 for wool keratin are for whole fibres, which actually consist of many
proteins in different parts of the fibres. In particular, there are differences of composition
between the crystalline microfibrils (intermediate filaments, IFs)4, which make up
about 40% of the fibre, and the amorphous matrix [61].

4Microfibril, often abbreviated to fibril, is the term used in describing fibre structures and is most
appropriate when discussing the relation to properties.  Intermediate filaments is a term used in
biology to describe a category of protein structures with many functions in living organisms.  Hard
keratins, such as hair, and soft keratins, as in skin, constitute one group of intermediate filaments.
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1.42 Structure of wool fibre, as drawn by Robert C. Marshall, CSIRO,
Melbourne.
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The protein families in wool are (a) two low-sulphur IF keratins, which contain
relatively simple, crystallisable sections, joined to terminal domains with a more
complex chemistry, containing cystine and making up part of the non-crystalline
material; (b) high-sulphur and high-glycine/tyrosine keratin-associated proteins, which
contribute the remainder of the non-crystalline regions. Because of the high concentration
of crosslinking cystine, the non-crystalline material acts as a rather highly crosslinked
amorphous polymer.

Two different crystal structures, with different X-ray diffraction diagrams, can
occur in keratin (and in many other similar proteins). In wool as grown and used,
there is a structure known as α-keratin, but, if the fibre is stretched (and it can be
extended up to 50% in water, or a maximum of 100% in steam), there is a gradual and
reversible transformation to another form known as β-keratin, which has an X-ray
diffraction pattern similar to that of silk fibroin (Fig. 1.41). This is, therefore, an
extended chain, but the axial repeat in β-keratin is only 0.68 nm, indicating that there
is some slight distortion.

The crystal structure of α-keratin is a slightly distorted form of the helical structure
proved for simple synthetic polypeptides by Pauling and coworkers [64, 65]. In
earlier models, such as that proposed by Astbury and Bell [66], it had been taken for
granted that chemical and fold repeats must coincide, but, in fact, this is unnecessary.
In Pauling’s α-helix, there are 3.6 amino acid residues per turn, with the length of one
turn giving the axial repeat of 0.55 nm. An impression of the model is given in Fig.
1.44. In keratin, the axial repeat is only 0.51 nm. There may be some crumpling of the
helix in order to fit in bulky side groups. However, the shortening can mostly be
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6 0.2 µm

5

4

3 7 nm

2 1 nm
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1.43 Levels of structure in wool and hair (CMC = cell membrance complex).
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attributed to the multiple twisting of the molecules: two chains form a dimer, two
dimers a protofilament, two protofilaments a protofibril, two protofibrils a half-
filament, and two half-filaments giving an intermediate filament with 32 molecules
in the cross-section [61].

In considering the physical properties, however, the exact details of the molecular
folding are of less importance than the fact that the helical form of α-keratin molecules
allows them to be opened out to extended chain β-keratin, giving a high extensibility.
It is also possible, by appropriate relaxation treatments in steam, to contract the fibres
to a length about 30% less than the original unstretched length. In these supercontracted
fibres, the molecules must be still more highly folded, or randomly coiled, or
recrystallised without axial orientation.
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The microfibrils in wool are about 7 nm in diameter, packed at spacings of about
10 nm and separated by a matrix. However, there is a difference in structure in cells
in different parts of the fibre, as shown by the transverse section in Fig. 1.45. In the
meso-cortex, which is not always easily differentiated from the para-cortex, long
microfibrils are packed in a hexagonal array, which is perpendicular to the section, so
that the fibrils run parallel to the fibre axis. In the para-cortex, the fibrils are also
parallel to the fibre axis, but are not as tightly and regularly packed as in the meso-
cortex. A poorly defined macrofibrilllar structure with more matrix between macrofibrils
can be seen in the meso- and para-cortex. In the ortho-cortex, the macrofibrils appear
as whorls. At the centre the fibrils appear circular, indicating that they are perpendicular
to the section, but there is increasing ellipticity at increasing distance from the centre.
This indicates that the fibrils are twisting round at increasing angles. As in a twisted
continuous filament yarn, the length of one turn of twist is constant across the
macrofibril. Electron microscope tomography by Bryson et al. [16] enables the structures
to be seen more clearly and quantitative estimates of the fibril angles to be made (Fig.
1.46). In the para-cortex, the fibrils are slightly wavy but generally parallel to the

3 µm

(a)

100 nm

Para-cortex Meso-cortex Ortho-cortex
(b)

1.45 Electron microscope picture of transverse section of a high-crimp wool:
(a) whole fibre; (b) macrofibrils. From Bryson et al. [16].
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fibre axis; in the meso-cortex, the fibrils are straighter; in the ortho-cortex, there is
the changing angular orientations of a helical assembly.

1.6.4 The gross structure of wool

The wool fibre consists of a roughly circular cylinder, tapering from the root to the
tip, and with the complex structure illustrated in Fig. 1.42. It is a multicellular and
multicomponent fibre. The major component is the cortex, which leads to a simple
view that wool is a bicomponent fibre divided into ortho- and para-cortex. As described
in Section 20.6.2, this leads to the helical crimp of wool with the para-cortex on the
inside, unless the fibre is swollen in alkali when the curvature is reversed. Crimp
formation depends on the distribution of ortho- and para-cortex in wool and hair. An
asymmetric distribution gives crimp; a symmetric distribution does not. In addition
to the difference in fibril orientation described above, the para-cortex is reported to
contain more cystine groups, crosslinking the chain molecules (see Section 1.6.1)
and is more stable and less accessible to dyes than the ortho-cortex, which contains
more glycine/tyrosine proteins. In some wools, a meso-cortex can be observed as
distinct from the para-cortex. In coarse wools, there may be a medulla at the centre
made up of a different type of cell, but in fine wools this is absent.

Between the cells, there is a cell membrane complex containing a mixture of
lipids, proteins and small amounts of other compounds [67].

At the surface of the fibre, there are cuticle cells or scales. These scales face
towards the tip of the fibres and cause a directional effect, which is important in the
frictional behaviour of wool (see Section 25.5). On the surface of the scales, or
possibly as a continuous sheath around them, there is a membrane called the epicuticle,
which may influence the surface properties of the fibre and act as a barrier to diffusion.
Between the cuticle and the cortex is another thin layer, called the sub-cuticle membrane.

1.6.5 Regenerated-protein fibres

The regenerated-protein fibres such as those made from casein, which are no longer
commercial, have X-ray diffraction patterns which show that most of the material in

(a) (b) (c)

1.46 Reconstructed tomograms of macrofibrils in wool showing orientation of
microfibrils: (a) in para-cortex; (b) in meso-cortex; (c) in ortho-cortex. From
Bryson et al. [16].
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Chemical constitution

The synthetic fibres in major use for general textiles since the 1950s are the polyamides,
nylon-6 and 6,6, the polyester, polyethylene terephthalate (PET), acrylic polyacrylontrile
(PAN) and polypropylene (PP). They are all linear polymers. In addition to the basic
repeat unit, there may be small proportions of other groups inserted, within chains,
at chain ends, or as chain branches, in order to modify such fibre properties as
dyeability. This is particularly true of acrylic fibres, in which up to 15% of a minor
component, which is usually another vinyl monomer with some other side group,
–R, is present. Some other polyamides and polyesters are used as fibres. There are
also modacrylic fibres with less acrylonitrile, usually about 50%, in the chain. Other
vinyl and vinylidene copolymers are or have been used for some fibres of limited use.
Polyethylene has limited use as a general texture fibre. Most recently, polylactic acid
(PLA) has been introduced as a textile fibre. The chemical formulae of the polymers
are given in Table 1.7

.

It is worth noting the features that make synthetic polymers suitable for fibres by
causing them to be partly crystalline. First, the chains must be regular, so that a
favourable packing at one point is repeated all along the chains. Secondly, the chains
must have a shape that enables them to pack closely together and so cause the
attractive forces between chains to be effective. Thirdly, the attractive forces should,
inherently, be relatively strong. Fourthly, there must be some flexibility. These features

work together, so that some deficiency in one can be compensated by another, but

generally they are all satisfied in the best fibre-forming polymers.
Copolymerisation, as a means of mixing components, may occur in several ways.

Because of the need for regularity of repeat, random copolymers,
–ABBAAABAABABBBAABA–, are unlikely to be suitable. Block copolymers,
–AAAAAAAAABBBBBBBBB–, on the other hand, will contain separate sequences
that are long enough to crystallise. Alternatively, the second component may be
grafted on as a branch of the main chain.

Another general point should be noted. Natural fibres, which are laid down slowly

under genetic control, have a well-defined structure that is not easily changed. To a
slightly less extent, fibres formed from solution, especially if chemically regenerated
as in viscose rayon, are locked in structures that are distinctly separated from the
liquid state. In contrast to this in the melt-spun synthetic fibres, polyamides, polyesters
and polypropylene, the solid and liquid states are only weakly separated by

Synthetic fibres

Fine Structure of Synthetic Fibers



comparatively small temperature differences, with some structural mobility occurring
well below the melting point. The nature of the cooling process and subsequent heat
treatments leads to differences in structure. Whereas, we can describe the structure of
a cotton fibre, we can give only broad indications of the sorts of structure that occur
in melt-spun fibres. The evidence in the literature from analytical studies is strictly
applicable only to the particular sample being studied and often the provenance is not
well specified.

The structure of polyamide fibres

The two most important polyamide fibres, nylon 6 and nylon 6.6, contain the same
groups in the same proportions along the chain. The only difference is a reversal in
the order of alternate —CO·NH·CH2— sequences. As a result, there will be small
differences in shape and packing. In addition, the nylon 6 repeat is half the length of
the nylon 6.6 repeat; and the nylon 6 molecule, but not that of nylon 6.6, has a
directional character:

…..CO→NH·CH2·CH2·CH2·CH2·CH2·CO→NH…

These differences cause some not very well understood differences in structure, and
some consequent slight differences in properties.

Table 1.7 Synthetic fibre constitution

Fibre type Chemical formula of principal repeat unit

Polyamide:
nylon 6,6 —NH·CH2·CH2·CH2·CH2·CH2·CH2·CH2NH·CO·CH2·CH2·CH2·CH2·CO—
nylon-6 —NH·CH2·CH2·CH2·CH2·CH2·CO—

Polyester:
polyethylene —O·CO CO·O·CH2·CH2—
terephthalate

Acrylic:

polyacrylonitrile

  

—CH CH—
            |
           C N

2 ⋅

≡≡
Polyolefin:

polyethytlene —CH2—

polypropylene

  

—CH —CH—
               |
              CH

2

3

Polylactic acid —CO·CH(CH3)·O—
Other addition-polymer

fibres:
polyvinyl  cholride —CH2·CHCl—

polyvinyl alcohol

  

—CH CH—
               |
              OH

2⋅

other vinyl monomers

  

—CH CH—
            |
            R

2⋅

vinylidene monomers —CH2·CR2—



From a physical point of view, the important features of these molecules are the
length of the repeat and the occurrence of alternate sequences of —CH2— and
—CO·NH— groups. The long repeat unit, 1.7 nm, in nylon 6·6 with 38 atoms means
that any mismatch in crystal packing will result in a substantial region of disorder and
not a localised defect. Individual crystals can occur only in a limited range of sizes:
1.7, 3.4, 5.1, 6.8, 8.5, 10.2 … nm.

The —CH2— sequences will be flexible at room temperature, with only a weak
attraction for their neighbours. On the other hand, the —CO·NH— groups will attract
one another strongly by hydrogen bonding. Under the action of these forces, the
polyamides crystallise, and the usual crystal lattice of nylon 6.6 is shown in Fig. 1.47.
However, owing to the difficulties of sorting out chains, crystallisation will not be

1.47 Crystal structure of α-nylon 6.6 [5].
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complete, and we can also expect to find disordered regions within the fibre. Fig.
1.48 illustrates schematically the nature of the packing of nylon 6 in a crystalline
region and in an amorphous structure that would occur if molten nylon was so rapidly
quenched that crystallisation was prevented. The disordered region would be a rather
highly crosslinked rubber with sequences of five —CH2— groups between the linked
—CO·NH— groups. Many important properties derive from this structure and from
the fact that the hydrogen bonds between the —CO·NH— groups are rather easily
ruptured. Absorption of water plasticises disordered regions, since some direct hydrogen
bonding is lost.

Both nylon 6 and nylon 6.6 do have more than one crystal lattice form, and
transitions between these can occur. The structural effects of these changes are not
clear.

The experimental evidence indicates that nylon fibres have a degree of order
equivalent to about 50% crystalline, but this covers a variety of forms and dimensional
parameters. The degree of localisation of order will depend on the fibre history. A
common working model, drawn in slightly different ways by different authors, is a
modified fringed-micelle structure with chain folding at the ends of the crystallites
and tie-molecules linking the crystallites. One interesting feature of the nylon 6.6
crystal unit cell is that the cross-face (1234 in Fig. 1.47) makes an angle of 48° with
the chain axis. This led Hearle and Greer [29] to propose the type of modified
fringed-micelle structure shown in Fig. 1.18(a). This fits in with various experimental
observations on fibre structure and is probably a reasonable representation of the
structure of annealed nylon fibres, though the real structure is likely to be less neat

(a)

(c)

(b)

1.48 (a) Schematic representation of nylon crystal lattice. (b) Disordered
region. (c) Sections of chains between crosslinks. (For convenience, the
repeat is that of nylon 6).



than the diagram and must be transformed by the viewer into a three-dimensional
assembly. Figure 1.18(b) is an attempt by Murthy et al. [30] to show a structure of
nylon 6 related to X-ray diffraction observations.

The characteristic size of localised units is about 15 nm, with a length/width ratio
of localised units not much greater than one. As noted in Section 1.3.2 the pseudo-
fibrillar form results from the fairly close packing of the crystallites and the tie-
molecules will be somewhat extended. The separation into distinct regions is probably
not as complete in rapidly quenched material. In these circumstances, the possible
structure shown in Fig. 1.18(c) has a lower degree of localisation of order with an
intimate mixture of crystallographically registered chain segments and disorganised
chain segments. Thermomechanical influences on structure will be followed up in
Chapters 18 and 20.

As with all synthetic fibres, the degree of orientation can vary over a wide range,
depending on the conditions of drawing and relaxation during fibre manufacture. The
tightness of structure, shown in Fig. 1.18, means that the crystallites must be locally
well oriented in zones. There is electron diffraction evidence that the orientation is
close to the fibre axis direction, but differs slightly in different zones [68]. Most of
the disorientation will be in the disordered regions. Owing to the high flexibility of
an aliphatic chain, with about two bonds per random link, the molecules will be fairly
tightly coiled and entangled in the melt, so that the molecular extent will be small,
though it may be elongated somewhat by intermolecular attractions. Drawing will
lead to an increase in molecular extent, but will still leave appreciable chain folding
either at the ends of crystals or among tie-molecules. The entanglements of the
chains eventually lock the structure, which leads to rupture. There is a maximum
draw ratio, which limits the degree of orientation and molecular extent. Further
thermal processing under appropriate tensions will give more highly oriented, high-
tenacity yarns, used in tyre cords and other industrial products.

The original process for making nylon fibres started with a polymerisation operation,
which produced polymer chips. The chips were melted and extruded at 1000 m/min
or less into a cooling zone and wind-up of a solid undrawn fibre. Some structure may
persist in the melt or be imposed by the viscous forces in the thread-line. Once the
thread cools sufficiently below its melting point, crystallisation starts from a few
nuclei. The crystal growth rate would be relatively rapid, though slow in comparison
with extrusion rates. If crystallisation were to continue at this temperature, a coarse
spherulitic structure would result. But, in reality, rapid cooling inhibits the growth of
spherulites and greatly increases the number of nuclei. The subsequent crystallisation
on these nuclei, either in the threadline or on the package, will give rise to unoriented
variants of the micellar or more uniform structures shown in Fig. 1.18. It is not
uncommon for steam to be inserted at this stage to speed up the crystallisation on the
nuclei. In the next operation, the structure is transformed by drawing, which causes
a length increase of about four times, with a corresponding reduction in diameter.
Drawing is a plastic (irrecoverable) process, which makes the oriented fibres suitable
for use as textiles. The details of the structural changes in drawing are obscure, but
must involve disruption of crystallites and re-formation in the oriented structures of
the type shown in Fig. 1.18 and discussed above. At various stages during or subsequent



to the formation operations, heat and mechanical treatments may cause further changes
in structure. In some circumstances, occluded spherulites, which after drawing are
ellipsoids, remain and have been used as a way of delustring nylon.

Since nylon was first manufactured, there has been an increasing continuity of
processing. Direct polymerisation feeds molten polymer to extrusion and the unoriented
solid fibre can be fed directly to the rollers that impose drawing. Usable fibre is
produced in a single operation. The structural changes are not very different from
what happens in a discontinuous process. High-speed spinning gives bigger differences.
When fibre is wound up directly, without the drawing stage, there is an increase in
orientation as wind-up speeds increase to 2000 m/min, and then a transition in structure
formation between 2000 and 3000 m/min. Changes in crystal form, size and orientation
in nylon 6 are described by Heuvel and Huisman [69].

Polyester (PET) fibres

Polyester fibres are very similar to polyamide fibres: both are made in the same
way, by melt-spinning and drawing, from linear condensation polymers. The PET
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molecule contains two sorts of group. There is an aliphatic sequence,
—CO·O·CH2·CH2·O·CO—, containing about the same number of chain links as the
—CH2— sequences in nylon; this aliphatic sequence would be flexible at room
temperature and would give rise only to weak van der Waals interactions with
neighbouring chains. The differences from polyamides are mostly due to the benzene
ring. This will give some stiffness to the chain and, in particular, will impede deformation
of disordered regions. Furthermore, there is an appreciable electronic interaction
between neighbouring benzene rings, which gives intermolecular bonding with a
function similar to the hydrogen bonding in polyamides. The crystal lattice of PET is
shown in Fig. 1.49.

Two interesting comments on polymer constitution can be made in connection
with polyesters. Firstly, aliphatic polyesters, which were originally studied by Carothers
along with polyamides, are unsuitable for use as textile fibres. The influence of the
benzene ring is needed to give firmness to the structure. Secondly, it is only when the
benzene ring lies on the chain axis, because it is joined at opposite ends, that the
molecular shape leads to close enough packing for easy crystallisation. If the ring is
off axis, as in the chemically similar phthalate and isophthalate forms, with the ring
joined at adjacent or next-but-one positions, then the shape impedes crystallisation.

PET does not crystallise as readily as nylon. The rapidly quenched, undrawn fibre
from slow-speed spinning is amorphous. However, as the chains are pulled into
alignment during drawing of the fibre, they lock into crystalline register. This can be
demonstrated by the fact that, during drawing, the optical orientation factor, giving
the overall orientation, increases continuously; but the X-ray diffraction orientation
factor indicates axial orientation of the crystals as soon as the crystallisation is
sufficient to give the diffraction pattern. The crystallinity of drawn fibre is about
50%. The crystallites are more elongated than in nylon, with a probable length/width
ratio of 2 or more. Subject to the above comments, the structure of polyester fibres
is micellar with chain folding or more uniform order/disorder, which is similar to that
described for polyamide fibres and shown in Fig. 1.18.

The engineering development of high-speed spinning had important consequences
for polyester fibre production. The amorphous undrawn fibre is not very stable. Its
structure changes with time, especially if ambient temperatures are high. Consequently,
drawing must take place at a controlled time after wind-up of the undrawn fibre. As
wind-up speeds increase, there is competition between the rate of orientation as the
filament is elongated and the rate of relaxation of the molecules within the attenuated
filament. Above about 3000 m/min, thread-line orientation is high enough to cause
crystallisation on cooling. This enables the wind-up of a partially oriented yarn
(POY), which is stable and suitable for supply to yarn texturing companies. The
development of orientation is then completed by drawing due to the difference of
input and output speeds on a draw-texturing machine. There is an economic advantage
related to production rates in dividing the orientation process in this way. For untextured
yarns, drawing of POY can be combined with other processes, such as warping.

As wind-up speeds are further increased, crystallinity increases. Above about
5000 m/min, it is possible to produce polyester yarns that can be used in textiles
without further processing, though they are more extensible than conventional polyester



yarns. Information on the effect of spinning speed on polyester fibre formation,
structure and properties is given in a number of research studies by several authors
in the book edited by Ziabicki and Kawai [71] The uncertainty about the structure of
the melt-spun polyester fibres is illustrated by Fig. 1.50, which shows two views of
a polyester fibre spun at 5000 m/min by different authors in this book. Admittedly,
these were drawn to refer to particular ideas, but nevertheless they give very different
impressions of the nature of the structure.

As with nylon, additional thermal processing gives more highly oriented, high-
tenacity polyester yarns.

Other polyesters

Fibres can be made from polyesters with different numbers of —CH2— groups. One
now in commercial production is polytrimethylene terephthalate (PMT)5 with three
—CH2— groups. The added flexibility of the molecule leads to properties more like
those of nylon. A stiffer chain, which gives higher modulus fibres, occurs in polyethylene
naphthalate (PEN), in which the benzene ring is replaced by the double naphthalate
ring. These other polyester fibres are melt-spun and can be expected to have structures
similar to those described for nylon and PET.

(a) (b)

1.50 Two views of the structure of PET filaments spun at 5000 m/min, both
from the same book: drawn by (a) Heuvel and Huisman [69] and (b) Shimizu
et al. [71].

5An alternative terminology refers to the number of —CH2— groups: 2GT for PET, 3GT for PTT,
etc.



Polyolefin fibres

Polyethylene is not a particularly good material for textile fibres6. For reasons that
will be made clearer in Section 18.3.3, it is too soft and extensible. It does, however,
have some usage. Polypropylene is more widely used.

Both these polymers have a fairly simple repeat, and there are not the alternating
sequences of the polyamide and polyester fibres. Linear polyethylene (made by the
low-pressure route, with Ziegler catalysts) readily takes up a very highly ordered
form, of high density, equivalent to about 80% crystalline. This is probably best
regarded as an assembly of lamellar crystals, separated by narrow crystal-defect zones.
The older, branched polyethylene (made at high pressure) is somewhat less ordered.

Polypropylene, because of the side groups, cannot achieve as high a crystallinity
as linear polyethylene. The bulky —CH3 side group also causes polypropylene molecules
to take up a helical form in the crystal lattice, with three repeats in one turn of the
helix. The helical crystal lattice is rather easier to stretch than the extended-chain
lattice of polyethylene.

Polypropylene demonstrates an interesting example of the need for regularity of
structure to secure crystallisation in a polymer. During polymerisation, the successive
—CH2·CH(CH3)— sequences can be added in either a right-handed or a left-handed
screw direction, owing to the stereochemistry of the chain. If these forms occur at
random, the chain will have an irregular shape, impossible to remove by subsequent
manipulation, and will not crystallise. This is atactic polypropylene, which is unsuitable
for making fibres. But, if units are added on in the same sense, to give the isotactic
form, the molecule is regular and will crystallise. It was the discovery of a means of
controlling the polymerisation that led to the production of isotactic polypropylene
fibres. By causing some atactic sequences to be present, the degree of order can be
reduced if necessary.

Another regular form, syndiotactic, has a regular alternation of right- and left-
handed groups.

Polylactic acid (PLA) fibres

Polylactic acid, which is made from corn starch and not from oil, is a condensation
polymer that is melt-spun into fibres. The structure can be expected to be similar to
other melt-spun fibres.

Acrylic and related fibres

The acrylic fibres are very different from the melt-spun synthetic polymer fibres;
they also differ more among themselves. The variations in the nature and means of
incorporation of the minor component cause some differences; the nature of the
method of production from solution, by either dry or wet spinning, causes others. But
even pure polyacrylonitrile is rather unlike most other polymers.



Figure 1.51(a) shows a model of the polyacrylonitrile molecule. Because of the
influence of the —C≡≡N side group, it normally coils into a three-fold helix, to take
up a cylindrical form, which, as indicated in Fig. 1.51(b), is only moderately flexible.
The interactions between the —C≡≡N groups, while strong because of the electric
dipoles, are not very specifically directed. As a result, the cylinders tend to pack
together in a regular hexagonal array, like sticks of chalk in a box, but without being
in register along their length. This is a pseudocrystalline order, illustrated in Fig.
1.52.

(b)

(a)

1.51 (a) Model of polyacrylonitrile molecule. (b) Bending of model.

1.52 Pseudo-crystalline packing of cylinders, typical of polyacrylonitrile.



Owing to the usual problem of sorting out long polymer chains, the highly ordered,
pseudocrystalline material will make up only about half of the total material. In the
other regions, there will be a more disordered structure, with the cylindrical chains
crossing one another, though still held rather firmly together by the electrostatic
forces. Internally, acrylic fibres have a coarse fibrillar form. This is due to the occurrence,
early in the process of fibre formation, of voids containing solvent; the voids later
collapse and are then drawn out during stretching of the fibre. The spongy solid
incorporating the voids becomes the fibrillar network.

There are also modacrylic fibres with less acrylonitrile, usually about 50%, in the
chain. Other vinyl and vinylidene copolymers are used for some fibres of limited use.

Elastomeric fibres

Coarse elastomeric fibres can be made from natural rubber. The structure is a network
of flexible chains, which are cross-linked by covalent bonds in vulcanisation.

Spandex fibres, of which Lycra is a notable example, are more important. They are
defined as having at least 85% of a segmented polyurethane. The molecules are
alternating block copolymers of soft and hard segments. The soft segments, which
make up 60–90% of the polymer, are randomly coiled aliphatic polyethers or co-
polyesters; the hard segments are crystallisable aromatic di-isocyanates. The result is
a fringed micelle structure. The low crystallinity means that the crystalline blocks
can be randomly oriented and linked together by highly coiled, flexible tie-molecules.
Alternatively, the association of hard segments can be regarded as providing domains
that crosslink the elastomeric network.

Some gross features of synthetic-fibre structure

In general, synthetic fibres are lacking in large-scale structural features. There is
evidence for the presence of a skin, or of a radial variation in structure, in some
fibres.

Melt-spun synthetic fibres extruded through circular spinnerets have a circular
cross-section. However, shaped spinnerets lead to shaped fibres, with the sharp forms
of the spinneret somewhat rounded as the molten polymer in the thread-line reduces
in surface area under the forces of surface tension, tending towards the circular form.
Trilobal and multilobal fibres are typical examples.

In solution-spun fibres, loss of solvent after the formation of a skin can give other
shapes. Acrylic fibres often have a dumb-bell shape.

A more striking form of gross structure occurs in bicomponent fibres. A variety of
forms is possible. Two streams of polymer may be extruded together from the same
spinneret: a side-by-side arrangement gives an asymmetric structure with built-in
crimp; a radial arrangement gives a core–sheath form for surface character or bonding.
Alternatively, small zones of a second polymer may be dispersed within the main
polymer fibre.

Other inclusions, delustrant, pigments, anti-static conductors, and so on, may be
added to synthetic fibres to give required properties.
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1.8 High-performance fibres

1.8.1 Fibres for engineering uses

In the final quarter of the 20th century, a new generation of manufactured fibres with
high-performance properties were produced for engineering end uses. Their precursors
were glass and asbestos fibres, though asbestos is no longer used for health and
safety reasons. Unlike textile materials for clothing and household uses, which require
a high fibre extensibility (in the range of 5–50% or, more often, 10–30%) and where
strength is less important, so that moduli are relatively low, most of the textiles for
engineering uses require maximum stiffness, usually accompanied by high strength.
In addition to glass, which is on the borderline of general textile acceptability, the
high-modulus, high-tenacity (HM–HT) fibres include: ceramics, such as alumina and
silicon carbide; carbon or graphite fibres; and highly oriented polymeric fibres, such
as the para-aramids, Kevlar, Technora and Twaron, other liquid-crystal polymer fibres,
such as Vectran, PBO and M5, and the high-modulus polyethylenes Spectra and
Dyneema.

There are also some HM–HT materials that are often referred to as fibres, but do
not have the dimensions characteristic of textile fibres. Boron fibres and others made
by vacuum deposition on a substrate are too thick; and single crystal whiskers are
usually too thin and short. Both of these types may also be regarded as excluded from
the textile category because of their extremely high cost.

1.8.2 Inorganic fibres

High mechanical and thermal resistance requires strong chemical bonding. In the
ceramic fibres, this results from an array of covalent bonds in three dimensions,
which holds the atoms together in the material. In the perfect crystal, the geometry
will be a regular lattice, as represented schematically for a material such as silicon
carbide, SiC, in Fig. 1.53(a). In fibre form, as single crystal whiskers, a particular
direction will be aligned along the fibre axis. Commercial fibres, produced by heat
treatment of a precursor, will not have such a regular structure. The most likely form

(a) (b)

1.53 Schematic two-dimensional representation of the structure of a material
such as silicon carbide: (a) crystalline; (b) amorphous. In the actual material,
the atoms are distributed over three dimensions, to give a more complicated
network.
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is a polycrystalline collection of variously oriented microcrystals. An alternative
possibility is an amorphous structure, with distorted bonding between atoms, as
illustrated in Fig. 1.53(b). It must be remembered that the real structures, whether
crystalline or amorphous, are three dimensional, and the viewer must use imagination
to transform the picture from the two-dimensional form, which is easier to represent.
In silicon carbide, the geometry of the linkage is relatively simple, because both
carbon and silicon have valencies of four, and so fit into a tetrahedral lattice with the
C and Si atoms in equivalent positions. Oxide fibres, such as X2O3, are more complicated
because of the valency differences.

The alumina fibre FP is reported to be almost pure polycrystalline α-Al2O3 with
a grain size of about 0.5 µm [72]. Nicalon silicon carbide fibre is reported to contain
ultra-fine β-SiC crystals [73].

Ceramic fibres may contain a mixture of components. For example, Nicalon may
contain up to 30% of silica, SiO2, and carbon; and Nextel is a 70/28/2 mixture of
Al2O3/SiO2/B2O3. Tyranno is a ceramic fibre composed of silicon, titanium, carbon
and oxygen (Si-Ti-C-O), which is reported to have a non-crystalline microstructure
[24]. A development from FP fibre, called PRD-166, consists of α-alumina with 20%
of zirconia.

In glass, the amorphous bonded network of silica, SiO2, is opened up by the
presence of electrovalently bonded metal ions, which come from the metal oxides in
the formulation. A schematic representation is shown in Fig. 1.54. The mechanical,
chemical, thermal and electrical performance depends on the composition used in
glass manufacture. For low-grade staple fibre, used, for example, as thermal insulation
in buildings, this will be determined mainly by price, and the glass would be about
75% silica, the other main constituents being the oxides of sodium, Na2O, and calcium,
CaO. Continuous filaments for more demanding applications may be made of
E-glass, containing only small amounts of alkali, Na2O and K2O, more CaO, and also
oxides of boron, B2O3, aluminium, Al2O3, iron, Fe2O3, and magnesium, MgO. The
high-strength S-2 glass is also a magnesium oxide, aluminosilicate type, low in alkali
and high in magnesium [74].

Asbestos, although no longer used, is interesting in the way in which it forms
fibres [75]. The crystal lattice is naturally curved and so bends round to form a

1.54 Schematic representation of the structure of glass, composed of silica,
SiO2 and metal oxides.
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cylinder with a diameter in the chrysotile form of asbertos of 17.5 nm. Crystallisation
can continue to a limited extent on inner and outer layers before the distortion
becomes too great. Hollow cylindrical crystallites have peak diameters of 10 nm
inside and 25 nm outside. When the rock is broken down, the resulting fibres are
bundles of these cylindrical crystallites.

1.8.3 Carbon fibres

High-strength carbon fibres have a structure based on the graphite crystal lattice,
shown in Fig. 1.55. This consists of two-dimensional sheets (planar polymer molecules)
of carbon atoms, which are held together strongly by covalent bonds and are arranged
in parallel layers, 0.335 nm apart, with much weaker van der Waals forces between
the layers. In turbostratic graphite, the individual layers are not aligned but are
irregularly rotated relative to one another, and the spacing between layers is increased
to 0.344 nm. The perfect crystalline form of graphite very easily splits into
microscopically thin sheets, which slide over one another in graphite lubricants.

In carbon fibres, this degree of perfection is not achieved. Electron microscope
examination of thin sections shows clear lattice fringe images, but also appreciable
disorder [76]. The exact forms of structural disorder are not well understood, and
carbon fibres from different precursors, or with different processing histories, will
have different types and degrees of disorder. It is known that the orientation of the
graphite sheets in high-strength and high-modulus carbon fibres is predominantly in
planes parallel to the fibre axis, but with varying orientation in the direction perpendicular
to the fibre axis. A schematic representation of the sort of complication that may be
present is shown in Fig. 1.56, but many other variant sketches have been drawn. At
a first level of comprehension, it is possible to imagine a structure composed of
microcrystals of graphite, each perfect or turbostratic and oriented in a particular
direction, but with the microcrystals differing in orientation in separate zones, which
make up the total solid. The shapes and interconnections of the zones would be
important structural parameters. At the next level, one can imagine distortion and
curvature of the sheets as they pass through the structure. Different authors have
drawn a variety of arrangements of whorls and interweaving of sheets and ribbons

1.55 Crystal lattice of graphite. Note staggering of layers indicated by vertical
lines.
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within the fibre, and the real forms will vary with the precursor and the process used
to make the carbon fibre. The one common feature is that the planes are predominantly
aligned with one direction parallel to the fibre axis.

The most important type of disorder may be at the level of molecular perfection.
The carbon atoms in the intermediate low-strength carbon fibres, which are used as
thermally resistant fibres, are much more irregularly bonded together, and the subsequent
transformation to planar graphite molecules may not be complete. It is possible to
imagine defects that connect graphite layers together. For example, instead of the
perfect sheet of Fig. 1.57(a), there might be a cut along the line PQ, and lines of
dislocations upwards along RQ and downwards along QS, as suggested in Fig. 1.57(b).
Although molecular continuity remains between X and Y along a route outside Q, the
direct connexion is to separate neighbouring layers containing P and P′. Such a defect
would form part of a network of dislocations, with the total structure being an
assembly of interconnected planar molecules, arranged with the planes parallel to the
fibre axis.

Fibre axis

1.56 Schematic representation of the structure of a carbon fibre. Courtesy of
D. J. Johnson [77].

P

X

Q

Y
P′

X

R

Q

Y

S

(a) (b)

P

1.57 Possible interconnection defect in graphitic structure: (a) single sheet
with two connecting routes between X and Y; (b) split of sheet along PQ,
giving a connecting route outside Q but with the direct route on separate
planes.
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An ironical feature of the production of carbon fibres is that, although the ultimate
goal of the heat treatment under tension appears to be the formation of a perfectly
oriented structure of perfect sheets in order to maximise tensile strength and stiffness,
such a perfect fibre would have serious faults in other ways. Some disorder is needed
to hold the sheets together and optimise performance.

1.8.4 HM–HT polymer fibres

In order to achieve high stiffness and high strength in linear polymer fibres, it is
necessary that the chains should be highly oriented and highly chain extended, as
shown ideally in Fig. 1.58. This type of structure can be produced from polymers at
the opposite ends of the spectrum. Very stiff chains with strong interactions easily
self-assemble. Very flexible chains with weak interactions can be highly drawn. With
polymers such as polyamides and polyesters, there is no self-assembly into the required
form, and entanglements and interactions cause the fibre to break at lower draw-
ratios.

The para-aramid fibres Kevlar and Twaron are manufactured by dry-jet wet spinning
in which the extruded solution passes through an air-gap before entering a coagulation
bath. They are composed of the aromatic polyamide, poly(p-phenylene terephthalamide)
or PPTA:

–CO CO·NH NH–

This is a stiff molecule with strong interactions to neighbouring molecules, both at
the benzene rings and by hydrogen bonding at the —CO·NH— groups. In solution,
the self-attracting rod-like molecules form elongated liquid crystals, like logs in a
stream. High shear at the point of fibre formation then lines up the crystals parallel
to the fibre axis. The resulting fibre structure consists of fully extended chains,
packed together with a very high degree of crystallinity and a very high orientation.
There is some disorder, originating from boundaries between liquid crystals and
imperfections of packing within crystals, and some departure from perfect orientation.
Heat treatment under tension improves the structural perfection, and there are both
less well-ordered, lower-modulus forms, such as Kevlar 29, and better-ordered, higher-
modulus forms, such as Kevlar 49 and 149, on the market.

1.58 A diagram drawn by Staudinger [78] in 1932, which shows the ideal form
for a linear polymer fibre with high strength and stiffness.
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The crystal lattice of PPTA is illustrated in Fig. 1.59. Several features are noteworthy.
Firstly, because of the alternation of ring and linear forms, it follows that the transverse
planes, AB, containing the —CO—NH— groups have a lower density of covalent
bonds than those containing rings, CD. Secondly, there are planes, shown in Fig.
1.59(a), in which neighbouring molecules are hydrogen bonded and thus more firmly
held together than between the layers in the perpendicular direction, above and below
the paper. This gives rise to anisotropy in the directions normal to the fibre axis, with
the possibility of preferred orientation. The geometrical effects, as distinct from the
intermolecular bonding, are less marked than they might be because the benzene
rings in the acid and amine components are angled as shown in Fig. 1.59(b). At the
level of fine structure, though the fibres are highly crystalline and highly oriented,
there is an axial pleating of the crystalline sheets, which are radially oriented, as
illustrated in Fig. 1.60.

There are a number of other HM-HT polymer fibres produced by dry-jet wet
spinning with structures generally similar to that described above, but without the
special feature of pleating.

Technora [79] is an aromatic copolyamide with the chemical structure:

(a) (b)

A

C

B

D

1.59 Molecular packing in PPTA crystal: (a) set of hydrogen bonds in a sheet;
(b) view along the chains showing separate sheets and different directions of
benzene rings.

1.60 Radial pleated structure of a para-aramid fibre (Kevlar).
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Unusually, Technora is spun from an isotropic, not a liquid-crystal, solution.
Poly(p-phenylene benzobisoxazole), usually referred to as polybenzoxazole or

PBO, in Zylon fibres, is a stiffer molecule with triple rings in the chain:

N N

O nO

As mentioned above, PPTA has weak connections between planes and PBO similarly
lacks strong interactions in all transverse directions. This led Sikkema [80] to synthesise
poly {2,6-diimidazo[4,5-b:4′, 5′ –e]-pyridinylene-1,4(2,5-dihydroxy)phenyloene}
(PIPD):

N

N N
n

OH

OH

NH

NH

The hydroxyl groups lead to hydrogen bonding in all transverse directions, which
improves shear and axial compression resistance in the ‘M5’ fibre.

Other variants of the stiff chain scenario were investigated by Perepelkin [81] in
Russia. As mentioned above, cellulose fibres can also be produced by a similar
liquid-crystal route [55].

All the above fibres are made from solutions in strong acids by dry-jet wet spinning.
Fully aromatic polyesters are another type of stiff chain. With limited co-polymerisation,
they form thermotropic liquid crystals, which can be melt-spun to produce highly
oriented, chain-extended fibres. However, the molecular weight cannot be too high in
melt-spinning, so that subsequent solid-state polymerisation is needed to give the
chain length required for high performance, This offsets the economic benefit of
melt-spinning. The commercial fibre of this type is Vectran [82], with the formula:

O

C

C

O

O

O

YX

The alternative route towards the idealised structure shown in Fig. 1.58 is to use
flexible molecules with weak interactions, which can be ‘combed out’ to give chains
that are highly extended and highly oriented, and packed with a high crystalline
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order. Examples are the gel-spun, HMPE fibres Dyneema and Spectra, made from
very high molecular weight polyethylene. The crystal lattice consists of extended
chains of carbon atoms, with attached hydrogen atoms. This gives very efficient
bonding along the polymer molecules, with a high density of covalent bonds across
all planes, but very weak van der Waals bonding between chains.

Highly oriented fibres can also be made by super-drawing of melt-spun polyethylene
fibres with lower molecular weight or by solid-state extrusion of high molecular
weight polyethylene, but the strength is less than gel-spun fibres.

HM–HT fibres, which are perfect single crystals of linear polymer molecules, can
be made by solid-state polymerisation of diacetylenes [83]. These are interesting
academically in terms of their mechanical properties, because of their structural
perfection and, more practically, for their electrical properties.

1.8.5 Gross features

Larger-scale structural features, such as voids or packing differences, can result from
the structure of precursor fibres or from effects in fibre manufacture. This is certainly
true for carbon fibres, where there are differences among fibres made from acrylic,
rayon and pitch precursors.

Where, as in carbon and para-aramid fibres, the crystal lattice contains sheets,
there are varying possibilities of orientation in the plane perpendicular to the fibre
axis, This may be random, radial, circumferential or across the fibre, as indicated in
Fig. 1.61. Random arrangements are likely when there is no stress field generated by
thermal or other shrinkage effects, but it is easy to envisage that stress can bias the
structure into radial or circumferential arrangements. The form may not be the same
over the whole cross-section; for example, there may be different orientations in core
and sheath. The transverse arrangement of Fig. 1.61(d) develops in pitch-based carbon
fibres.

1.9 Specialist fibres

1.9.1 Diverse functions

In addition to the common textile fibres and the high-performance fibres, there is
now a great variety of fibres with special properties that match a wide range of
specialist applications. These fibres are largely beyond the scope of this book, but
they will be mentioned here with some comments on structure.

1.61 Orientation in the fibre cross-section: (a) random; (b) radial; (c)
circumferential; (d) across the fibre.

(a) Ib) (c) (d)
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1.9.2 Thermal and chemical resistance

Another engineering requirement is for high-temperature applications, which may be
combined with good mechanical performance. The HM–HT ceramic and carbon
fibres considered above have high thermal resistance. Glass and the polymer fibres,
except HMPE, can be used for moderately high temperatures.

For other uses, moderate or poor mechanical performance is adequate. Some are
weak and brittle fibres. For insulation, rock and slag wools, which are low-grade
materials with a glassy structure, are used. Somewhat better textile properties are
given by partially carbonised fibres, which can be made from acrylic or rayon precursors.
The current commercial processes involve heat treatments of acrylic fibres, which
are similar to the initial stages of carbon fibre production. The polyacrylonitrile
molecule is first cyclised into a ladder-like chain, which is then oxidised. Further heat
treatment displaces oxygen and nitrogen and develops three-dimensional bonding in
the final black fibres. There are also three-dimensional networks in the thermoset
resin fibres, Basofil from melamine–formaldehyde and Kynol from phenol–
formaldehyde.

There are other applications, such as aircraft interiors and protective clothing,
where good textile qualities are required as well as thermal resistance. The meta-
aramid fibre Nomex is made of poly(m-phenylene terephthalamide):

O

n

N C C

H

O

N

H

The shape of the molecule prevents liquid-crystal formation, and the fibres have a
partially oriented, partially crystalline structure, which is generally similar to that of
other synthetic textile fibres, such as nylon and polyester. PBO, which is described
above, has very high thermal stability and flame resistance. Fibres from other polymers,
which include five-membered and benzene rings, but with shapes that give partially
crystalline structures, are the aramid and poly(aramide-imide) fibres, such as P84
and Kermel [84], and polybenzimidazole (PBI) [85].

Many of the fibres described above have good resistance to particular chemicals,
but there are some fibres introduced particularly for chemical resistance [86]. They
include polytetrafluoroethylene, Teflon, (—CF2·CF2—)n, which also has good thermal
resistance and low friction, and a number of chlorinated and fluorinated hydrocarbons.
Other chemically resistant polymers are polyetheretherketone (PEEK),
polyphenylenesulphide (PPS), and polyetherimide (PEI).

1.9.3 Fibres with other properties

Other types of fibre have the particular physical properties needed for special
applications, but their details are outside the scope of this book. Non-woven fabrics
of lead fibres are used for sound absorption. Metal threads, including Lurex, which
sandwiches metal foil between plastic films, are used for decorative purposes. Optical
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fibres, either from glass or from transparent amorphous plastics, now have a major
role in communication. Fibres for medical uses must have biological compatability
and may be required to degrade after new growth of tissue. Hollow fibres are used for
drug release.

‘Smart fibres’ [87, 88] have special electrical, magnetic, radiation-absorbing,
diffusion, biological or other properties. They may be used as transducers, as wearable
electronics, as actuators, or for thermal regulation and other adaptive responses.
Some of these fibres depend on additives, such as carbon for electrical conduction.
Others are made from particular polymers, such as the piezoelectric material,
polyvinylidene fluoride, —(CH2·CF2)n—.

1.10 Some concluding views

1.10.1 Levels of structure

The complexity of fibre structure, and of the means of achieving particular properties,
comes in large measure from the number of levels of structure. To bring these various
levels into relation, Table 1.8 indicates the dimensions of typical fibre features.

Wool is the extreme example of complexity, with structure at a large number of
levels, as shown in Figs 1.42 and 1.43. Other fibres are less complex. At the level of
fine structure, states intermediate between a perfect crystal and random disorder are
difficult to define and often easy to manipulate into other forms.

1.10.2 Thermodynamic stability

The ultimate state of lowest free energy for most fibre-forming polymers would be a
single crystal of extended polymer chains, but the barriers that stand in the way of
reaching that state are insurmountable. The fibre states with which we are concerned
are metastable states, with a local minimum of free energy. With all the possible
arrangements of polymer chains, there are a vast number of local minima defining

Table 1.8 Dimensions of fibre features (approximate levels)

10 cm
Fibre lengths

1 cm
1 mm Spacing of crimps in wool
0.1 mm Spacing of convolutions in cotton
10 µm Fibre diameters
1 µm (10–4 cm) Major structural features

Molecular length
0.1 µm Laminae
10 nm Micro-fibrils

Crystalline and non-crystalline regions
1 nm Molecular width

C,N,O
1 Å (10–8 cm) Atoms

H
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different, reasonably stable, but metastable states. The minimum free-energy states
are defined by many parameters, and could be regarded as represented by troughs in
a multidimensional landscape. By the action of heat, stress and chemical changes, it
is possible to shift from one metastable state to another. This is another reason for the
complexity of fibre structure problems. It also has the effect that care needs to be
taken in applying thermodynamics, because the thermodynamic equalities apply strictly
only to reversible changes between true equilibrium states.

The situation can be illustrated by considering nylon fibres. On cooling from the
melt, a partly crystalline structure will form, but important details of the structure,
such as the extent of spherulitic material, will depend on the temperature at which
crystallisation occurred because of its influence on the number of nuclei present.
There is thus a collection of possible states of the undrawn fibre; storage may lead to
further changes as thermal vibrations shake the structure down to a slightly lower
energy state. Drawing causes a major rearrangement to another collection of metastable
states. Subsequent heat-setting and mechanical treatments cause further changes. If
the fibre has been partially or fully oriented by high-speed spinning, there will be
other structures. In many important respects, these different metastable forms will
have different properties; and thus the mode of formation and history of the fibre,
which determine the fibre structure, in turn determine the physical properties of
fibres and hence their practical utility.
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2.1 Test procedures

2.1.1 Evolution

The development of electronics in the middle of the 20th century and of digital
processing at the end of the century led to major changes in the methods and instruments
used for testing the physical properties of fibres. This is particularly important in the
evolution of procedures for evaluating (classing or grading) natural fibres, which has
gone through three main stages, though these are not totally distinct from one another.

At first, there was subjective evaluation by sellers and buyers viewing and handling
the material. For cotton, this became somewhat more objective by skilled classers
estimating fibre length on hand-stapled fibre tufts and comparing quality against sets
of standard samples [1]. The cotton was described by terminology such as American
middling, 5/16 inch (8 mm), with added information on colour and trash content.
With the growth of fibre research in the first half of the 20th century, painstaking
slow direct methods for measuring fibre dimensions were developed.

In the 1950s, there was a move to develop new test procedures, which were semi-
automatic and gave objective measurements, even though these were not always
directly related to specific fibre properties. Air-flow methods, which, for cotton, gave
a micronaire value dependent on both fineness and maturity (fibre shape), are a
typical example. These methods reflected the electromechanical and electronic
technology of the time. After 1980, developments in robotics, sensors and computers
enabled these methods to be combined with automatic handling, which fed samples
through a series of tests. For cotton, HVI (high-volume instrumentation) is ‘an integrated,
automatic or semi-automatic system of cotton fibre measurement hardware, software
and calibration for the rapid estimation of several fibre properties in a single sample’
[2]. Typically, HVI covers micronaire, fibre length and length distribution, fibre
bundle strength and elongation, colour (reflectance and yellowness), and trash content.
One HVI line can test over 800 samples for length, length uniformity, short fibre
content, strength, extension, micronaire and colour in a single shift [3]. Another
method in current use is the Uster Advanced Fibre Information System (AFIS),
which reports length and length distribution, fineness and maturity, neps, trash and
dust. A 0.5 gram sample is hand-drawn into a 25 cm sliver. The results are influenced

2
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by operator technique and a test takes 3 minutes, so that the method is not suitable for
routine commercial testing, but can be used in laboratory testing [4].

By the end of the century, the IT revolution had led to further advances in digital
imaging and information processing. New methods, which were faster and gave more
direct information on fibre dimensions, have been introduced. As the 21st century
continues, these methods are likely to replace older methods. Because the move to
sale-by-specification came later to wool than to cotton and because the fineness of
the near-circular fibres was the major defining quality parameter, digital techniques,
such as the CSIRO Laserscan and the OFDA technology described in the next chapter,
have been adopted sooner.

The commercial practices are designed to provide sufficient information at minimum
cost. The test methods for dimensions, strength and other properties will be described
in later chapters. It is beyond the scope of this book to give full instructions on test
methods, but the basic principles will be presented. Further information on procedures
can be obtained in publications of the International Committee for Cotton Test Methods,
the International Wool Textile Organisation, and national and international standards.
A selection of these standards is included in Appendix III.

2.1.2 Material for testing

For research purposes, individual fibres can be selected and mounted for examination
or testing. However, each operation is time-consuming and, with the variability of
natural fibres, a very large number of fibres must be examined to get statistically
useful results. In order to get the benefit of automated high-speed testing, provision
of the test sample is as challenging a problem as the test method itself. After the
initial preparation of a suitably aligned tuft of material, a way must be found of
selecting a representative selection of the fibres. For transverse dimensions, this has
been solved by cutting snippets, which can be dispersed on a slide for microscopic
examination. For fibre length measurement and for tensile testing, the problem is
more difficult and tufts of fibres are examined. The data may then need processing to
obtain the required information.

Account must also be taken of variability in fibre dimensions and physical properties,
which means that appropriate sampling procedures from the bale or other source are
needed, particularly for natural fibres.

2.2 Variability and sampling

2.2.1 Quality control in manufactured fibres

With a few exceptions, such as melt-blown non-wovens and stretch-broken tows,
manufactured fibres are made to controlled specifications. Chemical composition
and manufacturing operations are controlled to give constant dimensions and physical
properties. Standard deviations are small, though they may be significant. The scientific
researcher has no difficulty in taking test samples from a package. However, it is
important to specify the source and designation. One manufacturer’s nylon or polyester
is not the same as another’s.
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Nevertheless, faults can occur in manufacturing, so that quality control is needed
to maintain standards. This can be done by a programme of sampling production at
intervals and sending material to the test laboratory. However, there is an increasing
use of on-line testing.

2.2.2 Natural fibres

For natural fibres, the situation is different. There is always appreciable variability
and often great variability. Even the product of a single farm in a single season will
show variations along fibres, between fibres in a cotton boll or a lock of wool,
between neighbouring bolls on a cotton plant or parts of a fleece, and between
different plants or animals. A typical example of variability in a consignment of
cotton is shown in Table 2.1. Sources of variation are discussed by Steadman [6].
There are similar variations in other natural fibres.

The value of a source of fibre depends on the dimensions and other qualities,
which have to be evaluated. There have been major changes since the mid-20th
century and the evolution from subjective to objective assessment is described in
Section 2.1. However, sampling is always necessary. As an example, before about
1960 the commercial procedure was for skilled buyers to view wool in bales, which
had been opened up in a wool-broker’s store before an auction [7]. Although the
whole lot was available to them, inevitably the buyers only looked at small portions
of opened bales. This was subjective sampling. Now, representative grab samples are
displayed in viewing boxes and core samples, produced by punching a sharp tube
into the bale, are sent to a test-house for objective testing. In the cotton industry,
samples of cotton were taken from the bale after ginning for cotton classing. This
procedure is still widely used, but there is a move towards samples being taken for
objective testing [4]. For sampling at a later stage, Steadman [6] comments: ‘As
cotton is the most homogeneous of the natural fibres, when the fibre reaches the mill
the usual practice is simply to cut off a sample from each side of the bale and discard
the cut edges.’ For routine evaluation of the wool and cotton crop, speed and cheapness
of sampling are important factors, provided the information generated is adequate to
determine price and expected performance. For research studies, more care may be

Table 2.1 Coefficient of variation (%) in a consignment of cotton [5.0].

Property Between bales Within bales

Micronaire 14.2 2.6
Upper half mean length 1.3 1.1
Strength 4.6 4.6
Extensibility 5.7 6.2
Reflectance 1.1 4.4
Yellowness 5.7 4.9
Colour grade 34 41
Trash area 99 112
Short fibre content 15.5 15
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needed to obtain representative samples for detailed testing, which may be used to
calibrate or validate quicker test methods or for scientific investigations.

With little alteration, the account written by W. E. Morton for the 1st and 2nd
editions of this book brings out the principles and problems of sampling. Practical
information on sampling is given by Saville [8].

2.2.3 Sampling requirements

Practically every measurement made on textile materials must of necessity be restricted
to only a small fraction of the bulk. Where testing is carried out for commercial
purposes, and especially when it is destructive, as in strength-testing, the reason for
this is obvious, but in the general case the bulk is nearly always so large that to test
it completely would be quite impracticable, even if any material advantage were to
be gained by doing so. It is therefore almost invariably the practice to measure a
sample only.

Whether and how far the results obtained from a sample may be relied upon to
characterise the bulk, or, in statistical parlance, the ‘population’, from which it is
drawn, depends on two things: the size of the sample and the manner in which it is
taken.

As regards the size of the sample, little need be said here. Naturally, the larger the
sample, i.e. the greater the number of individuals it contains, the more closely do the
results obtained from it agree with those which would be obtained from the entire
population. How large the sample should be to raise the confidence in the results to
any desired level can be readily determined by the application of elementary statistical
method. All that is needed is an estimate of the variability of the character measured,
and this may be obtained from the sample itself or assumed as a result of past
experience1. Unfortunately, the properties of textile materials are generally characterised
by such great variability that samples must nearly always be relatively large if useful
reliability is to be assured. Except in special circumstances, which will be noted later,
no matter how large a sample may be, it is useless unless it is also representative.

In any attempt to take a truly representative sample, or what is termed a ‘numerical’
sample, the guiding principle is simple to state: the technique should be such that
every individual in the parent population has the same chance of being included in
the sample. It is not so simple, however, to follow this precept in practice. The
requirement would be met completely if we were free to take, absolutely at random
and without conscious selection, any individual whatsoever, regardless of where it is
to be found in the population. In fact, our freedom to do this is commonly limited,
and sometimes severely limited, either by the amount of labour that would be involved
or because of other, and even more practical, considerations. In commercial yarn-
and cloth-testing, for example, a perfectly random sample is never possible because
the bulk to be characterised would be spoilt by the taking of the individuals. The
sampling of fibrous raw materials in bulk form may also suffer from limitations of a

1Useful data are included in BS EN 12751:1999.
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similar kind, though not so acutely. In all cases where such limitations apply, it must
be recognised that, to the extent that a sample is not a perfectly random one, so will
the results from it be less reliable than as indicated by the experimentally determined
standard errors.

In fibre testing, however, uncertainty arising from restrictions on random selection
can generally be reduced to small proportions without much difficulty. On the other
hand, unless special precautions are taken, a much greater source of error may be
introduced, which arises from the essential nature of a fibre, namely, that it is very
much longer than it is thick. Because of this, it is only too easy to take a sample in
such a way that it contains far more long fibres than it should; this is true whatever
form the population of fibres may take, whether bale, top, roving, yarn or cloth. The
nature and avoidance of this bias in favour of the longer fibres will be discussed in
succeeding sections, but at this point two observations should be made.

The first is that length bias is not only of importance when fibre length is the
quantity to be measured. It is also important when the test is for any fibre property
associated with length. Thus with wool, for example, where there is a strong correlation
between fibre length and fibre diameter, any sample biased in favour of length will
also be biased in favour of coarseness. Again, in cotton, bias for length may be
accompanied by a bias for strength [9] (see Section 13.5.2).

The second is that there are some circumstances in which the taking of a biased
sample is convenient and desirable, or even essential. In such cases, it almost goes
without saying that the quantitative nature of the bias must be known. If not, the
results of any measurements made can never tell us anything useful about the population
we desire to characterise. For the relation between biased and numerical samples to
be known, certain conditions must be satisfied. These will be discussed in the sections
that follow.

2.3 Numerical and biased samples

2.3.1 Numerical proportions

Consider first a highly idealised, homogeneous strand of overlapping straight, and
parallel fibres. Since it is homogeneous, its composition is the same at all parts along
its length. There are no concentrations of long fibres in some parts or short fibres in
others; the short fibres are spread out evenly throughout its length, and so also are the
long fibres or fibres of any other designated length. The different lengths of fibres
present may, in fact, be mixed thoroughly together, but no invalid assumptions are
involved if, for our present purpose, we imagine the strand to be made up of a large
number of superimposed streams of fibres, each stream consisting of fibres all of a
particular length.

If we take any one of these streams characterised by a length l, then, since the
fibres composing it are spread out evenly, the displacement of one with respect to the
next is constant, as shown in Fig. 2.1.

Let the displacement be denoted by d, the number of fibres in the stream by n, and
the length of the strand by L. If n is small, then d is large compared with l and there
are gaps between the individuals, as at (a). If, on the other hand, n is large enough,
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d is less than l and there is overlapping, as shown at (b). In either event and in the
general case, the number of whole fibres in any stream is given by:

n L
d

 = (2.1)

Let the quantities referring to the several streams be denoted by the suffixes 1, 2, 3
… etc. Then the total number of fibres in the complete strand is:

n1 + n2 + n3 + … = ∑n

and the numbers of fibres in the several streams, expressed as fractions of the total
for the strand, are

n n n

n n n

1 2 3; ; ; Σ Σ Σ … (2.2)

This, then, is the pattern of the numerical proportions (frequencies) of the various
fibre lengths present in the strand as a whole.

2.3.2 Length bias

In taking a sample from such a strand, the most natural procedure would be to take
a pair of tweezers and pick out a few fibres here and there at random all over the
strand until a sample of sufficient size has been obtained. Let us examine the
consequences of such action.

Consider first the stream of fibres at (a). Since the points of the tweezers are
applied entirely at random, it is by no means certain that any fibre at all will be taken
from the stream. The probability of one being taken at each attempt is obviously l/d.
If k attempts are made, then in the long run of experience the number taken will be
kl/d = knl/L, since n = L/d, from equation (2.1).

Consider next the stream at (b). The probability of taking a fibre here is greater
than 1, i.e. at least one will be taken every time and sometimes two. If l = 2d, it is a
certainty that two would be taken every time. Thus, in k attempts, the number taken
is still kl/d = knl/L. This relationship, in fact, holds good whatever the values of l or
d, and the numbers of fibres taken from the various streams are:

2.1 Fibre displacement.

l l l

d d

(a)

d

l

(b)
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kn l
L

kn l
L

kn
L

1 1 2 2 3; ; 
3

; … (2.3)

or, expressed as fractions of the number of fibres in the entire sample:

n l
nl

n l
nl

n l
nl

1 1 2 2 3 3; ; ; Σ Σ Σ … (2.4)

It is thus seen that, in the sample, the proportionate frequency of occurrence of fibres
of any particular length is determined, not only by n, the number of them occurring
in the strand as a whole, but also by how long they are. For example, if equal numbers
of 50 mm and 25 mm fibres are present in the strand, the 50 mm fibres will be twice
as numerous in the sample as the 25 mm fibres. Every fibre does not have an equal
chance of being included in the sample, and we have not, therefore, obtained a
representative, or numerical, sample. What we have instead is a length-biased sample,
sometimes referred to as a Wilkinson tuft [10, 11].

2.3.3 Frequencies, length proportions and mass proportions

It will be noted that the quantities, n1l1, n2l2, n3l3, etc., give the total lengths of fibre
of lengths, l1, l2, l3, etc., respectively, in a numerical sample and that ∑nl is the total
length of fibre in a numerical sample as a whole. Thus the terms in equation (2.4)
above, which represent the frequencies in a length-biased sample, also represent the
proportions by length, or length proportions, in a numerical sample.

Furthermore, if the fibre mass per unit length is the same for all lengths, length
proportions are equivalent to mass proportions (often referred to as weight proportions).
Hence, under these conditions, the frequencies in a length-biased sample are also
equivalent to the mass proportions in a numerical sample.

In practice, there are some circumstances in which the proportions by length or the
proportions by mass are the quantities in which we are really interested, for example,
in studies of fibre breakage in carding or of length fractionating in combing. In such
cases, if a numerical sample is taken, the desired quantities must be calculated from
the frequencies by multiplying the latter by the corresponding lengths. If, on the
other hand, a length-biased sample is taken, the frequencies obtained from it give the
desired quantities directly.

Length-biased samples have their uses also in other contexts. For example, suppose
that we wish to determine the mean diameter of a sample of wool by a method in
which the diameter is measured at one point only on each fibre examined. If the
sample taken were a numerical one, long fibres would be given no greater weight
than short fibres, and, the relation between length and fineness of wool being what it
is, the resultant mean would be too low. Clearly, in such a case, the results should be
weighted for length, and the only way of doing this is to work with a length-biased
sample. It cannot be too strongly emphasised, however, that, in taking a sample of
this kind, the population to be sampled must consist of fibres that are straight and
parallel: otherwise the bias, or weighting, for length is indeterminate (see Section
3.5). Length-biased sampling is therefore only practicable when the material to be
examined is in the form of well-drawn slivers, tops, rovings or yarns.
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2.3.4 Tong sampling for length bias

In the procedure already described, which resulted in a length-biased sample, it will
have been noted that, at each application of the tweezers, only those fibres were taken
that passed through a cross-sectional area of the strand, the section being that normal
to the fibres and lying in the plane between the points of the tweezers. This basic
principle of sampling for length bias is utilised in the tong-sampling method [12],
where two pairs of narrow clamps or surgical tongs with leather-lined jaws are used
for defining the section.

A portion of the top, sliver, roving or yarn is clamped at right angles by one pair
of tongs, and the fibres at one side are combed so as to remove those not gripped. The
resulting combed tuft projecting from the side of the tongs is now clamped by the
second pair of tongs, which are placed parallel to, and in contact with, the first pair.
The first pair is then removed and the fibres not gripped by the second pair combed
out on the side not hitherto combed. The fibres retained in the second pair are thus
all those that crossed a plane perpendicular to the length of the sliver, and these
constitute the sample.

This method has been found satisfactory for wool materials [13], but according to
Hertel [14] it is not very suitable for cotton because fibre breakage is excessive if the
combing is to be effective.

2.3.5 Extent bias

In the foregoing, we have considered only the special case where all the fibres are
assumed to lie straight and parallel in the strand, and where those fibres are taken that
pass through a plane at right angles to the axis of the strand. In card webs and card
slivers, and especially in bulk samples of unprocessed raw materials, however, the
arrangement of the fibres is anything but regular. The fibres may be crimped and
distorted, they may be bent over into a hooked form at one or both ends, and they
may vary very greatly in their orientation. Even in uncombed, but otherwise well-
drafted, slivers, perfect straightness and orientation of the fibres cannot be assumed
with certainty. It is, therefore, necessary to introduce the notion of fibre extent.

Fibre extent may be defined as the length of the projection of a fibre on any chosen
axis of orientation. With slivers, rovings and yarns, the direction in which extent is
measured is usually parallel to the axis of the strand. With card webs, it is usually
parallel to the card sides. With samples of loose raw materials, it may be anything
one chooses. As will be clear from Fig. 2.2, the extremities of the projection are not
necessarily determined by the ends of the fibre under consideration.

Under conditions such as these, if fibres are taken which pass through a given
cross-section, the sample is biased for extent, and, unless the ratio of fibre extent to
fibre length is constant for all fibres, the degree of bias is indeterminate. Apart from
bast and leaf fibres, nearly all fibres are crimped in some degree, and it could thus be
argued that, in practice, a length-biased sample is an impossibility. However, provided
that the population to be sampled is not a blend of materials having different crimp
characteristics, and provided that, except for the crimp, the fibres are straight, the
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extent/length ratio can be assumed to be constant. Under any other conditions, an
extent-biased sample is of no use whatever.

2.3.6 Avoidance of extent bias

The object is to take fibres of the different lengths present in numerical proportions
determined solely by their several frequencies of occurrence in the entire population.

We have seen from equation (2.1) that, in a strand of length L, the number of fibres
n of any length l is inversely proportional to d. What we have to ensure is that this
also holds good for the sample.

From Fig. 2.1, it is evident that the probability of any chosen point on a fibre
occurring within any short length δL of the strand is strictly proportional to the ratio
δL/d. If, then, we take one or other of the fibre ends as our chosen point, we see that
the solution of our problem is to take all fibres that terminate within a given volume,
i.e. within any chosen length δL of the strand, since δL is the same for all fibres.

The size of the sample taken depends on what we choose for our δL, but the
composition of the sample reflects truly, on a reduced scale, the composition of the
entire population, and we have an unbiased sample. Selection is made according to
the occurrence of fibre ends, of which every fibre has two, whatever its length.
Length therefore plays no part in the selection. This remains true whether we are
dealing with fibres that are straight or fibres that are crimped and disarranged, as is
clearly demonstrated in Section 2.4.2.

2.4 Sampling techniques

2.4.1 Squaring and cut-squaring

Squaring and cut-squaring are two related methods that are applicable to slivers,
rovings or yarns in which the fibres are in a reasonably ordered state and give a
numerical sample. In what follows, it will be assumed that the material to be sampled
is in the form of a sliver.

In the simplest form of this operation [15], the sliver is opened out, without
disturbing the fibres, into a flat ribbon, and one end is roughly squared by hand. It is
then placed on a black velvet-covered board, and a sheet of glass, of suitable size and
weight, is laid on top of it, leaving a short fringe projecting. The projecting fibres are
now removed in small groups with tweezers until the edge of the glass is reached,
whereupon the glass plate is moved back a short distance to expose a new fringe,

Extent

2.2 Fibre extent.
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which is similarly treated. This is repeated until a succession of fringes have been
squared back a distance at least equal to the length of the longest fibre present. Only
then is the actual sample taken for measurement by moving the plate back a further
short distance and withdrawing all the fibres that now project beyond its edge. These
fibres are those that terminated in a given volume and so constitute an unbiased
sample provided that the precautions mentioned are observed.

The succession of preparatory squarings, before the sample is taken, is absolutely
essential because the fringe formed at the broken edge of any fibrous strand naturally
contains a predominance of longer fibres, and this initial bias can be eliminated only
in the manner described.

The pressure of the glass plate on the velvet board effectively controls the fibres
during squaring and during the taking of the sample, while the thickness of the glass
can be chosen so as to give optimum control without breakage. Since the control is
by friction, and not by positive grip, looped and even slightly tangled fibres can be
withdrawn, though, with cotton fibres at least, the possibility of the breakage of some
fibres is always present.

In the withdrawal of fibres from the fringes, long or somewhat tangled fibres
sometimes drag out with them other fibres initially lying wholly behind the edge of
the glass. This is minimised by drawing the fibres almost singly, but, in any case, no
bias is introduced provided this form of disturbance occurs equally in the final
drawing of the sample as during the preparatory squarings. Hence the manner of
withdrawal must be the same at all stages, and so also must the distance by which the
plate is moved. The latter, of course, determines the size of the sample taken.

Cut-squaring is a modification of the squaring technique, designed to minimise
the labour of preparatory squaring [12, 15]. Here the strand is cut to a straight edge
instead of being broken and is then covered with a glass plate, as before. In theory,
only one preparatory squaring of the fringe is now necessary because all the cut
fibres are removed at this one stage, and the fibres whose ends project beyond the
glass, when next moved back a short distance, should constitute a numerical sample.
It has been shown [16], however, that in practice this is not the case and that a series
of at least three preparatory squarings is necessary. The reason for this is probably to
be found in the fact that the conditions under which the cut fibres are withdrawn in
the first stage are not the same as those prevailing when the fibres forming the second
fringe are extracted to form the sample. In the first stage, the fringe is dense, and it
is inevitable that the fibres must be drawn in rather large bunches, thus giving rise to
a greater degree of fibre disturbance than when the much thinner second fringe is
dealt with. Hence errors due to disturbance during the taking of the sample are not
cancelled out by corresponding errors during the preparatory squaring. In general,
short fibres are the ones that are most easily dragged forward out of turn, and
consequently, with only one preparatory ‘fringing’, the observed mean length is too
high, the sample being deficient in short fibres.

The reason why all projecting fibres in the final fringe must be taken is that, if any
attempt at random selection is made, bias is almost certain to be introduced by an
unconscious preference for thick fibres. Thickness may be, and with wool certainly
is, correlated with length.
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2.4.2 Dye-sampling

This method was evolved [16] primarily for the sampling of wool fibres in the form
of card web with the object of reducing to negligible proportions the risk of fibre
breakage, which is considerable if a card sliver is sampled by the squaring method.
In general, it is applicable only to thin layers of fibre, as in card or comber webs, or
to tops or slivers that can be opened out into thin-web form.

As required for the taking of a numerical sample, the fibres are to be identified by
the occurrence of their ends in a given volume. Accordingly, the web is coloured over
a small rectangular area by means of a brass or wooden block covered on one face
with filter paper uniformly wetted with a suitable dye. Fibres passing through the
coloured patch, and therefore having undyed ends, are neglected. Those terminating
within the patch, and thus having one or both ends stained, are taken as the sample.
The only proviso is that, in the final computations, fibres having only one end stained
should be accorded half the weight of those having both ends stained. Thus the
lengths of those with one end dyed and with two ends dyed are recorded separately.
The true fibre-length distribution is then given by adding half the number of one-
enders to the number of two-enders in each length group.

The necessity for this is readily seen by noting the requirement that taking fibres
from the stained patch should not alter the composition of any possible adjoining
patch. Let rectangle I in Fig. 2.3 be the dyed patch. Fibre E has neither end stained
and is neglected. Taking A and B for patch I deprives patches II and IV of fibres to
which they have an equal claim. Fibres C and D, on the other hand, cannot be claimed
by any other patch, and hence, if these are given a weight of unity, A and B must each
be counted as half-fibres.

There is an optimum size and shape of patch for each material to be sampled. If
the patch is too small, or too long and narrow and placed transversely to the general
orientation of the fibres, a large number of them pass right through the defined area
and have to be handled even though they do not contribute to the sample. There is
thus waste of time and effort.

For wool card webs, a patch 1.5 cm square is recommended [13], but for shorter
fibres a somewhat smaller area would probably be more suitable. As regards shape,
there are some circumstances in which the patch should preferably be oblong and lie

2.3 Dye-sampling.
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along the direction of general fibre orientation. The more oriented the fibres, the
longer and thinner the oblong should be [16].

In taking the fibres for measurement, the portion of web containing the dyed patch
(when dry) is covered with a microscope slide, which has rounded edges. The fibres
are then removed with forceps by drawing them one by one from under the slide,
which the operator is free to move about at his or her convenience. It will be observed
that the method is only suitable in cases in which the fibres are to be measured
individually.

2.5 Zoning

2.5.1 The problem of heterogeneity

An individual sample obtained by any of the methods so far described represents the
population under examination only if the composition of the population is the same
at every point. In fact, this is very rarely, if ever, true of textile populations, and, in
the absence of definite knowledge to the contrary, it should be assumed that the
population is heterogeneous, i.e. that its composition varies from one part to another.
This being the case, a sample draw taken from any one part must be regarded as no
more than a sub-sample; the sample representative of the entire population should
consist of several such sub-samples taken at random from different parts in such a
way that all the elements of heterogeneity are represented in due proportion. Such an
operation is referred to as zoning.

The extent to which a population must be zoned depends, of course, on how and
to what extent it varies in composition from place to place, which must be found from
experiment if it is not known from experience. Considering the sampling technique
as a whole, including zoning, the method adopted should satisfy the requirement that
replicate samples should all yield results between which the differences are statistically
insignificant.

Quoting from a standard:

When carried to the limit, zoning consists in taking the required number of individuals
singly from the same number of selected parts or zones. Due representation with
any desired degree of accuracy is then obtained with the minimum number of
individuals. However, the saving in time secured by reducing to a minimum the
number of measurements that have to be made may be more than offset by the
extra time required to prepare the extra zones.

If the between-zone variance is small by comparison with the within-zone
variance,

it is common practice to take a relatively large number of individuals from a
relatively small number of zones, even if in so doing it is necessary to maintain the
accuracy by taking a rather larger number of individuals all told [17].

Sampling from slivers, rovings and yarns is comparatively simple because the
fibres have been fairly well mixed in the processes through which they have passed,
and the material is reasonably homogeneous. Zoning on a modest scale is therefore
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all that is required. In dealing with masses of fibre in a loose state, however, it is quite
otherwise, and, furthermore, special difficulties are encountered.

2.5.2 Sampling from raw materials in a loose state

Ideally, as already indicated, the required number of fibres should be taken one at a
time from a corresponding number of places distributed at random all over the bale,
bag or whatever other form the population assumes. This, of course, would be
impracticable because of the amount of labour involved. Of greater importance is the
fact that it would be impossible in this way to obtain a sample free from extent bias.
The reason is that each fibre would have to be extracted with tweezers and would
therefore be a fibre passing through a selected cross-sectional area.

The same objection would still hold good if a wisp of, say, ten or a dozen fibres
at a time were taken. Extent bias can, in fact, only be avoided if we take, not small
wisps, but quite large tufts of fibre from each zone. Preferably, these tufts should be
natural units. In cotton, for example, they might be discrete clusters of fibre from
single seeds, while in wool they might be natural locks.

In any event, if zoning is to be carried out on any reasonable scale commensurate
with the heterogeneity present, we are faced with an initial sample of very considerable
size, in most cases, far greater than can be used for subsequent measurement. For
some purposes, the final sample has to be of 1000 fibres or fewer, a mere fraction of
the quantity, for instance, that is to be found on a single cotton seed. If m tufts have
been taken, averaging w grams each, then somehow the whole mw grams of material
must be reduced in size so that the final sample of the required size contains, in due
proportion, representative fibres from all the original m tufts.

One method is to proceed by a process of successive halvings. Each of the m tufts
is divided into two approximately equal parts, care being taken to avoid fibre breakage,
and one half discarded. The retained half is again divided into two and one half
discarded. This is repeated until the remnants of all the tufts taken together provide
a sample of the required size.

If the fibres in the portions being divided are substantially parallel, the portions
should be split lengthwise. This is important because, if the projecting fibres at the
two ends of such a tuft are held, and the tuft is drawn into two parts by separating the
hands, it is almost certain that one part will be greater than the other. The smaller part
will be deficient in short fibres, and the larger in long; whichever part is discarded,
that remaining will no longer represent the original tuft. The plane of cleavage should
therefore be parallel to the fibres.

In order to reduce still further the possibility of introducing any systematic bias,
it was at one time thought desirable that the choice of which half should be discarded
should be made at random, but in practice this is not easy to do. An alternative
procedure therefore commonly employed is to discard with the right hand and left
hand alternately [18]. However, so long as lengthwise splitting is resorted to when
conditions require it, the question is probably unimportant.

A somewhat different procedure, suitable for manufactured staple fibres, is as
follows. The initial sample obtained by zoning is formed into 16 tufts, and, by a
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process of doubling, drawing, halving and discarding, these are reduced to the
representative sample for measurement as indicated in Fig. 2.4. Here, the tufts are
taken in pairs and repeatedly drafted by hand and recombined before being divided
into two parts. Since the fibres are thereby not only thoroughly mixed together but
also effectively parallelised, lengthwise splitting is essential.

For cotton and other fibres of similar length, mechanical blenders are available,
capable of reducing an aggregation of zonal tufts to a homogeneous batt or sliver
from which the final test sample can be taken by any of the methods appropriate to
material in that form.

The earliest of such mechanical devices was the Balls drawbox [19], a miniature
drawframe consisting of two pairs of rollers and a special collecting device. A zoned
sample weighing about 0·5 g is roughly formed by hand into a sliver about 20 cm
long. This is then drafted between the drawbox rollers, which are set at a distance
apart appropriate to the length of the fibres. On emerging from the delivery rollers,
the fibres are deposited on a small revolving drum covered with ‘one-way’ hatter’s
plush, where they form a lap. The lapping of the fibres in successive layers on the
drum mixes them effectively, and the lap may be split off and redrawn as often as
desired2.

Later machines, which are useful in preparing samples for fineness testing by air-
flow methods or for other tests, are the SDL Shirley Analyser, developed for measuring
trash content in cotton, and the SDL Fibreblender. Samples prepared by this and
other such devices are thoroughly well mixed, but there is always danger of fibre
breakage unless great care is taken to adjust the settings of the instrument in accordance
with the maker’s instructions.
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3.1 Fibre dimensions

The essential dimensional features of fibres are their fineness and length. Flexibility
comes from fineness and length provides coherence. A fabric is a discontinuous
solid, which is held together by friction and utilises the strength of the millions of
separate fibres. Whereas two-dimensional assemblies of one-dimensional particles
(powders) are just loose coatings and three-dimensional assemblies will flow, integrated
two-dimensional assemblies of fibres are strong flexible sheets and three-dimensional
assemblies are solid blocks.

The three ‘ones’ in bold type in Table 3.1 are a convenient order of magnitude of
fibre dimensions, though they are at the low ends of fineness, length and density. The
table includes calculated values for other quantities. Approximate ranges from these
values are also indicated. Fineness is best expressed by linear density (mass/length).

3
Fibre fineness and transverse dimensions

Table 3.1 Fibre dimensions

‘Typical’ Approximate range

Linear density 1 dtex to 20 dtex

Length 1 cm staple fibres to 10 cm; filament to
infinity

Density 1 g/cm3 polymer fibres to 1.5 g/cm3; others
to 10 g/cm3

Mass 1 µg 20 dtex, 10 cm, 1.5 g/cm3 → 300 µg

Diameter 11.3 µm 20 dtex, 1 g/cm3 → 50 µm

Aspect ratio 1000:1 to ~ 10 000:1 for staple → infinity
for filament

Specific surface 355 m2/kg 20 dtex, 1 g/cm3 → 80 m2/kg

Assembly 109 fibres/kg

1 square metre at 108 fibres
100 g/m2

Fibre elements 1012 per kg

tex = g/km dtex = decitex = g/10 km
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Although the use of tex (g/km), which was adopted in 1960 and is recognised for use
in the SI system, and millitex (mtex) are preferred for scientific orthodoxy, the
decitex (dtex) value is commonly used because it is close to the value for denier
(g/9000 m), which was the standard measure for silk1, was adopted by the manufactured
fibre industry and was used for most of the 20th century2. When the linear density
exceeds about 20 dtex (circa 50 µm diameter), the ‘fibres’ are commonly regarded as
bristles or monofils and generally lie outside the scope of this book. At the other
extreme microfibres were produced later in the 20th century and are now important
in textiles. Even more recently, nanofibres, produced by electrospinning and in other
ways, are entering the industry.

As shown in Table 3.1, fibres have an enormous specific surface and a fibre
assembly contains vast numbers of fibres. Even a small piece of a lightweight fabric
might contain 100 million fibres. Interactions of fibre elements, as illustrated in Fig.
3.1, may occur over lengths comparable to the diameter. Hence the number of interactions
may be of the order of 1012. These facts have a major influence on the performance
of textiles and the study of the mechanics of fibre yarns and fabrics.

Historically, the overwhelming importance of fineness in determining quality and
commercial value was recognised in the worsted industry, where a short fine wool is
known to be much more valuable than a long coarse one. Synthetic fibre producers
also appreciate the value of fineness, with microfibres commanding a premium price.
With cotton, particularly before the worldwide adoption of improved varieties, length
was a more important quantity than fineness in giving strength to yarns. Furthermore,
fineness mostly correlated with length. Consequently, length, which was easily estimated
by cotton classers by preparing a staple3, was given much of the credit that should
more properly have been accorded to the fineness. Since W. E. Morton was a Professor
in Manchester, the heart of the cotton industry, it was therefore natural for fibre
length to precede transverse dimensions in the first edition of this book. Now fineness
is recognised as a more important indicator of fibre quality.

Some standard test methods for measuring fineness are listed in Appendix III.

1The origin of the word denier is interesting. It is the name of an old French coin (Latin denarius).
The fineness of silk yarns was specified by the weight (number of coins) in denier of a standard
hank. This gives a direct measure of linear density. In the cotton and wool industries, various
indirect measures (counts) were used based on the number of standard hanks making up a given
consignment weight.
2An approach to rational units in the 1950s adopted the name grex for g/10 000 m, but this was
displaced by dtex and is only found in some older literature, such as the book by Kaswell [1].
3A lock or tuft of fibre, characteristic of a bulk sample, prepared to demonstrate fibre length [2].

3.1 Interaction of fibre elements.
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3.2 Terms and definitions

3.2.1 Linear density

The accurate measurement of very small lengths requires considerable expertise and
care and, for fibres with irregular shapes, thickness defined as the apparent width of
a fibre is an ill-defined quantity. Consequently, the most useful and unambiguous
measure of fibre fineness is the linear density, namely mass per unit length, sometimes
called titre. As mentioned above, the preferred unit is tex = g/km. This has the
advantage that it is applicable with appropriate prefixes to all the one-dimensional
structures from polymer molecules to yarns, cords and ropes. The linear density is
additive in terms of the number of units in the cross-section, making allowance for
any obliquity. There is no uncertainty associated with density of packing, as occurs
when fineness is expressed as thickness.

The widespread use of denier has been mentioned and micrograms per inch has
also been used for cotton. For staple yarns, the indirect term count (length/mass) was
based on the number of skeins with a given number of turns making up a given
weight. Many different systems were used for different fibres in different places.
Fibre fineness was sometimes expressed by the finest count that could be spun from
a given sample.

3.2.2 Transverse dimensions

For continuous filament yarns and the tows cut to make staple fibre, the total linear
density is easily measured by weighing a given length, and the fibre linear density is
given by dividing by the number of fibres in the cross-section. For natural fibres, it
is necessary to measure the length and mass of many individual fibres, in order to
determine the average linear density. This is difficult and time-consuming. Other
measures of linear dimensions are therefore used. For cotton the micronaire value,
which is an arbitrary measure of fibre specific surface, discussed below, is used. For
wool the apparent diameter in micrometre (µm), often referred to by the old name of
micron, is used. In addition, there are many problems in fibre and textile research and
performance evaluation where other linear dimensions have to be taken into account.
We must therefore consider the various quantities, their meanings and definitions.
For circular fibres, area, circumference, diameter (or radius) are the only parameters.
For other fibres, there are more complicated descriptions.

• Diameter. In the early literature of textile science, the quantity invariably used
for defining the fineness or coarseness of a fibre was the diameter. For wool,
which is not so very far from circular and which, except for lamb’s wool, does
not vary in thickness systematically along its length, this was reasonable enough.
For many synthetic fibres, which are even more perfectly cylindrical, fibre diameter
is clearly defined. For other fibres, however, which are of irregular cross-sectional
shape or which taper towards one or both ends, the term diameter has no real
meaning.

• Width. What was frequently referred to as fibre diameter in early books about
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cotton was really the maximum width as viewed under the microscope. The
convoluted fibre varies in apparent width over a wide range throughout the
length of each convolution, and either the maximum or the minimum may be
measured (Fig. 3.2). If the cross-sectional shape were elliptical, these dimensions
would correspond to the major and minor axes of the ellipse. In the general case,
for the purpose of characterising a raw material, mean fibre width suffers from
the disadvantage that it is too dependent on fibre shape.

• Perimeter is a quantity that is perhaps familiar only to the technologist and is
important mainly as a link between other dimensions. For circular or oval fibres,
it is usually called the circumference.

• Area of cross-section is the most clearly defined transverse dimension. For a
given type of fibre, area is proportional to the linear density, and, if the fibre
density is known, the one may be calculated from the other. It is important to
note, however, that, whereas the former is usually, and more easily, measured
somewhere around the middle of the fibre, the latter has to be measured over an
appreciable length of the fibre, maybe over its entire length, so that the relationship
between the two is upset if taper is present. For hollow fibres it is necessary to
distinguish between the area within the outer perimeter and the area of fibre
material.

• Specific surface may be defined in two ways: either as the surface area per unit
volume or the surface area per unit mass of the fibre. The former is the more
useful from the technical point of view and is the more commonly encountered.
Defined in this way, provided that there is no major variation in area, specific
surface is given by the area of cross-section divided by the perimeter.

• Fibre shape takes a variety of forms, discussed in  Section 3.10. As the shape
departs from circular, the specific surface increases. A modification ratio can be
defined as the ratio of the perimeter to the circumference of a circle of the same
area.

• Hollow fibres are characterised by the ratio of the void area to the whole area of
the fibre.

• Wall thickness is a dimension that has relevance only to hollow fibres.
• Maturity (see Section 3.10.2), which is a term only relevant to cotton, is not a

direct measure of a transverse dimension, but is relevant because the wall thickness
of cotton increases as the fibre grows to maturity.

Relations between these quantities are presented in the next three sections in
consistent units, which eliminate the need for numerical factors. In particular, they

3.2 Cotton fibre major and minor axes.
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apply in strict SI units, namely linear density in kg/m, length in m, area in m2, density
in kg/m3, specific surface on volume basis in m–1. specific surface on mass basis in
m2/kg. Alternative relations with more convenient units are also included; some
equations are unchanged, others contain numerical factors.

3.2.3 Solid fibres of circular cross-section

Area A is related to diameter D and radius r by the equations:

A = π r2 = π D2

4
(3.1)

also valid with A in 10–12 m2, pico(metre)2, r and D in µm.
Linear density c can be related to area A and density ρ or specific volume v but is

more usefully related to radius or diameter:

c A A
v

 =  = ρ (3.2)

c r
D

 =   = 
4

2
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π ρ
π ρ

(3.3)

or with c in dtex, r and D in µm and ρ in g/cm3.

c
r D

 = 
100

 = 
400

2 2π ρ π ρ
(3.4)

The inverse relations are:

r
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or with c in tex, r and D in µm and ρ in g/cm3:

r
c

 = 10 
1/2

πρ




 (3.7)

D
c

 = 20 
1/2

πρ




 (3.8)

The perimeter (circumference) P is given by:

P = 2 π r = π D (3.9)

also valid with P, r and D in µm.
For a length L, surface area = PL and volume = AL. Hence, on a volume basis,

specific surface Sv is given by:
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Sv = P/A = 2/r = 4/D (3.10)

also valid with Sv in (µm)–1 and r and D in µm.
It follows that, other things being equal, the finer the fibre, the greater is the

specific surface.
For the length L, the mass is cL. Hence on a mass basis, specific surface is Sm is

given by:

S P
c
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D
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ρ




 (3.11)

or with Sm in m2/kg, r and D in µm, c in dtex and ρ in g/cm3:
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π π π
ρ (3.12)

3.2.4 Solid fibres with cross-sections other than circular

The volume enclosed by a given surface diminishes according to the degree of
departure from circularity of section. It is still correct to write Sv = P / A and Sm =
P / c, but the value for Sm given by equation (3.12) must be multiplied by a shape
factor k greater than one. Thus the greater the ellipticity of section, as in wool, or the
greater the extent of indentation in the sectional shape, as in viscose rayon, the
greater is the specific surface for a given linear density.

The equations above in r and D are meaningless for non-circular fibres, except
when equivalent values are used to match the area. Relations for elliptical cross-
sections are given in mathematical textbooks.

3.2.5 Hollow fibres

For hollow fibres of circular cross-section, denote the outer edge by a subscript [o],
the inner edge by [i], and the wall by [w]. With A for area and r for radius, we have:

A ro o
2= π (3.13a)

A ri i
2= π (3.13b)

A A A r rw o i o
2

i
2= –  = – π π (3.13c)

Void percentage = 100 %i

o

A
A





 (3.14)

Wall thickness = (ro – ri) (3.15)

The value of Aw should be substituted in equation (3.2) to give the linear density.
Outer values should be used for perimeter and specific surface values. The effective

fibre density = (Aw/Ao) ρ = [( –  )/ ] ,o
2

i
2

o
2r r r ρ  where ρ is the density of the fibre
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material. These relations may be used for hollow manufactured fibres, which are
used for bulky fillings and for liquid separation.

Cotton fibres as grown are hollow tubes, but they collapse on drying, as discussed
in Section 1.4.3. Geometrically, maturity4 has been defined by Peirce [3] as the ratio
θ of the cross-sectional area, Aw, of the cell wall to the area, Ao, of a circle of the same
perimeter P. Note that Ao is the area of the fibre before collapse, though the change
in material area due to drying must be taken into account. Hertel and Craven [4]
prefer the reciprocal of this, which they call the immaturity ratio, I. Thus:

θ π
 = 1 =  = 

4w

o

w
2I

A
A

A
P

(3.16)

For the fully collapsed fibre, the total fibre area A equals the wall area Aw. Hence:
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θ πρ = 
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 (3.18)

3.3 The technical significance of fibre fineness

3.3.1 Stiffness, handle and drape of fabrics

For cylindrical rods or wires of homogeneous and isotropic materials, the resistance
to bending varies as the square of the cross-sectional area. Textile fibres are rarely
homogeneous, never isotropic and only in certain cases circular in cross-section.
Even so, it still remains true that, as fineness varies and other things are equal,
resistance to bending increases more rapidly than fibre linear density (see Section
17.2.1).

From this it follows that, for a yarn of given count or a fabric of given mass per
unit area, made from a given type of raw material, the resistance to bending diminishes
as the fineness of the fibre increases. Fibre fineness is thus an important factor in
determining the stiffness of a fabric or, alternatively, its softness of handle and its
draping quality.

3.3.2 Torsional rigidity

From similar considerations, it can be shown that, as fineness varies and other things
are equal, resistance to torsion increases more rapidly than fibre linear density (see
Section 17.3.1). Hence fineness plays a part in determining the ease with which
fibres can be twisted together during yarn formation.

Considering the situation from another angle, it can be shown that the torque
generated in a yarn of given count by a given amount of twist increases as the linear
density of the fibres increases. Thus internal stresses capable of producing kinks and

4Referred to by Peirce and Lord [5] as the degree of thickening.
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snarls in a yarn are greater when the constituent fibres are coarse than when they are
fine. This is obviously a matter of considerable importance in the design of crêpe
fabrics and in twist texturing.

3.3.3 Reflection of light

The finer the fibres incorporated in a fabric, the greater is the number of individual
reflecting surfaces per unit area of the fabric. Fibre fineness therefore affects the
character of the lustre of the fabric. In descriptive terms, fine fibres produce a soft
‘sheen’, whereas coarse fibres give rise to a hard ‘glitter’.

Practically all textile materials are, however, translucent to a greater or lesser
degree. A substantial part of the light reflected from a fabric is therefore reflected
from internal surfaces, and in dyed fabrics the intensity of the light so reflected, i.e.
the apparent depth of shade, depends on the mean path length of the light rays
through the coloured substance. This in turn depends on the number of fibre surfaces,
both internal and external, per unit depth of the structure. Hence, other things being
equal, the finer the fibre, the lighter is the apparent shade [6–8], and fibres having
central canals or medullary cavities will appear lighter than those that are solid.

3.3.4 Absorption of liquids and vapours

The rate at which dyes are absorbed into a fibre obviously depends on how much
surface is accessible to the dye liquor for a given volume of the fibre substance, i.e.
it depends on the specific surface [9, 10]. It therefore follows that the time required
to exhaust a dye bath is shorter for fine fibres than for coarse and for fibres with
strongly indented cross-sections than for those which are smoothly cylindrical.

It might be expected that, in a similar way, specific surface would also influence
the rate of sorption of water vapour, but, except where fibres are exposed almost
singly, the effect is negligible, since the rate of conditioning is overwhelmingly
determined by the rate of diffusion of the vapour through the air bounded by the fibre
mass and by the associated heat effects (see Sections 9.2 and 9.3).

3.3.5 Fibre cohesion and twist

In a spun yarn, fibre cohesion depends on interfibre friction developed as a result of
twist. It has been shown by Gurney [11] that the critical tension, above which slippage
takes place, depends on pµS, where p is the pressure normal to the fibre surface and
depends on the degree of twist, µ is the coefficient of friction between the fibre
surfaces, and S is the fibre specific surface. Fuller analyses and experimental data for
fibre slippage in twisted yarns are given by Hearle [12].

It follows from this that the finer the fibres, the less is the amount of twist necessary
to prevent the occurrence of slippage. It should be added, however, that this is only
strictly true provided that the shape of the fibre surface remains substantially invariant.
Much depends on the extent to which intimate interfibre surface contacts can be
established. Fibre length plays its part here too.
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3.3.6 Yarn uniformity

More important to the spinner than any of the aspects of fineness mentioned above is
the fact that the uniformity of a yarn is very largely determined by the average
number of fibres in the cross-section [13–15]. For a given yarn count, therefore, the
finer the fibres, the more uniform is the yarn. Improved yarn uniformity is a desirable
characteristic in its own right on the score of appearance, but it brings in its train also
a number of other second-order consequences of great importance: greater strength,
extensibility and lustre; fewer end-breakages in spinning, winding, warping, and
weaving; and greater resistance to surface abrasion.

It also follows that the finer the fibre, the finer is the count that can be spun before
the irregularity becomes so great that neither acceptable strength nor reasonable end-
breakage can be maintained. Fineness is therefore seen as the dominating factor in
determining the limiting count to which a raw material can be spun5.

3.3.7 Shaped and hollow fibres

Shape influences fibre performance in a number of ways. Light is transmitted and
reflected in different ways, altering fabric appearance. Flatter surfaces, as in triangular
fibres, have a higher lustre. Indentations in fibres act as capillaries and give good
wicking behaviour. Ribbon-like fibres bend more easily than their circular equivalents
and so give softer fabrics. The scroop of silk is partly due to the triangular shape and
similar effects can be achieved in manufactured fibres. Other forms lead to soil
hiding in carpet fibres.

Hollow fibres provide more bulk at lower weight and so are used in fillings. They
can also be used for filtration or to hold chemicals for release.

3.3.8 Fibre end diameter

Thick fibre ends have been shown to be a cause of prickle in wool fabrics [16].
Mahar and O’Keefe report on the relation between comfort factor and fibre end
diameter [17].

3.4 Variation in fineness

3.4.1 Variation within and between fibre types

The most convenient basis of comparison between different samples is the mean
linear density, which among the natural fibres can often be used to distinguish between
raw materials obtained from different sources. Some breeds of sheep invariably bear
coarse wool whereas others bear fine. Some types and strains of cotton produce fine

5The results of certain experiments, notably with short Indian cottons, suggested that in some cases
fibre length is more important, but it may reasonably be argued that this arises from the increasing
mechanical difficulty, as staple length is reduced, of maintaining satisfactory drafting conditions
and effective fibre control.
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fibres whereas others produce coarse. The mean linear density of the fibres from even
a pure strain of plant or animal is not, however, always exactly the same. It varies to
some extent from time to time and place to place according to environment and so
cannot be used as a precise means of identification. Some strains that are recognisably
different are capable of producing fibres that in fineness are the same. Nevertheless,
measurements of linear density, in association with other tests, can often be used to
identify the origin of a sample with a fair degree of confidence.

Fibre fineness is a major factor in determining the value of wool [18]. Fine Merino
wools are mostly in the 18–21 µm range (3.4–4.6 dtex), with superfine wools from 14
to 17 µm (2.0–3.0 dtex) and small amounts of expensive ultra-fine wools down to 12
µm (1.5 dtex). New Zealand carpet wools are typically in the 30–38 µm range (9–15
dtex). Asiatic carpet wools may be as coarse as 20 dtex. Cashmere ranges from 12 to
20 µm (1.5–4.1 dtex). In a similar way, the figures for cottons range from about
1.0 dtex for a St. Vincent Sea Island to about 3.4 dtex for a coarse native Indian
cotton, with the dominant American-type cottons around 2 dtex. The mean linear
density of the single filament of silk ranges from about 0.95 dtex for Canton to about
1.6 dtex for Japanese.

Nearly all the manufactured fibres can be made to cover a very wide range indeed
according to requirements. For many years, 100 mtex (1 dtex) represented about the
lower limit. Microfibres have reduced the limit. Development of direct spinning
methods have taken polyester filaments to 0.1 dtex [19]. Conjugate spinning of two
components, which then split into finer fibres, and islands-in-a-sea fibres, which
have ultrafine components in a soluble matrix, give even finer fibres [20]. There is no
strict upper limit, but 15 denier nylon (1.67 tex), which can be knitted singly as as a
monofil, is about the coarsest before there is a step jump to bristles and plastic
monofils with diameters of the order of a millimetre.

3.4.2 Variation of fineness within a sample

In 1956, Morton [21] determined the between-fibre variation in 18 different samples
of fibre using a vibroscope method (see Section 3.9) on 2 cm specimens. Several of
the fibre types are no longer made. Wool samples showed coefficients of variation of
29 and 36%. Most manufactured fibres had coefficients of variation between 11 and
14%, but Fibro (viscose rayon staple) was more uniform at 8.9% and Terylene (polyester)
was more variable at 21.4%. Improved quality control will have reduced the variability
since then. The dry-spun manufactured fibres had near normal distributions, the
melt-spun and wet-spun materials mostly had distributions that were positively
skewed.

It has already been shown that different samples of the same kind of natural fibre
can differ widely in their mean linear densities (see Section 3.4.1). This is also true
as regards the variation among the fibres within a sample. The above figures should
not therefore be taken as anything more than an indication of the order of variability
that might be encountered. Another set of values, which were measured in 1945 in
connection with mechanical tests, is given in Table 14.6 on page 335.
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3.4.3 Within-fibre variation

Only with manufactured fibres is it reasonably safe to assume that the cross-sectional
dimensions remain constant throughout their length. Even then, although variations
are negligibly small over the comparatively short lengths of staple fibres, they may
in some cases be quite appreciable over the much longer lengths represented by
filaments. Thus, for example, over a 1·83 m (6 foot) length of a 4·4 dtex (4 denier)
acetate filament, Lord [22] found the linear density to vary from 407 to 460 mtex.
Again the degree of variability depends on the standard of quality control of the
manufacturer.

Silk filaments show long-range variations throughout the length on the cocoon. In
the part that can be reeled for use, the linear density increases to a maximum of about
1.75 dtex some 300 m after reeling has commenced and then falls off to about 1.0 dtex
before the cocoon has to be replaced. But variations over short lengths can also be
considerable. Thus Goodings and Turl [23] reported variations in cross-sectional area
of up to 20% of the mean and in a particular instance noted a change from 81 to
108 µm2 within an interval of only 180 µm.

The ultimate fibres of flax invariably show a marked tapering from the middle to
the two extremities, and to this is due, in very large measure, the great variation in
cross-sectional area seen in the transverse section of a flax fibre bundle. It is therefore
to be expected in tensile tests that, unless the test specimens are very short, they will
tend to break mostly at the grips.

With wools, systematic tapering from the root towards the tips is only evident in
lamb’s wool, but appreciable random variations in cross-sectional area are liable
to be found in any sample [24], as shown in Fig. 3.6 on page 113, depending on
the changing vigour and health of the sheep while the wool is growing. For
example wool from Western Australia shows thin places from the time of dry summer
growth.

The cotton fibre has a tapered tip extending over about 15% of its total length,
tapers more sharply near the root end, and frequently also shows considerable variation
elsewhere [25–28]. The extent and the pattern of variation evidently differ from one
sample to another. Thus, apart from the tapered extremities, Turner [26] found
comparatively little variation in a sample of Cambodia 295, whereas in a sample of
Surat 1027 ALF he found the mean linear density to change from 215 to 318 mtex in
adjacent 6–4 mm (1/4 in), lengths. From evidence at present available, it would seem
that in most cases, though not in all, there is a tendency for the area of cross-section
to be a maximum about one-quarter or one-third of the distance along the fibre from
the base. In the region of the tip of the fibre, the area of cross-section may in some
cases be as little as one-half of what it averages elsewhere.

3.5 Measurement of linear density

3.5.1 Conditioning the specimen

Measurements of the dimensions of any moisture-absorbing fibre must take account
of its state. A dry fibre has a lower linear density and a smaller diameter than a wet
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one. The normal procedure is to condition the fibre in a standard atmosphere of 65%
relative humidity (r.h.), 20 °C (see Section 7.2.1).

3.5.2 Continuous filament yarns

The fibre linear density in continuous filament yarns is easily measured, although the
manufacturer’s specification is usually accepted as correct. A controlled length is
obtained by winding a given number of turns on a reel of given diameter and then the
skein is weighed on a standard balance. Dividing by the number of turns and by the
number of filaments gives the fibre linear density.

3.5.3 Staple fibres

When fibre length is determined by an individual-fibre method (see Section 4.6) the
linear density of a sample of fibres is readily determined. One has only to preserve
all the fibres measured for length and weigh them. The mass divided by the total
length then gives the required information with a minimum expenditure of time and
effort. This is the standard method prescribed by BISFA for all manufactured staple
fibres [29], and, since the contribution that each fibre makes to the final result is
proportional to its length, it gives a length-biased mean.

In the ASTM standard method for cotton [30], the procedure is essentially the
same, though the necessity for individual fibre measurement is avoided by the use of
a comb sorter. As described in Section 4.7, the sorter is used to fractionate the sample
into groups of known length ranges. From each group, except the two shortest and
any of which the weight of fibre is less than 2 mg, a bunch of approximately 100
fibres is taken, weighed and counted. The length of every fibre in the bundle is
assumed to be the mid-length of the group from which it is taken, so that if L = the
group mid-length, n = the number of fibres in the bunch and M = the mass of the
bunch, the linear density of the bunch is nL/M. From the values so obtained, the
linear density of the sample as a whole is calculated in such a way as to give here also
what is, for all practical purposes, a length-biased mean.

Yet another method giving a length-biased mean is that based on the cutting-and-
weighing method of length determination described in Section 4.9. For obtaining the
mean fibre length, sections I and III of the tuft (Fig. 3.3) are weighed. To get the
whole-fibre linear density in addition, it is only necessary to weigh section II of
length k between the clamps, giving a mass M2, and to count the number of fibres N
in section I. Then the total weight of the tuft M1 + M2 + M3 divided by the total length
NL gives the desired result. Neither this method nor the ASTM method described
above is suitable for fibres that are strongly crimped because of the error thereby
introduced into the length measurement. It is scarcely necessary to add that, with all
hydrophilic materials, the fibres should be conditioned in a standard atmosphere
before being weighed.

The CSIRO Cottonscan measures length on a weighed sample of snippets and so
gives a direct measure of linear density [31].
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3.5.4 Cut-middles method

The earliest [32] form of gravimetric fineness test involves cutting known lengths
from the middle of bundles of parallelised fibres, counting out a suitable number of
those lengths, and weighing them. Alternatively, the desired number of fibres can be
counted first and their middles then cut out for weighing.

In either event, the operation is most readily carried out by straightening the
parallel bundle over a piece of cork linoleum or similar material and slicing through
its middle with a cutter consisting of two parallel razor blades, set the desired distance
apart in a holder. The lengths cut should be as long as possible, but not so long that
an appreciable number of short fibres has to be rejected.

With cotton, for which this technique is most commonly employed, a length of
1 cm is the most suitable for general use, and it is better to cut before counting
because short cuts can then be readily seen and discarded. In the Shirley Combined
Stapling Test, where the fibres are sorted for length on a comb sorter, the mean
weight per centimetre is obtained by weighing 100 lengths  of 1 cm taken from each
of five different places, evenly distributed over the Baer diagram. In this way, the
variation of linear density with length is satisfactorily allowed for. By weighing only
the middle (thickest) parts of the fibres, this method gives for cotton a result that is
too great by an amount varying according to the mean profile of the fibres concerned.
On the average, the cut-middles linear density is about 8% greater than that of whole
fibres, though in some cases it is considerably more than this. Maximum differences
ranging from 15 to 26% have been recorded by various workers [33–35]. It is to be
expected, therefore, that from time to time appreciable divergences will be found
between the results given by this form of test and those obtained by the rapid, whole
fibre methods described in the following section.

3.6 Direct measurement of transverse dimensions

3.6.1 Width and diameter

For all fibres of cylindrical shape, and especially if the between fibre variation is
small, so that only a comparatively modest number of observations is called for, the
mean diameter is a very satisfactory measure of fineness. The technique of measurement
is simple and straightforward involving the use of a microscope, with a micrometer

k

W1 W2 W3

3.3 Müller’s method for fibre length measurement.
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eyepiece, or a projection microscope with a scale. The scanning electron microscope
(SEM) gives greater precision. If the density of the fibres under examination is
known, all other transverse dimensions and quantities can be readily calculated; in
addition, since individual readings are recorded, the variability of the sample can be
obtained, which is sometimes an important consideration.

Provided that suitable precautions are taken, the same method can also be used for
measuring the fineness of fibres of somewhat oval or flattened section. The width of
a fibre of oval section can assume any value from a minimum across the minor axis
to a maximum across the major axis, according to the orientation of the fibre with
respect to the observer. If things are so arranged that the mean of all possible widths
can be obtained, the result is a quantity that is virtually equal to the diameter of a
cylinder of the same cross-sectional area and therefore proportional to the mean
linear density [36].

In the projection microscope method [37], this objective is achieved by cutting the
sample of fibres into 0.8 mm lengths, dispersing them in a suitable mounting medium
on a microscope slide, and observing the width at one point selected at random along
the length of each piece examined. If the pieces are too short, they tend to lie on their
flat sides so that only their major axes are presented for measurement, but if they are
0.8 mm long or more, the position they assume is determined by the general curvature
along the length of the fibre piece, and this has been shown to have no particular
orientation with respect to the axis of cross-section [36].

Errors due to swelling must also be avoided. Fibre pieces should therefore first be
conditioned in a standard atmosphere and then mounted for measurement in a medium
that does not change their moisture content on immersion. Liquid paraffin and cedarwood
oil are suitable for this purpose.

When the short pieces are obtained direct from a section of top, sliver or yarn, the
sample is, of course, biased for length. This, however, is an advantage in most
contexts, because the length-biased mean width gives an estimate of the fineness of
the mass of fibre as a whole, each fibre contributing to the width measurement
according to its length. In this respect, the method is then comparable with the more
rapid methods of fineness-testing described in Sections 3.7 and 3.8.

For measurements of the width of microfibres and nanofibres, SEM would be
used. Digital processing would compute values of diameter from the image.

3.6.2 Measurements on fibre sections

Measurements made with optical microscopes on transverse sections were used for
special research purposes to obtain maximum information on the transverse dimensions
of a sample of fibres. They are, however, laborious and time-consuming, call for
considerable skill in section-cutting and subsequent measurement, and, unless carried
out by someone of experience, can lead to misleading results.

The use of the SEM simplifies the problem with the adaptation of the method of
preparation described by Ford and Simmens [38], using small holes cut in a standard
specimen holder. As illustrated in Fig. 3.4 a bundle of fibres is pulled through a hole
by a loop of thread and cut across with a razor blade. The specimen holder can then
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be placed in the SEM and directly observed. Originally, prints were made and
measurements made, but digital processing would now allow computerised
determination of the transverse dimensions.

3.7 Optical technology for high-speed testing

3.7.1 Laser scanning and digital optical analysis

The use of microscopic methods is laborious and has been mainly used in research.
Advances in lasers, optical sensors, and digital detection and processing have changed
the methodology.

Computerised optical analysers speed up the operation and enable large amounts
of data to be collected with minimum time and effort. The underlying optics is
discussed by Glass et al. [40]. The technology is particularly suitable for circular or
near-circular fibres and was developed for rapid wool testing. It was readily extended
to manufactured fibres. The first step in determining fibre diameter by these rapid
methods is to guillotine a test sample of snippets of about 2 mm length.

In the Laserscan [41], developed by CSIRO, the snippets are dispersed in an
isopropanol–water mixture and then flow through a measurement cell, where they
intersect a thin beam of light from a laser. The signal received by an optical detector
is reduced in proportion to the width of the intersecting fibre, and is calibrated in
diameter values by comparison with samples measured on a projection microscope.
It is necessary that snippets fully intersect the beam and that only one snippet at a
time is included in the measurements. An optic discriminator, consisting of a ring of
detectors round a central detector, ensures that signals that do not meet the criteria are
rejected. The information passes to a computer, so that mean and variability of
diameter can be calculated. In addition to the usual statistical parameters, a ‘comfort
factor’ is given by the percentage of wool fibres greater than 30.5 µm in diameter.
The effect of medullation is discussed by Butler and Glass [42]. The discriminator

3.4 Preparation of fibre cross-sections for viewing in SEM [39].
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also enables curvature to be determined, as indicated in Fig. 3.5, which gives a
measure of crimp (see Section 4.5). Some 1000 fibres can be measured in 40 seconds.

Although Laserscan is still widely used, advances in information technology (IT)
are so rapid that the technology is becoming obsolescent. Detectors with multiple
pixels, as in digital cameras, are used in the video-microscopes of the optical fibre
diameter analyser, first introduced as OFDA100. Fibre snippets are imaged and
analysed [43]. In contrast to Laserscan and to the indirect methods described later,
digital imaging gives absolute values of linear dimensions, and so does not need to
be calibrated by older microscopic methods. More information can be used in research
studies. The OFDA100 measures fibre diameters and curvatures on 2 mm snippets of
wool scattered on a glass slide [44]. The later OFDA 4000 [45], which is discussed
in Section 4.11.2, was primarily developed to measure length by scanning across a
beard of fibres. The digital image can be processed to give fibre diameters, curvatures,
diameter distributions, diameter profiles, as illustrated in Fig. 3.6, and comfort factors
(see Section 3.3.8). The OFDA 5000 [46], which is designed for synthetic fibres,
makes 20 000 measurements per minute on fibre snippets in a diameter range of 0.5–
60 µm, with a typical standard deviation of less than 0.05 µm. Mean and coefficient
of variation are automatically calculated, histograms can be saved in a spreadsheet,
and images saved in Windows format. The process of preparing slides by cutting
snippets on a guillotine, automatic spreading and insertion in the microscope takes 1–
2 minutes.

An interlaboratory comparison of measurements of wool fibre diameters was
presented to IWTO [47]. This compared Laserscan and OFDA with projection
microscope and air-flow methods. Butter and Glass [42] report that medollation does
not affect the accuracy of Laserscan diameter measurements.

SIFAN [48] monitors cross-sections of fibres and produces profiles of fibre diameter.
It was adapted to be mounted on a tensile tester. The width is measured from several
directions at intervals along the fibre, so that three-dimensional models of fibres at

3.5 Fibre-optic discriminator in Laserscan.
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increasing strain can be produced. Image processing gives cross-sectional area and
maximum and minimum diameters at each point along the fibre. Mean fibre diameter
in µm and, knowing fibre density, linear density in dtex can be computed, together
with variability.

3.7.2 Application to cotton testing

For cotton, the complicated shape and its variation with maturity make the digital
techniques more difficult to interpret. The industrial acceptance of air-flow methods
in HVI testing, which give micronaire values, means that there has been less incentive
to change. However, the dependence of micronaire on both fineness and maturity
gives misleading information, with negative effects on the control of breeding and
choice of fibres for spinning. As Gordon and Naylor point out: ‘varieties of fine,
mature cotton have been wrongly discounted because low micronaire values were
taken as indicating immature cotton’ [49].

The advances in affordable digital imaging and algorithms for rapid image processing
have led CSIRO to adapt the testing of snippets of wool to the development of
Cottonscan as a rapid method for the determination of the linear density of cotton
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3.6 OFDA 4000 fibre diameter profiles from two wool tops: (a) autumn shorn;
(b) spring shorn.
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fibres [31, 49, 50]. A measured mass of snippets is placed on a slide and digitally
imaged. The total length is then computed. Division of the mass by the length gives
the average linear density of the cotton sample. If a micronaire value is also known,
an estimate of maturity is then given by the use of the relation found by Lord [51]:

θc = 3.86 X2 + 18.16 X + 13 (3.19)

where θ = maturity, i.e. degree of thickening as defined by Peirce and Lord [5] (see
Section 3.2.5), c = linear density in mtex and X = micronaire value.

With a knowledge of the fibre density, the area of the fibre wall could be computed.
If the maturity is also known, either from the empirical link to micronaire value or
from other measurements, algorithms could be developed to determine other transverse
dimensions, such as perimeter and fibre shape, if these are needed.

Figure 3.7 shows that Cottonscan gives good agreement with other methods of
measuring fineness and maturity. The early tests of Cottonscan were carried out on
sliver samples, but an automated method now enables samples of ginned cotton to be
tested [50]. Cottonscan is a fast test method, which could be incorporated in HVI lines.

Although it is not a direct method of measuring maturity as a geometrical feature,
it is convenient to mention here another CSIRO development, Siromat [49, 53, 54].
This estimates maturity from the interference colours produced when the fibre is
viewed in polarised light. This is an old technique, which is discussed in Sections
3.10.6, but colour digital cameras and colour analysis have made it possible to have
an automated computerised test. The test involves placing a collection of fibre snippets
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on a glass slide and immersion in castor oil. The image in a polarisation microscope
is digitally recorded and the snippet colours analysed to give a distribution of maturity
values. Test times are of the order of two minutes per sample, which is not fast enough
for an HVI line, but is useful in quality assurance laboratories and for research purposes.

Finally, developments in sample preparation and digital imaging, together with
advances in computer hardware or software, may lead to new direct methods of
determining the transverse dimensions of cotton and other non-circular fibres. If
fibre sections could be rapidly produced and deployed on a slide, then image analysis
would give a full statement of the transverse dimensions. Alternatively, tomography
might give a way of obtaining the information from observations of snippets or
whole fibres.

3.7.3 Advanced fibre information system

Although air-flow methods dominate routine, high-speed testing of cotton, fineness
is measured as one part of the comprehensive Uster Advanced Fibre Information
System, (AFIS), which also provides information on fibre length (see Section 4.11.1),
neps, trash and dust. Fibres from a tuft are transported individually in a fast air stream
past a beam of light, which falls on an electro-optical sensor. Measurement of the
direct intensity indicates the amount of attenuation, which is related to the linear
density of the fibre. Measurement of the light scattered at 40° is related to the shape
of the fibre. Calibration against known cottons enables values of micronaire, maturity
ratio and per cent immature fibre content to be recorded. Gordon et al. [55] compare
AFIS measurements with those by other methods and note that there are differences
in predicted distributions of transverse dimensions. Bradow et al. [56] compare AFIS
measurements with X-ray fluorescence spectroscopy.

3.8 Air-flow methods

3.8.1 Indirect methods

The older direct methods of measuring transverse dimensions suffer from the objection
that a great deal of time and labour, as well as eye-strain, is involved. Only with the
advent of digital imaging and computer software is that changing. In the second half
of the 20th century, indirect methods were developed to get the desired results more
quickly and with less trouble. The most successful of these endeavours has been the
development of air-flow fineness testers, which contain a suitably prepared porous
plug. It is important to note, however, that the quantity measured is the specific
surface, not the linear density. The first use of this principle for measurements on
fibres was in the Porometer devised by Balls in the late 1920s [57].

3.8.2 Flow relations

An analysis of air-flow through fibre plugs was given by Lord [58]. Kozeny’s equation
for the laminar flow of air through a porous plug under a small pressure gradient is
usually written as:
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where Q = volume rate of flow through the plug, k is a proportionality factor depending
on the shape of the voids and fibres and on their orientation with respect to the
direction of air-flow, A = cross-sectional area of the plug, ∆P = pressure difference
between the ends of the plug, S = specific surface of the fibres constituting the plug
(surface area per unit volume of material), µ = coefficient of viscosity of air, L =
length of the plug, and ε = porosity of the plug (volume of voids/total volume of the
plug).

The porosity of the plug of fibres is given by:

ε ρ = 1 – m
AL

(3.21)

where m = total mass of the plug and ρ = density of the fibre.
The flow equation can therefore be rewritten to give a resistance to flow R as:
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If the plug consists of a fixed mass of fibre uniformly compressed in a cylinder of
fixed dimensions, then, for a given type of fibre, A, L, m and ρ are constant, and the
coefficient of viscosity of the air, µ, is also sensibly constant over the range of normal
room temperatures. Thus, if a fixed pressure drop, ∆P, is part of the experimental
conditions, and provided that k can also be maintained constant, the rate of flow of
air through the plug, Q, is inversely proportional to the square of the specific surface,
S. This is the basis of the design of two of the air-flow instruments described briefly
below, namely, the Micronaire Cotton Fibre Fineness tester and the WIRA Fibre
Fineness Meter.

Alternatively, ∆P can be measured at constant Q or, as in the Arealometer6,
measurements can be made by adjusting the length, L, of the plug so that it offers a
fixed resistance, R, to the flow of air.

It is a simple matter to control all the conditions of the experiment save one. The
factor k depends on the shape, orientation and distribution of the sizes of the channels
through which the air flows, on the porosity of the plug, and possibly also on the
character of the fibre surfaces. Thus the value to be assigned to k can only effectively
be obtained by empirical means. The relation between specific surface and L, ∆P or
Q, as the case may be, will differ according to the type of fibre being examined, e.g.
wool, cotton, viscose rayon, and also according to the manner in which the fibres are
prepared and arranged in forming the plug. Thus, when the technique of sample
preparation has been determined, it is necessary to make experimental calibration of
the flow-meter, by using a range of tested samples of varying fineness for each class

6The Arealometer, developed by Hertel and Craven [4] is no longer manufactured, but is still used
in some research studies [59, 60].
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of fibre [58]. The dependence on fibre shape is particularly important for cotton,
since it means that the value of R depends on cotton maturity as well as fineness.

3.8.3 The Micronaire

The Sheffield Micronaire [51], the first commercial instrument to be marketed for the
measurement of fibre fineness by air-flow methods, is now a standard method for
evaluating cotton. Indeed, although it depends on fineness and maturity, the word
‘micronaire’ is now used as a term to characterise a cotton sample, along with length
and other grading features. Micronaire values influence price. Too much attention to
selecting for high yield, neglecting selection for micronaire, has been counter-productive
by reducing the return to cotton growers for fibres with lower micronaire [61].
However, as discussed below, the interpretation of micronaire values is not a simple
one. Low micronaire indicates fineness, which is good, but also immaturity, which is
bad.

The operation of the Micronaire is illustrated in Fig. 3.8. In this instrument, air at
a pressure of 41.3 kPa (6 lbf/in2) is made to flow through a plug of fibre, of mass
3.24 g, enclosed in a chamber, C, (25.4 mm (1 in.) long and 25.4 mm (1 in.)) in
diameter. The floor of the chamber and the bottom of the annular plunger, P, are
perforated so that, although the sample is confined within a space of fixed dimensions,
L and A in equation (3.19), the air can flow freely through it. The rate of air-flow is
indicated by the rotometer, R, which consists of a tapered tube, wider at the top than
at the bottom, in which a light metal float, F, is airborne at a level depending on the
airvelocity.

The standardised air pressure is controlled and adjusted by inserting the manometer
plug shown in place of the plunger P in the otherwise empty chamber C and making
adjustments at V1 and V2 until the manometer, M, registers 41.3 kPa (6.lbf/in2).
Calibration of the flowmeter at the top and bottom of its range is effected by adjustments
at A and K when the outflow of air from the chamber is restricted by standardised orifices.

On the mistaken assumption that the resistance offered by the plug to the flow of
air could be regarded as a unique function of the linear density of the fibres, the
flowmeter scale was calibrated against a set of Upland American cotton, the linear
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3.8 Micronaire.
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densities of which had been determined by the standard ASTM gravimetric method,
to give a reading in the mixed units of micrograms per inch. It is a matter of great
regret that, when this instrument was first introduced, it was calibrated in gravimetric
units. It is not surprising, therefore, that, when the instrument came to be used for
testing Egyptian and other types of cottons, the results failed to agree with those of
the gravimetric test. Now the micronaire value is regarded as a measure of cotton
quality in its own right, loosely and inversely related to fineness, but also affected by
maturity.

Being extremely rapid in operation, the micronaire test was quickly taken up by
the American cotton spinning industry, where it was found to be extremely useful for
the purpose of quality control in blending. So long as only Upland cotton was used,
it was the general experience that, if the micronaire reading fell below about 3.3,
neppy yarn and excessive ends down were to be expected, and that mixing bales so
as to give a blend of constant micronaire led to more consistent and better running
conditions in the mill. This gave rise to the quite widely held but completely false
notion that the finer the cotton (low micronaire), the poorer was the performance. As
has been shown, the rate of air-flow depends on the specific surface, which can be
expressed as the ratio of the perimeter to the cross-sectional area. If the perimeter
remains constant, changes in the rate of air-flow will reflect changes in the area of
cross-section or linear density, which arise from changes in the thickness of the wall,
namely the maturity. All American Upland cottons have roughly the same perimeter
and what was being shown by a low micronanire was poor maturity, which caused
poor spinning performance.

To obtain consistent and reliable results, the method of preparing the specimen
must be standardised. Any pieces of stalk, seed or other major impurities must be
removed, and, after the standard amount of cotton has been weighed out, the fibres
must be well teased and fluffed with the fingers while being packed into the sample
chamber. The conditions to aim at are uniform density of packing but random
arrangement of fibres.

The Micronaire can also be used for testing wool, in which case the standard mass
of the sample is 5.9 g and the air-pressure is 31.0 kPa (4.5 lbf/in2). Removal of oil or
grease by means of a suitable solvent is necessary before the sample is conditioned,
weighed, fluffed up and packed into the chamber. The flow meter is empirically
calibrated for direct reading in diameter in µm, and, although different wools vary
somewhat in their ellipticity, the results obtained for non-medullated samples are
nearly always found to agree very closely with the mean diameter as measured by the
method described in Section 3.6.1.

3.8.4 The WIRA Fibre Fineness Meter

The WIRA Fibre Fineness Meter [62], which was developed for wool testing and is
shown in Fig. 3.9, operates on the same principle as the Micronaire and incorporates
the same simple flowmeter-tube method of measuring the rate of air-flow. It has,
however, certain advantages over the Micronaire; in particular, it is simpler in design,
and the air, instead of being pumped through the system by a compressor, is drawn
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through it by a suction pump. By this means is avoided the difficulty of controlling
the temperature and humidity of the air passing through the specimen and consequently
the errors that could arise owing to swelling of hydrophilic fibres. Although superseded
by the automated optical methods described in Section 3.7, the air-flow method is
still used in textile mills.

There are two models, one for wool and one for cotton, differing in the dimensions
of the sample chambers and the weight of the sample. As with the Micronaire, the
sample is required to be well teased out and fluffed up, so that the fibres are in a
substantially random condition, and for cotton it is convenient to use a Shirley
Analyser for this purpose. Both models can be obtained with the tube graduated in
flow units, litres per minute, in which case there can be no misunderstanding about
what the instrument is really measuring. To give results in terms of more commonly
recognised textile units, the instrument should be calibrated by means of specimens
of the kind for which the instrument is to be used and of which the required fineness
characteristics have already been determined by independent methods. Either a
calibration chart can be used or a calibrated scale may be fixed alongside the flowmeter
tube T for direct reading. If the material to be tested is wool, the calibration will
naturally depend on whether the fibres are in the greasy, oil-combed or scoured (or
extracted) condition, and the presence of sand, dust or other foreign matter could be
a source of error.

As with the Micronaire, it is convenient to calibrate the wool instrument in terms
of mean fibre diameter. With cotton, the calibration can be in terms of specific
surface or, regrettably, in maturity ratio or micronaire scale units. For the latter
purpose, physical standards consisting of samples of cotton of known fibre properties
are available.

Operation is extremely simple. With the instrument levelled so that, with no air
flowing, the level of liquid in the manometer tube M is at A, and with the perforated
lid P placed on the weighed and uniformly packed specimen in the chamber C, the
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3.9 WIRA Fibre Fineness Meter.
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valve V is gradually opened until the pump suction lowers the liquid level to B. Then,
at the standard pressure represented by the difference in liquid levels in the manometer,
the rate of air-flow (or the corresponding measure of fineness) is given by the height
of the float F.

With slight modifications to the size of the sample chamber, to the weight of the
sample, and to the range of the flowmeter, the wool model can also be used at a
constant rate of air-flow. In that case, the valve V is opened until the flowmeter
registers a fixed rate of flow, and the fineness is then measured in terms of the
pressure drop indicated by the manometer M. In this case, it is, of course, the latter
that has to be calibrated in the required fineness units.

3.8.5 The Arealometer

The Arealometer [4, 34], shown schematically in Fig. 3.10, works essentially on the
principle of the Wheatstone bridge. Air at a low constant pressure is made to flow
through a branched pair of resistance tubes, A and B, as shown. The air in branch A
flows into the atmosphere through the sample chamber C in which the plug of fibres
is inserted, while the air in branch B also escapes into the atmosphere through the
standard resistance tubes, D and E. The tubes A and B offer equal resistance to air-

F

A

M

B

P

T

C

D E

Shut off

Air from
respirator

bulb
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flow. In operation, it is the object, by suitable compression of the fibre plug in C, to
adjust its resistance to air-flow so that the pressure drop across C is equal to that
across D and E combined, as recorded by the manometer M. The length to which the
fibre plug has to be compressed to achieve this balance is then a measure of the
specific surface of the fibres.

The desired degree of compression of the fibre plug is obtained by advancing the
hollow piston P into the chamber, the crown of the piston and the inlet end of the
chamber being perforated to permit the necessary flow of air. Advancement of the
piston is by means of a handle on the end of a micrometer screw carrying a scale on
which direct readings of specific surface can be read off in units of square millimetres
per cubic millimetre.

The pressure of the air admitted to the system is determined by the weight of the
freely floating piston F in the pressure tank T. This arrangement has the advantage of
enabling the instrument to be small, compact and completely self-contained.

The sample chamber is only 0.8 cm in diameter, and the instrument has been so
designed that the correct size of sample is one in which the volume of the fibre
substance is 0.1 cm3. This is obtained by taking a quantity of fibre of mass (in grams)
equal to one-tenth of the density of the material in g/cm3. Thus, for cotton, the correct
test-sample mass is 152 mg, and, instead of the aim being a random orientation of the
fibre, the sample is prepared by a special technique such that the fibres are made to
lie in coils transverse to the direction of air-flow, and the instrument is calibrated
accordingly. Unfortunately, with this technique, the time required per test is appreciably
longer than with the Micronaire and WIRA instruments, and it is rather more difficult
to secure concordance among different operators. For these reasons, in a later and
portable version of the Arealometer, known as the Port-Ar, the makers reverted to a
teased and randomised sample of much larger size, of mass 8 g. With this change and
the inclusion of a built-in weighing device, specially designed for rapid weighing, it
is claimed that an experienced operator can easily run 60 samples an hour, provided
that the samples are accessible. With the Arealometer, the corresponding time required
per test is approximately 10 minutes, but it is also possible at the same time to obtain
a measure of maturity by making a measurement at another level of compression (see
Section 3.10.7).

3.8.6 SDL Micromat

The SDL Micromat is a stand-alone, high-speed tester, which includes an electronic
balance, a computer and a monitor to display results. It operates on the double
compression principle (see Section 3.10.7) to measure fineness and maturity. The
SDL operating procedure specifies a mass of 3.8 to 4.2 g, which has been opened
and cleaned in a Fibreblender or Shirley Analyser, but Gordon et al. [54] recommend
a consistent weight of 4 ± 0.005 g. The specimen is compressed to two different
volumes in the test chamber. It is subject to a flow of 4 litre/minute at low compression,
and 1 litre/minute at high compression, giving pressure differences PL and PH

respectively. Fineness (mtex), micronaire, maturity ratio and percentage maturity
values are computed from PL and PH by a set of empirical equations, with constants
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derived from calibrations.

3.9 The vibroscope method

The vibroscope method, originally put forward by Gonsalves [63], is a non-destructive
test, which can be used in combination with a tensile test on the same specimen.
Although not too suitable for measurements on cotton or wool because of the within
specimen variability, it is useful for manufactured fibres.

For a perfectly flexible string of linear density c and length l, under tension T, the
natural frequency of transverse vibration f is given by:

f l
T
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a = (1/ ) (1 + )1
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where a is a correction factor involving the elastic modulus of the material. If a can
be made negligibly small as compared with unity (see below), then m can evidently
be found for a specimen of fixed length l in one of two ways: either by finding what
frequency of vibration f corresponds to a given tension T, or by varying T until a
given natural frequency f is obtained.

In the apparatus used by Morton [21] (see Fig. 3.11), the fibre specimen is clamped
between two springs S and W and stretched across two knife-edges KK under a
chainomatic tension adjustable by rotation of the drum D. The knife-edges are 2 cm
apart, and one of them is caused to vibrate in a direction normal to the fibre axis with
a fixed frequency of 1.640 kHz. When the natural frequency of the specimen coincides
with this applied frequency, resonance occurs. The fibre is therefore observed through
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3.11 Vibroscope.
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a low-power microscope, and the tension T is adjusted until the fibre is seen to
vibrate with maximum amplitude. Since d and T are linearly related, the drum readings
may be calibrated directly in the units of linear density desired. The specific stress on
the fibre T/c depends only on the value of l and f, which were chosen to give a value
of 8·83 mN/tex  (0.1 g/den).

For fibres of circular cross-section, the correction factor a is given by:

a r
l

E
T

 =  
2 1/2













π
(3.25)

where r is the fibre radius and E the Young’s modulus.
In most cases, a does not exceed 0.03 and can be neglected, but, if necessary, it can

be calculated with sufficient accuracy from an approximate value of E. An alternative
method suggested by Gonsalves is to compare, for a single specimen, the value of m
given by the vibroscope with that determined by direct weighing on a delicate torsion
balance. The percentage difference is then taken as the correction to be applied to all
other specimens from the same sample.

3.10 Fibre shape and cotton maturity

3.10.1 A variety of shapes

The simplest melt-spun fibres, which are extruded through a circular spinneret, are
circular in cross-section. The use of shaped spinnerets has enabled fibres of different
shapes to be made. Sharp edges are rounded to an extent dependent on time in the
thread-line and melt viscosity. Typical examples of fibre shape are shown in Fig.
3.12. As discussed in Chapter 1, solution-spun fibres, such as rayon and acrylic
fibres, have shapes that result from the formation of a skin and then the loss of
solvent from the core. Wool only slightly departs from being circular, though some
hairs are more elliptical, but at higher resolution surface scales determine the shape
of the perimeter. Silk has a triangular cross-section.

Trilobal Octalobal Deep-grooved

3.12 Examples of melt-spun fibre shapes.

3.13 A cotton fibre, which is not fully mature, before and after collapse.
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Fibre shape has a major effect on cotton quality. As shown in Fig. 3.13, cotton
grows as a circular hollow tube, but collapses on drying to a ribbon or, when mature,
kidney-shaped fibre (see also Section 1.4.3).

3.10.2 Cotton maturity

Whereas the mean perimeter of a raw cotton is mainly a hereditary characteristic, the
degree of development of the cell wall is very largely determined by environment. If
a fibre has a thick and well-developed wall, it is said to be mature. If, on the other
hand, its wall is thin and poorly developed, it is said to be immature. Correspondingly,
if a cotton, because of unfavourable growing conditions, contains a considerable
proportion of immature fibres, it is referred to as an immature cotton. As stated in
Section 3.2.5, the degree of thickening, which is a measure of maturity, is given by
the ratio of wall area Aw to total fibre area, which equals 4π Aw/P2, where P is the
fibre perimeter. For a solid fibre, θ = 1. A maturity ratio is defined as the ratio of the
actual degree of thickening to a standard degree of thickening equal to 0.577. Mature
cottons have average values of θ greater than this, but immature cottons may have
average values below 0.3. In any given sample of cotton, there will be a range of
maturities, which, for a mature cotton might go from 0.15 to 0.96 [64].

There is an optimum degree of maturity for a cotton fibre, above which it tends to
be too stiff and bristly for ease of processing, and below which it tends to be too
flabby and unresilient. It is not very certain just where this optimum lies, though it is
probably somewhere between θ = 0.8 and 0.9. Spinners, however, are not usually
worried about fibres that have abnormal wall thickening: they are much more concerned
about those that have little or none. Cottons that are classed as immature are objectionable
mainly because of their liability to the formation of neps, which are small, tightly
rolled-up entanglements of fibre and which, unless removed by combing, survive all
processes through to the yarn, when they appear as unsightly specks. Neps are not of
natural occurrence: they are artefacts [65] produced by excessive rubbing against or
between surfaces, which tends to roll the fibres into minute knots, and they have been
repeatedly shown to consist mainly of very thin-walled, or so-called ‘dead’, fibres
[66].

In the spinning of fine yarns from fine cottons, nep formation is at once both more
frequent and more deleterious in its consequences. With fine cottons, even the fully
matured fibres are more delicate than with coarse cottons, and dead fibres are more
delicate still so that neppiness is less easily avoided; the neps that are formed are
much more noticeable because in fine yarns their size is comparable to the yarn
diameter. On account of the very poor wall thickening of the fibres involved, neps
when dyed appear much lighter in shade than a normal sample of fibres given the
same treatment, and hence appear as light, or even almost white, specks on the
surface of the fabric. Calendering increases their prominence because the knot of
flabby fibres is easily flattened and given a bright, glazed appearance. In printed
fabrics, somewhat similar faults are produced. If surface neps are removed or dislodged,
the underlying normal yarn is relatively unstained over the small area that has been
covered by the nep. From the same argument, it will be evident that similar yarns
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made from cottons differing in average maturity will also give different overall
apparent shades and that imperfect mixing of the immature elements in a blend may
give rise to streaky dyeing.

3.10.3 Measured maturity

The degree of thickening θ can be directly measured on fibre cross-sections, now
made much easier by digital processing. Alternatively, as shown in equation (3.15),
θ can be calculated from the mean specific surface S and the mean linear density7 c
of a sample of cotton. In accepting such calculated values, however, while a considerable
amount of labour may be saved, it must be remembered that the results are subject to
two independent sources of experimental and sampling error. In particular, it should
be noted that errors in S are squared in the evaluation of θ. The value of such a
procedure therefore depends largely on the reliance that can be placed on the data.
Experience suggests that, if the linear density is determined by duplicate tests on
each of 500 well-sampled fibres and the specific surface from four air-flow tests,
then the calculated maturity is as accurate as is needed for practical purposes and no
less reliable than if obtained directly by other means.

3.10.4 Micronaire, fineness and maturity

As already indicated, the micronaire value depends on specific surface and is therefore

7To be consistent, of course, the linear density should be measured by a whole fibre method.

3.14 Relations between micronaire, fineness (linear density) and maturity
ratio. Diameter values are for an equivalent circular fibre [68].
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influenced by both fineness and maturity. A detailed discussion of the relations is
given by Montalvo [67]. Figure 3.14 shows relations between micronaire, fineness
and maturity for US cottons [68].

3.10.5 Maturity counts

For all except highly specialised research purposes, micrometric methods of measuring
maturity are unsuitable, not only because of the technical difficulties referred to in
Section 3.6, but also because of the amount of time consumed by comparison with
other methods that are available. Among these, by far the most commonly used is that
in which the fibres are examined in longitudinal view under the microscope and
classified according to the apparent thickness of the cell wall relative to the width of
the fibre. In the U.S.S.R., the observations were made on untreated fibres [69], but in
most other countries the fibres are first swollen in caustic soda. How thin the wall has
to be before it is regarded as potentially nep-forming or otherwise undesirable is
impossible to define precisely: hence the criteria by which the fibres are classified
are decided to some extent arbitrarily.

In the British version of the maturity count, the test is carried out on the five tufts
of fibre that are left from the Baer diagram after the fibre linear density has been
determined. Each tuft is laid on a microscope slide so that the fibres are parallel but
separated, a cover-slip is placed over the middle of the fibres, and they are then
irrigated with an 18% solution of caustic soda until swelling is complete. The dangerous
fibres are considered to be those in which, after this treatment, the wall thickness is
one-third or less of the apparent lumen width: these are called ‘dead’ fibres. ‘Normal’
fibres are considered to be those which have become deconvoluted and rod-like and
in which swelling of the wall has virtually obliterated the lumen. Between these two
is the third class of fibres, referred to as ‘thin-walled’. Classification is carried out
with the microscope condenser so adjusted as to give maximum definition of the
boundaries of the wall. Observations are made at one place only on each fibre,
somewhere about its middle and, where convolutions are still perceptible, at a point
where the width is a maximum between two reversals. The slide is first traversed to
count the total number of fibres in the mount. It is then traversed again to count the
rod-like normal fibres. Finally, it is traversed a third time to count the number of dead
fibres. The number of thin-walled fibres, if required, may be obtained by subtraction.

The percentage occurrences of normal N and dead D fibres are calculated, and the
means for all the slides are obtained. The sample is then characterised as to maturity
by a quantity called the maturity ratio M, defined as:

M
N D

 = 
–

200
 + 0.7



 (3.26)

The more or less arbitrarily chosen constants8 are such that a value of unity is
commonly obtained for high grades of Egyptian and Sudan Egyptian cottons, irrigation-

8For details of how this formula was arrived at, see the work of Peirce and Lord [5].
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grown under generally favourable conditions. If the value of M is below about 0.8,
the cotton is one which, as a whole, would be regarded as immature. Few samples of
commercial crops have values for M of less than 0.7 [70].

The empirical relation between maturity ratio and degree of thickening θ has been
given by Peirce and Lord [5] as:

θ = 0·577M (3.27)

The ASTM standard maturity count is carried out in a similar way on fibres that have
been comb-sorted for length and fineness determinations, but, instead of three levels
of maturity, only two are recognised, mature and immature. A fibre is taken to be
immature if the wall thickness is equal to or less than half the maximum width of the
lumen. The fibres (approximately 100) that have been taken from each length group
in the sorter array and weighed for fineness determination are mounted and swollen
substantially as in the British test, and then traversed once under the microscope to
count the two classes, which thus gives the percentage number of mature fibres M on
each slide. Since both the number N′ and weight W′ of fibres on each slide are also
known, as well as the weight of fibre W that each slide represents, the number of
fibres N in each length group can be calculated as N = N′W/W′. The duly weighted
mean percentage of mature fibre present in the entire sample is then given by

PM = ∑NM / ∑N (3.28)

As in all tests of this kind, doubtful classification may be decided with the aid of a
filar micrometer or by means of a wedge-shaped line template. It is to the advantage
of the ASTM method that there is only one boundary where doubts may be entertained,
and in general it is easier to recognise quickly that one dimension is more than twice
another than that it is more than three times another9.

Although the British and American criteria of maturity are different, the results
obtained by the two methods are highly correlated [71], and Lord [70] has given the
following conversion formulae:

PM = (M – 0.2) (1.5652 – 0.471M) (3.29)

M = 1.762 – √(2.439 – 2.123PM) (3.30)

and, by combining equations (3.27) and (3.30),

θ = 1.017 – √(0·812 – 0·707PM) (3.31)

It is, of course, possible to carry out a reliable maturity count without the necessity
of first sorting the fibres for length, but, however conducted, the test is unfortunately
tedious and time-consuming. The minimum time in which it is possible to obtain
worthwhile results is about 11/2 hours [72].

3.10.6 Interference colours in polarised light

9Herein lies one of the main advantages of swelling the fibres with caustic soda. The ratios of lumen
width to wall thickness that are of interest are smaller.
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Another attempt to measure maturity, which was suggested by Grimes in 1945 [73]
is examination of colours seen in polarised light [53], as used in the automated
Siromat test described in Section 3.7.2. When cotton fibres are examined by means
of a polarising microscope, they exhibit different interference colours that are dependent
largely on the thickness of the cell walls. A first-order red selinite plate is used to
obtain the brighter second-order additive colours and also to permit an additional
check by observation of the subtractive colours when the stage is rotated. The fibres
are examined at 100 × magnification and classified into four, three or two classes,
depending on how fine a differentiation is required, as follows.

Fibres that appear purple or indigo throughout their entire length in the field of the
microscope and turn orange on rotation of the stage through 90° are immature. On
removal of the selinite, they show parallel extinction. Fibres that appear deep blue or
alternatively blue and purple, turn orange-yellow upon rotation of the stage, and
show some parallel extinction on removal of the selinite are also classed as immature.
Fibres that appear blue-green or alternatively blue and yellow, turn yellow-white on
rotation of the stage, and show only slight dimming on removal of the selinite are
partially mature. Fibres that appear yellow or yellow-green throughout their entire
length and show practically no change of colour on rotation to the subtractive position
nor parallel extinction on removal of the selinite are fully mature fibres.

Approximately 1000 fibres are examined, and the whole operation, excluding
sampling, takes between 2 and 3 hours, so that in the matter of time it has no
advantage over the maturity count and, depending as it does on the colour judgement
of the operator, it is, if anything, more subjective. Any attempt to classify a continuous
variate (as maturity is) on the basis of colour judgement must inevitably give rise to
uncertainties at the class boundaries. Furthermore, a question has been raised as to
how far the test is one of maturity and how far it is mainly one of wall thickness. With
American Upland cottons, where there is comparatively little variation in cell girth,
this would not be a problem, but for world cottons as a whole, it was suggested that
the correlation with a maturity count was weaker.

In more recent studies related to the development of Siromat, an examination of
the interference colours of different cottons by Gordon and Phair [74] showed no
differences dependent on genetic origin or intrinsic fineness. The fibres were classified
according to the scheme of Grimes, namely blue to orange for fibres with varying
degrees of immaturity and bright yellow for mature fibres.

3.10.7 Other indirect methods

Differential compression

The use of differential compression was first noticed by Hertel and Craven [4] in the
course of developing the Arealometer instrument, and is now more widely used in the
Shirley Fineness and Maturity Tester (FMT). It was found that, if a sample of cotton
was subjected to an air-flow test at two widely differing compressions, the highly
compressed condition produced an apparently greater specific surface, and the increase
was greater for immature samples than for mature. This led to the idea that the
difference in the results obtained at two different porosities might be made to serve
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as a measure of immaturity, and for this purpose the Arealometer was designed in its
present form. On referring to Fig. 3.10, it will be observed that the standard resistance
tube E is provided with a cut-off switch. If, after a normal test has been made, tube
E is cut off by this switch, the resistance to air-flow down limb B increases, and the
sample has to be further compressed in order to restore the pressure balance as
indicated by the manometer M. A second, and spurious, reading of specific surface
is therefore taken on a different calibrated scale, which is automatically brought into
use by the throwing over of the cut-off switch. The difference D between the two readings
is then used to calculate the immaturity ratio I by using the empirical relation10:

I2 = 0.0625D + 1 (3.32)

Hertel and Craven explain the apparent increase in specific surface by supposing
that, when the plug of fibre is subjected to the higher compression, the contact
between the fibres is increased considerably and, as a result, the immature fibres are
flattened and constrained to rotate about their own axes so that their broad sides are
presented, or more effectively presented, to the direction of air-flow. The result is an
increased resistance, which the Arealometer reflects by registering an apparent increase
in specific surface. In other words, the factor k in the flow equation is changed.

Agreement between the results of the Arealometer test and those of the maturity
count is quite good. Webb and Burley [75] found the correlation coefficient to be
+0.889 as against +0.752 for the Causticaire test. Morton and Radhakrishnan [34],
comparing the Arealometer immaturity with the immaturity calculated from the whole-
fibre linear density and the Arealometer specific surface, found the correlation coefficient
to be +0.978. The test has much to commend it. Of all the ‘bulk’ tests proposed, it
appeared to be the most reliable and is certainly by far the quickest. Unfortunately,
however, for a reason that has not yet been satisfactorily explained, it cannot be used
for testing material, such as sliver, that has been mechanically processed.

Differential compression is also the principle adopted in the Shirley FMT [76],
which is used in quality control laboratories in spinning mills and some test houses.
Values for maturity are calibrated by swelling in caustic soda and for fineness by
cutting and weighing. An upgrade of FMT has been made by Montalvo et al. [51].

The Causticaire test

This is an adaptation of the Micronaire test by means of which it is possible to obtain
a measure of maturity. The underlying idea is that treatment with 18% caustic soda,
by swelling the fibre walls, reduces the specific surface. The changes so brought
about are more pronounced with immature than with mature fibres, and consequently
the difference in the air-flow readings for a sample before and after caustic treatment
should be a reflection of its average maturity.

Lord [77] has investigated this test in considerable detail with results that can only

10In a later publication, Hertel proposed an increase in the constant from 0.0625 to 0.070, but
Morton and Radhakrishnan [34] and Webb and Burley [75] found that this led to immaturity values
that were too high for agreement with standard maturity counts.
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be regarded as unfavourable. He found that the ‘Causticaire maturity index’ was biased
to an extent partly depending on the fibre fineness but that, even after correction for
this bias, the method yielded estimates of maturity that were of low accuracy. Webb
and Burley [75], in an investigation involving tests on 319 American Upland samples of
the 1951 crop, found the correlation between Causticaire maturity index and percentage
of mature fibres, as determined by the ASTM standard maturity count, to be no
higher than +0·752. As Lord remarks, the Causticaire estimates for fibre maturity
can, at best, only be regarded as providing a rough approximation to the real values.

The differential-dyeing test

This test, originally put forward by Goldthwait et al. [78], was used by workers in
Ghent and Delft, in the following way. A 3 g sample is introduced into a boiling dye-
bath consisting of Diphenyl Fast Red and Chlorantine Fast Green. After 15 minutes,
4% (calculated on weight of fibre) of NaCl is added and, after a further 15 minutes,
a further 4% of NaCl. When the sample has been in the bath for 45 minutes, it is taken
out and rinsed three times in distilled water. After draining off, the sample is immersed
and continually stirred for 30 seconds in a beaker of vigorously boiling distilled
water, after which it is centrifuged. The cotton is then rinsed in cold distilled water
and carefully dried. The sample is now ground to powder in a mill, thoroughly
mixed, and pressed into the form of a pad. The pads are then compared visually with
pads prepared from Standard American cottons of known maturity as measured by
the standard ASTM maturity count. Mature samples appear predominantly red and
immature samples predominantly green.

According to Boulton and Armfield [7], the test depends on two circumstances:
(1) that, of the two dyes used, the red diffuses into, and also washes out of, the
cellulose of the cell wall much more rapidly than the green; and (2) that immature
fibres have a greater specific surface than the mature and so take up dye more rapidly.
Thus, because of their greater specific surface, the immature fibres take up more
green dye than the mature fibres do and, because of the slow diffusion rate of the
green dye, the difference between the two is not greatly affected by the subsequent
boiling wash. With the rapidly diffusing red dye, on the other hand, a period of 45
minutes is long enough to cause both mature and immature to take up much the same
amount of dye, but, in the 30 second boiling wash, the immature fibres lose much
more of what they take up because of their greater specific surface.

From the foregoing, it will be evident that, if the test is to have any success at all,
the procedure for dyeing and washing must be precisely defined and rigidly adhered
to. It will be equally evident, however, that the test is essentially one of specific
surface. It is a test of maturity only in the special circumstances of the American
Uplands cottons already noted, namely, that mean perimeter can be assumed substantially
constant. It could be used for other types only if in each case a special set of reference
pads were prepared for each type. In the matter of time, the test has no advantages at
all, and, bearing in mind that it is the specific surface that, in fact, is measured, the
same results can be obtained far more quickly and with much less mess by means of
an air-flow instrument.
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Near infra-red reflectance

This is a fast test method, which has been investigated in connection with HVI
testing. The radiation is scattered from the fibre surface and so correlates well with
micronaire values and other methods of measuring surface area. Published work on
this method of measuring cotton fineness and maturity has been reviewed by Montalvo
and Von Hoven [79].

X-ray fluorescence analysis

This is another fast method, which measures the calcium content of the fibres, which
can be related to maturity parameters [55, 80].
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4.1 Fibre lengths

In continuous filament yarns, the fibres are infinite in length. In the literal sense of
the word, it is always possible to increase the length by adding another turn on the
package. From a practical viewpoint, the fibre length in a 1 kilogram package of 100
dtex yarn is 10 kilometres, which gives an aspect ratio of 109 for a 1 dtex fibre and a
negligible number of free ends in any product.

Manufactured staple fibres are mostly cut to a controlled length, so that the length
is part of the specification, and the fibres are much more uniform in length than
natural fibres, though not perfectly so. A reference from 1950 gives a coefficient of
variability of 10% as indicating the degree of length variation likely to be encountered
[1]. A part of this is due to imperfections in the stapling machine, which may have
been reduced with improved quality control, but a part is caused by fibre breakage.
All fibres are liable to breakage during handling and processing, and it follows that
length measurements made on the same material in successive stages of manufacture
will disclose the presence of a progressively increasing amount of short fibre, except
where combing is introduced for the express purpose of removing the short fibres. In
principle, manufactured staple fibres may be produced in any length, but since most
manufactured staple fibre is blended with natural fibres, or, if used alone, is processed
on machinery designed for natural fibres, the lengths available are selected to meet
these needs. In nearly every case, the length is intended to be uniform, but it has been
suggested that there are advantages for rayon staple in varied lengths when it is
intended for blending with natural fibres [2]. In contrast to the genetic associations in
natural fibres, length and fineness can be varied independently in manufactured
fibres, and, incidentally, without affecting the cost.

An exception to the directly controlled length of manufactured staple fibres is in
stretch-breaking of tows. A length distribution then depends on the quasi-random
location of breaks in the filaments trapped between rollers running at increasing speeds.

For natural fibres, the length and the length distribution are critical properties,
which influence processing, performance and price. In common with most of the
physical properties of the natural textile raw materials, fibre length varies very greatly
within any one sample. Thus, for example, the coefficient of length variation, itself
differing appreciably from sample to sample, is of the order of 40% for cotton and

4
Fibre length
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50% for wool [1]. This variability is biological in origin, and there is no practicable
way of avoiding it, mainly because the major component of variance is to be found
in the single seed of cotton or the single lock of wool. Some marginal improvement
may still be possible by breeding for greater length uniformity, but, for the rest, the
most that can be done is to adopt such farming, harvesting and marketing methods as
will keep the other components of variance down to a minimum.

An impression of the magnitude of length variation in the natural fibres may be
obtained from the fibre array shown in Fig. 4.1(a), while a comparison of (b) and (c)
shows an increased tail of short fibres in a lot of 1 7

16  inch (3.7 mm)1 Fibro viscose
rayon staple as a result of breakage during processing.

In wool and cotton, length and fineness are correlated, negatively in the case of
wool and positively in the case of cotton. Thus, among the wools of the world, the
longer types are generally also the coarser, and the same kind of association between
length and fineness is also found among the individual fibres of a given sample.
Among cottons, the longer types are generally the finer, but there is no corresponding
correlation for the fibres within a sample. Fineness does vary throughout the length
range within a sample, but not systematically. Sometimes the longest fibres are the
coarsest, sometimes the shortest, and sometimes those of intermediate length, as
illustrated in the data by Clegg [3] in Table 4.1. Variations greater than those shown
in Table 4.1 are not likely to be encountered very often. Sometimes, as shown by the
figures for the Maarad sample, fineness is practically independent of length.

The lengths of wools and cottons are usually referred to in terms of staple length,
a quantity which, so far as cotton is concerned, is discussed in some detail in Section
4.4.2. For present purposes, it is sufficient to say that the staple length of a wool is
the average overall length of the natural locks in their normal crimped condition,
whereas that of a cotton is somewhere between the mean length and the maximum.

Rough guides to the range of fibre lengths are given by the following examples.
Coarse Indian cottons had staple lengths as low as 1

2
5
8–  inch, (13–16 mm) but short

fibres below 1 inch (25 mm) have mostly been replaced by improved varieties. American
Upland varieties (G. hirsutum), which now account for 90% of world cotton production,
are 1–1 1

4  inch (25–32 mm) G. barbadense, which has 8% of world production and
includes Sea Island and long-staple Egyptian cottons, are 1 –21

4  inches (32–50 mm).
Australian Merino wool is typically 65–75 mm ( 2 1

2  to 3 inches) but a coarse Lincoln

Table 4.1 Cotton length and fineness

Type of cotton Linear density of fibre group millitex
Longest → Shortest

Brazilian São Paulo 194 225 236 256 283
Egyptian, white 158 160 166 180 173
Sea Island 138 124 131 117 108
Sudan Sakel 131 132 148 132 116
Egyptian, Maarad 141 134 131 137 134

1. Inches are given as the primary unit because that is cotton industry practice. The wool industry
now uses mm.

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres136

wool would be 250–300 mm (10–12 inches). Strands of flax, hemp and jute may be
between 15 and 90 mm (5 and 35 inches) in length.

4.2 Technical significance of fibre length

Fibre-processing machines, and especially those incorporating roller-drafting, are
designed to operate efficiently only on a comparatively narrow range of staple lengths.
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4.1 Fibre arrays (Baer diagrams): (a) cotton; (b) raw Fibro viscose rayon
staple; (c) Fibro from card sliver (1 inch = 25.4 mm).
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Furthermore, within that range, adjustments have to be made with some care to suit
the material being processed if the best results are to be obtained. Therefore, once the
machinery has been set up and adjusted, to avoid repeated and costly alteration, it is
desirable to maintain optimum processing conditions by ensuring that raw material
supplies do not vary by more than minimal amounts from some established length
standard.

Where combing is involved, it is necessary, too, to control not only the length but
also the variation in length of the material put into process. The amount of short fibre
present influences the amount of ‘noil’ or waste extracted and thus has an important
bearing on the economics of manufacture.

In rovings and yarns, the longer the fibre, the longer is the overlap among the
fibres over which they can be made to cohere by means of twist. It follows, therefore,
that the twist can be less without sacrificing essential strength and that, as a corollary,
the longer the fibre length, the lower is the end breakage rate, other things being
equal.

It should be mentioned that, when the material to be processed is short, the machine
designer is presented with special problems inasmuch as roller settings must be
correspondingly close. Consequently, smaller, high-speed, and less robust rollers
must be used and less space is available for accommodating devices capable of
controlling the motions of the short fibres present. It is therefore not surprising that
the longer the fibres, the finer and the more uniform is the yarn that can be spun, other
things again being equal.

Hence, for most purposes, longer fibres are preferable. From the point of view of
cloth characteristics, however, short fibres have the advantage where it is desirable to
produce a soft, hairy and warm-handling surface. Here a large number of projecting
fibre ends are desired, and, although the number of ends can be strongly influenced
by the method of spinning employed, under any given set of conditions it must
obviously vary inversely as the mean fibre length.

4.3 Length distributions and fibre diagrams

4.3.1 Frequency diagrams

Table 4.2 relates to a hypothetical sample of fibrous material on which 100 length
measurements have been made and the results arranged in the usual way for statistical
calculation. For the sake of simplicity and to avoid the compilation of a cumbrous
table, it is here assumed that 100 observations are enough to make a sufficiently
reliable test, though in practice so small a sample would be quite inadequate. The
overall range is 20 length units, divided at equal intervals of 2 units into ten classes,
the mid-points l of which are given in column (1). The frequencies f given in column
(2) relate to a numerical sample, and, when these are plotted as ordinates against the
corresponding values of l, the usual form of frequency diagram is obtained as a
histogram, polygon or curve (see Fig. 4.2). It is evident that the smooth curve derived
from the frequencies represents the probability p that any fibre taken at random will
have a length lying between l and (l + δl) (see Fig. 4.3).
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To calculate the mean length, L , we proceed in the usual way to find, by column
(4), the total length of fibre ∑(lf) whence

L
lf
f

lf
N

 = 
 ( )

 
 = 

 ( )Σ
Σ

Σ
(4.1)

where N is the total number of fibres.
The standard deviation σ is conveniently calculated by working with deviations

from the arbitrary value zero, in which case the values of l are treated as deviations,
squared and multiplied by the corresponding values of f, giving l2f in column (5). The
total variance is given by ∑(l2f) – N L2 , and the standard deviation by:

Table 4.2 Hypothetical fibre length distribution
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1 0 100 0 0 1236 8692
3 1 100 3 9 1236 7456
5 3 99 15 75 1233 6220
7 6 96 42 294 1218 4987
9 11 90 99 891 1176 3769

11 19 79 209 2299 1077 2569
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(4.2)

from which the standard error of the mean and the coefficient of variation are readily
calculated. The maximum and the mode, with equal numbers shorter and longer, of
the distribution can usually be estimated with reasonable accuracy from the frequency
curve.

4.3.2 Survivor diagrams

An alternative way of graphically representing the fibre length distribution is to
construct a survivor diagram, in which, for a numerical sample, the ordinates represent
the number of fibres, expressed as a percentage or any other suitable basis, whose
lengths exceed any given length, l. The most convenient way of obtaining such a
diagram from frequency data is to find the cumulative totals of f, from the maximum,
lm, to zero, l0, as shown in column (3) of Table 4.2, and plot these totals in histograph
form against l. The survivor curve can then be obtained by drawing a smooth curve
through the mid-points of the horizontal steps as shown in Fig. 4.4.

Another form of survivor curve is that given by the outline of a Baer diagram (see
Section 4.7.2). In this case, the sorted fibres extend vertically from a common base-
line, the longest on the left and the shortest on the right, as in Fig. 4.1(a). If, instead,
they were arranged horizontally with the longest at the bottom and the shortest at the
top (Fig. 4.5), the outline of the survivor curve of Fig. 4.4 would be obtained.

It is obvious that the curves of Figs 4.4 and 4.5 represent the probability q that any
fibre taken at random will be longer than any given length l, and further that:

q p l
l

l

 =   d
m

∫ ⋅ (4.3)

100

∑f

0 20
l

1.0

q

0 lm
l

4.4 Survivor diagram. 4.5 Baer diagram.
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4.3.3 Distribution for length-biased samples

It is possible, and sometimes most convenient, to take as the sample for measurement
a length-biased Wilkinson tuft. The length distribution of such a sample can be
related to that of a numerical sample.

Consider a length-biased sample taken from the same population as in Table 4.2.
In that case, as we have already seen, the probability of the occurrence of a fibre of
length l is proportional to the product of its length and the frequency with which that
length occurs in the population, or in the numerical sample, which we here assume
accurately represents the population. Hence the relative length-biased frequencies, f ′,
are given by f ′ = lf.

These quantities are given in column (4) of Table 4.2. With suitable adjustment of
scale, they can be plotted as in Fig. 4.6 to show how a length-biased distribution
compares with its numerical counterpart. Similarly, by taking cumulative totals of f ′
from lm to l0, we can obtain, as in column (6), the ordinates for a survivor curve for
the length-biased sample. This is shown in full line in Fig. 4.7. Such is the curve that
would be obtained if a Baer Sorter test (see Section 4.7.2) were made on a length-
biased sample. For the infinite population, the equation corresponding to equation
(4.3) is:

′ ′ ⋅∫q p l
l

l

 =   d
m

(4.4)

To calculate the mean length, ′L , of the length-biased sample, we treat the values of
f ′ as frequencies and proceed as usual to find ∑(lf ′). But, since f ′ = lf, this quantity is
the same as ∑(l2f), which has already been found by column (5) of the table. Hence:

′L
l f
l f
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Σ (4.5)
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But ∑(lf) = LN and, from equation (4.2), ∑(l2f) = (L2 + σ2)N.
We have, therefore:

′L
L N

L N
L

L
 = 

(  + )
 =  + 

2 2 2σ σ (4.6)

Thus, if the mean and standard deviation of a numerical sample are known, the mean
of the corresponding length-biased sample can be calculated [4].

4.3.4 Beard diagrams

If a sliver of straight and randomly overlapping fibres is clamped across a section and
all loose fibres are combed away on one side, a beard of fibres is left projecting. The
distribution of lengths of the fibres in the beard will be the same as the distribution
of distances from fibre ends to points randomly selected along the fibres. The length
characteristics of the beard are of great technical importance [4, 5]. It is such a beard,
for instance, that is held by a pair of drafting rollers or by the nippers of a rectilinear
comb. The fibres held by the clamp, including the lengths on the other side, which
have not been combed away, constitute a Wilkinson tuft, the nature of which has been
discussed in Section 2.3.2, but here we are concerned with a semi-Wilkinson tuft, the
composition of which is quite different.

Consider a beard formed by the left-hand ends of a length-biased population of
fibres represented by the survivor diagram shown in full line in Fig. 4.7, and reproduced
in Fig. 4.8. For convenience, let us refer to that part of a fibre that contributes to the
beard as a beard element, or simply an element.

In the formation of the beard, every fibre that is held at all may be held at any point
along its length with equal probability; so fibres of length l will contribute to the
beard every length of element from zero to l in equal proportions. From the population

0 lm
l

q ′ dq ′

A C
B

4.8 Clamp diagram.
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as a whole, therefore, beard elements can arise varying in length from zero to lm, the
maximum length of fibre present.

Consider the probability r′ that a beard element will be longer than l. For this to
happen, it is clear that a fibre must be clamped at a distance > l from its left-hand end.
Hence no fibre shorter than l makes any contribution. On the other hand, every fibre
longer than l contributes to r′ in a measure depending on how greatly its length
exceeds l.

Take, for example, the fibre AB in Fig. 4.8, the probability of whose occurrence in
the length-biased population is dq′. The probability that it will form a beard element
longer than l is the probability that it will occur at all multiplied by the probability
that the point where it is clamped will fall between B and C.

Since it is equally likely that the clamping point will be anywhere between A and
B, the probability that it will fall between B and C is obviously BC/AB, and a similar
condition holds for every other fibre longer than l. The total probability of an element
longer than l occurring in the beard is therefore the ratio of the shaded area to the
entire area under the curve, i.e.:

′ ′ ⋅ ′ ⋅∫ ∫r q l q l
l

l l

 =   d   d
m m

0
(4.7)

But, since, substituting from equation (4.4), and noting that 
0

m

  d
l

q l∫ ′ ⋅  is a constant

for a sample, we have:

′ ′ ⋅∫ ∫r l p l
l

l

l

l

 = d    d
m m

(4.8)

From this it is evident that all we have to do to obtain the distribution of beard
elements from the length frequencies of a numerical sample of fibres is first to find
the length-biased frequencies, f ′ = lf, and then to obtain the second successive cumulative

totals of these frequencies, i.e.: Σ Σ
l

l

l

l

f
m m

  ′. This is done in column (7) of Table 4.2.

When these values are plotted against l, the diagram shown in Fig. 4.9 is obtained.
Horizontal and closely spaced lines are here drawn in to convey more graphically
what the composition of a beard diagram is really like and to emphasise the striking
difference between it and the corresponding Baer diagram. The dotted line shows
what the beard diagram would have been if all the fibres had been of the same
length lm.

4.3.5 Distributions by mass

In some of the techniques of fibre-length measurement, the fibres of a sample are
sorted into length groups; and the fibres in each group, instead of being counted to
enable the frequencies to be obtained, are weighed.

Referring to Table 4.2, it is evident that, if f is the number of fibres in a group
having a length l, then (f l) is the total length of fibre in that group. If the linear
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density of all the fibres is c, then (c f l) is the mass of the fibres in the group. Thus,
since c is a constant factor, the figures in column (4) also represent the proportions
by mass of the different lengths.

For this to be true, it is not necessary that every individual fibre should have the
same linear density: it is sufficient if c varies randomly so that its mean value shows
no appreciable variation over the entire length range. Given these conditions, it is
possible to transform a numerical distribution into a mass distribution, or vice versa,
simply by multiplying or dividing by l, as the case may be. It is further evident that,
given these conditions, the proportions by mass of a sample are the same as the
proportions by number (i.e. proportionate frequencies) of a length-biased sample.

The necessary conditions can be assumed to hold good for all manufactured staple
fibres, but not for wool or cotton, since fineness varies between fibres usually with
length bias (see Section 4.1). When, therefore, as a result of using certain measuring
techniques, mass distributions of length are obtained directly, they are best left and
interpreted as such, without any attempt at transformation, unless c is actually measured
for each group and the values so found are used in the computations (see Section
3.5.3).

A distribution can also be given in terms of the proportion biased by fineness
(linear density or titre). This is mass-based in the sense that it depends on mass per
unit length, but is not biased by the mass of the whole long fibre.

4.3.6 Measures of fibre length

The frequency distributions described above give a full picture of the fibre lengths in
a sample. However it is also useful to give values for particular parameters. Mean
fibre length, variance, standard deviation and coefficient of variation, whether on a
numerical or a biased basis, are standard statistical parameters. A number of other
terms have particular connotations [6]. Staple length is a characteristic length, usually
estimated by subjective visual assessment. For cotton, it corresponds closely with the

0 20
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Σ

′
ll

ll

f
m

m  
 

4.9 Beard diagram.
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modal (most frequent) length when the fibres are straightened; for wool it is usually taken
as the length (extent) of the longer fibres in the crimped state in a hand-prepared tuft.
Short fibre content is the percentage by number or weight of fibres shorter than a
specified length, 1

2
 inch (13 mm) for cotton, typically 25 or 40 mm for wool.

For cotton, effective length is given by a series of approximations, usually two, to
the upper-quartile length with elimination of short fibres by a procedure described
below. The fibrogram is a particular form of length distribution obtained on modern
automated instruments. Statistically, it is the second summation of the numerical
distribution, which is column (7) of Table 4.2. Upper-half mean (UHM) length is the
mean length by number of fibres in the longest half by weight of the fibres in a cotton
sample, usually measured from the fibrogram. Uniformity index is then the ratio of
mean length to UHM length expressed as a percentage. Span length is the length
exceeded by a stated percentage of cotton fibres in the fibrogram. Uniformity ratio is
the ratio of the 50% span length to the 2.5% span length, expressed as a percentage.

For wool, hauteur is defined as the mean length in sliver or roving from a titre
(linear density)-biased distribution; barbe is the equivalent quantity from a mass (whole
fibre) biased distribution. Because of the greater influence of longer fibres, barbe B
is always greater than hauteur H. If the coefficient of variation of hauteur is V:

B H V = 1 + 
100( ) (4.9)

4.4 Wool and cotton

4.4.1 Wool fibre length

Because wool fibres are relatively long, length is a less important property. The twists
needed in yarns are less and, in woollen yarns, entanglement is effective in giving
strength. The low twist preserves yarn bulk, though sometimes at the expense of a
propensity to pilling. Length was not a factor in traditional wool grading. However as
Simpson [7] notes: ‘Objective testing of fine Merino wools [which are shorter] has
come to include measurement of wool staple length and strength (IWTO-30 test
method) applied to greasy wool samples.’ For long staple New Zealand wools, the
reduction in length in carding of wool that has become entangled in scouring is a
more important consideration. Data on short fibre percentage, mean fibre length and
coefficient of variation of hauteur for length after carding can be provided for sale-
by-sample.

4.4.2 Cotton staple length

From the earliest inception of roller drafting, it must have been recognised that there
was a very strong association between the optimum spacing of the rollers and the
length characteristics of the cotton being processed. It is therefore not unreasonable
to assume that the values assigned to the so-called ‘staple lengths’ of the different
cottons in use corresponded fairly closely with the roller settings that each demanded.
But the concept of staple length came into use long before satisfactory methods of
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measuring fibres had been developed, so that merchants, spinners or graders in doing
business with one another, had to be content with estimates of length made by
personal judgement of the appearance of a hand-prepared staple such as is shown in
Fig. 4.10. Thus, being arrived at by judgement and not by measurement, staple length
was never formally defined in terms of any statistic of length distribution.

Continuous commercial intercourse has naturally resulted in a substantial measure
of agreement throughout a business community as to what the staple length of any
particular sample of cotton is, and, in the United States, at least, stability in the
standards of judgement of Upland staples was greatly helped by the setting-up of
physical reference standards, in the form of actual cotton samples, by the Department
of Agriculture in 1918. Nevertheless, individuals differed in extreme cases by as
much as 3 mm in their judgement, and furthermore, there is evidence to show that in
Britain, if not also elsewhere, the whole level of judgement shifted with the passage
of time. Whereas, in the 1920s, Lancashire estimates of Uplands staple tended to be
about 10% over the American, by 1950 they had changed so as to fall into line. It was
obviously desirable to give greater definition to this somewhat elusive quantity.

The earliest attempt to do this was that made by Clegg [3], who, starting with the
outline of the Baer Sorter diagram (see Section 4.7.2), devised a geometric construction
to give a quantity that she called the effective length. She found this to agree fairly
well with the grader’s estimate of staple length as judged on the Liverpool raw-cotton
market at that time (1930). The construction is as follows (see Fig. 4.11):

OQ = 1
2

OA = PP′

OK = 1
4 OP

a b c

4.10 Hand staples from around 1960: (a) Egyptian cotton of 
  
1 7

16  inch (37 mm)
staple; (b) American cotton of  

1 1
8  inch (29 mm) staple; (c) Indian cotton of   

7
8

inch (22 mm) staple.

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres146

KS = 1/2KK′ = 1/2RR

OL = 1/4OR

and LL′ is the effective length.
It will thus be seen that the effective length is the upper quartile of a numerical

length-distribution from which some of the shortest fibres (to the right of R) have
been eliminated by an arbitrary construction. As has been remarked above, however,
Lancashire judgement of Upland staples changed. Hence, so far as American cottons
are concerned, the effective length must be divided by 1.1 in order to obtain the staple
length. For Egyptian-type cottons, the effective length still corresponded fairly closely
to the grader’s estimate of staple according to Morton in the first edition of this book
in 1962.

With the standard American methods of testing, the staple length is claimed to be
given by the UHM length of the distribution by weight, though unfortunately there
are no extensive data available by which the closeness of the agreement can be
judged. If Egyptian-type cotton is tested with the Balls Sorter (see Section 4.7.2) to
give a weight distribution, the staple length is said to be given by the 71st percentile
[8].

An extensive investigation of this subject was carried out by Lord [9], who subjected
a large number of samples of cotton from all over the world both to repeated judgement
and to measurement. His results showed that, except for Egyptian cottons, the best
measure of staple length for general application is that given by the modal, or most
frequent, length of a numerical distribution, and he designed an instrument to measure
this quantity rapidly and accurately (see Section 4.10.4). For Egyptian cottons, the
modal length must be multiplied by 1.1 to obtain the commercial staple length.

4.5 Crimp

A characteristic feature of practically all staple fibres, which cannot be neglected in
any discussion of fibre length, is crimp. Crimp, which in general terms may be
defined as the waviness of a fibre, is of technological importance in several contexts.
In brief, it determines the capacity of the fibres to cohere under light pressure and so
in turn determines the cohesiveness of card webs, the amount of fly liberated during
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4.11 Baer diagram analysis.
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processing, and the hairiness of the resultant yarn. It is also the principal feature
governing the bulk of a textile material and so influences the specific volume of yarns
and fabrics, through the dependence on packing factor.

It may be measured in terms of either the number of crimps or waves per unit
length or the percentage increase in extent of the fibre on removal of the crimp. With
strongly crimped fibres, the force necessary to straighten a fibre may be enough to
cause some actual elongation of its axial length, but this is not likely to be of any
moment unless the fibre is exceptionally extensible. Cotton has a relatively low crimp
associated with the convolutions. In wool, the bicomponent structure gives rise to a
helical crimp, which if lost in processing is regenerated on wetting. Crimp can also
result from asymmetric forms in manufactured fibres, either in the skin of viscose
rayon or in bicomponent synthetic fibres. In manufactured staple fibres, crimp is
imposed by serrated rollers as an aid to processing, which may or may not survive
into the final product.

For continuous filament yarns, a number of texturing processes lead to the filaments
taking up forms, which may be pig-tail snarls in high-stretch yarns or alternating
helices or other forms in low-stretch yarns [10]. However, detailed discussion of this
type of crimp is outside the scope of this book, though the discussion of setting in
Chapter 18 is highly relevant to the processes.

4.6 Individual fibre length measurement

4.6.1 Direct methods

The most obvious and most reliable method of fibre length measurement is to straighten
the fibres from the sample, one by one, over a suitable scale and to measure their
lengths directly. It is tedious and involves a certain amount of eye-strain. On the other
hand, the results it yields are completely comprehensive, and it is superior to any
other for accuracy, especially where the short-fibre components of a sample have to
be accurately delineated, as in studies of fibre breakage, for example. It is essentially
a research worker’s method and is that by which the accuracy of other methods may
be tested. By suitable illumination of the working plane, combined with a contrasting
background and the use of a large lens when necessary, eye-strain may be reduced to
a minimum; with practice, especially where it is possible to use a semi-automatic
device such as is described in Section 4.6.3, measurements may be made surprisingly
quickly.

If individual fibres can be selected, optical analysis of digitised images speeds up
the direct measurement of length. However, automated methods are not as easy to
develop as the use of snippets for fineness measurements. Recent advances are described
in Section 4.11.

4.6.2 Oiled plate method

For cotton and short manufactured staple fibres, a convenient form of scale to use is
a sheet of glass, of about quarter-plate size, which has a centimetre scale photographed
or etched on its underside. The surface of the glass is smeared with liquid paraffin,
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and a bunch of about a dozen fibres from the sample is placed on the far left-hand
corner. Then, with the tips of the little fingers of each hand, the fibres are drawn one
at a time over the scale and smoothed out straight, and their lengths are noted. The
paraffin serves to keep the fibres from blowing about and assists in making them lie
flat and straight on the scale when brought into position. As each fibre is measured,
it is drawn off into a bunch at the right-hand side of the slide and its length is
recorded. The measurements may be written down in columns in the ordinary way,
or, more conveniently, the readings may be entered as individuals directly into the
appropriate length groups of a frequency table.

If the scale is placed on a dark grey background of matt card and the whole is
suitably illuminated, both the fibres and the graduations of the scale may be clearly
observed without any difficulty. Up to 300 fibres per hour may be measured in this
way, so that, even with cotton, a test may be completed in 2–2 1

2  hours. It is worth
noting, too, that, if it is required to know also the mean linear density of the fibres,
this may be obtained with very little extra work. All that is necessary is to weigh the
entire sample before bringing the oiled plate into use. If one knows the total weight
and the total length, a short calculation provides the answer, which would otherwise
have to be found separately at the expense of considerable labour.

4.6.3 Semi-automatic single-fibre testers

For measurements on wool and manuifactured fibres of comparable length, a purely
manual procedure similar to the foregoing may be used, in which a black velvet-
covered board is used instead of the oiled plate. To speed up the operation for wool
tops, Anderson and Palmer [11] devised the semi-automatic WIRA Fibre Length
Machine, and a special cotton version for measuring lengths down to 5 mm (0.2 in.)
has been described by Wakelin, et al. [12].

The WIRA instrument [13, 14] is illustrated in Fig. 4.12, where the material under
test is shown in the form of a ‘squared’ top spread out under a glass plate resting on
a cloth A, ready for sampling. Each fibre to be measured is gripped at its extremity
with forceps and drawn to the right successively under the light tensioning arm C,
and the point of the forceps is pressed gently into the groove of the revolving screw
shaft D. This causes the forceps to traverse smoothly sideways and draw the tensioned
fibre after it until the tail end emerges through B. Thereupon the detector wire drops
and makes an electric contact, which stops the revolving shaft and indicates by the
position of the forceps the length of the fibre being measured. The operator then
raises the forceps vertically, thus lifting one of the keys E, which in turn registers the

A

B
C E

D

4.12 WIRA fibre length machine.
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observation on the appropriate one of a drum of frequency counters at the back. The
counters are spaced at 5 mm intervals, so that, by reading off the numbers on the
counters at the end of the test, the frequency distribution of the results is obtained,
classified in 5 mm groups. An experienced operator using this instrument can measure
wool fibres at the rate of 500 per hour. Here again, by collecting the measured fibres
and weighing them, the average linear density may be obtained with very little extra
labour.

The drag of the fibre through the tensioning arm B is such as effectively to remove
the crimp without stretching the fibre. There is a small consistent error of about 1 mm
in the mean, owing to the fact that each fibre can be gripped not at, but only near, its
end. This may be neglected in measuring wools but assumes some importance in
dealing with short fibre materials.

4.7 Comb-sorter methods

4.7.1 Fibre sorters

In order to avoid what was regarded as the too laborious measurement of individual
fibres, and to expedite the handling of larger and therefore ostensibly more representative
samples, a variety of mechanical or semi-mechanical ‘sorters’ were devised for the
purpose of fractionating the sample into a suitable number of groups or of grading the
fibres in the order of their lengths.

In all cases, the operation involves two steps: (i) the preparation of a fringe or tuft
of fibres, all of which are aligned at one end as shown in Fig. 4.13 and (ii) the
withdrawal of the fibres from the fringe in the order of either their increasing or their
decreasing length.

4.7.2 Comb sorters

The commonest type of sorter in use is the comb sorter, which, in a variety of forms,
can be used for measurements of most kinds of fibres. Only where strong crimp
presents difficulties are comb sorters unsuitable.

The principle of operation is the same for all, though there are differences in matters
of detail. The essential element is a bed of upright and parallel steel combs in which
the fibres are embedded for control during manipulation. The pitch and fineness of
the needles and the spacing of the combs vary according to the kind of fibre for which
the instrument is designed. For cotton, the comb spacing is usually 5 mm, while for

4.13 Fibres aligned for sorting.
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wool it may be 1 cm or 1
2  inch (1.25 cm). The following is a brief description of the

manipulation of the Baer Sorter as used for raw-cotton testing [15, 16].
A sample weighing approximately 15 mg is first prepared by one of the zoning

methods described in Section 2.5.2, and, by repeated drawing and doubling, it is
formed into a narrow bundle of fibres, which are as straight and parallel as possible.
This bundle is impaled in the combs with a short fringe protruding, as illustrated in
the left-hand side of Fig. 4.14. With the aid of special tweezers, the fibres are taken
successively in small groups by their extreme ends, withdrawn from the bundle, and
transferred to the right-hand side of the needle bed, so that they lie straight and
parallel with their near ends almost flush with the rearmost comb. When the entire
sample has been thus transferred, the sorter is turned round and a set of hinged
intersecting top combs is swung over into position to aid in controlling the fibres
during the final, sorting, stage. In this, again by using the special tweezers to grip the
fibres only at their extremities, the fibres are withdrawn in small groups in the order
of their diminishing lengths, the combs being successively dropped or lifted out of
the way as required.

From this point onwards, the procedure varies according to the method of analysis
that it is proposed to adopt. In the United Kingdom, the usual practice is to prepare
what is known as a Baer diagram (Fig. 4.1). To do this, the succession of small groups
of fibres withdrawn from the tuft in the combs is deposited on a black velvet pad so
that all their ends are conterminous with a base-line, which may conveniently take
the form of a piece of white thread tied round the pad. When complete, the ‘diagram’
consists of an array of all the fibres in the tuft, arranged in order of their lengths; the
longest, drawn first, is on the left and the shortest, drawn last, on the right, with any

B

Combs

Pivot

A

4.14 Operation of a comb sorter.
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neppy remnants from the first stage of manipulation gathered in a cluster on one side.
The outline of the fibre array may then be traced on suitably graduated transparent
paper to give a survivor, or cumulative-frequency, curve, which can be analysed to
obtain any of the desired length parameters.

If, however, the results are to be at all reliable, considerable skill is required on the
part of the operator in preparing the fibre array. In the analysis of the traced outline,
two things must be assumed: (i) that, at any point on the trace, the vertical distance
between the curve and the base-line represents the straightened length of the fibre at
that point and (ii) that distances measured along the base-line are proportional to the
number of fibres present. It is unnecessary to elaborate on the care and precautions
that must be taken to justify these assumptions. Failure to straighten the fibres properly
in preparing the array can alone give rise to an error of as much as 1

16  inch (1.6 mm)
[16], and errors of similar magnitude can also arise from failure to space the fibres
along the base-line with uniform density. Appreciable subjective errors are thus involved,
and, even with only one operator, it is usually thought desirable to make two diagrams
to obtain a sufficiently reliable result. The time taken by an experienced worker in
making a single Baer Sorter test, excluding sampling and analysis of data, ranges
from about 3

4  hour for a short-stapled Indian cotton to 1 1
2  hours for long-stapled

Egyptian or Sea Island cotton. It will be seen, therefore, that, although it may be less
of a strain, the Baer Sorter method has by no means a great advantage over the oiled
plate method described in Section 4.6.2 as far as time is concerned.

An alternative and less subjective method of using comb sorters is to sort the fibres
into groups at predetermined length intervals, weigh the groups, and so obtain a mass
distribution for the sample (see Section 4.3.5). One way of doing this [17] is to
withdraw, a few at a time, all the fibres whose proximal ends lie between each comb
and the next, form them into convenient bundles, and weigh them on a micro-balance
of suitable capacity. In this procedure, the group intervals are determined by the
spacing of the combs, which must therefore be such as to provide at least ten groups
from the sample of material under examination and must extend over at least the
length of the longest fibre. For this reason, the Baer Sorter, with its nine combs
spaced 5 mm apart, would be unsuitable for cotton. Accuracy depends on the thorough
straightening of the fibres as they lie in the comb-bed, and appropriate allowances
must be made for the facts that (a) the distal, conterminous ends of the fibres inevitably
project a short distance behind the rearmost comb, and (b) it may not be possible,
according to the type of gripping tweezers used, to withdraw all the fibres right up to
the edge of each comb.

With the Schlumberger Analyser [18], which is designed for the sorting of wool
and other long fibre materials, the operations just described are carried out semi-
automatically, and a complete test on a wool top can be made in 1  –  11

4
1
2  hours. The

fibres are laid in the combs in a crimped condition, however, and results for wool are
consequently some 10% too low, though consistently so.

For cotton, which presents the greatest difficulties owing to its shortness, the most
accurate method of obtaining the length characteristics directly from a distribution by
weight is by the Suter-Webb Comb Sorter [19]. Here, the weight of the test specimen
is standardised at 75 ± 2 mg, and a three-stage process of combing is prescribed
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which ensures that, in the final tuft to be sorted, all the fibres are as straight as
possible, with no displaced or straggling fibres breaking the alignment of the more
distant fringe. By using the special tweezers, a long succession of small ‘pulls’ of
fibres is now carefully withdrawn from the forward projecting fringe (combs being
dropped out of the way as required) and deposited separately on plush-covered
boards, each capable of holding about ten pulls. If the successive pulls diminish in
length by only very small amounts (which is ensured by the requirement that their
number should be in the range of 65–100), and if the depositing of the pulls on the
plush is carried out meticulously as specified, then it may be assumed with negligible
error that each one consists of straightened fibres, all of the same length. It then
becomes a simple matter to measure each pull and assign it to its appropriate length
group for weighing. A suitable interval between the length groups is 1

8  inch (3 mm)
and the mid-point of the group range is taken to be its mean. From the weights of the
groups and their respective lengths, a reliable distribution by weight is obtained, but
it is perhaps desirable to repeat that the ‘mean’ length and other characteristics of the
material are derived from what is, in effect, a length-biased sample.

When the material to be examined is in the form of a random sliver of well-
straightened and parallelised fibres as, for example, a wool top or a finisher-drawframe
cotton sliver, the early stages of manipulating the sorter are modified [17] so that one
may obtain a cut-square sample directly. This is done very simply by cutting the top
or sliver, impaling it on the comb-bed with the cut end projecting slightly, and
squaring back by the removal of all cut fibres.

Comb sorters cannot, of course, be used for card slivers. Even when the fibres are
highly oriented, a certain amount of fibre breakage takes place, a fact that should be
borne in mind in contemplating the use of comb sorters in experimental work on fibre
breakage in processing or length fractionation in combing.

As already explained in Section 4.3.5, distributions by mass can only be transformed
into frequency distributions if, within the sample, the linear density of the fibres is
independent of, or bears a known relation to, length. With this in mind, it has been
suggested in reference to both wool [20] and cotton [21] that the linear density of
each length group can be determined by the method described in Section 3.5 and the
transformation thus made possible. It should be pointed out, however, that, in some
technical contexts, the proportionate weight of the different length groups is the
information that is really required and transformation is unnecessary.

Sometimes, the sole interest lies in the amount of short fibre present in the sample.
Comb sorters can be used to yield this information in terms of weight proportions
quickly and without the necessity for making fibre arrays. All that is needed is to
know the weight of the original sample and the weight of the fibres remaining after
those longer than the desired length limit have been withdrawn and discarded.

4.8 The Balls sledge sorter

This ingenious semi-automatic instrument was devised by the first great cotton scientist,
W. L. Balls, for use in cotton-breeding field stations where electricity was not available
[22]. Since it is now very rarely used and is somewhat complex in design and operation,
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it will not be described in detail here1, but it is worthy of brief mention if only to
show how far ahead of his time Balls was in recognising the pitfall of length bias.

The sample to be tested was first made up into the form of a short sliver of
parallelised fibres, prepared with the miniature drawbox referred to in Section 2.5.2.
This was then fed into the machine, which could be comfortably held in the hand and
with which, by suitable manipulation, the following operations were carried out.

• The leading end of the sliver was subjected mechanically to a series of squarings
in order to eliminate length bias (see Section 2.4.1).

• From the squared fringe, a small tuft, similar to that shown in Fig. 4.13 but
containing about 500 fibres, was withdrawn and passed slowly downwards through
a pair of delivery rollers. Since the leading ends of the fibres in the tuft were
aligned, the rotation of the rollers released the fibres in succession according to
their length, the shortest first and the longest last.

• Meanwhile, by manually traversing the sorter on its road wheels over a 180 cm
(6 foot) long strip of one-way hatter’s plush, the fibres were deposited as they
were released, each to its appointed place on the plush according to its length.
This was repeated for 20 tufts, the deposit at each traverse being superimposed
on those preceding it.

• Finally, the elongated deposit on the plush strip was gathered up into bunches
representing 3.2 mm (1/8 in.) intervals of fibre length and weighed on a torsion
micro-balance.

The sample, then, was a numerical sample, but the result was a mean length determined
from mass proportions (see Section 4.3.5). Results were very consistent, it being rare
for differences of as much as 0.8 mm (1/32 in.) between repeat tests to be encountered.
The time taken, however, was what would now be regarded as unacceptably long.

4.9 Cutting-and-weighing methods

4.9.1 Method 1 (Chandler)

From a representative sample of fibres, a tuft or staple is prepared by repeated
drawing and doubling and building it up by successive draws of small quantities, so
that the fibres lie straight and parallel and extend approximately equally on either
side of the middle of the tuft. The tuft is placed on a surface of fine cork linoleum,
or similar material, and clamped across its middle at right angles to the fibres by a
metal bar of width k (Fig. 4.15). The projecting fringes are cut off close to the edges
of the bar and their combined mass, expressed as a ratio, r, of the mass of the middle
portion, is then determined.

If L = mean fibre length, n = number of fibres in the tuft and c = mean linear
density, then the total mass of fibre = Lcn, the mass of the middle portion = kcn, the

mass of the fringes = cn(L – k), and the ratio, r
cn L k

kcn
L

k
 = 

(  –  )
 = 

 –  1
, whence:

1 A fuller description is given in the first edition of this book.
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L = k(r + 1) (4.10)

It should be noted that in this method a number of assumptions are made: (1) that
all fibres are at least as long as k and extend wholly across the middle portion; (2) that
they lie straight and free from crimp; (3) that the fibre linear density is the same for
all lengths; and (4) that the fibres are not tapered towards either end. Because of this
last assumption, the results for cotton are invariably on the low side. Ahmad and
Nanjundayya [23] show that for Indian cottons, if k is approximately l/2 as recommended
by Chandler [24], the results are too low by about 0.1 inch (2.5 mm) Even if, because

of (1) above, k is reduced to 1
8  inch (3.2 mm), the results are still about 5% too low

according to Lord [25].

4.9.2 Method 2 (Ahmed and Nanjundaya)

The following method was devised by Ahmad and Nanjundayya [23] with the object
of allowing for tapering fibre tips in measurements on cotton.

A representative sample is first made into a sliver by means of a Balls drawbox.
This is placed on a set of four combs, and one end is squared-back as required in the
squaring method of sampling (see Section 2.4.1). With a Baer-type tweezer, a numerical-
sample tuft is withdrawn and combed free of any stray fibres. The tuft is then cut, as
indicated in Fig. 4.16, into three sections, of which the lengths L1 and L2 are
predetermined and can be varied to suit the cotton under examination. Sections I and
III are next weighed, which gives masses M1 and M3. L3 is the mean length of the
fibres in section III.

Assuming the fibre linear density in sections I and III to be the same, then M1/L1

= M3/L3, i.e. L3 = M3/M1 × L1. Hence the mean length of the tuft, L, is given by:

L L L
L M

M
 = + + 1 2

1 3

1





 (4.11)

The principal assumption, namely that the fibre linear density in section I is the same
as that in section III, is justified on the grounds that, since the tuft is drawn from a
random sliver, the number of basal and apical ends should be equal in both sections.
How far this is true depends to some extent on the dimensions chosen for L1 and

k

4.15 Chandler’s method.

I II III

L1 L2 L3

4.16 Ahmad and Nanjundayya’s
method.
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L2. In general, since section I contains a length L1 of all the fibres in the tuft, the
fibre linear density in section I might be expected to be slightly greater than that in
section III. Hence L1M3/M1 will tend to be too small and L  will be slightly under-
estimated.

The other assumption is that all the fibres are at least as long as L1 + L2. To the
extent that fibres terminate within sections I or II, so will L  be over-estimated. The
two errors tend, therefore, to cancel one another, and it is claimed that for Indian
cottons the results obtained are not likely to exceed the true value by more than
0.01 inch (0.3 mm).

As regards the dimensions L1, L2 and L3, it is recommended that the weight ratio,
M3/M1, should be approximately unity, since otherwise the cut fibres in one section
may weigh appreciably more per unit length than those in the other. The middle
section should be neither too narrow nor too wide, because in the former case the
effect of the tapering ends will be magnified, whereas in the latter it will be diminished.

4.9.3 Method 3 (Muller)

This method, due to Müller [26], can be used only for measurements on slivers, tops,
rovings or yarns and gives the mean length of a length-biased sample.

A length of the strand, longer than the length of the longest fibre present, is cut,
measured and weighed to determine its linear density C. It is then held near its middle
by a suitable clamp, and all loose fibres on one side of the clamp are combed away.
The projecting beard that remains is cut off and its mass M determined.

Since the beard is half a Wilkinson tuft, it is evident that, using the symbols n and
w as before, we obtain

M
ncL

 = 
2

′
(4.12)

where ′L  is the length-biased mean length. Hence

′L
M

nw
 = 

2
(4.13)

But, assuming uniformity of the strand specimen, C = nc. Hence

′L
M
C

 = 
2

(4.14)

Because the fibres in the strand specimen are not stretched out straight, W is over-
estimated, and ′L  is given as less than it should be (see Section 4.9.4).

4.9.4 Method 4

This is a refinement of Müller’s method and is again applicable only to strands of
parallel fibres. Here the strand is held under a clamp of width k, and, after all loose
fibres have been combed away on either side, the two projecting fringes are cut off.
The combined masses of these, M1 + M3, and also that of the middle portion, M2, are
then determined (Fig. 4.17).
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M1 + M3 = n ′L c (4.15a)

It follows that

′L
M M

nc
 = 

+ 1 3 (14.5b)

But M2 = nkc; i.e. nc = M2/k. Hence:

′L k
M M

M
 = 

+ 1 2

2
(4.16)

According to Lord [25], the results obtained for cotton are about 10% too low because
the fibres in the mid-section are not straight, and, in fact, they agree fairly well with
the mean lengths of the corresponding numerical samples. In other words, the error
is approximately balanced by the bias in sampling. For cotton, it is recommended that
k should be 1

2  inch (12.7 mm), but for worsted tops Huberty [27] recommends 5 cm.

4.10 Automated scanning of fibre tufts

4.10.1 Automated procedures

The physical sorting of fibres into their various lengths is, in general, tedious and
slow. To obtain quicker results, numerous devices have been introduced in which a
representative tuft of a standard form is prepared and then scanned from end to end
for some property more or less linearly related to number of fibres reaching each
position. From results obtained in this way, and with suitable calibration, various
length characteristics of the material may be derived.

4.10.2 Thickness scanning

Thickness is one way of determining the amount of material at each position in the
tuft, but has now been superseded by other methods described below. In the 1960s,
the Uster Stapling Apparatus2, designed for the testing of cotton, is the most notable

k

W1 W2 W3

4.17 Müller’s method.

2 More details are given in 2nd and 3rd editions of this book.
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of the devices that operated on the thickness principle. It consists essentially of three
parts: (1) an intersecting comb sorter of the semiautomatic Schlumberger type, by
means of which a fringe of fibres having the characteristics of that shown in Fig. 4.13
may be rapidly prepared; (2) a tufting apparatus for converting the flattened fibre
fringe into a tuft of the form shown in Fig. 4.18; (3) a dial gauge with which the
thickness of the tuft can be measured from end to end.

4.10.3 Capacitance scanning

Suitably prepared fibre fringes or ‘draws’may also be scanned by traversing them
slowly between the plates of a condenser and recording the changes in its capacity.
The latter quantity may be assumed with negligible error to be proportional to the
weight of the fibres lying between the electrodes, i.e. length × linear density ×
number of fibres. Therefore, if the mean linear density of the fibres can be assumed
constant over all parts of the draw, and if the fibres lie straight and normal to the
width of the condenser, then successive readings of capacity lead directly to a cumulative-
frequency distribution based on a numerical sample. From this, the various parameters
of length may be calculated. The method is particularly useful for measuring
fibre length in combed slivers or rovings of wool and other fibres of similar length.
The fringe to be examined is of the type illustrated in Fig. 4.13 and is obtained
from the top or sliver by the squaring technique, essentially as described in Section
2.4.1.

The Almeter was introduced in the 1960s [28–30], but has since been additionally
automated and linked to a computer. An end-aligned sample is produced by a comber
device built on the lines of the Schlumberger Analyser (see Section 4.7.2) and is fed
at constant speed through the plates of a condenser. The signal is processed by a
computer to show a cumulative length diagram and values of hauteur and barbe,
their coefficients of variation, percentages of fibres longer or shorter than given
lengths and length exceeded by a given percentage of fibres, both of the latter
biased by cross-section or weight. Twisting of slivers is necessary to obtain accurate
results.

4.18 Uster clamping block with fibre tuft.
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4.10.4 Photo-electric scanning

Photo-electric scanning was first developed in the early days of electronics by Hertel
in 1940 for the testing of lint cotton [4]. Developments of his method are still the
main way of testing cotton lengths. The basic principle is that carefully prepared
fringes of cotton are passed through photo-electric scanning, in which the reduction
in signal depends on the number of fibres in the cross-section. Current instrumentation
for HVI testing of cotton uses automatic preparation and feeding of fringes through
photo-electric sensing, with the signal passed to a computer for analysis. The principles
of the method can be explained by reference to Hertel’s original Fibrograph test.

The sample to be examined is presented for scanning in the form of a pair of fibre
fringes, the composition of which is intended to be closely similar to that indicated
by the beard diagram in Fig. 4.9. In manual testing, the preparation of the fringes is
all-important for consistency of results and inter-laboratory agreement [31], and the
makers put considerable stress on the need for a careful following of instructions,
repeated checks and the exercise of judgement based on experience. In its original
form, the Fibrograph made provision for the changes in the photo-electric current to
be recorded graphically by hand against the distance of the slit from the roots of the
fringes. The resulting graph, called a Fibrogram (Fig. 4.19), thus shows by an indirect
measure the number of fibres surviving in the fringes as they are traversed from root
to tip. However, because of the thickness of the lens at the light source, scanning
cannot be carried out right at the very roots of the fringes and must start a short
distance away. The instrument is consequently insensitive to the presence of very
short fibres, and in practice the Fibrogram has its origin at a point representing a
length of 0.15 inch (3.8 mm).
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4.19 Fibrogram diagram (1 inch = 25.4 mm).
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The Fibrogram may be analysed graphically to yield various length parameters of
interest to the producers and users of cotton [4]. The tangent to the curve at its
starting point A cuts OY at P and OX at M. Then OM is the mean length of the fibres
in the original population longer than 0.15 inch (3.8 mm). If OP is bisected at Q and
the tangent to the curve from Q cuts OX at R, then OR is the upper-half mean length,
UHM (see Section 4.3.6), and the ratio of OM to OR is a valid index of uniformity.

Another significant quantity introduced by Hertel is the ‘span length’. As noted in
Section 4.3.4, the fibre beard represented by the Fibrogram shows the distribution of
fibre lengths that would project on one side of the nip of a pair of drafting rollers. The
curve can therefore be used to determine the span or setting between successive pairs
of drafting rollers to avoid more than any given proportion of the fibres being clamped
in both pairs of rollers simultaneously. A span length found useful in this connection
is the 2.5% span length, i.e. the length that is exceeded by only 2.5% of the beard
fibres scanned by the instrument. This is shown by OS in Fig. 4.19.

The curve itself is the locus of the various span lengths (abscissae) for the beard
scanned, and in computerised versions of the Fibrograph the span lengths are
automatically recorded on digital counters throughout the scanning operation. From
the scan lengths read off at suitably chosen intervals, the curve can be constructed if
desired and the mean, UHM, and other quantities determined graphically. Alternatively,
it may be considered that the sample is sufficiently characterised by the span lengths
at, say, 66.7, 50 and 2.5%, in which case tests may be made extremely rapidly, several
in a minute. With the original Fibrograph, the time required to make a complete test,
including preparation of the fringes and analysis of the Fibrogram, is about 10 minutes.
In the automated HVI tests, the analysis is computerised and testing is rapid.

The following are possible sources of error:

• The analysis of the Fibrogram is based on the assumption that, in the fringes
prepared in the manner described, all points along the length of each fibre have
an equal chance of coinciding with the line of the comb teeth. This is not strictly
true because the frictional drag of combing tends to displace the fibres outwards
somewhat and so leads to an over-estimate of length.

• The fibres in the fringe are assumed to be straight, whereas in fact they are
crimped, and length is therefore likely to be under-estimated. This is a source of
error held in common with most other methods.

• The tapering of the fibre ends also leads to some under-estimation of fibre
length.

• So also does fibre breakage incurred in the preparation of the sample, which
must, of course, at all times be minimised, perhaps especially if any mechanical
aid to expedite the operation is used.

• Because of personal errors in the drawing of the tangent PM, the estimate of the
mean length, OM, is not too reliable, though the UHM length is comparatively
little affected. So far as this latter quantity is concerned, it has been found
that, for cottons of staple length up to about 1

8  inch (29 mm), the result given by
the Fibrograph is correct to within 1

32
 inch (0.8 mm) but that above that length

accuracy falls off considerably [25].
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Another early photo-electric tester was the Shirley PEM Stapler [32]. This scanned
a hand-prepared tuft, similar to those shown in Fig. 4.10. The measured boundaries
are taken to lie where the visual density shows the greatest rate of change3. Consequently,
the test gave only one statistic of length, namely, the modal length. It did this very
rapidly (as regarded in the 1940s), and the quantity so measured agreed very closely
with the standard American staple lengths from 3

4 to 15
16 inch (19 to 33 mm). The

difficulty with hand-stapling lies in the fact that the boundaries of the tuft or staple
are ill defined: over a large part of the middle, the visual density of the fibres is fairly
uniform, but near the extremities it falls off until the tips of the longest fibres are
reached. The light reflected from the surface was focused on a photo-cell, and the
current generated was measured with a sensitive galvanometer. In this way,
determinations of visual density were made at equal intervals along the length of the
tuft, and, when these were plotted, a graph such as that shown in Fig. 4.20(a) was
obtained. If, then, the differences between successive readings were plotted, a graph
such as (b) was obtained, which indicated by its peaks the positions where the
greatest rates of change occurred. These peaks located the boundaries of the tuft, and
the distance separating these boundaries corresponded to the modal length of fibres
as they lay in the tuft.

4.20 PEM test.
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3 This is evidently also true of the subjective judgement of the hand stapler.
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4.11 Scanning individual fibres

4.11.1 Advanced fibre information system

The Uster Advanced Fibre Information System (AFIS), which was described for
fineness testing in Section 3.7.3, also provides data on fibre lengths. A fibre individualiser
unit opens the sample, typically 0.5 gram, separates individual fibres and transfers
them to an air-stream. As each fibre is carried past the photo-electric sensor, its
presence is detected. Hence the length of each fibre can be recorded. Computer
software analyses the data and provides numerical and mass-biased length distributions,
short fibre content, upper quartile length, 5.0% length and coefficients of variation.

Cui et al. [33] compare measurements of length by AFIS with those by Spinlab
HVI and Suter-Webb array (Table 4.3). Values of mean length are reasonably consistent,
but there are appreciable differences in short fibre content. Accuracy of prediction
may be affected by natural fibre length variation in sampling, number of fibres in
each test, number of repeats and accuracy of the length measurement. A major factor
is the length calibration level for short fibres. A shift of 0.01 inch (0.25 mm) would
change the short fibre content percentage by about 0.4%. There is high variability in
the short fibre contents, so that sample non-uniformity is another source of differences.
There is reasonable correlation between the different methods, so that users of a
given method can assess the relative incidence of short fibres in different consignments
of cotton.

4.11.2 Digital imaging

The application of digital imaging, which is the technology of the 21st century, to
length testing is a severe challenge. Whereas snippets can be used for diameter
measurement, whole fibres must be presented for length measurements.

The OFDA 4000 [34] prepares wool on a moving needle bed to form an end-
aligned beard of fibres, like that in Fig. 4.16. A moving gripper transports the beard
along a guide past a digital video-microscope in 5 mm steps. At each step, a digital
image across the beard is recorded and the sequence is continued until the longest
fibre has been scanned. The images are processed to count the number of fibres in the
cross-section and their diameters are saved on the computer. A minimum number of
fibres, typically 4000, are included in the count. The OFDA software analyses the
data to provide distributions of fibre length and compute values of hauteur and barbe.

Table 4.3 Fibre length measurements for 45 cottons by three methods. From Cui et al. [33]

Mean length (inches*) Short fibre content (%)

Array AFIS HVI array AFIS HVI

Average 0.92 0.96 0.89 11.41 7.41 9.56
Minimum 0.66 0.73 0.72 6.48 3.50 5.50
Maximum 1.13 1.19 1.13 26.13 17.40 23.20

* 1 inch = 25.4 mm.
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As described in Section 3.7.1, the data are also processed for diameter and curvature.
A draft test method for diameter and length measurements by OFDA4000 has been
reported by Caroll [35].
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5.1 Introduction

Fibre density plays a direct part in affecting the weight of fabrics, so that glass
fabrics, with a fibre density of 2.56 g/cm3, will tend to be heavy, whereas those of
polyethylene, with a density of 0.92 g/cm3, will be light. It is also a useful parameter
in fibre identification and occurs incidentally in many parts of textile physics.

The definitions are straightforward: density is the mass of unit volume and is
usually expressed in grams per cubic centimetre (g/cm3)1. For some purposes, it is
more convenient to use specific volume, which is the reciprocal of density and is
expressed in cubic centimetres per gram (cm3/g).

5.2 Measurement

The mass of a specimen is easily determined by weighing it on a balance, but the
determination of volume involves difficulties of definition and experimental problems.
Any mass of fibres, whether disorganised raw material or organised into yarn or
fabric, includes a large proportion of air as well as the fibres. Consequently, measurement
of its overall volume gives no information on fibre volume. There is an additional
complication with hollow fibres.

All measurements of volume, or of density directly, therefore depend on immersing
the material in a fluid that will displace all the air from around the fibres. The
simplest form of this method is shown in Fig. 5.1. The displacement of the level of
liquid in a measuring cylinder equals the volume of the added fibres.

Two fundamental sources of error are immediately obvious. Firstly, the liquid may
not displace all the air, particularly from crevices in the fibre surface. This means that
the measured volume will be too high and the density too low. Secondly, the liquid
may be absorbed by the fibres, which results in a smaller displacement of the liquid
level. This would give too low a volume and too high a density.

It is now generally accepted that the best values of density are obtained with a
large number of organic liquids (such as nitrobenzene, olive oil, toluene, benzene and

5
Fibre density

1The consistent SI unit is kg/m3; 1 g/cm3 = 103 kg/m3 (i.e. 1 tonne per cubic metre).
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carbon tetrachloride), which give the same results. Hermans [1] has put forward the
arguments in favour of this and pointed out that it is extremely unlikely that the same
values would be obtained if errors were involved. He has confirmed that these liquids
do not penetrate into the fibre material but do envelop the fibre and fill any lumens
or other true pores in native fibres. The earlier preference of Davidson [2] for the
higher value of density obtained on immersion in helium was rejected, partly because
of the evidence in favour of other values, but also because there was some evidence
that helium was absorbed by the cellulose.

The experimental method indicated above, although sound in principle, would not
be very accurate in practice. Some of the other standard methods, such as the use of
a density bottle, or weighing a specimen immersed in a liquid, need a fairly large
mass of material, from which it is difficult to exclude air completely. For single
fibres, or small bundles of fibres, flotation methods are preferred. For example,
Abbott and Goodings [3] found that, if chopped-up fibres were placed in a liquid (or
a mixture of liquids) of the same density as the fibres, and then centrifuged in a tube,
they remained as a uniform cloud; if the densities were different, they accumulated
into a single group, which floated if the fibre density was the lower and sank if it was
the greater. By a process of trial and error, the correct density can be found.

A more rapid adaptation of this method is the density gradient tube. This is a long
tube containing a heavy liquid (e.g. pentachlorethane, 1.7 g/cm3) at the bottom, a
light liquid (e.g. xylol, 0.9 g/cm3) at the top, and a continuously varying mixture of
the two between them. If fibres are dropped in, they sink to the point at which the
fibre density equals the liquid density and remain suspended there. Calibration of the
tube may be provided either by means of pieces of different materials of known
densities floating at their appropriate levels or by hollow glass spheres of varying
mean density. The fibre density can be found by interpolation between the known
densities on either side of the position at which the fibres come to rest. Methods of

Liquid

Fibres

Initial
level

Level after
fibres added

5.1 Fibre volume by displacement of liquid.
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setting up density gradient tubes and precautions to be adopted in their use are
described by Preston and Nimkar [4], Stock and Scofield [5] and Austin and Roberts [6].

De Vries and Weijland [7] have described a method of measuring density by
weighing fibres on a cantilever microbalance, first in air and then submerged in a
suitable liquid. Neelakantan and Patel [8] have described improvements on the
displacement and flotation methods.

5.3 Results

Typical values of the densities and specific volumes of fibres used in general textiles,
dry and at 65% r.h., are given in Table 5.1. It will be seen that most of these fibres
have a density slightly greater than that of water. Table 5.2 gives densities of some
high-modulus fibres, used in composites and specialist applications, and Table 5.3
gives densities of some chemically and thermally resistant fibres. Some fibres, such
as cotton and to a much greater extent kapok, do contain internal void spaces, which
will lower the overall density to a value of about 1.35 g/cm3 in cotton.

The density of fibres varies when they absorb water, as is shown in Fig. 5.2. The
increase in density on the addition of water, which has a density less than that of the
fibres, means that there is a net contraction. The reasons for this are discussed later
in connection with the swelling of fibres (see Section 12.1.6).

5.4 Density and order

Density measurement is commonly used as a means of estimating the degree of order,
or crystallinity, of fibres. The necessary relation was given earlier as equation (1.3):

Table 5.1 Densities of some general-purpose textile fibres [4, 9–11]

Fibre Density Specific volume
(g/cm3, Mg/m3) (cm3/g)

dry 65% r.h. dry 65% r.h.

Cotton (lumen filled) 1.55 1.52 0.64 0.66
Viscose rayon 1.52 1.49 0.66 0.67
Secondary acetate, triacetate 1.31 1.32 0.76 0.76
Wool 1.30 1.31 0.77 0.76
Silk 1.34 1.34 0.75 0.75
Regenerated protein (casein) 1.30 1.30 0.77 0.77
Alginate 1.75 0.57
Nylon 6.6, nylon 6 1.14 1.14 0.88 0.88
Polyester (PET) 1.39 1.39 0.72 0.72
Acrylic (PAN) 1.19 1.19 0.84 0.84
Polyethylene (high density) 0.95 0.95 1.05 1.05
Polypropylene 0.91 0.91 1.09 1.09
Modacrylic (Dynel) 1.29 1.29 0.78 0.78
Modacrylic (Teklan) 1.34 0.75
Polyvinyl chloride (PVC) 1.40 0.71
Polylactic acid (PLA) 1.25 0.80
Glass 2.5 2.5 0.40 0.40
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degree of order = 
 –  
 –  

am

cr am

ρ ρ
ρ ρ (5.1)

The fibre density, ρ, is measured by the methods described above. The crystal density,
ρcr, can be calculated from the dimensions of the unit cell, determined from the X-
ray-diffraction pattern, and the molecular weight. Difficulty arises in the estimation
of the amorphous density, ρam. In some instances, the material can be obtained in the
amorphous state, for example, by the rapid quenching of undrawn polyester fibres. In
other cases, the value must be obtained by extrapolation or by estimation from
analogous compounds or the contribution of the constituent groups [18].

Table 5.2 Densities of some high-modulus fibres [12]

Fibre Density Specific volume
(g/cm3, Mg/m3) (cm3/g)

Para-aramid (Kevlar, Twaron) 1.44 0.69
Aramid (Technora) 1.39 0.72
High-modulus polyethylene (HMPE) 0.97 1.03
LCP fibre (Vectran) 1.40 0.71
PBO (Zylon) 1.56 0.64
PIPD (M5) 1.70 0.59
Carbon 1.8–2.0 0.56–0.55
Silicon carbide based 2.4–2.75 0.42–0.36
Silicon carbide near stoichiometric 3.0 0.33
Alumina 3.6–3.9 0.28–0.26
Alumina/silica 2.7–3.4 0.37–0.29
Alumina/zirconia 4.1 0.24
Steel 7.85 0.13

Table 5.3 Densities of some chemically and thermally resistant fibres [12]

Fibre Density Specific volume
(g/cm3, Mg/m3) (cm3/g)

Polyvinylidene chloride (PVDC) 1.60 0.63
Polytetrafluorethylene (PTFE) 2.2 0.45
Polyetheretherketone (PEEK) 1.30 0.77
Polyphenylene sulphide (PPS) 1.37 0.73
Meta-aramid (Nomex) 1.46 0.68
Melamine-formaldehyde (Basofil) 1.4 0.71
Novoloid, phenol-aldehyde (Kynol) 1.27 0.79
Polyimide (P84) 1.41 0.71
Polyamide-imide (Kermel) 1.34 0.75
Polybenzimidazole (PBI) 1.43 0.70
Semi-carbon (oxidised acrylic) 1.35–1.4 0.74–0.71
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5.2 Variation of density with moisture regain for cotton [13], viscose rayon
[14], silk [15], wool [16] and nylon [17].
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6.1 Introduction

This chapter deals with basic thermal properties of fibres. Thermal transitions and the
associated changes in structure and properties are covered in Chapter 18, which includes
an account of heat setting of fibres. For simple solid materials, the thermal properties
consist of the thermal conductivity, specific heat and its variation with temperature,
the coefficient of thermal expansion, the melting point, and the latent heat of melting.
In fibres, many of these properties have not been studied in great detail because the
relevant practical effects are influenced much more by other factors. The thermal
conductivity of a textile fabric depends to a much greater extent on the air entrapped
within it than on the fibre conductivity. Dimensional changes in fabrics due to reversible
swelling on moisture absorption are much larger than those due to reversible thermal
expansion. For moisture-absorbing fibres, the heat of absorption resulting from changes
in moisture regain, rather than the thermal capacity, contributes the largest share of
the uptake or loss of heat by a textile material when the ambient conditions change.

6.2 Thermal parameters

6.2.1 Specific heat of fibres

Various workers have measured the specific heat of dry fibres at room temperature,
and some typical values are given in Table 6.1.

Dole and his associates [3–8] have measured the variation of specific heats of
several polymers with temperature, in a search for transition effects in the structure.
Figure 6.1 shows results for nylon. The high values of specific heat found at about
260 °C are due to the melting of the nylon. Since this is spread over a range of
temperature, the heat does not appear as a latent heat of fusion at a single temperature
but contributes to the heat change over the whole melting range. By integration of the
area under the peak, values of latent heat of fusion of about 150 J/g are found, though
the values vary with the history of the fibre. This gives rise to high values of the
apparent specific heat. Some evidence was also found of a small latent heat associated
with a change in structure at about 165 °C.

Figure 6.2 shows some results for polyethylene terephthalate (Dacron) in various
forms. The sharp rise at about 70 °C is associated with a second-order transition in

6
Thermal properties
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Table 6.1 Specific heat of dry fibres

Fibre Specific heat
J/(g K)

Cotton [1] 1.22–1.35
Rayon [1] 1.35–1.59
Wool [2] 1.36
Silk [2] 1.38
Nylon 6 [3] 1.43
Nylon 6.6 [1] 1.46
Polyester (PET) [1] 1.03
Asbestos [2] 1.05
Glass [2] 0.80

6.1 Specific heat of drawn nylon filament [4].

6.2 Specific heat of Dacron polyester [5]: (a) undrawn; (b) annealed undrawn;
(c) commercially drawn fibres.
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the structure, and the minimum at about 100 °C with increasing crystallisation, resulting
in an evolution of heat. Both of these effects can be eliminated by annealing the
fibres. A maximum, occurring at about 250 °C, is associated with melting accompanied
by the absorption of the latent heat of fusion.

Teflon (polytetrafluoroethylene) is interesting, since there are two first-order
transitions, with latent heats estimated to be 8.4 and 1.7 J/g, at 20 and 28 °C, respectively.
This means that the specific heat apparently rises to very high values near room
temperature, as is shown in Fig. 6.3. The transition at 20 °C is believed to be due to
a change from a fully crystalline form with three-dimensional order to a structure
with a lower degree of order [9].

The absorption of water, which as a liquid has a specific heat of 4.2 J/(g K), would
be expected to increase the specific heat of fibres. For changes in temperature at
constant regain, a simple mixture law would give the relation:

mixture specific heat =  = 
 + 4.2
1 + 

0′C
C r

r
(6.1)

where C0 = specific heat when dry and r = fractional regain.
Changes at constant relative humidity will, as discussed in Chapter 8, have a very

much larger effective specific heat because of the contribution from the heat of
sorption associated with the regain changes.

Even at constant regain, however, equation (6.1) will not predict actual specific
heats, for two reasons. Firstly, the absorbed water may not be behaving like liquid
water: it may be more like ice with a specific heat of about 2 J/(g K). Secondly, the
absorption of water, which loosens up the fibre structure, may change the effective
specific heat of the polymer molecules. A correction term, ∆C, will therefore be
added to C′ to give the actual specific heat, C. The term ∆C can be related to changes
in the heat of wetting with temperature. If ∆W is the difference between the heat of
wetting from zero regain and the heat of wetting from regain r, it follows from the
First Law of Thermodynamics that the changes in heat along either of the two alternative
routes shown in Fig. 6.4 must be the same. Hence:

6.3 Specific heat of PTFE (Teflon) near room temperature [8].
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∆W + C(1 + r) dT = (C0 + 4.2r) dT + ∆W + (∂∆W/∂T) dT (6.2)

from which:

C
C r

r
W T

r
 = 

 + 4.2
1 + 

 + /
1 + 

0 ∂ ∂∆ (6.3)

Hearmon and Burcham [10] found agreement, within the limits of experimental
error, between values of ∆C and (∂∆W/∂T)/(1 + r) for wood cellulose. The values of
the ∆C term ranged from about 0.1 J/(g K) at medium regains and room temperature
to 0.4 J/(g K) at high regains and 60 °C, so that the correction is small but appreciable.

Figure 6.5 shows how the specific heat of wool varied with moisture regain in
some studies by Haly and Snaith [11], using an adiabatic calorimeter. Examples of

6.4 Alternative routes for moisture absorption and temperature change.
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6.5 Variation of specific heat of wool with regain. From Haly and Snaith [11].
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particular plots of variation of specific heat with temperature are shown in Fig. 6.6.
Very careful experimental work is needed, and various corrections have to be applied:
for example, in addition to the usual need to minimise energy losses, a correction is
required for the influence of evaporation into the small void space in the sample
container. On the first heating, a small dip in the curve was often found at about
50 °C: this is probably due to the release of elastic energy set in the fibres during its
compression into the container.

The specific heats generally show a linear variation with temperature, with a
higher slope at higher regains. However, in the samples at all regains above zero,
there is a definite upturn at about 50 °C: it becomes more pronounced at higher
regains and may be a latent heat from a small, diffuse, first-order transition.

A much more distinct peak appears at low temperatures at regains greater than
25%. At a regain of 34%, this effect is large and sharp and has its peak just below
0 °C: it is obviously associated with a change in loosely held water from an ice-like
to a liquid-like form. The latent heat of fusion of this transition is 200 J/g of water at
34% regain. At lower regains, the peak is less marked, and its maximum occurs at
lower temperatures. In all cases, the rise to the peak starts at –30 °C, which indicates
that this is the temperature at which the first absorbed water to be involved in the
effect goes through the transition: the further absorbed water will have an effect at
successively higher temperatures.

These results for wool are of interest not only in themselves, but also as being
indicative of effects that may occur in other fibres.

6.6 Individual plots of variation of specific heat of wool samples with regain
at various temperatures. From Haly and Snaith [11].
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6.2.2 Thermal conductivity

Until the 1980s, there are no records of direct measurement of the thermal conductivity
of fibres. However, an estimate of relative values can be obtained by comparing the
results of measurements of thermal conductivity of pads of different fibres packed to
the same density [12, 13]. Some values are given in Table 6.2. The protein fibres have
a lower conductivity than the cellulosic fibres. Experiments can also be made with
materials in the solid form. Figure 6.7 shows the variation of thermal conductivity of
horn, which is a similar material to wool, with regain, and Table 6.3 gives values for
the thermal conductivity of some solid polymers.

Table 6.2 Thermal conductivity of pads of fibres with a
bulk density of 0.5 g/cm3 [12, 13]

Fibre Thermal conductivity
(mW/(m K))

Cotton 71
Wool 54
Silk 50

Note: Still air has a thermal conductivity of 25 mW/(m K)

Table 6.3 Thermal conductivity of polymers [1, 12]

Thermal conductivity
(mW/(m K))

Cellulose acetate 230
Nylon 250
Polyester (PET) 140
Polyethylene 340
Polypropylene 120
Polyvinyl chloride (PVC) 160
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6.7 Variation of thermal conductivity of horn with moisture regain [12].
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Kawabata [14, 15] has measured the longitudinal conductivity of fibres, using the
apparatus shown in Fig. 6.8(a). About 10 000 fibres are clamped at 20 mm width with
3 mm between the clamps. Since the heat flow is very small, about 20 mW, great care
has to be taken to avoid errors. The conductivity KL is given by:

K
qL

A TL  = ∆ (6.4)

where q = heat flow rate, L = specimen length, A = total area of fibre cross-sections
and ∆T = temperature difference between ends.

In order to determine the anisotropy of thermal conductivity, Kawabata used a
composite film of aligned fibres with an epoxy matrix at a fibre volume fraction of
about 80%. An area of film, 50 × 50 mm2 and between 0.5 and 1 mm in thickness,
was clamped between plates as shown in Fig. 6.8(b). The transverse conductivity KT

was calculated from a series mixture law, though this is not strictly valid for an
assembly of cylinders in matrix. Owing to the high volume content, the error may be
small.

K
qV

A T L
q V

K

T
F

R

R

 = 
[ / ] –  

(1 –  )∆ 





(6.5)

where VF = fibre volume fraction and KR = thermal conductivity of resin.
Table 6.4 shows the measured thermal conductivities. The high values for carbon

fibres reflect the continuous ring structure and for aramids the close sequence of
benzene rings. The values for the different aramid and carbon fibres shows the
importance of molecular arrangement and orientation, which would also account for
the differences between filament and staple. The conductivities of these fibres increase
by about 25% between 20 and 200 °C. There is a high degree of anisotropy, though

6.8 Thermal conductivity measurement units: (a) axial; (b) transverse. From
Kawabata [14].
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the results for glass fibre, which is expected to be isotropic, suggest that the composite
mixture equation underestimates the transverse fibre conductivity. The increasing
anisotropy in the aramid and carbon fibres correlates with the increasing anisotropy
of their moduli.

Lavin [16] confirms the correlations of thermal and electrical conductivities with
moduli of carbon fibres. In PAN-based fibres there was an almost exponential increase
in thermal conductivity from 5 to 100 W/(m K) with an increase in moduli from
250 to 600 GPa. In pitch-based fibres, the thermal conductivity reached almost
900 W/(m K) at 950 GPa.

6.2.3 Thermal expansion and contraction

Only a limited amount of work on the reversible thermal expansion of fibres has been
done. Some values of the coefficients of expansion are given in Table 6.5. It will be
noticed that the coefficient for nylon and polyester fibres is negative. This anomalous
contraction may also occur with other fibres. The thermodynamic arguments discussed
in Section 20.8.1 may be applied to thermal expansion and contraction. Equation
(20.62) is:

∂
∂







∂
∂







S
l

F
T

T l

= – (6.6)

where S = entropy, l = length of fibre, F = tension of fibre and T = temperature.

Table 6.4 Thermal conductivities of fibres. From Kawabata [14, 15]

Fibre Thermal conductivity (W/(m K)) Anisotropy

Longitudinal KL Transverse KT KL/KT

Aramid
Kevlar 29 3.05 0.192 15.9
Kevlar 49 3.34 0.212 15.8
Kevlar 149 4.74 0.230 20.6

Carbon
Torayca T-300 6.69 0.530 12.6
Torayca M-308 18.33 0.667 27.5
Torayca M-408 58.81 1.215 48.4

E-glass 2.250 0.509 4.42
Nylon 1.43 0.171 8.38
Polyester filament 1.26 0.157 8.01
Polyester staple 1.18 0.127 9.25
Polypropylene 1.241 0.111 11.18
Acrylic 1.028 0.172 5.93
Rayon filament 1.89 – –
Rayon staple 1.41 0.237 5.97
Cotton 2.88 0.243 11.85
Flax 2.851 0.344 8.23
Wool 0.48 0.165 2.91
Silk 1.49 0.118 12.64
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(6.8)

This means that the expansion is positive when stretching the fibre causes an increase
of entropy, i.e. a greater degree of disorder due to increasing thermal vibrations. It is
negative when the entropy decreases on stretching, i.e. the material becomes more
highly ordered, as it does in a rubber when the molecules are straightened (see
Section 20.1.2). This is more commonly observed as an increase in tension, indicating
that the fibre wants to contract, on heating. Superimposed on the above effect there
is the usual volume expansion due to the fact that the molecules take up more space
at higher temperatures when they are vibrating more strongly. In rubber, this leads to
the thermoelastic inversion: at zero tension, a rubber expands on heating because of
the volume change, but a rubber specimen held at constant tension will contract
axially if its extension is greater than about 10%. As shown in Section 20.3.2, the tie-
molecules, which link the crystallites in nylon and polyester fibres, are in an extended
rubbery state. Consequently, the coefficients of expansion can be negative as shown
in Table 6.5.

A useful property of carbon fibres is their low coefficient of thermal expansion.
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Table 6.5 Coefficient of linear expansion of fibres (axial)

Fibre Coefficient of expansion
per degree C

Cotton [17] 4 × 10–4

Cellulose acetate [18] 0.8–1.6 × 10–4
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7.1 Introduction

It has been known for a long time that fibres take up moisture from the air. Leonardo da
Vinci (1452–1519) has, in his notebooks, two drawings of self-indicating balances with
cotton on one pan and wax on the other; the increased weight of the cotton in a damp
atmosphere alters the setting of the balance so that it can be used ‘for knowing the quality
and density of the air and when it will rain’. Earlier, Nicholas of Cusa (1401–1463) had
measured the increase in weight of wool for the same purpose. The first detailed
investigation of the subject was carried out by Schloesing [1] in 1893. Between 1924 and
1932, Urquhart and his collaborators conducted an investigation of the absorption of
cotton, rayons and acetate that will remain a classic of painstaking experiment.

The property of absorbing moisture is a valuable feature of clothing materials. Apart
from its direct utility in keeping the skin dry, the absorption of water causes the fabric
to act as a heat reservoir, protecting the body from sudden changes of external conditions.
However, it may be a disadvantage in drying the hygroscopic fibres that it is necessary
to remove the absorbed moisture that is not present in the non-hygroscopic synthetic fibres.

The absorption changes the properties of fibres. It causes swelling to occur, which
alters the dimensions of the fibre, and this, in turn, will cause changes in the size,
shape, stiffness and permeability of yarns and fabrics, The mechanical properties and
the frictional properties are altered, so affecting the behaviour of the fibres in processing
and in use. Wetting and drying may lead to permanent set or creasing. The moisture
condition of the material is one of the most important factors in determining its
electrical properties; ‘static’ is much less likely to occur in damp conditions.

The above examples show the technological importance of moisture absorption in
fibres. There is also a direct commercial interest. In 100 kg of raw cotton, for example,
there may be up to 12 kg of water. Since it is expensive to pay for this at the price of
raw cotton, it must be allowed for in calculating the weight to be charged.

7.2 Definitions

7.2.1 Humidity

The absolute humidity h of an atmosphere is defined as the mass of water in unit
volume of air. The dampness of the air is also indicated by the vapour pressure p that

7
Equilibrium absorption of water
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is, the partial pressure of the water vapour in the atmosphere. The most convenient
term is the relative humidity H, given by:

H h
h

 = 100 
s





 (7.1)

where hs is the absolute humidity of saturated air at the same temperature. At ordinary
air temperatures, this ratio differs inappreciably from the corresponding ratio of
vapour pressures.

Since the properties of fibres vary with the moisture condition, testing should be
done under controlled conditions. For this purpose, a standard temperate atmosphere
is defined as one of 65% r.h. and 20 °C1. The permitted tolerances for testing are
± 2% r.h. and ± 2 °C. An uncontrolled indoor atmosphere is usually drier than this.

7.2.2 Equilibrium

When a textile material is placed in a given atmosphere, it takes up or loses water at
a gradually decreasing rate (Fig. 7.1) until it reaches equilibrium, when no further
change takes place. This is a dynamic equilibrium, which occurs when the number of
water molecules evaporating from the specimen in a given time becomes equal to the
number condensing and being absorbed.

7.2.3 Regain and moisture content

The amount of water in a specimen may be expressed in terms of either the regain or
the moisture content:

regain = 
mass of absorbed water in specimen

mass of dry specimen
  100% = × R (7.2)

Time

R
eg

ai
n

Equilibrium Hysteresis

7.1 The approach to moisture equilibrium, with hysteresis depending on
whether sample is gaining or losing water.

1 In tropical and sub-tropical countries, 27 °C may be used as a secondary standard.
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moisture content = 
mass of absorbed water in specimen

mass of undried specimen
  100% = × M (7.3)

The two are simply related, for, if the dry mass = D and the mass of absorbed water
= W, we have:

R
W

D
 = 

100
(7.4)

M
W

D W
W D
W D

R
R

 = 
100

 + 
 = 

100 /
1 + /

 = 
1 + 
100

(7.5)

7.2.4 Recommended allowance

For commercial transactions, a set of values of recommended allowance2 has been
agreed on. The mass of a consignment of a textile material on which the charge is to
be based is known as the correct invoice mass and is equal to the mass that the
consignment would have if its regain were the recommended allowance.

It should be noted that the values of the recommended allowances are chosen
purely for convenience, since they are near the values found in practice and are not
the regains in a standard atmosphere. The values of the recommended allowances are
included in Table 7.3.

7.3 Measurement of regain

7.3.1 The gravimetric method

The gravimetric method is the basic method of measuring regain or moisture content,
and any indirect method must be calibrated by it. The sample to be tested is weighed,
dried and then weighed again. The regain R is calculated as follows:

mass of undried specimen = W + D = m1

mass of dried specimen = D = m2

R
W

D
m m

m
 = 

100
 = 100 

(  –  )
%1 2

2
(7.6)

No difficulty is involved in the first weighing, except that care should be taken that
the regain of the sample does not change before or during the weighing. The
determination of the dry weight does involve certain difficulties.

7.3.2 Difficulties involved in drying the specimen

To obtain the most accurate results, the sample should be dried by exposing it in an
enclosed space containing an efficient drying agent, such as phosphorus pentoxide,

2Commercial regain in the United States
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at room temperature. The high affinity of the drying agent for water results in complete
drying of the specimen, and, since the temperature is not raised, other changes in the
specimen are not likely to occur. This method, however, has the disadvantage that it
is extremely slow. Davidson and Shorter [2] found that a period of from 4 to 6 weeks
was necessary to dry 8 g specimens of cotton. This slowness renders the method
impracticable except for very special investigations.

The usual method in practice is to dry the specimen in an oven at about 110 °C.
The raising of the temperature of the air lowers its relative humidity, since, although
the absolute humidity of the air changes very little, the saturation humidity increases
enormously. Water must then evaporate from the specimen until it reaches equilibrium.
Since all chemical processes are more rapid at higher temperatures, this does not take
long.

However, the relative humidity in the oven is not zero. If the air outside the oven
has a relative humidity of 50% at 20 °C, when it is heated to 110 °C its relative
humidity will be 0.8%. The moisture that is left in equilibrium with this humidity is
known as the residual regain and is the first inherent source of error in the oven
method. It results in a measured value of the regain that is too low, since the loss of
weight on drying is not as great as it should be.

The heating of the specimen may cause substances other than water, for example,
oils and waxes present as impurities, to be driven off from the sample. This is known
as permanent loss and is the second inherent source of error in the oven method. It
causes the measured loss of weight to be greater than it should be and thus gives a
high value of the regain. Figure 7.2 illustrates the two sources of error. Figure 7.2(a)
shows the permanent loss of soda-boiled and unbleached cotton after 3 h heating, dry,
in a vacuum. Figure 7.2(b) shows the residual regain in cotton due to a water vapour
pressure of 8 mm of mercury (1.07 kPa) at various temperatures. The change of
weight of bleached cotton follows this curve closely, but the raw cotton shows a
greater change in weight owing to the permanent loss. The amount of permanent loss
can be shown by allowing the specimen to reabsorb water and then drying again at
90 °C; for bleached cotton, this shows little difference from the previous value, but
the value for raw cotton is almost 0.2% lower than the previous value owing to the
permanent loss in the first drying to 130 °C.

The amounts of error due to these causes will vary with the conditions but they
may both be of the order of 0.2% in the value of the regain. The true dry weight is
given by:

true dry weight = oven-dry weight – residual regain + permanent loss

7.3.3 Experimental practice

For commercial and routine testing, a special oven is usually used. It contains a
basket in which about 1 kg of material can be placed and weighed in situ. The
material is then dried until its weight becomes constant in a current of heated air. The
dry sample is weighed with the air current switched off. Stephenson [3] has described
the experimental errors that may occur:
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• The differing density of hot and cold air will affect the buoyancy of the specimen.
• Convection currents may affect the balance, but this can be minimised by a well-

designed oven.
• Absorption may occur during weighing, after the air current has been switched

off.

The errors should not total more than 0.1% in the value of the regain. Balls [4] found
that random errors in routine oven-testing amounted to ±0·2% in the regain value for
cotton at 10% regain.

More rapid tests may be made by using an apparatus in which a stream of hot air
is blown through a container holding the specimen. The container can be removed
and closed for weighing. In another instrument, a standard weight of material is used,
and, after drying, the regain is directly indicated on a scale.

Laboratory tests are usually made on smaller samples, which are placed in weighing
bottles. For the most accurate work, they are dried in a desiccator with a drying agent.
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7.2 (a) Permanent loss on heating 100 g of dry cotton for 3 h in vacuo. (b)
Change in weight of samples of cotton dried at water vapour pressure of
8 mm of mercury (1.07 kPa). Points A and B are for material dried at 130 °C,
allowed to reabsorb water at room temperature, and then dried at 90 °C. From
Davidson and Shorter [2].
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A more rapid method is to dry them in a small chemical oven at 110 °C. The bottles
are removed from the oven, stoppered up and cooled before being weighed. The
errors liable to occur in this method are:

• absorption of moisture before the stopper is replaced;
• enclosure of hot air in the container, giving it added buoyancy (the amount of the

error due to this cause will depend on the relative size of container and sample);
• convection errors, which should be negligible if the bottle is cooled;
• diffusion of moisture into the bottle, which can be prevented by a good seal.

Stephenson [3] estimates that the errors due to these causes may be between 0.2 and
0.8% in the value of the regain.

Table 7.1 gives a comparison of results obtained by LeCompte and Lipp [5] when
using various methods for determining moisture in wool. They conclude that toluene
distillation (Section 7.3.4) is the most accurate method in this case. Impurities accounted
for less than 0.01% in the water distilled over.

The techniques involved in obtaining accurate relations between equilibrium regain
and relative humidity have been reviewed by McLaren and Rowen [6].

7.3.4 Other direct methods

Another method of determining the water in the material is by heating the sample
with toluene (boiling point 111 °C) and measuring the amount of water that distils
over and is collected in a receiver. The toluene used should be saturated with water.
The method is not open to the error of residual regain, since a fresh atmosphere of
toluene is continually being supplied. Errors due to permanent loss can be checked
by analysis of the water collected.

Van Lamoen and Borsten [7] have described a method for the titration of water,
which they consider to be superior to the use of drying ovens, though the reagents are
relatively expensive.

7.3.5 Indirect methods

Methods based on the variation of the electrical properties of fibres have been used
to indicate their moisture condition.

Table 7.1 Regain determination for wool [5]

Method Average Range of values of regain
% in three tests

Vacuum oven over P2O5 7.13* 0.22
Conditioning oven 110 °C 7.16 0.19
USDA suction drier 150 °C 7.27 0.15
Forced-draught drier 7.33 0.16
Toluene distillation 7.77 0.17

*Still falling at 0.05% per day at end of test.
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The Shirley Moisture Meter [8] was, at one time, widely used for the measurement
of electrical resistance of cotton, and, although it is no longer manufactured, its
essential features could be reproduced in other equipment. As illustrated in Fig. 7.3,
an electronic circuit measures the resistance between the inner and outer electrodes
of the cone, which is pressed onto the sample of fibre. Other types of electrode may
be used for material in other forms. Because of the rapid variation of electrical
resistance with moisture content, the method is sensitive. The resistance values depend
on fibre type and are sensitive to temperature, additives, contact pressure and material
form, but, if a resistance meter is properly calibrated for the test, it gives an accurate
measure of resistance. Instruments based on the variation of dielectric constant are
also available, but they suffer from the disadvantages that the weight and distribution
of material between the plates of the condenser must be controlled and that the
variation of dielectric constant with moisture content is much less than the variation
of resistance. The capacity method has been extensively used in process-control
applications, but, where it can be applied, a resistance method is better.

Another indirect method of measuring regain is to shake up a known weight of the
sample with calcium carbide in a closed container. This reacts with the water and
generates acetylene; measurement of the pressure indicates the regain.

The Shirley Moisture Regain Indicator may also be mentioned. A prepared sample
of material is hung on a balance, and, as the relative humidity changes, its weight
changes, and the regain is directly indicated on a scale. This may be placed in a
spinning room and used for calculating the dry or standard weights of the material
being processed.

7.4 Relation between regain and relative humidity

7.4.1 General

There is hysteresis in the relation between the regain of a textile material and the
relative humidity of the atmosphere with which it is in equilibrium. This is illustrated

Pressure

Electronic
circuit

Indicator

7.3 Basic features of Shirley Moisture Meter.
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in Fig. 7.1, which shows the approach to equilibrium in the same atmosphere of two
specimens initially at different regains. The specimen that originally had the higher
regain also has the higher regain at equilibrium. Depending on its previous history,
the specimen may come to equilibrium anywhere in a range of metastable states and
does not come to a true thermodynamic equilibrium. In relating regain to relative
humidity, it is usual to plot two curves (Fig. 7.4). The first curve A, commonly called
the absorption isotherm, is a plot of equilibrium regains at successively higher humidities
of a specimen initially bone-dry; the second curve B, the desorption isotherm, is a
plot for a specimen initially wet, at successively lower humidities. The nomenclature
is unfortunately in confusion. Desorption always refers to the loss of water, but the
terms sorption, absorption and adsorption are used variously by different authors for
the uptake of water or for the whole general phenomenon. Adsorption is, however,
best reserved for a specialised meaning implying a particular mechanism of attachment
of the water molecules.

The curves usually have the sigmoidal shape shown in Fig. 7.4: a rapidly increasing
regain at low humidities, followed by an almost linear portion, and then a more rapid
rise at high humidities. The two curves must join at the origin, but Urquhart and
Eckersall’s experiments [9] indicated that they were separate at 100% r.h. Wetting the
specimen caused the values to lie on a higher curve than could be reached by exposure
in a saturated atmosphere. Ashpole [10] has disputed this view and produced
experimental results indicating that there is a rapid rise in the absorption curve near
the saturation point (Fig. 7.5). Experiments are difficult near saturation, since the
rapid rise in the absorption means that a large amount of water has to be taken up
under a small vapour pressure gradient when conditioning is very slow, while, if
there are any temperature fluctuations, it is easy for supersaturation and condensation
to occur. Ashpole devised the technique of enclosing the specimen in waxed gauze
surrounded by a cellophane membrane and placing this in a solution of sugar of the
concentration needed to give the required humidity. This reduces the distance over
which diffusion has to occur and so hastens the attainment of equilibrium. By special
precautions, temperature fluctuations were kept below 10–4 °C. At the highest humidities,
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7.4 Typical curves of regain of soda-boiled cotton against relative humidity: A,
absorption; B, desorption; C, intermediate [9].
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Ashpole found that the regain varied continuously with time, and, to allow for this,
he extrapolated back to zero time. This effect casts some doubt on the validity of his
results, and the exact form of the curves near saturation remains uncertain.

The two curves are the limiting equilibrium values. Equilibrium can be attained at
any point between them by taking the specimen through a suitable chain of humidities.
The curve C in Fig. 7.4 shows a typical result for the desorption of a specimen that
had previously been absorbing. The intermediate curves are also sigmoidal in shape.

Taylor [11, 12] has shown that hysteresis occurs even in cycles at low relative
humidities. The results given in Table 7.2 show that at about 1% r.h. the hysteresis
due to desorption from 4% r.h. may be only a little less than half the hysteresis due
to desorption from saturation.

7.4.2 Comparison of various materials

Figure 7.6 shows the relations between regain and relative humidity for various
textile fibres, and Table 7.3 gives values of regains at 65% r.h. and the widths of the
hysteresis loops.

Cotton shows the typical behaviour. There are small differences between cottons
of different origins, for example, at 57.6% r.h. Urquhart and Williams [25] found
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7.5 Hysteresis loop for viscose rayon near saturation. ο Ashpole’s
experimental values [10]; + absorption; × desorption values found by
Urquhart and Eckersall [9].

Table 7.2 Hysteresis in cycles at low regains [11, 12]

Material r.h. Absorption (Desorption regain – absorption regain) (%)
(%) regain (%) cycle 0–4% r.h. Cycle 0% r.h. to

saturation

Viscose rayon 0.85 0.95 0.23 0.49
(Fibro) 1.7 1.38 0.14 0.69

4 2.19 – 0.69
Cotton 1.7 0.66 0.036 0.095

4 1.07 – 0.159
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absorption regains ranging from 6.76% for a Texas cotton to 7.19% for a Peruvian
cotton. After soda-boiling to remove impurities, the difference between these two
cottons decreased to 0.12%. Processing, especially wet processing, may cause large
changes in the amount of moisture absorbed. There are two principal effects: a
removal of highly absorbing non-cellulosic impurities; and a change in the internal
arrangement of the cellulose molecules. Heating the sample dry lowers the curve of
regain against relative humidity, but wet heating raises it. Mercerisation without
tension can increase the regain at a given relative humidity to 1.5 times its previous
value; mercerisation under tension does not cause such a large increase [19].

A sample of cotton straight from the boll of the cotton plant or immediately after
hot-wet processing shows a desorption curve higher than the usual one (Fig. 7.7).
This is known as the primary desorption curve. Once the material has been dried
below 50% r.h., it follows the usual curves. The intermediate curves for cotton are
very long, as shown in Fig. 7.8. For example, if absorption is started from 10% r.h.
on the desorption curve, the absorption curve will not be joined below 80% r.h. To be
sure of getting on either the absorption or the desorption curve, it is necessary to start
from almost complete dryness or wetness, respectively.

The effects of processing were shown to a marked extent by experiments by Gu
[26] on naturally coloured green cotton, which contained 14.19% of fat, lignin and
pectin, compared with 1.8% in white cotton. The moisture regain of the green cotton
was 3.87% and of white was 8.6%. After treatments in NaOH solutions of varying
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7.6 Regain versus relative humidity for cotton [13], viscose rayon [14], acetate
[14], silk [15], wool [16], nylon [17], Terylene polyester (PET) [18] and Orlon
acrylic [18].
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Table 7.3 Moisture absorption of fibres. Based on data by Ford [19] and other workers

Material Recommended Absorption Desorption
allowance regain regain minus
or commercial at 65% r.h. absorption
regain 20 °C** (%) regain
or conventional at 65% r.h.
allowance* (%) 20 °C** (%)

Cotton [13] 8.5 7–8 0.9
Mercerised cotton [20] – up to 12 1.5
Hemp [21] 12 8 –
Flax [21] 12 7 –
Jute [22] 13.75 12 1.5
Viscose rayon [14] 13 12–14 1.8
Secondary acetate [14] 9 6, 6.9 2.6
Triacetate – 4.5 –
Silk [15] 11 10 1.2
Wool [16] 14–19 14, 16–18 2.0
Casein [23] – 14 1.0
Nylon 6.6, Nylon 6 [17] 53/4 or 61/4 4.1 0.25
Polyester [18] 1.5 or 3 0.4 –
Acrylic – 1–2 –
Modacrylic – 0.5–1 –
Polyvinyl alcohol [18] – 4.5–5.0 –
Polylactic acid [24] – 0.4–0.6 –
Para-aramid low modulus 7 to
(Kevlar, Twaron) high modulus 1.2 –
Meta-aramid (Nomex) – 5 –

Polyethylene. polypropylene, polyvinyl chloride, carbon, glass and ceramic fibres have zero
moisture absorption.
*As given in BS 4784:1973; other standardising organisations may quote different values.
**The earlier measurements were at 70 °F (21.1 °C).
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7.7 Primary desorption curve of raw cotton from boll. From Urquhart and
Eckersall [9].
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strengths at different temperatures and for different times, the regain of the green
cotton increased to 7.53–8.69%.

Viscose rayon has regain values that can be obtained by multiplying the regain
values for cotton at the same humidity by an almost constant factor. For a particular
specimen of viscose rayon, the figures were [14]:

r.h. (%) 5 20 40 60 80

Regain of viscose rayon/regain of cotton 1.99 2.13 2.08 2.03 1.98

For other specimens of viscose rayon, this ratio, which is often called the sorption
ratio of the material, may not be as close to 2 as the values quoted, but it is a general
feature of cellulosic fibres that their sorption ratios remain almost constant over the
whole range of humidity.

Taylor’s results [11] (Table 7.2) show that, although the absorption regain of
viscose rayon is twice that of cotton, the difference between the desorption and
absorption regains at low humidities is four times that of cotton. Above 30% r.h., this
behaviour is reversed and cotton shows the greater hysteresis, in proportion to its
regain.

Acetate has a curve of a different shape and does not show a rapid rise of regain
at low humidities. The regains are lower than those of cotton, but the rate of change
of regain with r.h. in the practical range above 20% r.h. is about the same.

Wool has a regain curve close to that of viscose rayon but of slightly different
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7.8 Intermediate curves for raw cotton. The outer full lines are for absorption
and sorption between 0 and 100% rh; The inner dashed lines are for
absorption and addesorption between intermediate humidities. From
Urquhart and Eckersall [9].
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shape. In particular, at high humidities the regain of wool is lower. The type of wool
and its processing also affect the regain values. For example, Speakman [16] found
regains at 63.3% r.h. ranging from 13.97% for a merino wool to 14.54% for a
Wensleydale. Nicholls and Speakman [27] have shown that acid-treated wool has a
lower equilibrium regain; thus, at 53.8% r.h., untreated wool had a regain of 12.68%,
but wool containing 40 milliequivalents of acid per gram of wool had regains ranging
from 11.89% for sulphuric acid to 9.79% for picric acid.

Figure 7.9, from Speakman and Cooper [28], shows that the intermediate hysteresis
curves for wool are shorter than those for cotton, a change of 18% r.h. being sufficient
to pass between the main absorption and the main desorption curves. This range is
independent of the value of the regain.

Casein fibres have regains very close to those of wool at the same humidity but
show a rather large difference between absorption and desorption values [23].

Silk has a regain intermediate between cotton and wool. Silk gum has a high regain,
and the degumming causes a reduction in regain at 65 r.h. from 10.65 to 9.9% [15].

The synthetic fibres have low regains. Nylon has about half the regain of cotton.
Some workers have suggested that hysteresis is absent, but Hutton and Gartside [17]
showed that a small hysteresis definitely existed. At 80% r.h., they obtained regain
values of 5.48% in absorption and 5.64% in desorption. Forward and Smith [29] have
shown that the moisture absorption of undrawn nylon yarn can be appreciably altered
by chemical treatment. Polyester (PET) fibres have a small regain. Many other polymer
fibres have zero moisture absorption, as do inorganic fibres.

7.4.3 Influence of temperature

The curves of regain against relative humidity depend to a slight extent on temperature,
the result being a family of isothermals. Figure 7.10 shows data for cotton. Except at
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7.9 Intermediate curves for wool. The outer full lines are for absorption and
sorption between 0 and 100% rh; the crossing lines are for absorption and
sorption between intermediate humidifier From Speakman and Cooper [28].
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high temperatures and humidities, the regain decreases as the temperature increases.
This is the expected thermodynamic behaviour for an exothermic reaction such as
absorption. The increase above 50 °C at high humidities is due to a change in the
internal structure and is associated with the irreversible hysteresis effects.

Wiegerink [31] tested a variety of fibres between 35 and 150 °C, and the curves for
wool, shown in Fig. 7.11, are typical of his results. He found that when the logarithms
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7.10 Effect of temperature on absorption of cotton. From Urquhart and
Williams [30].
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of the regains were plotted against the reciprocal of temperature, straight lines were
obtained, with a change of slope at about 100 °C. Figure 7.12 illustrates this for
viscose rayon. Darling and Belding [32] tested the same materials at low temperatures,
but, owing to the slowness of conditioning, they were able to test only at a limited set
of conditions. Their results indicate that the linear relations cease to apply below
20 °C. Below about 0 °C, the regain decreases. Values for the regain at 70% r.h. are
given in Table 7.4.

7.4.4 Effect of stresses

The swelling of fibres during absorption means that the application of stresses will
change the regain. Table 7.5 shows the increases in regain due to the application of
a tension to filaments that were reported by Treloar [33, 34].

By contrast, the lateral compression of fibres, such as would come from applying
tension to a twisted yarn, would lower the regain. For example, Nickerson [35] states
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7.12 Effect of temperature on absorption of viscose rayon. T is absolute
temperature in Kelvin (K). From Wiegerink [31].

Table 7.4 Change of regain with temperature [32]

Temperature Regain at 70% r.h.

(°C) Cotton Wool Viscose rayon Secondary acetate

–29 8.5 17 16 7.9
–18 9.8 18 17 9.6
4 9.7 17.5 17 9.0
35 7.8 15 14 7.1
71 6.7 13 12 6.2
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that the application of 60% of its breaking load to a cotton yarn lowered the regain
from 8.78 to 8.19%. Barkas [36] has studied this effect in wood, and the curves in
Figure 7.13 show the large changes that can occur when severe restraints are applied.
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8.1 Definitions

When a fibre absorbs water, heat is evolved. If liquid water is taken up, this is similar
to the heat of solution that occurs, for instance, when sulphuric acid and water are
mixed. It results from the attractive forces between the fibre molecules and water
molecules. If water vapour is absorbed, there is also heat similar to latent heat of
condensation. The heat evolved may be expressed in various ways.

The differential heat of sorption Q (sometimes called the heat of absorption) is the
heat evolved when 1 g of water is absorbed by an infinite mass of the material at a
given moisture regain. It is expressed in joules per gram (of water absorbed).

The water may be absorbed from water vapour, to give a value Qv, or from liquid
water, to give a value Ql. The relation between the two quantities is illustrated in Fig.
8.1. It follows from the First Law of Thermodynamics that the total heat evolved
must be the same along each path, and therefore:

Qv = Ql + L (8.1)

where L is the latent heat of condensation of water in J/g at the temperature concerned.
The quantity Ql is sometimes called the heat of swelling.

The integral heat of sorption W (sometimes called the heat of wetting) is the heat
evolved when a specimen of the material at a given regain, whose dry mass is 1 g, is
completely wetted. It is expressed in joules per gram (of dry material) and is almost
always given in terms of absorption from the liquid state.

The relation between the differential and integral heats can be seen by considering
the graph of integral heat of sorption against regain (Fig. 8.2). The increase of the
regain by dr causes an amount of heat equal to Ql·dr/100 to be evolved. If this is

8
Heats of sorption

Qv
Fibre +
vapour

Fibre +
absorbed

water
Ql

L
Fibre +
liquid

8.1 Relation between heats of sorption from vapour and liquid.
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integrated from a regain r to the saturation regain, rs, it will give the total amount of
heat evolved when the specimen is wetted, that is, the heat of wetting for the regain
r. Thus:

W
Q r

r

r

 = 
d

100

s
1∫ ⋅

(8.2)

Conversely, the heat Ql·dr/100 equals the decrease in the heat of wetting for the
regain change dr, giving:

Q W
r1 = –100 d

d
(8.3)

An integral heat of sorption defined as the heat evolved when 1 g of dry material is
raised to the given regain is sometimes used. If we call this quantity W′ and let W0 be
the heat of wetting from dryness to saturation, we have:

W′ = W0 – W (8.4)

8.2 Measurement

Heats of wetting may be measured calorimetrically. A known mass of the material at
the required regain is placed in a calorimeter, and an excess of water is added. From
the rise in temperature and the thermal capacity of the system, the heat evolved can
be calculated and the heat of wetting determined. Because a large amount of water is
needed to secure satisfactory wetting of the fibres, the temperature rise will be small,
and careful experimental technique and sensitive temperature measurement are
necessary. Several workers have described methods in detail [1–3].

The differential heats of sorption, which are of more practical and theoretical
importance, may be obtained from the experimental values of the heats of wetting by

0 r rS
Regain

dr

dW

W0
W

0

8.2 Variation of integral heat of sorption with regain.
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using equation (8.3). They may also be determined by calculation from the absorption
isotherms. The Clausius–Clapeyron equation for water vapour, if the specific volume
of liquid water is neglected in comparison with that of water vapour, is:

d
d

 = s

s

p
T

L
TV

(8.5)

where ps = saturation vapour pressure of water, T = absolute temperature and Vs =
specific volume of vapour at saturation vapour pressure.

Application of the equation to a textile system at constant regain r gives:

∂





p
T

Q
TVd

 = 
r

v (8.6)

where p = vapour pressure in equilibrium with the textile and V = specific volume of
vapour at this vapour pressure.

But relative humidity = H = (p/ps × 100)%. Thus

logeH = logep – logeps + loge100 (8.7)

Differentiating with respect to temperature at constant regain, we have:

∂
∂







∂











log
= 1

d
–  1 d

d
e

r r s

sH
T p

p
T p

p
T

=  –  v

s s

Q
pTV

L
p TV

(8.8)

If we assume the ideal gas laws, pV = psVs = RT, this gives:
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(8.10)

Thus the differential heat of sorption can be obtained from the slope of the curve of
logeH against 1/T at constant regain. This relation, based on thermodynamics, only
holds when one is dealing with a system in effective thermodynamic equilibrium.
The results in Fig. 7.11 (see p. 191), which show that at high humidities, moisture
regain increases with rise in temperature, so that (δlogeH/δT)r becomes negative
though Ql remains positive, indicate that this is not always so for textile fibres.
Where hysteresis exists, there can only be metastable equilibrium. Different results
will be obtained depending on whether absorption or desorption values are used. It
has also been pointed out by Rees [1] that the results obtained by this method depend
to a great extent on the care with which the curves are drawn, and different workers
calculate widely different results from the same data.
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8.3 Results

Table 8.1 shows values of the heat of wetting of dry fibres, and Fig. 8.3 indicates how
the heats of wetting decrease to zero at saturation regain. As would be expected, the
heat of wetting is greatest for the most highly absorbing fibres and is very small in
the non-hygroscopic fibres. Figure 8.4 shows that the heat evolved in going from 0%
to 65% r.h. is proportional to the regain of the fibre at 65% r.h. Plotting these
particular values eliminates the effect of loosely held water near saturation, which
contributes little to the heat evolved.

Bright et al. [3] found that, for three specimens of polyester fibre of the same
draw-ratio but different linear density, the heat of wetting was proportional to the
external surface area, a value of 16 × 10–4 J/cm2 being obtained.

Figure 8.5 shows the decrease in the differential heat of sorption as the regain
increases. At zero regain, the differential heat of sorption of the cellulosic fibres is of

Table 8.1 Heats of wetting from zero regain W0 (J/g)

Cotton [1] 46
Mercerised cotton [1] 73
Flax [2] 55
Viscose rayon [2] 106
Secondary acetate [2] 34
Wool [3] 113
Silk [4] 69
Nylon [3] 31
Polyester (PET) 2.4 dtex [3] 5
Acrylic (PAN) [3] 7

8.3 Variation of integral heats of sorption of cotton, viscose rayon, secondary
acetate [2] and wool [3] with regain.
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the order of 1250 J/g, which is about the same as the heat of hydration of hydroxyl
ions. As absorption continues, the water is more loosely attached, and consequently
less heat is evolved. Owing to the similarity in the nature of the absorption, all
cellulosic fibres have differential heats of sorption that are close together at a given
relative humidity. This is shown by the results in Table 8.2, which also includes
values for other fibres. Wool and nylon have values that are close together, which
indicates absorption on similar sites. The results given in Table 8.2 are typical values;
there will be slight variations from these according to the particular specimen tested,
as shown in Table 8.3.

Values of the differential heat of sorption found by calculation from sorption
isotherms are usually somewhat lower than those obtained by direct measurement.
Some examples of this are given in Table 8.4.

The values of the differential heat of sorption given here have been for absorption

H
ea

t 
ev

o
lv

ed
 0

 t
o

 6
5%

 r
.h

. 
(J

/g
 o

f 
fi

b
re

)
80

60

40

20

0 10 20
Regain % at 65% r.h.

Ardil—

Mercerised
cotton

Wool
Tenasco

Fortisan

Silk

Cotton

Acetate
Nylon

8.4 Relation between evolution of heat and regain [5].

8.5 Variation of differential heats of sorption of cotton, viscose rayon, secondary
acetate [2] and wool [3] with regain.
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Table 8.2 Differential heats of sorption Ql (kJ/g)

Fibre Relative humidity (%)

0 15 30 45 60 75

Cotton [2] 1.24 0.50 0.39 0.32 0.29 –
Mercerised cotton [1] 1.17 0.61 0.44 0.33 0.23 –
Viscose rayon [2] 1.17 0.55 0.46 0.39 0.32 0.24
Secondary acetate [2] 1.24 0.56 0.38 0.31 0.24 –
Wool [3] 1.34 0.75 0.55 0.42 – –
Nylon [6] 1.05 0.75 0.55 0.42 – –

Table 8.3 Integral and differential heats of sorption

Fibre At zero regain At 65% r.h.

W (kJ/g) Ql (kJ/g) Ql (kJ/g)

Cotton
Bengals [2] 47.3 1.33 0.25
Texas [1] 46.1 1.19 0.20
Sea Island [2] 46.9 1.24 0.28
various sorts and methods [1, 7] 41–54 – –

Viscose rayon
continuous filament [2] 106 1.17 0.30
staple fibre [2] 97 1.22 0.27
various sorts and methods [1, 7] 84–105 – –

Table 8.4 Direct and calculated differential heats of sorption

Differential heat of sorption (kJ/g)

Material Regain (%) Calorimetric From sorption
method isotherms

Viscose rayon [2] 0 1.17 1.09 [8]
5 0.53 0.44

10 0.39 0.25
Acetate [2] 5 0.27 0.21
Cotton [1] 5 0.32 0.27
Wool [9] 6 0.59 0.54

12 0.40 0.40
18 0.17 0.26

Table 8.5 Heat evolved (in kJ) by
1 kg of material in going from 40
to 70% r.h.

Wool 159
Cotton 84
Viscose rayon 168
Acetate 50
Nylon 42
Terylene 4
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from the liquid. Values for absorption from the vapour can be obtained by adding the
latent heat of vaporisation of water (2.45 kJ/g at 20 °C). This is several times as great
as most values of differential heat of sorption from liquid, and its addition reduces
the proportional difference between the various fibres. At low humidities, the differential
heat of sorption from the vapour will be about 4000 J/g, but, over the middle range
of humidities, it will lie between 2500 and 3000 J/g, depending on the particular fibre
and humidity.

8.4 Effects of evolution of heat

The evolution of heat has a considerable effect on the rate of conditioning of textile
materials, as will be described in the next chapter. It is also an important feature of
clothing materials. For example, on going from an atmosphere of 18 °C, 45% r.h.,
indoors to one of 5 °C, 95% r.h., outdoors, the regain of wool would change from 10
to 27%. A man’s suit, weighing 1.5 kg, would give out 6000 kJ owing to this change,
that is, as much heat as the body metabolism produces in 12 h. This evolution of heat
is of physiological advantage, since it gives the body time to adjust itself to the new
conditions. The greater the moisture absorption of the fibre, the greater will be the
amount of heat evolved. Comparative values are given in Table 8.5.
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9.1 Introduction

Textile materials take a long time to come into equilibrium with their surroundings.
The drying of washing is a simple example of this and shows that the rate depends
on a variety of factors: temperature, air humidity, wind velocity, surrounding space,
thickness of material, density of material, nature of the fibre, and so on. The slowness
of conditioning may be a nuisance technically, since textiles often have to be conditioned
before further processing or sale. On the other hand, a slow process may act as a
valuable stabilising influence, for example absorbent fibrous materials in a room will
prevent rapid changes of humidity or temperature.

In this chapter, we shall be considering the factors that play a part in the change
of conditions in textile materials. To avoid the tedious repetition of alternatives, it
will usually be written on the assumption that the material is taking up water. In
general, drying follows the reverse procedure.

9.2 Diffusion of moisture

9.2.1 The diffusion equation and its solution

The most obvious way of explaining the slowness of conditioning is to assume that
it is due to the slowness with which water molecules diffuse through the fibre and
through the air to the fibre.

If the concentration of water molecules (or of any other substance with which one
is concerned) varies from place to place in a given medium (e.g. air or fibre substance),
the molecules will diffuse from regions of high concentration to regions of low
concentration until their distribution becomes uniform. The rate of transport, dm/dt,
of the diffusing substance across an area A of a plane perpendicular to the concentration
gradient ∂c/∂x is given by Fick’s equation:

d
d

 = –  
m
t

DA c
x
∂
∂

(9.1)

where D is called the diffusion coefficient.
From this equation, we can derive a differential equation giving the relation between

concentration, position and time. If we consider an element of unit area and of

9
Rate of absorption of moisture
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thickness dx, as shown in Fig. 9.1, then in a time dt the mass diffusing across the left-
hand face into the element is [– D(∂c/∂x) dt], and the mass diffusing out of the
element across the right-hand face is

–   +    d  dD
c
x x

D
c
x

x t
∂
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The difference in these two amounts gives the increase of mass of the diffusing
substance in the element, that is, the change of concentration multiplied by the
volume of the element. Hence:

∂
∂

⋅ ∂
∂

∂
∂

∂
∂

∂
∂















c
t

t x D
c
x

t D
c
x x

D
c
x

x t d d  = –   d  +   +    d  d

∂
∂

∂
∂

∂
∂







c
t x

D
c
x

 =   (9.2)

This is the diffusion equation in one dimension. It may be generalised to apply to
three dimensions. In the simplest, and fairly common, case, the diffusion coefficient
D is constant, and the equation becomes:

∂
∂

∂
∂

c
t

D c
x

 =  
2

2 (9.3)

This equation can be solved for appropriate initial and boundary conditions, but the
solutions are of a complexity beyond the scope of this book. They have been discussed
in detail for many systems by Crank [1].

In more complicated systems, such as fibres, the diffusion coefficient may vary
with concentration. Equation (9.2) cannot then be solved analytically unless some
relation between D and c can be substituted in it. Other complications arise when
absorption takes place, because this removes molecules from the diffusion process.
If there is swelling, the medium is moving as well as the diffusing substance. Crank
[1] discusses ways of dealing mathematically with these problems.
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9.1 Diffusion across unit area perpendicular to concentration gradient.
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However, avoiding the mathematical complexity of exact solutions, we can often
obtain useful approximate results by simpler methods. A special case of the equation
gives the effect of diffusion from an infinite source of concentration c0 to a receiver
whose mean concentration is c at a time t. This is illustrated in Fig. 9.2. Under these
conditions, we have:

d
d

  
d
d
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d
d

  [– (  –  )]0
c
t

m
t

c
x

c c∝ ∝ 



 ∝

d
 – 

 = 
d

0

c
c c

t
τ (9.4)

where τ is a time constant.
On integrating, and assuming as initial conditions that c = 0 at t = 0, this gives:

– log(c0 – c) = t
τ  – logc0 (9.5)

which leads to

c = c0(1 – e–t/τ) (9.6)

At t = τ, we have

c c = 1 –  
1
e0





 (9.7)

and thus τ is the time taken for 63% of the total change to be completed, as shown
in Fig. 9.3.

Differentiating Equation (9.6), we have:

d
d

 =  e0 – /c
t

c t

τ
τ (9.8)

At t = 0 this becomes:

d
d

 = 0c
t

c
τ (9.9)

and thus it follows that τ is also the time that the whole process would take if carried
out at the initial rate.

9.2 Diffusion into a receiver from an infinite source of concentration c0.

c0

    

∂m
td

c = 0
at t = 0

c
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If we consider the system shown in Fig. 9.4, where moisture is diffusing across a
length l of air to the absorbing substance, we see that time for whole process at initial
rate

τ = 
d /d

M
m t

mass needed to bring the absorbent into equilibrium. Applying equation (9.1), this
becomes:

τ = 
( –  ) 0 1

Ml
D c c A

(9.10)

where c1 = initial concentration at surface of absorbent and c0 = concentration at
surface of conditioning solution.

For a homogeneous cylinder of length L and radius r in which there is a change of
conditions at the surface, such as to cause a change in the equilibrium concentration
in the cylinder from c1 to c0, the mass absorbed will be given by the product of the
volume of the cylinder and the change in concentration and the diffusion length is of
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9.3 Change of relative concentration c/c0 in receiver, following diffusion from
an infinite source of concentration c0. The parameter τ is a time constant
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the order of the radius r. We can apply equation (9.10) to obtain the order of magnitude
of τ.

τ π
π  

( –  )
( –  ) 2 

  
2

2
0 1

0 1

2
≈ ≈r L c c r

D c c r L
r
D

(9.11)

This is one example of a general result, suggested by dimensional analysis, that in a
single medium the order of magnitude of time involved in a diffusion process equals
l2/D, where l is the length along which diffusion has to take place.

9.2.2 Diffusion coefficients of fibre materials

Application of the theory of diffusion would enable one to work out diffusion coefficients
in fibres from observations of the rate of uptake of water or of the movement of water
into a fibre. However, a much simpler method may be applied when the same materials
can be obtained in the form of thin films. Constant concentrations may then be
maintained on either side of the film, and the rate of transport of water across the film
may be measured when a steady state has been reached.

In a typical experimental arrangement, shown in Fig. 9.5, water vapour is continually
pumped away from one side so that c = 0, and the other side is maintained at a
constant value c1. By repeating this for various values of c, one can obtain a series of
values of the average diffusion coefficient over ranges from 0 to c1. Since the system
is in a steady state, the rate of flow dm/dt across unit area is independent of x, the
position in the film, and we must therefore have:

0 0
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d
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d
d

 d  = 
d
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l lm
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x
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x l 
m
t∫ ∫ (9.12)

Substituting from Equation (9.1), we then obtain:

d
d

 = 1  –   
d
d

 d  = –  1 –   d
0 0

m
t l

D
c
x

x
l

D c
l l

∫ ∫ (9.13)

By a numerical process of successive approximations, the experimental results giving
values of dm/dt for various values of c1 may be fitted to this equation, and the
diffusion coefficients at the various concentrations may be determined.

Some results of measurements of this sort are given in Fig. 9.6. The wide range of
values, from 10–7 to less than 10–9 cm2/s, should be noted. Diffusion is very slow in
the dry state, but it becomes much more rapid at moderate or high regains. This

Constant vapour
pressure reservoir
and manometer

High-
vacuum
pump

c = 0c = c1

9.5 Flow through a thin film under steady conditions.

© Woodhead Publishing Limited, 2008



Rate of absorption of moisture 207

explains the extreme difficulty of removing the last traces of water from a fibre. An
exception to this behaviour is polyethylene, which absorbs little water and in which
diffusion becomes slower at higher regains.

From studies on the initial rate of absorption by fibres, Watt [4] and Mackay and
Downes [5] report values of about 2 × 10–10 cm2/s for dry wool, and values in
agreement with those shown in Fig. 9.6(a) for wool at higher regains.
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9.6 Variation of diffusion coefficients with regain: (a) keratin, after King [2]; (b)
nylon, after Rouse [3]; (c) polyethylene, after Rouse [3]. Note differences in
scales, especially different powers of 10 in values of D.
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Fukuda and Kawai [6] measured the rate of diffusion of water into para-aramid
fibres by following the rate of uptake of water in by 200 mg of yarn. Values of
diffusion coefficients are shown in Table 9.1.

9.2.3 Penetration into a dry fibre

Because the diffusion coefficient increases so rapidly with increasing concentration
of water in fibres, it follows that the variation in moisture content through a fibre that
is absorbing water will show a sharp boundary. The initial diffusion through the dry
fibre is slow and determines the position of the advancing front, but, once some
absorption has occurred, the diffusion becomes faster, and so one has a rapid build-
up to the final value of the moisture content.

Crank [1] has calculated the variation of concentration with distance for diffusion
coefficients related in various ways to the concentration. Examples with differing
degrees of sharpness of the advancing front are shown in Fig. 9.7.

Hermans and Vermaas [7] have shown that this advancing front may be observed
in thick filaments under the microscope because of the change in refractive index
associated with it. Photographs of this effect are shown in Fig. 9.8. Observation of
this rate of advance of the boundary is another method of determining the diffusion
coefficient in fibres.

There is another effect that may slow down the approach to the final equilibrium
moisture absorption. When water is absorbed by the fibre, swelling stresses are set
up. Newns [8] has suggested that after the initial diffusion process, there is a second
stage in which these stresses relax (see Section 16.3). This relaxation of stress in the
fibres will, in effect, alter the equilibrium moisture condition towards which the
diffusion is proceeding. It will thus delay the attainment of a final steady state.

Table 9.1 Diffusion coefficients of para-aramid fibres. From Fukuda and Kawai [6]

Fibre p/ps Dskin Dcore

(cm2/s × 10–12) (cm2/s × 10–12)

Regular Kevlar 0.140 2.38 3.56
0.213 3.97 5.96
0.303 4.10 6.15
0.482 5.01 10.0
0.668 5.40 21.6
0.896 6.51 26.0

Kevlar 49 0.144 1.39 2.77
0.264 1.45 2.90
0.396 1.36 5.42
0.652 1.54 6.18
0.800 1.76 12.4

Kevlar 149 0.343 2.52 1.61
0.464 3.15 2.02
0.583 4.03 2.62
0.825 6.18 2.61
0.934 – –
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Newns has derived a mathematical analysis for a process in which diffusion and
stress relaxation are coupled together.

9.2.4 Conditioning of a mass of fibres

During the conditioning of a mass of fibres, diffusion must take place in three stages.
First, there will be diffusion (or convection) in the air from the source of water
vapour to the surface of the mass of fibres. Secondly, there will be diffusion in the air
in the interstices between fibres, from the surface of the mass to the surface of a fibre.
Thirdly, there will be diffusion from the surface of a fibre to its interior.

A value of 10–7 cm2/s may be taken for the diffusion coefficient within a hygroscopic
fibre at medium humidities and, with a fibre radius of 10–3 cm, equation (9.11) would
give τ = (10–3)2/(2 × 10–7) = 5 seconds.

The time taken for diffusion in the air, whether inside or outside the specimen, will
depend on the size, shape and density of the specimen; that for the diffusion outside
will also depend on the ease of access to a source of moisture. The result for diffusion
outside the specimen is calculated here for a typical case illustrated in Fig. 9.9.
Suppose we have 100 g of dry cotton in a package 10 cm long and 2 cm in radius,
placed in a close container, 10 cm from a solution giving a relative humidity of 65%
at its surface, that is, a concentration of water vapour of 10–5 g/cm3 at 20 °C. The
mass of water to be absorbed for equilibrium is about 7 g. In still air at 20 °C, D is
about 0.25 cm2/s. The area across which diffusion is occurring varies with the distance
from the package, but we may take as the approximate area the surface of a sphere
of radius 10 cm, that is, 400π cm2. Applying equation (9.10), we then have:

τ
π

 = 7  10
0.25  10  400

 = 20  10  s (5 hours)–5
3×

× ×
×

It is difficult to calculate the time taken for diffusion in the air within the specimen,

(a) (b) (c)

9.8 Micrographs showing boundary gradually penetrating into filament. After
Hermans and Vermaas [7].
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but, since the area and length are both less than they are outside, we should expect the
times to be of the same order of magnitude.

The two effects would take place to some extent concurrently. We note that the
times for diffusion in the air are much greater than the time for diffusion in a fibre.
The latter is very rapid because of the small diameter of a fibre. Consequently, in
calculations concerning a mass of fibres, the individual fibres may usually be taken
to be in equilibrium with the air at their surfaces; this also applies in the more
complicated mechanism discussed later.

9.2.5 Comparison with experimental results

From the considerations discussed above, diffusion times can be estimated. These are
found to be much shorter than the times needed in practice for conditioning specimens.
For example, Clayton and Peirce [9] report that 90% of the total change in a single
cotton hair takes about 32 minutes, and not 5 seconds as the diffusion calculation
indicates; Roberts and Haly [10] obtained values of about 1 minute for single wool
fibres. A cop takes about 5 days, compared with the value of 5 hours calculated
above; a bale, in which diffusion calculations indicate a few weeks, takes years.

It is thus clear that other factors, besides the diffusion of moisture, are involved.
The heat that is evolved when the fibres absorb water, and which must be dissipated
during conditioning, plays a dominant role in fibre assemblies.

However, in single fibres, there may be delays due to other causes. Mackay and
Downes [5], using a vibroscope system, found very slow rates of change of regain in
single wool fibres under conditions of forced convection, where the temperature
changes due to heat of sorption were believed to be small. They investigated a variety
of steps in both absorption and desorption. Some typical results are shown in Fig.
9.10. In many circumstances, there was an initial rapid change, followed by a slower
change: the first stage is slowed down by an increase in fibre thickness, but the

4cm

C
B

A

10cm

Dry

10
cm

65% r.h. 20 °C

9.9 Diffusion into a mass of fibres in three stages: A, in outside air; B, in air
spaces between fibres; C, within the fibre.
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second-stage rate is unaffected, which suggests that it is not controlled by diffusion
but is a structural relaxation. The length changes of fibres as the absorption proceeds
are complicated, and this also indicates structural changes.

9.3 The interaction of moisture and heat

9.3.1 The conditioning process

When textile fibres absorb moisture, they generate heat, as was described in Chapter
8. The evolution of heat raises the temperature of the fibres and increases their water
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9.10 Examples of the rate of absorption and desorption of a 16.9 µm diameter
merino wool fibre at 20 °C from the studies of Mackay and Downes [5]. (a)
Small changes (about 2% regain) in steps between the following values of r.h.
%: (1) 0 and 12; (2) 23 and 35; (3) 46 and 58; (4) 68 and 74; (5) 95.0 and 96.4.
(b) Changes between 0 and 100% r.h. (on facing page)
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vapour pressure, consequently reducing the vapour pressure gradient and slowing
down the rate of absorption.

The nature of the changes occurring during conditioning may be seen in the
diagrams (Fig. 9.11). Owing to the higher vapour pressure in the atmosphere at the
start of the process, moisture will pass into the specimen, which gives an increase in
regain, generation of heat and a rise in temperature. The vapour pressure of the fibres
will therefore increase, partly because of the increased regain but to a greater extent
because of the rise in temperature. This process will continue until the vapour pressure
of the fibres has become almost equal to that outside. This is a state of transient
equilibrium in which further absorption is impossible until heat has been lost by the
specimen. As heat is lost to the surrounding atmosphere, the temperature decreases,
which allows a further increase in regain to occur and maintains the vapour pressure
close to that of the atmosphere. This continues until final equilibrium is reached with
both temperature and vapour pressure equal in fibre and atmosphere. It must be
remembered that, throughout this cooling process, the absorption that occurs is
generating heat which must also be lost to the surroundings.

For a change of regain ∆R in a specimen of 100 g dry weight, the heat evolved will
be Qv ∆R, where Qv is the differential heat of sorption, and hence, if no heat is lost
to the surroundings, we must have:

Qv∆R = (100 + R) (∆T) C

∆
∆

T
R

Q
R C

 = 
(100 + ) 

v (9.14)

where ∆T = rise in temperature and C = specific heat.
This equation governs the change of temperature during the approach to transient
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equilibrium. We may use it to calculate the position of transient equilibrium in a
particular case on the assumption that no heat is lost during the initial stage.

Suppose 100 g of cotton are taken from an atmosphere of 28% r.h., 20 °C, in which
the cotton would have an equilibrium regain of 3.7%, to an atmosphere of 70% r.h.,
20 °C, giving an equilibrium regain of 7.7%. Trials with different final regains show
that transient equilibrium occurs at a regain of 4.3%, as confirmed by the following
calculation. The saturation vapour pressure at 20 °C is 17.5 mm of mercury. At 70%
r.h., the vapour pressure is 0.7 × 17.5 = 12.25 mm. The rise in temperature for an
increase of 0.6% in regain is given by the above equation:

∆T =  2600
104  1.45×  × 0.6 = 10.3 °C

The temperature is therefore 30.3 °C, for which the saturation vapour pressure is
31.8 mm. Experimental data show that the relative humidity corresponding to 4.3%
regain at 30.3 °C is 38.6%, and thus the vapour pressure over the specimen is
0.318 × 38.6 = 12.27 mm. Thus the vapour pressure over the specimen equals that in
the conditioning atmosphere and there is transient equilibrium at 4.3% regain at
30.3 °C. Final equilibrium involves a rise in the regain to 7.7%.

The calculation shows that transient equilibrium results from only a small change
of regain. Its attainment is thus a comparatively rapid process, and the main factor in
determining the time for the whole process is the rate at which the heat being generated
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by the absorption can be dissipated. The lower rise in temperature given later in Fig.
9.16 indicates that the above rise in temperature is a maximum value on the assumption
that the heat is generated throughout the fibre mass with no external heat loss.

Heat transfer by conduction follows the same law as diffusion, with heat replacing
mass, temperature replacing concentration, and thermal capacity replacing volume in
the equations. The heat diffusion constant is the thermal conductivity divided by the
specific heat per unit volume. The changes thus follow the diffusion equations,
already discussed, but with the complications arising from the interaction of two
diffusion processes, which are discussed in the next section. One result of this is that
final equilibrium is delayed.

Experiments on clumps of wool by King and Cassie [11] and Watt and McMahon
[12] confirmed the above behaviour.

9.3.2 Penetration of a change into a mass of fibres

Heat effects and moisture absorption in hygroscopic materials, such as fibres, are
inseparably interrelated: it is impossible to change one without affecting the other,
and final equilibrium is impossible in one without the other. A complete description
of changing conditions requires both the diffusion of moisture and the conduction of
heat to be taken into account. Both are transfer phenomena following differential
equations of the same form but with different constants, and they are linked by the
heat of absorption and the change of moisture content with temperature at constant
absolute humidity. Henry [13] carried out a mathematical analysis of the system for
a simplified linearised model. Other studies, taking advantage of advances in
computation, have treated more realistic models [14]. The general conclusion of the
analysis is that, when a mass of fibres is exposed to new conditions, the change
passes through the mass in two waves of diffusion, with different diffusion constants,
D1 and D2. To the parts of the change associated with each wave, we may apply the
methods discussed in Section 9.2.1, the appropriate diffusion constant being used.

By steady-state methods, in which constant conditions are maintained on either
side of the material, as in Fig. 9.12, the diffusion coefficient, DM, for moisture in a
system involving no temperature changes and the diffusion coefficient, DH, for heat
in a system involving no moisture changes can be found. If the moisture and heat
effects were independent of one another or only weakly coupled, then, in a system in
which both were changing, each would diffuse independently, and we should have
D1 = DM and D2 = DH.

p1

T1

p1

T1

DM

Moisture

DH

Heat

p2

T1

p1

T2

(a) (b)

Vapour
pressure

Temperature

9.12 Steady-state conditions: (a) vapour pressure gradient at constant
temperature; (b) temperature gradient at constant vapour pressure.
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In most textile systems, however, the coupling between the two is strong, since the
heats of absorption are high, and the moisture content changes rapidly with temperature
at constant vapour pressure. In Henry’s analysis, the strength of the coupling is given
by a quantity which he refers to as (1 – λv) and which would be one if the two were
independent but tends to zero as the coupling becomes stronger. He has shown that,
for hygroscopic fibres under most circumstances, it is reasonable to take:

(1 –  ) = 1

1 +  – 
c

λv
Q
C

M
T

v ∂
∂







(9.15)

where Qv = differential heat of sorption of the vapour in J/g (of water), C = specific
heat of the material in J/(gK) of dry material, and (– δM/δT)c = rate of decrease of
moisture content as temperature increases, the concentration of water vapour remaining
constant.

For cotton at room temperature, the values of (1 – λv) are as follows:

r.h. (%) 10 30 50 70 90

(1 – λv) 0.35 0.22 0.15 0.08 0.025

The value of (1 – λv) increases slightly as the temperature increases and reaches 0.6
at 110 °C at 10% r.h.

Henry has shown that, when (1 – λv) is small compared with 1, as would be the
case in many textile applications, the following approximations hold1:

D
D D

D D1
M H

M H
= 

+ 
(9.16)

D
D D

v2
M H= 

+ 
1 –  λ (9.17)

If the two diffusion coefficients DM and DH have the same values, it follows that D1

is equal to half that value; if they are different, D1 is less than either but tends to equal
the lower value as the difference becomes greater. Thus one wave travels through the
material at a rate that is slower than would be expected from independent moisture
or heat diffusion and may be as slow as half the rate of the slower of the two
processes. Since (1 – λv) is small, it follows from equation (9.17) that D2 is large.
Consequently, the other wave passes through the material at a rate that is much faster
than either of the two independent processes.

Table 9.2 gives values of the diffusion coefficients worked out by Henry for cotton
under various conditions. These figures show how the diffusion rates decrease as the
humidity increases; increase as the temperature increases; and decrease as the density
of packing increases. They show that under some conditions DM is greater than DH,
but under other conditions this is reversed. The values of D1 and D2 are related to
them as described above.

1Henry [15] also gives more exact expressions for the diffusion coefficients and provides nomograms
to assist in their calculation.
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In addition to the speed of the two waves, the magnitudes of the changes they carry
are also important. Henry has shown that, if f1 and f2 are functions of position and
time, being the appropriate solutions of the diffusion equation for the particular
problem and differing only in their timescale (owing to the different diffusion constants,
D1 and D2), then, for a change of temperature at the outside of a mass of material
without change of vapour pressure:

∆
∆

T
T

p f p f
( )

 = (1 –  ) + 
f

1 2 (9.18)

where ∆T is the change in temperature at a given time at a given position in the
material, (∆T)f is the final change of temperature and p is the fraction determining the
relative magnitudes of the two waves.

This means that a change of temperature p(∆T)f passes through the material with
the velocity of the fast wave, defined by f2 and D2, while the remainder of the change
(1 – p) (∆T)f is transmitted with the velocity of the slow wave. The shape of the
waves varies with circumstances but is indicated in Fig. 9.13 most of the change
takes place over a narrow interval and tails off at a distance from the main wave
front. Values of p are given in Table 9.2, and they show that an appreciable proportion
of a temperature change may be carried on the fast wave. For a change of humidity
at the outside of the material without change of temperature, the vapour concentration,
or absolute humidity, in the air over the fibres passes through the specimen according
to the same relation with the same value of p.

It is more convenient in following the conditioning process to consider changes
∆M in the moisture content of the material, owing to a change in external circumstances,
such as a change in vapour pressure at constant temperature or a change in temperature
at constant vapour pressure. The change in moisture content does not follow the same
equation as the changes in temperature or vapour concentration but follows
approximately the equation:

∆
∆

M
M( )f

 = (1 + n) f1 – n f2 (9.19)

Table 9.2 Coupled diffusion for cotton assemblies [15]

Density Temperature r.h. Diffusion coefficients × 10–5
 cm2/s p n

(g/cm3)  (°C) (%) DM DH D1 D2

0.2 70 20 4.5 34 4.1 130 0.094 0.0037
65 3.1 12 2.5 140 0.192 0.0040
90 0.93 3.2 0.72 160 0.22 0.0013

50 65 21 16 9.3 230 0.39 0.041
80 65 90 20 17 690 0.17 0.11

0.5 20 20 1.4 16 1.3 63 0.050 0.0016
65 0.92 5.7 0.80 66 0.13 0.0019
90 0.28 1.5 0.24 62 0.15 0.0006

50 65 5.7 7.7 3.4 99 0.38 0.023
80 65 27 9.8 7.4 210 0.24 0.087
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where n is the fraction defining the relative magnitude of the two waves. The negative
sign of the fast wave means that it is carrying a change in the opposite direction to
the main change. However, values of n are small, as shown in Table 9.2, and the
magnitude of the fast wave is less than that of the forward part of the slow wave.
Consequently, the resultant disturbance is never negative. Almost the whole change
is carried on the slow wave. The effect of the fast wave is to cause a slowing down
of the first part of the change in moisture content, but it has little effect on the major
part of the change.

Figure 9.14 shows experimental results obtained by Cassie and Baxter [16] for the
transmission by diffusion alone of a temperature change through the wall of a cylinder
made of cotton of density 0·12 g/cm3 in a linen cover. The external air was suddenly
changed in temperature from 17 to 29 °C, without change of vapour pressure. The
change in temperature at the inside of the cylinder was measured, and the graph
clearly shows the division of the change into two parts corresponding to two waves.
The agreement with theory is fairly good, part of the divergence being due to the
effect of the linen cover.
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9.13 Fast and slow waves in diffusion into a material.

9.14 Transmission of temperature change through a cotton cylinder by
diffusion. A, outer air temperature; B, observed temperature at centre of
cylinder; C, theoretical temperature at centre of cylinder. After Cassie and
Baxter [16].
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To summarise the work of Henry, and Cassie and Baxter, changes of temperature
and absolute humidity, transmitted by diffusion through a mass of hygroscopic fibres,
are divided roughly equally between fast and slow waves. Even where there are no
final changes in temperature or vapour concentration, there may be transient changes
transmitted on the fast wave, with the slow wave restoring the original condition.
Several examples of the changes, which are of obvious importance in clothing materials,
are given in Fig. 9.15. Changes of moisture content are transmitted almost entirely by
the slow wave. In fibres that absorb no water, moisture and heat will diffuse
independently at their own rates. The water vapour will pass solely through the
spaces between the fibres.

9.3.3 Experimental confirmation of a computational model

Approximations in Henry’s analysis were reduced in a computational model by Li
and Luo [14]. The predictions were verified by experiments on double jersey fabrics
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9.15 Changes in temperature, absolute humidity (or vapour pressure) in air in
contact with fibres, and moisture content during diffusion, for (a) rise in
humidity at constant temperature; (b) rise in temperature at constant absolute
humidity; and (c) rise in temperature at constant relative humidity. Dotted
lines: F, fast wave; S, slow wave. Full lines: total change. Left-hand end of
lines (surface of material) shows final condition. Right-hand end of lines
(interior of fibre) shows initial conditions. For falls in humidity and
temperature, the curves will be the negative of those shown here.
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of wool, cotton, an acrylic with micropores and polypropylene [17]. Fabric samples,
3 cm × 15 cm, were suspended in a cell at 20 °C and the relatively humidity was
changed in a single step from 0 to 99% with an air-flow of 1.7 m s–1 over the fabric
surface. Table 9.3 gives details of the fabrics. For the moisture-absorbing fibres the
first and second-stage diffusion coefficients D1 and D2 have a complicated non-linear
dependence on moisture content M.

Figure 9.16 shows the changes in moisture uptake and temperature. The predictions,
based on the arbitrary constants in the expressions for diffusion coefficients, are in
good agreement with experimental results. The very small change in the polypropylene
fabric takes place rapidly. The changes are increasingly slower and the temperature
increases greater with increasing moisture absorption of the materials. Figure 9.17
shows 3D plots of changes through the thickness of the fabric with time. The water
vapour pressure quickly reaches a constant equilibrium value through the whole
thickness. The trough in the plots of moisture content and the inverted trough for
temperature reflect the faster changes at the two fabric surfaces and the slower
changes within the fabric.

9.3.4 Changes under forced draught

So far we have been considering changes due to diffusion processes, but changes due
to blowing air through the material are also of interest. This subject has been studied
by Cassie and his coworkers [16, 18, 20] and Daniels [19].

If air is forced through a mass of hygroscopic fibres, theory indicates that the
change in conditions will be transmitted in two waves, similar to the two waves
found in the diffusion process. The first wave passes through with the same velocity
as the air-stream, and the second wave lags behind. If diffusion effects are neglected
and it is assumed that the air velocity is constant at all places (which it will not be,
owing to variations in the resistance to air-flow), theory shows that the waves should
both be sharp changes, as in Fig. 9.18, if there is a sudden change in conditions. In
fact, the slow wave is so slow that diffusion is not negligible, and a more exact theory
enables its shape to be calculated. As in diffusion, temperature and vapour concentration

Table 9.3 Double jersey fabrics tested by Li and Luo [17]

Wool Cotton Acrylic Polypropylene

Fibre diameter 20.6 13.3 18.4 20.0
(µm)

Yarn tex 20 20 21 18

Fabric g/m2 272 275 287 279

Thickness (mm) 2.96 2.19 2.14 2.42

D1(m2/s × 1014) 1.04 + 68.2 M 0.8481 + 50.6 M 11.2 + 4100 M 13
–1342.59 M2 –1100 M2 –82 000 M 2

D2(m2/s × 1014) 1.614{1–exp[–18.163 2.5{1–exp[–3.5385 62.3 13
× exp(–28.0 M)]} × exp(–45M)]}
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9.16 Diffusion into fabrics in change from 0 to 99% r.h. Theoretical lines and
experimental points: (a) moisture uptake; (b) temperature change at surface
of fabric. From Li and Luo [17].

changes are roughly equally divided between the two waves, and there may be transient
changes on the fast wave, whereas moisture content changes occur mainly on the
slow wave.

The theory has been tested experimentally by blowing air through the walls of a
hollow cylinder as shown in Fig. 9.19. The walls of the cylinder were 1 cm thick, and
the fibres were packed to a density of 0.147 g/cm3; the air velocity was 1.75 cm/s.
When steady conditions had been attained at one temperature, the temperature of the
incoming air was suddenly changed, without change of vapour pressure, and the
change in temperature of the outgoing air was measured. Figure 9.20 shows the good
agreement between experiment and theory. Results for various fibres are given in
Fig. 9.21 and Table 9.4. It is found that the time taken for the slow wave to pass
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9.17 Change in fabrics from 0 to 99% r.h. with time and depth into fabric: (a)–(c) cotton; (d), (e) acrylic; (a), (d) vapour
concentration; (b), (e) moisture content; (c) (f) temperature. From Li and Luo [17].
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through increases as the steepness of the curve of regain against relative humidity
increases. Consequently, the more absorbent the fibres, the slower is the change. In
addition to the results given by Baxter and Cassie, some values have been calculated
for synthetic fibres and are included in Table 9.4. These are only very approximate,
since such factors as the specific heat of the material, which can be neglected for
hygroscopic fibres, will be important for hydrophobic fibres.

9.4 Practical effects

9.4.1 Conditioning

The above discussion has shown that the rate of conditioning (meaning the change of
regain) of fibres will depend on the slow wave resulting from the combination of heat

9.18 Ideal transmission of change by a forced draught.
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9.19 Textile cylinder for testing change of condition on blowing air through a
mass of fibres. After Cassie and Baxter [16].
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9.20 Transmission of temperature change through a textile cylinder by forced
draught: A, ingoing air temperature; B, temperature after passing through
cylinder, experimental; C, temperature after passing through cylinder,
theoretical. After Daniels [19].
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9.21 Transmission of temperature change from 20 to 35 °C through various
fibres in textile cylinder. The curves show temperature of air after passing
through cylinder: A, acetate; B, cotton; C, wool. After Baxter and Cassie [20].

Table 9.4 Transmission of temperature changes under forced draught through apparatus
shown in Fig. 9.19 with dimensions in text [16]

Material Time for slow wave Amplitude (°C)

Calculated Observed Fast wave Slow wave

Cotton 15.7 13.8 5.7 9.3
Flax 20.5 19.5 5.9 9.1
Kapok 19.9 23.6 6.0 9.0
Viscose rayon 26.6 30.0 5.9 9.1
Acetate 16.1 19.6 6.5 8.5
Wool 22.1 28.4 5.9 9.1
Silk 19.0 19.8 6.4 8.6
Nylon 8
Polyester (PET) 4
Acrylic (PAN) 2
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and moisture diffusion. The change will take place roughly exponentially, as is shown
in Fig. 9.22. For a given set of conditions, a given proportion of the total change will
always take the same time irrespective of the magnitude of the total change. For
example, three-quarters of the change from 8 to 10% regain will take the same time
as three-quarters of the change from 9 to 9.1%. The actual time taken for a change to
occur will depend on the ease with which heat and moisture can be dissipated from
the specimen. This is influenced by many factors: the size, shape and density of
packing of the mass of fibres; the type of fibre; the temperature; and the general level
of regain at which the change occurs.

The numerical values for the effect of these factors can be based on a standard
half-change period of 12 hours for a slab of cotton fibres 2.5 cm thick, with a density
of 0.5 g/cm3 when dry, at a regain of 7%, and at a temperature of 18 °C. The time for
other percentages of the total change may be obtained by multiplying the basic half-
change period of 12 hours by the factors given in Table 9.52.

The effects of the principal factors that influence the rate of conditioning are as
follows.

• Size and shape of package. The greater the distance for which heat has to be
transferred through the mass of fibres (which is an effective heat insulator), the
slower will be the rate of conditioning. Heat generated in the centre of a bale will
take a long time to escape. It will escape more rapidly from a smaller package or
from the same mass of material spread out in a thin layer.
The total amount of heat that has to be lost is proportional to the volume of the
package. The rate of loss of heat will depend partly on the time taken for the heat
to reach the surface, decreasing as the distance to the surface increases, and
partly on the rate of loss of heat from the surface, increasing as the surface area
increases. In fact, mathematical analysis shows that:
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9.22 Rate of conditioning in practice.

2Based on information from the Cotton Silk and Man-made Fibres Research Association.

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres226

conditioning time ∝ 
volume

surface area

2






For packages of the same shape, this reduces to:

conditioning time ∝ (linear dimension)2

Different specimens will have values of these quantities differing by at least a
million times, and this is the most important factor in determining whether the
time taken in conditioning is seconds or years. The other factors to be considered
have smaller effects, though they may be more easily changed.

• Bulk density. The mass of moisture absorbed, and so the amount of heat evolved,
for a given change of regain is proportional to the density of packing of the
material. It is therefore found that:

conditioning time ∝ density

Table 9.5 Time for conditioning. Basic half-change period of 12 hours has to be multiplied
by appropriate factors for other conditions

Percentage of 5 10 20 30 40 50 60 70 80 90 95 99
total change

Factor
  

1
80   

1
20   

1
6   

1
3  

2
3

1
  
11

2
2 3 6 8 14

Density Factor
(g/cm3)

Size and shape of package: 0.09
  

1
6

0.17
  

1
3

0.35
  

2
3

0.5 1

0.7
  
11

2

Material Factor Average Factor Temperature Factor
regain (°C)

Cotton 1 0 6 5
  
2 3

8
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11

4
1 2 10

  
13

4

cotton

Viscose rayon 2 2 1 15
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Factor = 
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2×





(measured in cm)
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• Material. There are some variations depending on the nature of the material. The
numerical values are given in Table 9.5.

• Regain. The rate of conditioning is slower at the extreme values, as shown in
Table 9.5. This results from differences in the diffusion constants.

• Temperature. Conditioning is more rapid at higher temperatures, since the heat
transfer, in common with most other processes, occurs more rapidly at higher
temperatures. At low temperatures, conditioning is slow. Darling and Belding
[21] found the following times for 80% of the change in wool yarn: 5 °C, 10
hours; –18 °C, 95 hours; –30 °C, 260 hours.

• Air circulation. The ventilation around a mass of fibres is important in affecting
the rate of loss of heat from the surface of the specimen and thus the rate of
conditioning.

Quantitative values for the influences of the above factors are summarised in Table
9.5.

Conditioning may be speeded up by carrying it out in two stages. The theory has
been worked out by Crank and Henry [22] for sheet and cylindrical specimens.
Figure 9.23 shows the theoretical behaviour during conditioning of an initially dry
plane sheet. The conditioning is more rapid when the specimen is first placed in an
atmosphere much damper than is required, for the final state and then, after a period,
transferred to an atmosphere, giving the required equilibrium condition. Since the
outer layers will have come into equilibrium with the damper atmosphere, there is a
fall in the amount of moisture in the specimen after the transfer, and thus the optimum
procedure involves allowing the specimen to absorb somewhat more moisture than is
finally required. Another procedure that may be adopted is to place the material in a

9.23 Methods of conditioning in practice: A, infinite atmosphere of required
condition; B, two-stage processes; C, closed systems containing correct total
amount of water. After Crank and Henry [22].
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closed system containing the required total amount of water: this gives more rapid
conditioning than the use of an infinite atmosphere of the required condition but is
less rapid than the shortest two-stage process.

9.4.2 Influence in clothing

The value of the heat of absorption in clothing was mentioned in the last chapter. The
discussion in this chapter shows that, in a hygroscopic material, a considerable part
(the fraction carried on the slow wave) of an external temperature change is delayed
in its passage through the material.

This happens even if air is being blown through the material. Thus only a part of
the total change reaches the body immediately, and the body is given time to adapt
itself to the remainder of the change. Under almost all conditions, this will be beneficial
in clothing materials. The best fibres from this point of view will be the most hygroscopic
fibres. In non-absorbing fibres, the delay in the transmission of temperature change
will be only that due to the insulating power of the material.

Farnworth [23] extended the treatment to multilayer clothing and also took account
of condensation and wet insulation. An extensive account of thermal and moisture
transport in fibrous materials, with particular reference to clothing is given in the
book edited by Pan and Gibson [24].
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10.1 Introduction

The account of moisture absorption given in the last three chapters has been concerned
with the behaviour of fibres exposed to atmospheric humidity, but the interactions of
fibres with liquid water are also important. The removal of water from masses of
fibres has practical application in the drying of textiles, where the initial surplus
water may be removed by squeezing, by centrifuging, or merely by gravity, as in
‘drip-dry’ materials.

Fundamental experimental investigations have made use of two methods: centrifuging
and suction. The latter is particularly useful, since it can easily be related to the
behaviour at high relative humidities.

10.2 Centrifuging of wet fibres

10.2.1 Experimental method

The centrifugal method has been used by Preston and his colleagues [1, 2]. It is
basically simple. The mass of fibres is swung round in a centrifuge, so that it is
subject to a high field of force, which in Preston’s experiments ranged from 1000 to
5000 times the gravitational field. Under the action of this force, the water rapidly
drains out of the fibre mass.

The method of supporting the fibres in the centrifuge influences the results. If they
are placed in a hollow container, so that the centrifugal field presses them against a
porous plate, then this will tend to compact the fibre mass and reduce the space that
can be filled with water, but if the material is in the form of yarn wound in small
hanks and placed on hooks, this compacting will not occur.

10.2.2 Theoretical estimate of water retention

In a waterlogged state, all the spaces between the fibres will be filled with water.
Under the action of gravity, and to a much greater extent under high centrifugal
fields, this water will drain out. Finally a stage will be reached in which the water that
remains is held by surface tension in capillary spaces between the fibres, just as a

10
The retention of liquid water
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column of water will remain suspended in a fine capillary tube. The exact form of
these spaces will depend on the way in which the fibres are packed together. The
retention of water will also be affected by the alignment of the spaces with respect to
the centrifugal field.

For the simple case, illustrated in Fig. 10.1, in which circular fibres are close-
packed parallel to the direction of the centrifugal field, it is possible to work out the
equation for the equilibrium condition. We shall also make the simplifying assumption
that the curvature of the meniscus is negligible at the end of the tube from which the
water empties.

The spaces between the fibres will be roughly triangular tubes, and these hold the
capillary water. If p is the length of the perimeter formed by the three sides of one of
these tubes, then the force due to surface tension will be σp cos θ, where σ is the
surface tension and θ is the contact angle. The centrifugal pull on the water in a tube
is mg, where m is the mass of water in the tube and g is the acceleration due to the
centrifugal field. At equilibrium, these two forces must balance, and we have

mg = σp cos θ (10.1)

It is clear from this equation that as the centrifugal field increases, the mass of water
that can be retained in a tube of a given perimeter decreases.

As can be seen from the plan view of the close packing, Fig. 10.1(b), the length of
each side of the tube is equal to one-sixth of the circumference of a fibre. This can
be related to the linear density (mass/unit length), c, of the fibre and its density, ρ, for,
if R is the fibre radius, we have:

πR2ρ = c (10.2)

p
R

R
c

 = 3
2

6
 =  = 

π π π
ρ











 (10.3)

It is also clear from the plan that there are twice as many spaces between fibres as
there are fibres (since each fibre can be regarded as having one-third share in six
spaces), and the mass M of fibre associated with one tube is therefore given by:

M = 1/2ch (10.4)

Centrifugal field
(a) (b)

R

1/3

10.1 (a) Capillary spaces between fibres filled with water, in centrifugal field.
(b) Plan of close-packed fibres, showing spaces between them.
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where h is the total height of the fibre mass parallel to the centrifugal field.
The fractional water retention r of the specimen is given by:

r m
M

 = mass of water
mass of fibre

 = (10.5)

Substituting from equations (10.1), (10.3) and (10.4), we obtain:

r
gh cp

 = 
2  cos  

( )

σ θ π
(10.6)

This equation will only apply exactly to the simple example that we have described,
but it is reasonable to suppose that an equation of the same form, though with
different numerical constants, would apply in the more complex cases that occur in
reality. For a given system, it may be expected that:

r
gh cp

   cos
( )

∝ σ θ
(10.7)

A more detailed analysis has been given by Kuppers [3].

10.2.3 Experimental results

In experiments in which they varied the surface tension, the centrifugal field, and the
contact angle, Preston et al. [2] obtained good agreement with the theoretical relation
(10.7). As would be expected, they found that the nature of the packing influenced
the amount of water retained. For example, less water was held by randomly oriented
viscose rayon fibres than by parallel ones. In addition, any compacting of the specimen,
reducing the size of the spaces, increases the amount of water retained.

Table 10.1 shows the amount of water retained by various fibre masses after
centrifuging. It should be noted that centrifuging will never remove all the water held

Table 10.1 Water retained in centrifuging and suction. After Preston and
Nimkar [4]

Regain (%)

Material Suction Centrifuging
– 30 cm Hg, 40 kpa 1000g, 5 min

Cotton yarn 52 48
Viscose rayon yarn 106 103
Fortisan yarn*
0.11 dtex per filament 70 63
1.1 dtex per filament 48 48
Acetate yarn 31 31
Loose wool 133 45
Silk yarn 55 52
Nylon yarn 14 16

*Fortisan, which was an industrial rayon, is no longer made, but is included
here to show the effect of fibre fineness.

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres232

in capillary spaces but will only reduce it to the amount given by equation (10.1). The
method will not therefore give a reliable estimate of the water held in the fibre
material itself at saturation.

10.3 Suction

10.3.1 Experimental method

An alternative method of investigation is to apply a hydrostatic tension to the waterlogged
mass of fibres. A simple apparatus for doing this is shown in Fig. 10.2 and has been
used by Preston and Nimkar [4]. The fibres are placed on a porous plate, below which
there is a column of water leading to a mercury manometer. It is essential that there
should be a continuous water-path between the mercury and the water surrounding
the fibres. Lowering the right arm of the manometer puts the water into a state of
hydrostatic tension, which will tend to pull the water away from the fibre mass. This
will be resisted by the forces of surface tension.

10.3.2 Relation between suction, capillary size and humidity

The force exerted by surface tension depends on the curvature of the water meniscus.
If the curvature is great, there will be a high capillary force, which will resist the
hydrostatic tension, but, if it is low, the force will be small and the hydrostatic tension
will empty the capillary space. The critical condition, when the two forces just
balance, is given by the usual equation:

P
r r

 = 
1

 + 
1

1 2
σ



 (10.8)

where P = hydrostatic pressure, and r1 and r2 are the principal radii of curvature.

10.2 Apparatus for removal of water from a mass of fibres by suction.
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If the spaces are circular and the contact angle is zero, this relation reduces to P
= 2σ/r, where r is the radius of the capillary. If the spaces have plane parallel walls,
separated by a width 2w, it reduces to P = σ/w. The spaces between fibres will vary
in shape and will lie somewhere between these two conditions. The re-entrant spaces
in some rayon fibres will approximate to the second case.

The use of Kelvin’s equation [5] enables the relative humidity corresponding to
any hydrostatic tension to be calculated. The relation is:

log  = e H PM
RTρ (10.9)

where H = relative humidity (fractional), M = molecular weight of water, ρ = density
of water, R = gas constant and T = absolute temperature. Consequently, the results of
suction experiments may be related to experiments in which the specimen attains
equilibrium with a given relative humidity.

10.3.3 Experimental results

Figure 10.3 shows some values of the moisture retained in the mass of fibres plotted
against the hydrostatic tension (negative values of hydrostatic pressure). The
corresponding values of humidity are also shown. Figure 10.4 shows the way in
which data obtained by the suction method join on to normal absorption data.

It will be noticed that there is a very rapid rise near saturation. This is when water
held in capillary spaces becomes important. The filling of capillary spaces does not
cause any increase in volume. Hence, if the water causing volume swelling (plus that
filling the void space between the fibre molecules, discussed in Section 12.1.6) is
subtracted from the total water retained, we can get a figure for the amount of

10.3 Removal of water from fibres by suction. After Preston and Nimkar [4].
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capillary water present. Preston and Nimkar [4] state that this is a significant amount
only at relative humidities greater than 99%.

Hysteresis is found to persist even at the very high humidities corresponding to
suction experiments. This is shown by Fig. 10.5, in which the water retained is
plotted against the reciprocal of the hydrostatic tension, which is a more convenient
way of presenting the results.
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10.4 Combination of suction data with normal sorption isotherms of viscose
rayon. After Preston and Nimkar [4].

10.5 Hysteresis in removal of water by suction: viscose rayon. After Preston
and Nimkar [4].
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Comparative values for the water retained by various fibres after a suction experiment
are given in Table 10.1. In the suction method, the force tending to remove the water
is independent of the amount of water in the capillary space (if this is assumed to be
constant in size). The space will consequently either be emptied completely if it is
larger than the critical value given by equation (10.8), or left completely full if it is
smaller. By contrast, in the centrifugal method, the force decreases as the space
empties, and thus any spaces may be emptied to some extent, but none will be
completely emptied unless the field is infinite. We should not therefore necessarily
expect a close correlation between the results of suction and centrifugal experiments.
However, the values given in Table 10.1 show that, for many fibre materials, a
hydrostatic tension of 30 cm of mercury (corresponding to 99.97% r.h.) gives very
similar results to the application of a centrifugal field of 1000g for 5 min. Capillary–
sorption cycles in a variety of fibre assemblies have been studied by Burgeni and
Kanpur [6].

Another method of estimating the amount of water retained as capillary water is
to freeze the sample. Any free liquid water freezes at 0 °C, and thus its amount can
be calculated from the latent heat at 0 °C. Absorbed water has an influence over a
range of temperatures. Haly [7] used this method and found that the saturation regain
of wool was 33.9% at 0 °C. Any excess over this amount is free water.

A practical example of the removal of water by means of hydrostatic tension
occurs when a wet textile material is hung up vertically. The water at any point will
be under a hydrostatic tension determined by the length of the continuous column of
water below it. If evaporation is prevented, one would expect an equilibrium to be
obtained in which there would be a gradient of wetness from top to bottom. Preston
and Nimkar [1] have confirmed that this is so.

10.4 Interactions

If capillary water is present in the spaces between fibres, the fibres will be attracted
to one another by the hydrostatic tension in the water. Consequently, when a waterlogged
mass of fibres is dried, the individual fibres will be drawn together and there will be
forces of adhesion wherever they cross. This adhesion will persist down to any
humidities at which capillary water is present, even if it is only in amounts that are
insignificant by comparison with the total water absorption.

Preston and Nimkar [4] have both calculated and measured the force of adhesion
between fibres due to this cause, and Table 10.2 gives examples of their results. The
agreement between experiment and theory is good for the glass fibres. The low
experimental values obtained with the cellulosic fibres are probably due to surface
irregularities.

Wettability is another response related to surface tension and contact angles, Lee
and Michielsen [8] review aspects of surface tension, contact angles and contact
angle hysteresis in the context of super-hydrophobicity and the Lotus effect, which
leads to water drops rolling off a tilted surface.
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Table 10.2 Force of adhesion between fibres due to surface tension of water. After Preston
and Nimkar [4]

Force (µN)

Fibre Radius (µm) r.h. (%) Calculated Measured

Viscose rayon 16 93 15 1

Cuprammonium rayon 158 93 145 6

Glass 41 0 0 0
31 37 34
64 37 26
93 37 32
Wet 0 0

Glass 54 31 49 48
64 49 34
93 49 37
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11.1 Introduction

11.1.1 Technical significance

When fibres absorb water, they change in dimensions, swelling transversely and
axially. This has technical consequences in the dimensional stability of fabrics, the
predominant transverse swelling usually resulting in a shrinkage of twisted or interlaced
structures. It also means that the pores of closely woven fabrics will be completely
blocked when the fibres are swollen, and they may then be impermeable to water. This
principle is utilised in hosepipe materials and the Ventile fabrics, which were developed
in the 1940s for showerproof garments. Swelling is also an important factor in crêpeing,
due to the increased twist angle in a swollen yarn, and in drying and dyeing.

Swelling is akin to solution in that there is an interchange of position between
fibre molecules and water molecules, but in swelling this occurs only to a limited extent,
whereas in solution it continues until there is a uniform mixture of the two substances.

11.1.2 Definitions

The swelling may be expressed in terms of the increase in diameter, area, length or
volume as illustrated in Fig. 11.1. This leads to the following quantities:

transverse diameter swelling = fractional increase in diameter

= = DS
D

D
∆

(11.1)

transverse area swelling = fractional increase in area of cross-section

= = AS
A

A
∆

(11.2)

axial swelling = fractional increase in length = = lS
l

l
∆

(11.3)

volume swelling = fractional increase in volume = = vS
V

V
∆

(11.4)

In practice, these quantities are often expressed as percentages rather than fractions.

11
Swelling
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Relations between them reduce the number of independent parameters to two,
though these relations may be affected by the fibre shape. For instance, in a fibre that
is uniform along its length, we have

V = Al (11.5)

V + ∆V = (A + ∆A) (l + ∆l) (11.6)

S
V

V
A Al

Al
l

l
A

A
A l
Al

S S S Sv 1 A 1 A=  = 
 + 

 =  +  +  = + + 
∆ ∆ ∆ ∆ ∆ ∆



 (11.7)

where V = volume, A = area of cross-section and l = length.
It can be similarly shown that, for a fibre of circular cross-section

SA = 2SD + SD
2 (11.8)

Another quantity that is a useful expression of the swelling behaviour is the swelling
anisotropy = K = SD/S1. This is related to the orientation of the molecules in the fibre,
which cause it to range from infinity for a perfectly oriented arrangement, with no
length swelling, to unity for a completely random one.

11.2 Measurement of swelling

11.2.1 Volume swelling

If we consider a specimen of mass 1 g when dry, we have

V = 1
0ρ (11.9)

V V m  r +  = 1 +  = 1 + /100
s s

∆ ρ ρ (11.10)

where ρ0 = density when dry, ρs = density when swollen, m = mass of water absorbed,
and r = regain %. Hence:

∆l

l
D

V

A

∆V

∆D

∆A

Original
fibre

Swollen
fibre

11.1 Changes in fibre dimensions on swelling.
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 (11.11)

Thus the volume swelling may be found from measurements of density (by using the
methods described in Section 5.2) and regain.

11.2.2 Axial swelling

The axial swelling of a continuous filament may be found by hanging up a length
under a low tension and measuring the change in length with a cathetometer or some
form of extension gauge. Observations of the change in length of short fibres may be
made with a travelling microscope by using the procedure described by White and
Stam [1].

11.2.3 Transverse swelling

Because fibres have such a small diameter, measurements of changes in transverse
dimensions are not easy to make. The accuracy of a microscopical method is limited
by the resolution of the microscope, which is of the order of magnitude of the
wavelength of light used, say, 0.5 µm. If a fibre of 20 µm diameter is examined, it will
be possible to distinguish detail down to one-fortieth of the fibre diameter, but, if the
diameter swelling is 10%, it will be possible to measure this to an accuracy of only
0.5 in 2. This means that there may be an error of 25%.

However, microscopy methods are used, either for examining the fibre profile and
measuring the apparent diameter or for examining sections and measuring the diameter,
or the area of cross-section, with a planimeter. Figure 11.2 shows the outlines of a
viscose rayon fibre, swollen and unswollen, as observed by Morehead [2]. This

Dry fibre

Swollen
fibre

11.2 Outlines of cross-section of viscose rayon filament, dry and swollen in
water. After Morehead [2].
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makes clear the fact that diameter swelling is not a sound way of expressing the
transverse swelling of a fibre with an irregular cross-section, since it will vary according
to the position in which the ‘diameter’ is drawn. For irregular fibres, area swelling
must be used.

Denton [3] has described an optical-interference method, and other workers have
measured the change in air-flow along a tube containing a fibre [4] or the conductance
in a tube with the fibre surrounded by a conducting liquid [5].

11.2.4 Digital imaging

The use of modern digital imaging, as described for fibre diameter and length
measurements in Sections 3.7.1 and 4.11.2 would simplify the measurement of both
axial and transverse swelling.

11.3 Results

11.3.1 The swelling of fibres in water

Table 11.1 gives a collection of values of swelling observed by several workers when
fibres are immersed in water. It is immediately obvious that there are considerable
discrepancies in the values of a given quantity obtained by different people. There are
also several cases in which the relations between the results are widely different from
equations (11.7) and (11.8). To some extent, these divergencies are a reflection of
experimental difficulties, but there will also be real differences between different
specimens of a given type of fibre.

As would be expected, the values of volume swelling vary between different
fibres in much the same way as values of regain: those fibres that absorb most water
swell to the greatest extent.

Most moisture-absorbing fibres show a large transverse swelling, with a smaller
axial swelling, so that the swelling anisotropy is high.

Table 11.1 Swelling of fibres in water. Values reported by various authors, collected by
Preston and Nimkar [6]

Fibre Transverse swelling (%) Axial Volume

Diameter Area swelling (%) swelling (%)

Cotton 20, 23, 7 40, 42, 21
Mercerised cotton 17 46, 24 0.1
Flax 47 0.1, 0.2
Jute 20, 21 40
Viscose rayon 25, 35, 52 50, 65, 67, 66, 3.7, 4.8 109, 117, 115,

113, 114 119, 123,126,
74, 122, 127

Acetate 9, 11, 14 6, 8 0.1, 0.3
Wool 14, 8, 17 25, 26 36, 37, 41
Silk 16.5, 16.3, 18.7 19 1.6, 1.3 30, 32
Nylon 1.9, 2.6 1.6, 3.2 2.7, 2.9 8.1, 11.0
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Nylon is exceptional in having a value of the anisotropy that is close to or less than
unity. There has been some controversy about the cause of this; it has been suggested
that the nylon fibre is surrounded by a skin or sheath, which restricts the transverse
swelling. However, it is more likely that it results from the micellar form shown in
Fig. 11.3. The swelling of amorphous regions between crystallites in the quasi-fibrils
will have a larger effect than the swelling between the fibrils. An interesting consequence
of the axial swelling is that carpet tiles expand when humidity increases and this
leads to buckling [8].

11.3 Micellar structure of nylon, as proposed by Murthy et al. [7].

11.4 Swelling of fibres between dryness and saturation: a, cotton, area
swelling in absorption and desorption [9]; b, wool, diameter swelling [4]; c,
nylon, area swelling [10]; d, nylon, diameter swelling [10]; e cotton, length
swelling [9].
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11.3.2 Swelling at various humidities

The variation of swelling with humidity usually follows the change of regain, with
hysteresis showing between swelling and humidity. Typical curves are shown in Fig.
11.4.

However, Mackay and Downes [11] found that single wool fibres can show a
maximum length between 75 and 85% r.h., as in Fig. 11.5(a). This was not observed
in other studies by Speakman [12], Haly [13] and Watt [14]. Mackay and Downes
also found hysteresis between length swelling and regain, as shown in Figure 11.4(b);
Treloar [15] found a similar result for horsehair.
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11.5 Length changes in merino wool fibres, observed by Mackay and Downes
[11]; (a) variation of length in absorption and desorption; (b) hysteresis
between length change and regain.
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12.1 The general view

12.1.1 Introduction

Adsorption in a non-swelling medium, for example, the adsorption of gases on charcoal,
is a comparatively simple process, and so is the solution of one substance in another,
for example the solution of sugar in water, but the absorption of water by fibres is an
example of a process that comes midway between these two and partakes of some
features of each. It encompasses not only the relation between regain and humidity
but also associated phenomena, such as hysteresis, heat effects, the variation of
regain with temperature, the influence of moisture on physical properties, and all the
complicated factors arising from the interaction of moisture and mechanical effects
owing to the limited swelling of fibres. All this cannot be explained by a single
theory. A general qualitative view of the whole subject shows the action of several
mechanisms of absorption, and there are quantitative theories associated with every
possible mechanism. These theories shed light on the subject from a variety of points
of view, and a quantitative understanding of the whole process must be built up from
them. Although some of the ideas are conflicting, they are mainly complementary to
one another.

In this chapter, we shall first give a broad description of the way in which water
is absorbed and then go on to discuss some particular theories. For convenience, the
theories will usually be discussed in terms of the particular type of fibre for which
they were first proposed, but the ideas will usually be applicable to other fibres as
well.

12.1.2 The effect of hydrophilic groups

In considering absorption, we must take account of the interaction between the water
molecules and the molecules of the fibre substance. All the natural animal and vegetable
fibres (and the fibres regenerated from natural materials) have groups in their molecules
that attract water: indeed, this is probably a necessary result of the fact that the
molecules were first formed in the presence of water. For example, the cellulose
molecule contains three hydroxyl groups for each glucose residue, and hydrogen bonds
can be formed between water molecules and the hydroxyl groups (see Fig. 12.1).

12
Theories of moisture sorption
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The molecular weight of water is 18, and that of the glucose residue is 162, so that
if one water molecule were attached to each hydroxyl group the regain would be
33.1%. In fact, as is discussed in later sections, not all the hydroxyl groups are
involved, and there may be more than one water molecule per hydroxyl group.

In cellulose acetate, all or most of the hydroxyl groups have been replaced by the
comparatively inert acetyl (CH3·COO—) groups. These groups do not attract water
strongly, so the absorption of water by acetate is low. In particular, there is no rapid
rise at low humidities owing to the initial absorption on strongly attractive groups.

The protein fibres contain amide groups (—NH—) in the main chain, to which
water can be hydrogen bonded, and other water-attracting groups such as —OH,
—NH ,3

+  —COO–, —CO·NH2, in the side chains. Wool contains many active groups
in the side chains, but silk contains only a few. By blocking off certain groups, Watt
and Leeder [1] have attempted to divide up the water absorbed by wool according to
the various amino-acid residues responsible.

All the synthetic fibres so far produced contain few if any water-attractive groups,
and this accounts for their low moisture absorption. The polyamide fibres, nylon 6.6
and 6 and aramids, contain one amide (—NH—) group for every six carbon atoms in
the chain, which would give a regain of 16% of each amide group held one water
molecule. The polyester fibres, polyethylene terephthalate, are composed only of
benzene rings, —CH2— groups, and —CO·O— groups, none of which attracts water
strongly. Polyethylene is simply a -CH2-chain, polypropylene has additional –CH3

side groups, and the vinyl fibres are similar except for the substitution of —Cl,
—O·CO·CH3, or other comparatively inert groups for some of the hydrogen atoms,
and consequently these fibres absorb little water. Acrylic fibres, containing —CN
groups and other groups from the minor components, absorb slightly more than the
other vinyl fibres, and polyvinyl alcohol, containing some —OH groups, absorbs still
more. Inorganic fibres, including carbon, do not attract water absorption.

12.1.3 Directly and indirectly attached water

The first water molecules must be absorbed directly onto the hydrophilic groups, but,
there is a choice for those absorbed after the first. They may be attracted to other
hydrophilic groups, or they may form further layers on top of the water molecules
already absorbed. The resulting effect is illustrated in Fig. 12.2.
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CH2OH

HOH

CHCH
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OH

HOH
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CH CH O
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12.1 Absorption of water by hydrogen bonding to hydroxyl groups in a
cellulose molecule.
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The directly attached water molecules will be firmly fixed, fitting closely to the
structure of the molecules. They will be limited in their movement. The indirectly
attached water molecules will be more loosely held. Their arrangement is uncertain,
but the dielectric properties of fibres (see Section 21.5) suggest that they are not as
free as the molecules in liquid water and are probably restrained to about the same
extent as the water molecules in ice. This is not incompatible with values of the heat
of sorption (see Section 8.3), which for most fibres at 50% r.h. are of the order of
magnitude of the latent heat of freezing of water (330 J/g). At high humidities, the
heat of sorption falls to about half the value of the latent heat. It may also be noted
that Kolkmeyer and Heyn [2] observed lines characteristic of ice in the X-ray diffraction
pattern of cellulose. Nuclear magnetic resonance (NMR) studies on keratin by Lynch
and Marsden [3] suggest a more complicated situation, with relaxation times one-
thousandth of those for water molecules in ice, but 100 times as long as those in the
liquid state.

Quantitative estimates of the division between the two types of absorbed water are
given in Section 12.2. Boesen [4] reviewed the evidence on the amount of directly
bound water in cellulose.

12.1.4 Absorption in crystalline and non-crystalline regions

In crystalline regions, the fibre molecules are closely packed together in a regular
pattern. The active groups form crosslinks between the molecules, for example by
hydrogen bonding in cellulose and keratin. Thus it will not be easy for water molecules
to penetrate into a crystalline region, and, for absorption to take place, the active
groups would have to be freed by the breaking of crosslinks.

In native cellulose, with the crystalline arrangement known as cellulose I, the X-
ray diffraction pattern is unchanged during the absorption of water by the fibre,
which indicates that no water is absorbed in the crystalline regions. In regenerated
cellulose, with a slightly less compact crystal structure known as cellulose II, there
is a change of crystal structure on absorption. This is due to the formation of a
hydrate, which probably contains one water molecule to every three glucose residues.
This would correspond to a regain of about 3.7% in the crystalline region (about 1%
regain in the whole fibre). When the regenerated cellulose is wet, there is a further
modification of the crystal structure owing to the formation of a hydrate with about
three water molecules to every two glucose residues.

The material easily accessible to moisture will be either the non-crystalline regions

Polymer

Direct

Indirect

H2O H2O H2O

H2O H2O H2O

H2O H2O

12.2 Direct and indirect absorption of water molecules by a polymer
molecule.
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or the surfaces of crystalline regions. As was stated in Chapter 1, it is very difficult
to separate the disorder in a fibre that is due to extensive disordered regions from that
which is due to the imperfect packing of small crystallites or crystalline fibrils. It is
therefore simplest, for the present discussion, to lump both categories of accessible
material together as effectively non-crystalline.

It would then be expected that the regain at any particular relative humidity would
be proportional to the amount of this effectively non-crystalline material. Consequently,
the ratios of regain at the same relative humidity for any two cellulosic fibres should
be independent of the relative humidity, that is, the curves of regain against relative
humidity should be the same shape and differ only in scale. This has been proved
experimentally (see Section 7.4.2). In addition, the differential heat of sorption should
be the same for all cellulosic fibres at the same relative humidity, since it must be the
heat evolved when 1 g of water reacts with non-crystalline cellulose. This has also
been demonstrated experimentally (see Section 8.3). On the other hand, other fibres,
having different absorbing substances, give curves of different shapes and have
different heats of sorption.

The moisture absorption thus offers one way of estimating the effective crystalline/
non-crystalline ratio in cellulosic fibres. Marsden [5] gives values of approximately
60% crystalline material for native cellulose and 25% for regenerated cellulose.
Results by different methods do not agree exactly, probably because the distinction
between non-crystalline and crystalline regions is not precise and different methods
would have different limits. Jeffries et al. [6], collecting data from the literature, have
values for percentage of disordered material ranging from 8 to 42% for cotton and
from 20 to 77% for regenerated cellulose.

In nylon, the amount of crystalline material has been estimated to be 50–60% of
the whole.

12.1.5 Hysteresis: a molecular explanation

Urquhart [7] put forward a theory of hysteresis based on molecular effects, and this
has been restated, in the light of later views of cellulose structure, by Hermans [8].
In non-crystalline cellulose, there are some crosslinks, formed where molecules pass
near to one another, and these crosslinks reduce the amount of absorption, both by
providing mechanical restraint (the influence of which is discussed in Section 12.3)
and by reducing the number of available hydroxyl groups. As absorption increases,
the crosslinks will tend to be broken and replaced by water absorption on the hydroxyl
groups. Thus there is the following change:

DRY
structure with

many crosslinks

WET
structure with
few crosslinks

Crosslinks breaking 
water attaching

  Water coming off   
crosslinks forming

 →← 

Owing to the tendency of the structure to remain unchanged, there will be a hysteresis
in the breaking and re-forming of crosslinks, and consequently in the moisture
absorption.

In the more highly ordered, fibrillar, natural cellulose fibres, the crosslinks and
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water attachment will be between and on the surfaces of the fibrils. Figure 12.3 can
thus be regarded as showing a small part of these surfaces.

The structure in extensive non-crystalline regions is a three-dimensional network
and is more difficult to visualise. However, the two-dimensional analogy (which
must not be taken too literally) shown in Fig. 12.3 may be used to lead to an
understanding of what happens. The figure shows a dry structure with crosslinks and
a wet structure with water absorption. Suppose that the two structures are both put in
the same atmosphere. Owing to the natural energy of the system, causing the continual
motion of atoms and molecules, active groups will at intervals become free because
of the breaking of crosslinks or the evaporation of water. A free active group will not
remain free indefinitely, since either a water molecule will be absorbed on it or a
crosslink will form. If these two possibilities are considered independently, the chance
of water absorption depends on the number and velocity of the water molecules
present in the atmosphere, and this is the same in both cases. The chance of a
crosslink forming depends on the nearness of another active group. It is thus more
likely to occur in the dry structure, where the other crosslinks are holding the molecules
close together, than in the wet structure, where the molecules are far apart. Consequently,
when the two possibilities are in competition, the net chance of water absorption is
greater in the wet structure, so there will be hysteresis in the moisture absorption.

Translating the above ideas into three-dimensional terms, we may say that the
presence of other crosslinks in a dry structure tends to hold the molecules together in
the network and makes crosslink formation easier than in a structure with few crosslinks.
Thus an initially dry specimen will always retain a higher number of crosslinks and
less water absorption than an initially wet specimen in the same atmosphere. Similar
arguments apply to the fibrillar network in the natural fibres.

When cellulose is first formed in the cotton plant, it is laid down in the presence
of water. This favours the absorption of water, and the resulting structure has few
crosslinks, giving rise to the high primary desorption curve (see Section 7.4.2). Once
it has been dried below a certain humidity, crosslinks will form. Some of these will
remain permanently and prevent such high regains from being obtained again. Heating
a fibre wet is also a process that favours moisture absorption, destroys crosslinks, and
gives rise to a high primary-desorption curve. On the other hand, heating a substance
dry increases the number of crosslinks and lowers the curve of regain against relative
humidity.

H2O H2O H2O H2O

H2O H2O H2O H2O

Dry

Wet

12.3 Schematic view of dry and wet structures.
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12.1.6 Limited swelling

Although glucose and cellulose are chemically very similar, they behave differently
when placed in water. Glucose dissolves, but cellulose swells to only a limited extent.
The limited swelling is due to the penetration of water into the non-crystalline regions
or between fibrils and its failure to penetrate into crystalline regions. The non-
crystalline regions tend to dissolve as glucose does, the cellulose molecules moving
apart and so giving room for the water to enter, but the cellulose molecules cannot
break away completely, since they are held firmly in the crystalline regions. The
fibrils in natural cellulose fibres must also be molecularly interconnected in a way
that prevents complete solution or alternatively held together in a state of dynamic
equilibrium, which prevents any fibre from becoming completely free at any instant.

Since it is a necessary condition for the stability of fibres in water, the reason why
the crystalline regions do not dissolve is worth a closer study. It is due to the cumulative
action of all the active groups in forming crosslinks. Whereas in glucose, or non-
crystalline cellulose, one active group can be attacked by water at a time, in order to
penetrate the crystalline regions of cellulose it would be necessary to attack a large
number of active groups at the same time. This is inherently unlikely to occur, since
the water molecules act at random and not together. The situation may be compared
to a war between irregular forces and a large army. If the army is spread out, the
irregular forces can harry and destroy it by isolated raids, although they could not
organise and win a single pitched battle with the army in close formation.

Swelling occurs because the fibre molecules are pushed apart by the absorbed
water molecules. The resulting distortion of the fibre sets up internal stresses, which
influence the moisture absorption. This aspect of the subject, which can be treated
mathematically by thermodynamics, has been particularly studied by Barkas and is
discussed in Section 12.3. It leads to an alternative explanation of hysteresis, for if
there is mechanical hysteresis in the fibres, it must necessarily cause moisture hysteresis.

The density changes during swelling (see Section 6.3) are also of interest. Initially,
as shown in Fig. 12.4, the change is such that the increase in volume is less than the
volume of the added water. Apart from the improbable suggestion that the absorbed
water is compressed, this must mean that the water molecules are fitted closely into
the structure, with a more complete use of the space available. This is analogous to
filling the spaces between tennis balls in a box with marbles. The close fitting is in
accord with the view that the first water molecules are directly attached to the active
groups in the fibre molecule. As absorption proceeds, the increase in volume becomes
equal to the volume of water added, which indicates that the water is packed in much
the same way as in liquid water or ice and is merely spreading out the polymer
structure. A change in moisture content with little change in volume will again occur
at high moisture contents if void spaces are filled with water by capillary sorption.

12.1.7 Capillary water

At very high humidities, liquid water may be held by the forces of surface tension in
capillary spaces between fibres or in crevices in the fibre surface. The equilibrium
vapour pressure, pa over a concave curved surface of radius a is lower than that over
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a plane surface p∞, owing to the surface tension of the water. This is given by Kelvin’s
equation:

log   = –  
2

e
p
p

M
RTa

a

∞

σ
ρ (12.1)

where σ = surface tension, M = molecular weight of water, i.e. 18, ρ = density of
water, R = gas constant, and T = absolute temperature.

Now, p∞ is equal to the saturation vapour pressure, and thus the relative humidity
over the curved surface will be given by:

relative humidity = H = 100 
p
p

a

∞





 % (12.2)

log  
100

 = –  
2

e
H M

RT a
σ

ρ (12.3)

For water at 20 °C,

a
H

 = 0.47
2 –  log

 nm
10

(12.4)

Consequently, for a specimen in an atmosphere of given relative humidity, there will
be no tendency for water to evaporate from capillaries in which the radius of the
water meniscus is less than that given by the above equation. At higher relative
humidities, water will remain in larger capillaries, and so the regain will increase.

12.4 Change in fibre specific volume with regain. From Meredith [9].
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Hysteresis may be explained as being due to a change of contact angle, depending on
whether the meniscus is advancing or receding. Thus a given radius of meniscus (i.e.
a given relative humidity) will occur at a wider portion of the capillary when it is
receding, and there will be a greater amount of water present, as shown in Fig. 12.5.

The capillary theory was, indeed, first proposed as a general explanation of moisture
absorption over a wide range of humidities. It is worth examining why it is not valid
in this way, apart from the fact that capillary spaces within the fibre are purely
hypothetical.

The first difficulty with the theory is that it does not explain how condensation
could occur initially in an open capillary. As is shown in Fig. 12.6(a), this would have
to pass through a phase in which the surface is convex and would thus be formed only
in a supersaturated atmosphere. A possible answer to this difficulty is that the
condensation starts at the end of a wedge-shaped capillary (Fig. 12.6(b)), where the
radius would be very small and the surface concave.

The second difficulty is more important. Table 12.1 shows the radii of the menisci
at various humidities, given by Equation (12.4). The diameter of a water molecule is
0.4 nm, which enables us to calculate the number of water molecules that would fit
across a capillary. At 60% r.h., this is only ten, or fewer if the contact angle is greater
than zero. Surface tension is, however, an average property based on summation over
a large number of molecules, and thus it is not a concept that can be applied to
capillaries that are only a few molecules wide. Indeed, unless there is a large number
of molecules in the surface, it is not possible to define a radius of curvature.

This means that the capillary water can play a part only at very high humidities.
In fact, the experimental results, discussed in Section 10.3.3, suggest that there is a

Increased
absorption

when receding Equal
radii

Advancing

Receding

12.5 Hysteresis in capillaries.

(a) (b)

12.6 Initial condensation in capillaries: (a) open capillary; (b) wedge-shaped
capillary.
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significant amount of capillary water present only at relative humidities greater than
99%.

12.2 Quantitative theories of absorption

12.2.1 Mechanistic molecular theories

The calculation of the division between directly and indirectly attached water, and its
relation to relative humidity, have been the subject of much theoretical speculation.
These theories have been reviewed by McLaren and Rowen [10] and subjected to
critical comment by various other authors [11, 12]. Some of them will be described
here, but others will be mentioned only briefly. More recent reviews [13–15] relate to
moisture absorption in foods.

In 1929, Peirce [16] put forward a theory which, despite arbitrary assumptions,
still bears comparison with the more sophisticated theories proposed later. He first
developed an argument for calculating the division between directly and indirectly
attached water molecules, as follows. Let C = total number of water molecules/
absorption site, Ca = number of directly absorbed water molecules/absorption site, Cb

= number of indirectly absorbed water molecules/absorption site, so that

C = Ca + Cb (12.5)

If C increases by dC, then the fraction of molecules directly absorbed will be
proportional to the number of unoccupied sites (1 – Ca):

d
d

 = (1 –  )a
a

C
C

q C (12.6)

where q is a factor of proportionality. Integrating, we obtain

–loge (1 – Ca) = qC (12.7)

Ca = 1 – e–qC (12.8)

Peirce assumes that the constant q is equal to 1 and puts forward some arguments
in support of this. It must, however, be regarded as an arbitrary assumption, which is

Table 12.1 Meniscus dimensions

r.h. (%) Radius of meniscus (nm) Diameter of meniscus
from equation (12.4) Diameter of water molecule

50 1.6 5
60 2.1 10
70 3.0 15
80 4.8 24
90 10 50
95 21 104
99 110 500
99.9 1200 (1.2 µm) 5000
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open to criticism on the grounds that it does not correctly represent the different
attractions of the vacant and covered sites. With this assumption, we have

Ca = 1 – e–C (12.9)

and, from equation (12.5):

Cb = C – 1 + e–C (12.10)

We can express C in terms of the regain of the material r since we have:

r
M C

M
 = 100 

mass of absorbed water
mass of material

% = 100 W

0





 γ (12.11)

where MW = molecular weight of water = 18; M0 = molecular weight per absorption
site = 1/3 molecular weight of glucose residue = 54; γ = total mass of material/mass
of absorbing (non-crystalline) material1. Hence

C
r

 = 
3
100

γ
(12.12)

Figure 12.7 shows the division of the experimental curve for regain against relative
humidity into the two phases. This shows the combination of two curves of different
shapes to give a resultant sigmoidal curve. Most of the initial absorption is directly
attached, whereas the absorption at higher humidities is mainly indirectly attached.

It is the directly attached water that changes the forces between molecules and
breaks crosslinks, so that it should have a greater effect than the indirectly attached

1In his original argument for cotton, Peirce assumed that all the material was accessible but that
only one hydroxyl group per glucose residue was effective in absorption, but Hearle [17] has
pointed out that, since only about one-third of the material in cotton is effectively non-crystalline
and so accessible to water molecules, the same numerical result would be obtained by assuming
that all the hydroxyl groups in the non-crystalline regions, but none in the crystalline regions, are
effective in absorption. This also enables the analysis to be applied to other cellulosic fibres.

M
o

le
cu

le
s/

si
te

2.0

1.6

1.2

0.8

0.4

0 20 40 60 80 100
Relative humidity (%)

Total C
Total Ca

Indirect Cb

22.25

17.80

13.35

8.90

4.45

0

R
eg

ai
n

 (
%

)

12.7 Division of regain of cotton between two phases on Peirce’s theory.
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water on the physical properties of the fibre. Figure 12.8 shows a plot of relative
torsional rigidity against moisture absorption that confirms this view. There is a
linear relation between rigidity and Ca.

On the other hand, it will be the indirectly attached water molecules that will be
the first to evaporate, so these would be expected to have the greatest effect on the
vapour pressure. This enables a relation between regain and relative humidity to be
calculated. Peirce assumes that only a fraction 1/β of the sites is effective in indirect
absorption and that when these are filled there is saturation. The reason given for
assuming that not all sites are effective is that one indirectly attached water molecule
can seal off a number of sites, as in Fig. 12.9.

We then have:

vapour pressure = p = saturation vapour pressure p0

× fraction of these sites occupied

Thus the fraction of sites occupied by one or more water molecules equals p/p0.
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12.8 Modulus of rigidity (relative to value when dry) plotted against regain.
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12.9 Suggested mechanism for limitation of number of sites for indirect
absorption.
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If Cb increases by dCb, the added water molecules divide between previously
occupied and unoccupied sites, and we have:

increase in fraction of occupied sites = d(p/p0)

= (1/p0) dp

= 

fraction of previously unoccupied
sites  number of molecules added

total number of sites
×

= 
(1 –  / ) d0 bp p C

1/β
(12.13)

Thus,

d
1 –  /

 = d
0

0 0
p

p p
p Cβ (12.14)

which on integration gives:

p
p0

 = 1 – exp(–βCb) (12.15)

This gives a relation between relative humidity and moisture absorption, but a correction
term should be added for evaporation from sites with directly absorbed water that is
not covered by indirectly absorbed water. The number of these is (1 – p/p0)Ca, which
equals Caexp(–βCb). Assuming that they have K times the effect of indirectly attached
water molecules, we get:

p
p0

 = 1 – exp(–βCb) + K Ca exp(–βCb) (12.16)

which gives

1 – 
p

p0
 = (1 – K Ca) exp(–βCb) (12.17)

or, substituting from equations (12.9), (12.10) and (12.12)

1 –   = {1 –  (1 –  e )} e
0

–3 /100 – (e –  1+3 /100)(–3 /100p
p

K r rrγ β γγ
(12.18)

This is the equation for the curve of regain against relative humidity. A comparison
with experiment is shown in Fig. 12.10.

Cooper [18] has shown that, at very low humidities, Peirce’s equation reduces to
the form

–loge (1 – p/P) = b1r + b2r
2 (12.19)

where b1 and b2 are constants. This equation fits experimental results for cellulosic
fibres reasonably well.

Speakman [19] developed for wool a theory similar to Peirce’s. He divided the
water up into three phases, as shown in Fig. 12.11. The first phase to be absorbed is
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tightly bound to hydrophilic groups in the side chains of the keratin molecule, and
has little effect on the rigidity of the structure. Hearle [20] has pointed out that it has
little effect on the permittivity and electrical resistance of wool. The second phase is
attached to groups in the main chain and replaces crosslinks between molecules. It
thus has the main effect on the rigidity, as shown in Fig. 12.8. The third phase is more
loosely attached and is appreciable only at high humidities. Speakman suggested that
it is due to capillary condensation, though it would probably be more correct to
regard it as similar to Peirce’s indirectly attached water.

12.2.2 Multilayer adsorption: the Brunauer, Emmett and Teller
(BET) equation

Another theory derives from Langmuir’s [21] classical adsorption isotherm for gases
and vapours adsorbed in a monomolecular layer on the surface of a material.
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12.10 Comparison of Peirce’s equation with experimental data for soda-boiled
cotton at 110 °C [12]. Equation for curve is: 1 – p/P = (1 – 0.40 Ca)     e –5.4 bC .
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12.11 Division of water into three phases on Speakman’s theory for wool [19].
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This was extended by Brunauer Emmett, and Teller [22] to cover multilayer
adsorption2.

The analysis is based on the equilibrium between the rate of evaporation and the
rate of condensation on the surface. The analyis involves two constants: r1, the regain
corresponding to a monomolecular layer, and α, which is approximately equal to
exp[(E1 – EL)/RT], where E1 is the heat of absorption on the first and EL that on the
succeeding layers. It yields an equation that may be written in the following forms:

r
r

p
p p p p1 0 0

 = 
( –  ) [1 + (  –  1) / ]

α
α (12.20)

p
r p p r r

p
p( –  )

 = 1  +  –  1 
0 1 1 0α

α
α (12.21)

The latter is a convenient form for testing the relation, since it means that a plot of
p/r(p0 – p) against p/p0 should give a straight line from which the values α and r1 can
be determined.

The BET equation gives a sigmoidal isotherm, which shows a good fit with several
practical examples of absorption. However, its application to absorption by fibres
may be criticised on several grounds: (1) that the idea of adsorption on a surface,
even an internal surface, is not valid for the mixing of fibre molecules and water
molecules that actually occurs; (2) that it neglects the interaction between neighbouring
molecules in a layer; (3) that it takes no account of effects due to swelling and
mechanical restraint. The first objection does not apply to the derivations of the same
equation on the basis of modern theories of statistical thermodynamics that have
been put forward by Cassie3 [23] and by Hill [24]. In this method, it is necessary to
assume that the adsorption takes place on localised sites, but these may be either
spread throughout the volume of the material or concentrated on a surface.

The BET equation fits the experimental results for cotton, viscose rayon, secondary
acetate, wool, silk and nylon between about 5 and 50% r.h. It breaks down at high
humidities, as would be expected, since it assumes that the regain tends to infinity at
saturation. Bull [25] gives values of α, r1 and (E1 – EL) for these fibres Taylor’s
experiments [26, 27] on the absorption of viscose rayon and cotton below 5% r.h.
also show that the BET equation does not fit the results in this range. He finds a good
fit in this region with the Freundlich relation (r = Kp1/n, where K and n are constants,
n > 1) though this relation lacks a sound theoretical basis.

Cassie [28] has attempted to take account of swelling by applying the BET equation
to his reduced regain–relative humidity curve (see Section 12.3.5). There is improved
agreement at high humidities when the reduced vapour pressure, pF, is substituted for
the actual vapour pressure.

Windle [29] has modified Cassie’s theory, in an application to wool, by assuming
that the absorbed water molecules may be divided into three types: localised water,

2A more detailed discussion of the BET equation is given in earlier editions of this book, but, since
its predictive value for fibres is limited, a shorter version is included here.
3Cassie’s derivation has been criticised [12], and Hill’s differs from it in certain details.
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directly absorbed onto absorption sites and limited to one per site; intermediate
water, absorbed onto localised water molecules and limited to one on each localised
water molecule; and mobile water, absorbed on intermediate water molecules, with
no restriction on numbers. There are three arbitrary constants to be fitted and, when
this is done, the theory shows good agreement with experimental data on absorption
and heat of wetting. The number of absorption sites is what would be expected from
the molecular structure, and the energies of absorption are reasonable. The theory has
been used to explain the dielectric data at very high frequencies (see Section 19.5).
The division between the three phases is shown in Fig. 12.12.

This theory differs from Speakman’s three-phase theory [19] in that the three
types of water are absorbed on top of each other, whereas in Speakman’s theory the
first two phases were absorbed in parallel on different types of absorption site. It is
likely that there ought to be a division of the localised water on Windle’s theory in the
same way, for the torsional rigidity is found to have a linear relation with the sum of
the localised and intermediate water only when this is greater than 4%. This suggests
that the first 4% is absorbed on different positions in the molecules.

Another version of this line of approach, due to Feughelman and Haly [30], is
based on the assumption that each water molecule has four associations with its
neighbours. The water is thus split up into five types, depending on whether the water
molecules have zero, one, two, three or four associations with a keratin molecule.
The first group, with four associations with other water molecules, is completely
free; the fifth group is the most strongly bound.

A number of modifications [31–35] have been applied to Hill’s derivation [31] of
the BET equation; these take into account such factors as swelling, the presence of
more than one type of absorption site, interaction between layers, varying heats of
absorption, and so on, but none of them shows a marked improvement in the agreement
with experiment.
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12.12 Division of water into three phases on Windle’s theory for wool [29].
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12.2.3 Solution theories

Adsorption theories are based on the attachment of water molecules to particular
sites (localised on the surface or at definite positions in the volume of the material),
but there is an alternative view, which considers the mixing of molecules of different
types with no limitation on the positions of the molecules. Such a mixture of molecules
is a solid solution, and solution theory can be applied to it.

Barrer [36] has derived a solution theory for absorption by using statistical
thermodynamics, which fit the practical results for the absorption of gases in rubber-
like polymers. This solution theory gives a curve that is concave to the regain axis,
in contrast to the convex Langmuir isotherm and the sigmoidal BET isotherm, as
shown in Fig. 12.13. This type of theory is thus unlikely to fit the results at low
humidities.

Extending the current thermodynamic theories of solution to take account of the
energy involved in elastic deformation of the polymer, Rowen and Simha [37] obtained
the following isotherm:
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(12.22)

where H = relative humidity %, v1 = volume fraction of the material, v2 = volume
fraction of the absorbed water, V = partial molal volume of liquid, µ = a constant,
determined by the heat and entropy of mixing, and K = a constant, depending on the
mechanical reaction of the polymer to sorption.

This equation gives a better fit above 50% r.h than the BET isotherm, but shows
the failure of a simple solution theory at low humidities4.
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12.13 Comparison of plots of regain against relative humidity on: A solution
theory, B BET isotherm and C Langmuir isotherm.

4A comparative plot for cotton was included in earlier editions of this book.
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12.2.4 Hailwood and Horrobin’s theory

In one of the most interesting theoretical treatments, Hailwood and Horrobin [38]
have combined an attachment of the first water molecules onto particular sites in the
polymer molecule with a solution theory for the further absorption of water by the
material.

They consider that some of the water is present as hydrates formed with definite
units of the polymer molecule and that the remainder forms an ideal solid solution in
the polymer. By consideration of the chemical equilibrium, they derive an equation
relating the amount of water absorbed to the relative humidity. Their derivation is a
general one, allowing for a variety of different hydrates to be formed but, in fitting
the results, they find that it is sufficient to assume that only one type of hydrate is
involved. To simplify the working, this assumption is made at the beginning of the
derivation of the equation given here, and consequently there are only two chemical
equilibria involved.

It is assumed that the dissolved water, the unhydrated polymer and the polymer
hydrate form a single solid phase. In this phase, there will be an equilibrium between
water combined with a unit, P of the polymer molecule to form the hydrate, and water
present as dissolved water

P·H2O = P + H2Osol

By the Law of Mass Action, we have

[P·H2O] = K1[H2Osol][P] (12.23)

where K1 is the equilibrium constant.
There is also an equilibrium between the dissolved water and the water vapour in

the atmosphere:

H2Osol s H2Ovap

giving:

[H2Osol] = K2[H2Ovap] (12.24)

The activity of the water vapour, at the low water vapour concentration involved,
is given by the fractional humidity. If the relative humidity is H%, we thus have

[H2Ovap] = H/100 (12.25)

and hence from equation (12.24)

[H2Osol] = KH (12.26)

where K = K2/100.
The activities of the three types of molecule present in what is assumed to be an

ideal solid solution are given by the mole fractions of each type of molecule present,
that is:

[H O ] = 
+ + 2 sol

w

w 0 1

n
n n n

(12.27)
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[P] = 
+ + 

0

w 0 1

n
n n n

(12.28)

[P H O] = 
+ + 2

1

w 0 1
⋅ n

n n n
(12.29)

where nw = number of moles of water in solution in polymer, n0 = number of moles
of the unhydrated polymer units and n1 = number of moles of polymer hydrate.

It follows from equations (12.26) and (12.27) that:

n
n n n n KH

K Hw
0 1

2 sol
2 sol

0 1= 
+ 

1 –  [H O ]
 [H O ] = 

( + ) 
1 –  

(12.30)

and from equations (12.23), (12.26), (12.28) and (12.29) that:

n
n

n KK H1
0 2

0 1= 
[P H O]

[P]
 = 

⋅
(12.31)

The number of moles of water taken up by the material (whether dissolved or as
hydrate) is equal to (nw + n1), and the number of moles of the polymer unit present
(whether hydrated or not) is equal to (n0 + n1). The percentage regain r is therefore
given by:

r
n n

n n M
 = 

1800 ( + )
( + ) 

w 1

0 1
(12.32)

where M = molecular weight of the polymer unit, and 18 = molecular weight of
water. Thus:

Mr n
n n
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0 1
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0 1
(12.33)

and from equations (12.30) and (12.31):

Mr K H
K H

KK H
KK H1800

 = 
1 –  

 + 
1 + 

1

1
(12.34)

which is the equation relating regain and relative humidity derived by Hailwood and
Horrobin [38].

This equation contains three constants M, K and K1 which can be chosen to give
the best fit with the experimental data. Figure 12.14 gives a comparison of the
observed and calculated results for cotton and wool at 25 °C and shows the division
of the water taken up by cotton between the hydrate and the solution. Hailwood and
Horrobin also found a good fit between the calculated and observed results for hair,
silk and nylon. It has, however, been pointed out that any equation of this form must
give a sigmoidal curve with a suitable choice of the three constants, and thus the
significance of the fit is reduced.

From the equilibrium constants chosen, the heats of the reaction can be calculated,
and a reasonable agreement with results from calorimetric measurements is found for
wool. The theory also leads to a prediction of the variation of specific volume with
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regain, which is in fair agreement with the experimental results for wool, except at
the higher humidities.

The values of M that are found are all greater than the molecular weight corresponding
to a single polar group in the fibre molecule. It is assumed that this is due to the fact
that the crystalline material is not accessible to moisture and adds to the mass of
polymer present. Consequently, the value of M can be used to estimate the amount of
inaccessible material present, and the values obtained are in reasonable agreement
with values obtained by other methods.

Hailwood and Horrobin’s theory has been criticised mainly because of the assumption
that an ideal solid solution is formed, whereas mixtures of large and small molecules
usually depart from the ideal.

12.3 The relations between absorption, swelling and

elastic properties

12.3.1 Swelling and osmosis

Quite a different approach to moisture sorption has been developed by Barkas [39],
starting from the analogy between swelling and osmotic phenomena. In osmosis,
water passes through a semipermeable membrane from a region of low solute
concentration to a region of high solute concentration until a pressure sufficient to
prevent the flow of water is built up. The same sort of thing happens in swelling.
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Experimental results, cotton
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12.14 Comparison of Hailwood and Horrobin’s equation [38] with
experimental results for wool and cotton.
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Water passes into the region of high polymer concentration, and the polymer swells.
This continues until the stresses generated by the deformation of the polymer are
sufficient to prevent more water from flowing in.

Consequently, the moisture absorption will be very dependent on the stresses
developed in the fibre owing to internal or external effects, and thermodynamic
relations similar to those applicable in osmosis can be applied to swelling.

12.3.2 Qualitative view of influence of mechanical forces on
absorption

We can consider a substance absorbing from an atmosphere of given vapour pressure
and subject to a stress. The exact form of the specimen is unimportant for the qualitative
argument: one simple form is illustrated in Fig. 12.15. Let vapour pressure = p,
regain of material = r, stress applied to material = X, with a compression, i.e. a force
reducing swelling, taken as positive, and strain, or swelling = x, with an increase in
size taken as positive. The origin x = 0 is taken at r = 0, X = 0.

Figure 12.16 (a) shows the curves of regain against vapour pressure that would be
obtained at various values of the applied stress X. As the stress increases, the regain
decreases. Figure 12.16(b) shows stress–strain curves for various values of the regain
of the material. Owing to swelling, the position of the origin of the stress–strain
curves (i.e., the value of x at X = 0) varies with the regain.

The system being considered has two degrees of freedom (at constant temperature)
for, when any two of the quantities considered are specified (for example, the stress
and vapour pressure), the other quantities involved are necessarily determined. This
means that any given point on the stress–strain curve corresponds to a particular
point on the regain vs vapour pressure curve, and vice versa.

It is interesting to see what happens under various conditions that might occur in
practice.

(A) Free swelling. There will be zero applied stress, so the line AA will be followed.
(B) Swelling under constant stress, X2. The line BB will be followed. The lower full

lines are at increasing values of stress X3, X4, X5.
(C) Moisture absorption at constant volume. In this case, x does not vary, so the

X

at r = 0
X = 0

Stress
X

Vapour

Vapour pressure

Material
regain r

12.15 Model for absorption under stress.
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stress increases as the swelling proceeds. This gives the curve CC, showing a
reduced moisture absorption.

(D) Swelling restrained by an ideal spring. In this case, the stress will increase in
proportion to the strain x and the absorption will be reduced, but not as much as
in the previous case. The curves DD will be followed.

(E) Swelling restrained by a spring showing hysteresis. There will be hysteresis in
the X/x relation, and this will be transferred to the relation between regain and
vapour pressure. The curves EE result.

Figure 12.17 illustrates a practical example of these effects. It shows the reduction
of moisture absorption that would occur in wood under two restraining conditions,
namely, when the volume of a block of wood is held constant, and when the volume
of the wood cell walls is constant.

12.3.3 Internal restraints; plasticity and hysteresis

The above discussion has been concerned with external forces, and it is also these to
which thermodynamics is immediately applicable. However, the swelling of a fibre
is limited by restraints arising from the arrangement of the molecules in a three-
dimensional network. There will be stresses acting on a small element of an amorphous
region that is absorbing water, because the molecules are held firmly fixed elsewhere
in crystalline regions. On a larger scale, there may be forces arising from the interference
from one part of the fibre with the swelling of another part. This will occur when the
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12.16 (a) Absorption curves (full lines at constant stress). (b) Stress–strain
curves (full lines at constant regain). Practical cases: A, free swelling; B1–B4,
swelling under stress; C, swelling at constant volume; D, swelling restrained
by ideal spring; E, swelling restrained by internal restraint, with mechanical
hysteresis.
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swelling is non-uniform, for example, when there is a skin on the fibre. All these
internal forces in a fibre will thus be important in determining its moisture absorption.
For example, Fig. 12.17 shows the increased absorption that would occur in stress-
free wood with the internal restraints removed, except for those in the molecular
structure itself.

Fibres are not perfectly elastic, however. There is plasticity. When a stress is
removed, recovery is incomplete. The internal stress–strain curve would be a loop
similar to the curve EE in Fig. 12.16(b) and would thus cause hysteresis in the
moisture absorption as well. In other words, wherever there is mechanical hysteresis
in a fibre, there must also be moisture hysteresis. Experimentally it is found that in
natural and regenerated fibres both forms of hysteresis occur to a marked extent. In
nylon, where the elastic recovery is good, there is also very little moisture hysteresis.

12.3.4 Thermodynamic relations

By the use of thermodynamics, quantitative relations between swelling, moisture
absorption and mechanical properties can be derived. It should be remembered that
thermodynamic equations (as distinct from inequalities) apply only to reversible
changes, and they break down when there is hysteresis.

The general equation may conveniently be derived, in the method proposed by
Hearle [40], by considering a rectangular parallelepiped under stresses normal to its

12.17 Absorption of spruce wood under stress: A, material completely free of
stress; B, natural sorption, including internal restraints on swelling of block of
wood; C, volume of block of wood held constant, but allowing swelling into
void spaces in wood cells; D, wood cell walls (internal and external) held at
constant volume. Curve B is experimental; remainder are calculated. From
Barkas [39].

R
eg

ai
n

 (
%

)

30

25

20

15

10

5

0

A

B

C

D

0 20 40 60 80 100
Relative humidity (%)

© Woodhead Publishing Limited, 2008



Theories of moisture sorption 265

faces and swelling in directions parallel to its sides. This can be modified for other
shapes and for other types of stress and deformation.

Figure 12.18 illustrates a specimen of mass m (when dry); of volume mV (i.e. V is
the volume of a specimen having unit mass when dry); with sides x, y, z; at a
fractional regain ρ (i.e. containing a mass mρ of water) ; and having compressive
stresses, X, Y, Z, normal to its faces. It is assumed that water can only be lost to or
gained from a container of volume φ containing a mass µ of vapour at a vapour
pressure p. Let the specific volume of the vapour be v.

We consider a general isothermal change in condition of this specimen, in which
the stresses change from X to X + dX, Y to Y + dY, and Z to Z + dZ; the lengths of the
sides change from x to x + dx, y to y + dy, and z to z + dz; the regain changes from
ρ to ρ + dρ;. and the vapour pressure changes from p to p + dp. The mass of vapour
in the container will change from µ to (µ – md)ρ.

In order to find the relations between these changes, we can take the specimen
through a suitable cycle. Since this will be a reversible isothermal cycle, it follows
from the Second Law of Thermodynamics that the total work done is zero. The cycle
chosen, and illustrated for the x-direction in Figure 12.19, is as follows:

p
Z Y

X

Z

X

Z

Y

y

x

12.18 Parallelepiped model.
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12.19 X, x and p, φ cycles.
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• a → b: an increase in vapour pressure from p to p + dp at constant applied stress.
Specimen absorbing moisture from container.

• b → c: an increase in applied stress by dX, dY and dZ, at constant vapour
pressure. Moisture evaporating into container.

• c → d: a decrease in vapour pressure to p at constant applied stress. Moisture
evaporating.

• d → a: a decrease in stress to X, Y, Z. Moisture being absorbed.

The work done may be evaluated as follows:

• by force on the X-face:

work = ∫  (force × displacement)

= area of X-face × area enclosed by X, x cycle

=  d d
, ,

mV
x

x
p

p X
X Y Z

∂
∂







⋅ (12.35)

• similarly for the Y- and Z-faces;
• by force on the vapour container:

work = ∫  (pressure × volume)

= –area of p, φ cycle

The negative sign is introduced because the cycle is enclosed in the reverse direction
to that of the stress cycles.

Area of p, φ cycle = dp (increase in φa→d) (12.36)

This change in φ may be expressed in one of two ways. Either:

increase in φa→d = increase in mass of vapour in container × specific volume

= –   + +  
, , , , , ,

m
X Y Z

v
p Y Z p Z X p X Y

∂
∂







∂
∂







∂
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ρ ρ ρ
(12.37a)

The negative sign is introduced because an increase of mass of vapour in the container
corresponds to a decrease of regain in the material.

Or:

increase in φa→d = increase in φc→e – increase in φc→f

= –mv (increase in regainc→d – increase in regainc→a)

= –   (– d ) –  (– d )
, ,

mv
p

X Y Z

∂
∂



















ρ
ρ ρ (12.37b)

Hence, from equations (12.36) and (12.37):
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work =  d  + + 
, , , , , ,
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(12.38a)

or

= –   d  d  –  d
, ,

mv p
p

p
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ρ
ρ (12.38b)

Summing the work done, and equating it to zero, we then have, from equations
(12.35) and (12.38a), by cancelling m and dp throughout:
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(12.39)

Collecting the coefficients of dX, dY and dZ, we obtain the series of useful relations:

V
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p X

X Y Z p Z,X

 = –  
, , ,
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ρ
(12.40)

and similarly for the other two directions.
Alternatively, from equations (12.35) and (12.38b), we obtain:
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which, on multiplying through by (δp/δρ)XYZ, gives:
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=  d  –    dv p v
p∂

∂




ρ

ρ (12.42)

Equations (12.41) and (12.42) are alternative forms of the general equation relating
the changes dX, dY, dZ, dp and dρ. If other forces, such as shear forces, are involved,
the appropriate work terms must be added to the equations.

It is convenient to modify the equations to apply them to single fibres. If we
consider a fibre to be a cylinder of irregular cross-section, as shown in Fig. 12.20,
with area A and length l, the forces on the fibre to be a tensile stress T (being a
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tension, this will have the opposite sign to the forces so far considered) and a uniform
transverse pressure P the equations become

1 =  
, ,

l
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p
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V T

T P p P

∂
∂
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ρ
(12.43)

1  = –   
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and, for the change in regain

– 1 d  + 1   d  =  d  –  d
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It may be noted that, for a fibre under constant transverse pressure, for example, a
single fibre in air, dP = 0, and thus the second term drops out of equations (12.45) and
(12.46).

In applying these equations, two points must be remembered. First, they apply
exactly only to reversible changes. Secondly, they are all differential equations, and
direct integration is not possible, since the quantities involved vary with one another
in ways that have not been analytically expressed, for example, v will be a function
of p, and V will be a function of ρ, T, and P.

However, the equations may be used to obtain valuable approximate results that
could not be obtained by direct experiment. For example, equation (12.44) would
enable transverse pressures on fibres to be calculated approximately from the change
in regain if the area-swelling behaviour of the fibre is known.

T

P

T

P

A

l

12.20 Stresses on a fibre.
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Figure 12.21 shows an experimental test of equation (12.43) made by Treloar [41].
The agreement between experiment and theory is quite good. Measurements of the
converse effect, the stress (‘hygrostress’) that develops when wool fibres are taken
from 100 to 0% r.h. at various extension levels, are reported by Haly [42].

12.3.5 Cassie’s reduced regain–relative humidity curve

Cassie [28] has proposed another method of dealing with the influence of mechanical
effects. He assumes that the water absorbed in wool is under a hydrostatic pressure
P, which can be calculated from the swelling and the elastic properties. If the volume-
swelling is dV/V, the pressure P is given by:

P k
V

V
 =  

∆
(12.47)

where k is the bulk modulus of elasticity.
If the fibres are assumed to be isotropic in elastic properties, this becomes

P E V
V

E D
D

 = 
3(1 –  2 )

  = 
1 –  2

 σ
∆

σ
∆

(12.48)

where E is the Young modulus, σ is the Poisson ratio, and is taken as 0.25, and ∆D/
D is the diameter-swelling, which equals 1

3 ∆V/V if the swelling is isotropic.
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12.21 Variation of regain of cellulose fibres with tension: (a) isotropic; (b)
oriented. Experimental points compared with lines from equation (12.43).
After Treloar [41].
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The term ∆D/D is equivalent to a strain, and the values of E.∆D/D were assumed
to be equal to the stress at the corresponding strain on Speakman’s tensile stress–
strain curves [43] at the appropriate humidity. Hence values of P at each relative
humidity were obtained.

The variation of the vapour pressure of water with hydrostatic pressure is given by
the thermodynamic relation

P RT
V

p
p

 =  log  
M

e
F

(12.49)

where R = gas constant, T = absolute temperature, VM = molar volume, p = observed
vapour pressure and, pF = vapour pressure at zero hydrostatic pressure.

Putting in the appropriate numerical values, namely, R = 8.31 J K–1 mol–1,
T = 298 K (20 °C) and VM = 18 × 10–6 m3 mol–1 (18 cm3/mol), gives the pressure in
pascals (N/m2) as:

P = 3.16 × 108log10(p/pF) (12.50)

Thus, by using the values of P calculated as above, the values of pF, the vapour
pressure reduced to zero hydrostatic pressure, can be obtained. The reduced relative
humidity is the ratio of this reduced vapour pressure to the saturation vapour pressure
of water.

Figure 12.22 shows a plot of regain against actual and reduced vapour pressure.
The use of reduced values gives a simpler curve and, as has been mentioned earlier
(Section 12.2.2), gives a good fit with the BET isotherm. However, the initial assumption
that the water acts in a manner similar to liquid water, and that it may be regarded as
being under a hydrostatic pressure, may be doubted. The assumptions with regard to
the elastic properties of the fibre are drastic and may not be very near the truth.

12.4 Surface adsorption

The idea of adsorption on internal surfaces has already been discussed and has been
shown to be of doubtful validity for fibres. There may, however, be adsorption on the
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12.22 Cassie’s reduced curve of regain against vapour pressure for wool [23].
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external surface of fibres. In hygroscopic fibres, this would be a negligible proportion
of the total regain, but in a non-hygroscopic fibre it may contribute most or all of the
small moisture absorption.

Table 12.2 shows results obtained by Bright et al. [44] for the heat of wetting of
similar specimens of polyester fibre. The heat of wetting is proportional to (linear
density)–1/2. In other words, the amount of heat evolved is proportional to the surface
area (per unit mass), which suggests that the moisture taken up by polyester fibres is
present on the surface of the fibre.

12.5 The effect of temperature

In order to correlate the relations between regain and relative humidity at various
temperatures, Whitwell and his associates [45] analysed Wiegerink’s data [46] on the
basis of Othmer’s method [47]. This depends on the application of the Clausius–
Clapeyron equation, which for a pure substance is:

d
d

 = 0 0
2

p
T

p L
RT

(12.51)

where p0 = vapour pressure, T = absolute temperature, L = latent heat of condensation
and R = gas constant. For a fibre at a given regain, this becomes:

d
d

 = v
2

p
T

pQ
RT

(12.52)

where p = vapour pressure over the fibre, Qv = heat of absorption of the fibre.
Combining the two equations, we obtain:

d
d

 = 
0

v

0

p
p

pQ
p L

or

d /
d /

 = 
0 0

vp p
p p

Q
L

(12.53)

which on integration gives:

log p = 
Q
L

v  log p0 + constant (12.54)

Thus if values of log p for various temperatures at constant regain are plotted against
the corresponding values of log p0, straight lines should be obtained. This is illustrated

Table 12.2 Heat of wetting of polyester fibre at constant draw-ratio [44]

Linear density (dtex) Heat of wetting Heat of wetting × tex1/2

2.2 0.85 0.401
4.4 0.56 0.373
8.9 0.39 0.368
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in Fig. 12.23. It has been further found that for most fibres the lines for various
regains intercept in a common point.

Plotting results in this way enables them to be extrapolated beyond the experimental
range of temperatures and, by making use of the common point, allows a line to be
drawn for other values of the regain if a single point is known. At low temperatures,
other effects must be involved, since the values obtained by Darling and Belding [48]
at low temperatures do not agree with this theory.
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13.1 General introduction

The mechanical properties of textile fibres, the responses to applied forces and
deformations, are probably their most important properties technically, contributing
both to the behaviour of fibres in processing and to the performance of the final
product. The properties of a textile structure such as a yarn or a fabric depend on a
complex interrelation between fibre arrangement and fibre properties, so that, although
a knowledge of fibre properties is essential to an understanding of the properties of
yarns and fabrics, it is not in itself sufficient. There will be some effects that are due
to the inherent properties of the structural arrangement, and the fibre properties may
be modified by the presence of neighbouring fibres. The fibre properties in themselves
do, however, give a limit to what is possible in a yarn or fabric. For example, except
for minor effects due to mutual support of variable fibres, the strength of a yarn
cannot be greater than the sum of the strengths of its component fibres.

The mechanical properties of a fibre cover a large number of effects, all of which
combine to determine the particular character of the fibre. In using fibres, it is
necessary to find that fibre whose character best suits the needs of the particular job.
These needs vary widely in the manifold applications of textile materials.

Because of their shape, the most studied and, in many applications, the most
important mechanical properties of fibres are their tensile properties, namely their
behaviour under forces and deformations applied along the fibre axis. Of these, the
simplest to study experimentally is the elongation, and finally the break, under a
gradually increasing load. Experiments of this sort form the subject of the present
chapter, but, to avoid giving a false impression, it will first be necessary to describe
the various factors that affect the results of such experiments. These factors will be
considered in greater detail later.

13.2 Factors determining the results of tensile

experiments

13.2.1 The material and its condition

The behaviour of a material depends on the nature and arrangement of the molecules
of which it is composed, and these will vary not only from one type of fibre to

13
Tensile properties

© Woodhead Publishing Limited, 2008

RED
Highlight

RED
Highlight

RED
Highlight

RED
Highlight

RED
Highlight

RED
Highlight

RED
Highlight

RED
Highlight



Tensile properties 275

another, but also from one fibre to another in a given sample, and from one condition
of the material to another. These latter effects must be taken into account in considering
the results of a test. The different behaviour of individual fibres must be investigated.
On some occasions, the variability of the results may be more important than the
mean value, as, for example, it would be if we wished to know the chance that the
strength of a fibre would fall below a certain critical value. The condition of the
material depends on its previous history, including the processes to which it has been
subjected and the mechanical treatment that it has received, on the amount of moisture
that it contains, and on the temperature. All of these must be specified if the results
of tests are to be of value.

13.2.2 The arrangement and dimensions of the specimen

The dimensions of the specimen will, of course, have a direct effect on the results of
tests. For example, other things being equal, the breaking load of a fibre will increase
in proportion to its area of cross-section, and its elongation will increase in proportion
to its length. It is, however, with the indirect effects that we are more concerned here.

In a variable material, there is a greater chance of the occurrence of a very weak
place in a long length than in a short one, and, since a fibre breaks at its weakest
place, the mean breaking load of long lengths will be less than that of short ones (see
Section 14.2.1). For this reason, the length tested should be stated.

If composite specimens, made up of a number of fibres, are used in a test, then not
all the fibres will necessarily bear the same proportion of the load, and they may not
all break at the same time. For these reasons, the properties of a composite specimen
are affected by the particular arrangement of fibres in the specimen and are not given
by a simple combination of the properties of the individual fibres.

13.2.3 The nature and timing of the test

The elongation of a textile fibre is not a single-valued function of the applied load,
for it depends on the length of time for which the load and any previous loads have
been applied. If a constant load is applied to a fibre, it will, after its instantaneous
extension, continue to extend for a considerable time and, if the load is great enough,
it will eventually break. The load necessary to cause breakage will vary with the
speed of the test, a rapid test requiring a greater breaking load than a slow one. Thus
the results of experiments will be affected by the time allowed and by the way in
which the load is applied, whether it is by constant rate of loading, constant rate of
elongation, reduction from a higher load or any other sequence of events.

A limitation on the value of experimental results may be noted here. In use, textile
fibres are subject to complex, variable and probably unknown loading histories. In
assessing the practical behaviour of fibres, therefore, attempts must be made to
predict the results under the actual conditions of use from experimental results obtained
under different conditions. This can best be done if the experimental conditions are
as simple as possible.
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Physical properties of textile fibres276

13.3 Expressing the results: quantities and units

13.3.1 Load–elongation and stress–strain curves

The behaviour of an individual fibre under a gradually increasing applied force is
completely expressed by the load–elongation curve with its end-point breakage, as is
shown in Fig. 13.1. The load may be measured in newtons or grams force and the
elongation in centimetres, but, if we wish to compare different types of fibre,
independently of the direct effect of their dimensions, we must use other quantities.
Elongation is easily normalised as fractional strain or percentage extension. However,
as described in Appendix I, which contains a conversion table, the normalisation of
force has produced great diversity dependent on the choice of quantity and units.

In most physical and engineering applications, load is replaced by stress, defined
as:

stress = load
area of cross-section

The SI unit of stress is newton per square metre (N/m2), which is also called a
pascal (Pa). The convenient units for strength and modulus are megapascal (MPa) or
gigapascal (GPa). Other commonly found units are kg/mm2 and pounds per square
inch (psi).
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13.1 Hypothetical load–elongation curve for 20 cm specimen of 0.3 tex fibre
with density of 1.5 g/cm3.
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Tensile properties 277

In textile technology, however, we are more often interested in materials in terms
of their weight, rather than in terms of their bulk. In addition, the area of cross-
section of textile yarns and fabrics is not well defined, since it is confused by the
space between fibres. For single fibres, the area is definitive, but is more easily
obtained indirectly from the mass and density of the specimen than by direct
measurement. The primary definition of fineness is the linear density (mass per unit
length). It is therefore more convenient to use mass-based quantities based on the
linear density, which give consistent information from the molecular to the macroscopic
level. The normalised force is termed the specific stress1 and is defined as:

specific stress = load
linear density

The consistent SI unit for specific stress would be N m/kg. However, in order to fit in
with the tex system for linear density, it is better to use newton per tex (N/tex), which
is 106 times as large as N m/kg. For smaller stresses, millinewton per tex (mN/tex)
may be a more convenient size. When manufactured fibres were introduced in the
first half of the 20th century, the unit chosen was gram force per denier, usually
written as g/den, and this unit is still widely used. In order to get a unit of similar size
to g/den, cN/dtex is often found.

In consistent units, we have the following relation between stress f, specific stress
σ and density ρ:

f = ρ σ (13.1)

The same equation is correct with f in GPa, σ in N/tex and ρ in g/cm3. Conversion
relations in other units are given in Appendix I. When engineers who are used to
working with conventional stress wish to change to a mass basis, they often think of
specific stress as (f/ρ) and use units such as GPa/(g/cm3), which is equal to N/tex, or
even the hybrid unit psi/(g/cm3).

The distinction between stress and specific stress becomes significant only when
we wish to compare materials of different density, for example silk and nylon, and
more particularly between organic and inorganic high-performance fibres. Usually,
we should want to do this on the basis of equal weights, but in some special cases,
for example if material had to be packed into a small space, bulk might be important,
and the conventional stress should be used. In composites, linear dimensions are used
in engineering design, though weight can be important, and stresses are commonly used.

There are other related quantities. Specific stress is dimensionally equivalent to
energy per unit mass, which is relevant to some applications. N/tex equals kJ/g.
Another quantity, which was often quoted as a measure of strength, is the breaking
length in kilometres, or more correctly kilometre-force. This is the length of material
that would break under its own weight. 1 kmf equals 1 gf/tex or 9.8 mN/tex. The
usage of older units is more common in the United States than in the rest of the world,
and an extreme example was the uses of inches, strictly inch-force, for strength in
manufacturer’s literature for the Spectra HMPE fibre.

1When the context is clear, stress is often used.
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Physical properties of textile fibres278

To take account of the length of the specimen, the elongation is expressed as
tensile strain or percentage extension:

tensile strain = 
elongation

initial length

Load–elongation curves become stress–strain curves by a change of units, without
affecting the shape of the curve, as is indicated in Fig. 13.1.

Although stress–extension curves completely express the results of this type of
test, there are some features of the curve that it is useful to define separately. These
refer either to the shape of the curve or to the position of its end point, that is, breakage.

13.3.2 Strength

We first consider strength, which is a measure of the steady force necessary to break
a fibre and is given experimentally by the maximum load developed in a tensile test.
(See Section 14.6 for a discussion of some complications.) For an individual fibre,
the strength is given by the breaking load. For comparing different fibres, the value
of the specific stress at break is used and is called tenacity or specific strength. As
noted above, breaking length may also be used. For use in comparing strengths on the
basis of area of cross-section, the stress at break is termed the ultimate tensile stress.

13.3.3 Elongation at break

The elongation necessary to break a fibre is a useful quantity. It may be expressed by
the actual, the fractional or the percentage increase in length, and is termed the
breaking extension or break extension.

13.3.4 Work of rupture

For an individual fibre, the work of rupture, sometimes called the toughness, is
defined as the energy needed to break the fibre. The units for this are joules. If we
consider a fibre under a load F, increasing in length by an amount dl, we have:

work done = force × displacement = F· dl (13.2)

total work done in breaking the fibre = work of rupture

=   d
0

break

∫ ⋅F l (13.3)

This equals the area under the load–elongation curve, as shown in Fig. 13.2.
Other things being equal, the work of rupture of a fibre will be proportional to its

linear density (because of the effect on the load needed) and to its length (because of
the effect on the elongation). To compare different materials, we may use the term,
specific work of rupture2, defined as:

2Specific may be dropped when the context is clear.
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Tensile properties 279

specific work of rupture = 
work of rupture

linear density  initial length×

As indicated above, specific work of rupture may be expressed in units of N/tex or kJ/
g, and is given by the area under the curve of specific stress against strain. This
represents the energy in joules needed to break a 1 tex filament, 1 m long. The total
work of rupture of any particular specimen is proportional to its mass, independent
of the actual values of linear density and length which determine that mass.

13.3.5 Comparison of methods of specifying breakage

We have now described three ways of specifying breakage, or resistance to breakage:
by the force, elongation or energy necessary. Whenever breakage occurs, the values
of each of these appropriate to the conditions of test must be reached, but usually the
limiting value of only one of the three will be inherent in the conditions causing
breakage, while the other two follow automatically. It is useful to compare the three
quantities from this point of view.

Strength, or tenacity, gives a measure of the resistance to steady forces. It will thus
be the correct quantity to consider when a specimen is subject to a steady pull, as, for
example, in a rope used for slow hoisting of heavy weights.

The breaking elongation gives a measure of the resistance of the material to
elongation. It is thus important when a specimen is subject to stretching, for example
the neck of a garment being pulled over the head, or the warp extension in weaving.

The work of rupture, which is the energy needed to break a fibre, gives a measure
of the ability of the material to withstand sudden shocks of given energy. When a
mass m, attached to a textile specimen, is dropped from a height h, it acquires a
kinetic energy, equal to mgh, and, if this energy is greater than the work of rupture,
breakage will occur, whereas if it is less the specimen will withstand the shock. Thus
the work of rupture is the appropriate quantity to consider in such events as the
opening of a parachute, a falling climber being stopped by a rope and all the occasions
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13.2 Work of rupture.
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Physical properties of textile fibres280

when sudden shocks are liable to cause breakage. It should be noted that the significant
feature in the application of the work of rupture is that the shock contains a given
amount of energy; the fact that it occurs rapidly is not directly relevant, though the
rate of loading will affect the value of the work of rupture.

In comparing materials to see which is least likely to break, it is important to
consider the conditions under which breakage would occur and then to decide which
quantity is the appropriate one to use. For instance, it is no use for a climbing rope
to have a high tenacity if its work of rupture is low. In actual practice, more complicated
tensile conditions may occur, for example a sudden shock may be applied to a
specimen already carrying a steady load. It should also be remembered that breakage
may occur as a result of the repeated applications of forces, not necessarily along the
fibre axis, as discussed in Chapter 19.

13.3.6 Initial modulus and other moduli

The first of several quantities related to the shape of the tensile stress–strain curve is
the initial modulus, which is equal to the slope of the stress–strain curve at the origin
(after the removal of any crimp). This slope usually remains constant over the initial
portion of the curve, as in Fig. 13.3. The modulus is measured in units of stress or
specific stress. Note that fractional strain is always used, even though the data may
be given in percentage extension. The corresponding absolute quantity is the spring
constant, equal to force/elongation.

It may be noted that the value of the initial modulus equals the value of the stress
that would be necessary to double the length of the specimen if the conditions at the
origin persisted. It is a measure of the resistance to extension for small extensions. An
easily extensible fibre will have a low modulus. The modulus is important in situations
where the amount of extension has to be limited, for example in the magnitude of
offset allowable for an oilrig subject to environmental forces. It also gives a measure
of force developed when a given displacement is imposed, as when an oilrig rises and
falls under wave action.
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13.3 Initial modulus = tan α.
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Tensile properties 281

Two other moduli may be reported. The tangent modulus is the slope of the stress–
strain curve at any given position. It is relevant when materials are subject to cyclic
loading. Plots of tangent modulus against strain are another useful way of showing
the changes in extensibility as fibres are increasingly strained, as described by van
Miltenburg [1]. The secant modulus is stress/strain at any position on the stress–
strain curve. Dynamic moduli are covered in Chapters 16 and 18. The reciprocal of
modulus is called the compliance.

13.3.7 Work factor

If the fibre obeyed Hooke’s law, the load–elongation curve would be a straight line,
and the work of rupture would be given by:

work of rupture = 1/2 (breaking load × breaking elongation)

It is convenient to define a quantity, the work factor, dependent on the difference
from this ideal state:

work factor = 
work of rupture

breaking load  breaking elongation×

In the ideal state, the work factor will be 0.5. If the load–elongation curve lies mainly
above the straight line, the work factor will be more than 0.5; if below, it will be less
than 0.5. This is illustrated in Fig. 13.4.

For materials breaking at the same point, the work of rupture will be greater the
higher the work factor. Since the work factor will not vary much in different specimens
of the same material, the values given later (in Table 13.1) or other available values
may be used to estimate the work of rupture from measurements of the breaking load
and elongation.
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< 0.5

13.4 Work factor.
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13.3.8 Yield point

Many stress–strain curves have a shape similar to that in Fig. 13.5. After an initial
period with a steep slope, extension suddenly becomes much easier. It is in this
region that the yield point occurs. In order to locate a precise position, Meredith [2]
has suggested defining the yield point as the point at which the tangent to the curve
is parallel to the line joining the origin to the breaking point, as in Fig. 13.5(a). This
point is then characterised by its stress and strain as the yield stress and yield strain.
Coplan [3] used a different construction and defined the yield point as occurring at
the stress given by the intersection of the tangent at the origin with the tangent having
the least slope. This is shown in Fig. 13.5(b). Alternatively, particularly when there
are considerable linear regions both above and below the yield region, the point of
intersection of the tangents may be taken as the yield point. Since the stress–strain
curve is approximately linear up to the yield point, the work to the yield point will be
almost equal to 1/2 (yield stress × yield strain).

Apart from its indication of the shape of the curve, the yield point is important
because for most materials, elastic recovery, which is good up to the yield point,
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13.5 Yield point: (a) Meredith’s construction; (b) Coplan’s construction.
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becomes less complete for higher strains. In practice, the point at which permanent
deformation starts to take place may be just as important as the point at which
breakage occurs. Recovery behaviour is discussed in greater detail in Chapter 15.

The actual amount of bending over of the stress–strain curve may be important.
Where there is a marked flattening of the curve, it means that the fibre will firmly
resist small loads but will yield under high loads. This will have an influence on the
handle of fabrics made from the fibres.

13.3.9 Crimp

In the discussion so far, it has tacitly been assumed that the fibre is initially straight.
However, many fibres are crimped. The crimp is normally pulled out by a suitable
small tension in measuring linear density, and it can be removed by a pre-tension at
the start of a tensile test.

If a crimped fibre is inserted in the tester without any initial tension, the load–
elongation curve will have the form shown in Fig. 13.6. The origin of the curve may
be put at A, where it diverges from the zero line, but this point is difficult to locate
precisely. A better procedure is to put the origin at O, the extrapolated point corresponding
to a hypothetical straight fibre. The crimp is given by AO and may be expressed as
a percentage of the initial length, again probably best taken as at O, though the value
based on the crimped state at A may be used.

Studies of the methods of measuring and defining crimp have been made by
Alexander et al. [4–6] and more recently by Bauer-Kurz et al. [7].

13.4 Experimental methods

13.4.1 General

The load–elongation curve of a textile fibre may be obtained by gradually extending
it and measuring the tension corresponding to each increase in length. The essential
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13.6 Load–elongation curve of a crimped fibre.
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features of any method consist of the jaws in which the ends of the specimen are held,
the type of specimen used, the method of varying the load and elongation, and the
means of recording their values to give the load–elongation curve. Prior to the middle
of the 20th century, a variety of mechanical testers were used for this purpose and
were followed by early electronic testers. However since the research of Hindman
and Burr [8] at MIT, which led to commercialisation of Instron3 testers, the almost
universal method has been the imposition of a controlled elongation with force
measured on a load cell. The next section describes this type of tester. Brief comments
follow on other testers. More information is given in books on textile testing [9–11]
and in manufacturers’ literature. Some relevant standards for test methods are listed
in Appendix III. Special methods for high-speed testing are covered in Chapter 16.

For continuous filament materials, tests are usually carried out on yarns. A small
amount of twist may be inserted to cause all fibres to break at the same point. Single
fibre tests and individual yarn tests are appropriate for research purposes, but are
time-consuming. For routine testing of cotton, either in laboratory testers or in HVI
lines, bundle tests are used. Because of the influence of variability, these are discussed
in Chapter 14. For yarns, automated testers can pull yarn off a package and make a
large number of repeated tests.

Because of the way in which the elongation and the breaking point of textile fibres
vary with time, the method of extending the specimen is a factor in determining the
results of the test. In constant rate of elongation (CRE) tests, the specimen is extended
at a constant rate and the force is a dependent quantity; in constant rate of loading
(CRL) tests, the specimen is loaded at a constant rate and the elongation is a dependent
quantity. For the usual non-linear fibre stress–strain relations, the load–time relation
is different in the two procedures. Hence differences in creep will cause differences
in the shape of the curve. Another consequence is that in a constant rate of elongation
test it is possible for the load to decrease while the elongation increases, but this is
not possible in constant rate of loading tests, where the load must increase throughout
the test, giving the difference shown in Fig. 13.7. The pendulum tester4, which was

3Like Hoover and Google, Instron is often used as a generic description.
4The pendulum tester was extensively described in the first edition of this book.
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13.7 Constant rate of elongation and constant rate of loading results.
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once widely used for strength tests, is described as constant rate of traverse; the
controlled jaw moves at a constant rate, as in CRE; the dependent jaw is attached to
the pendulum, which rises to record the load. It is not CRE, because there is a
substantial displacement of the dependent jaw as the pendulum rises, which influences
the elongation; it is not CRL, because the movement of the pendulum depends on the
non-linearity of increase of tension with elongation.

13.4.2 Instron-type tests

The Instron tensile tester and others acting on the same principles are constant rate
of elongation instruments. The essential feature of these instruments, illustrated in
Fig. 13.8, is that one end of the specimen is clamped in jaws, which are mounted on
a cross-head that is traversed at a constant rate by a mechanical drive. The drive may
come from a constant speed motor, with interchangeable gears to vary rate of elongation,
or from a computer-controlled stepper motor. The other end is clamped in jaws,
which are mounted on a stiff load cell containing a strain-gauge or other form of
transducer. In early versions of the testers, the drive is connected to the recorder
drive, and the electronic circuits of the load cell lead to deflection of the recorder pen.
A paper record of the load–elongation curve is thus obtained. In modern versions, the

Load cell

Constant
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Specimen

Gauge
length

Clamps

Fixed
jaw

13.8 Instron-type tester.
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load and elongation are digitally transferred to a computer, so that the data can be
plotted or analysed as required. Instruments of this type are usually very versatile in
load ranges, traverse rates, chart-drive rates, testing sequences and auxiliary facilities.
Stress relaxation can be measured by holding the elongation constant. Servo-control
is used to give constant rate of loading or to hold load constant for creep testing.

A finite, but small, deflection is, of course, necessary in order to measure load. For
reasonable lengths of most fibres, the resulting error in elongation values is negligible.
For stiff high-performance fibres or when it is necessary to test short lengths, corrections
must be applied. If an inextensible specimen, e.g. a thick strip of metal, is tested, the
extension will solely be due to the deformation of the load cell and can be used as a
correction. Alternatively, specimens of different length can be tested and one elongation
subtracted from the other to give the elongation of the difference in length.

Another type of Instron tester employs pneumatic loading, which enables higher-
speed and cyclic tests to be carried out under electronic control.

Medium and large Instron-type testers cater for a wide range of specimens, from
single fibres and yarns to large cords, but smaller instruments have been introduced
for specialist investigations of single fibres or fine yarns. The tensile fatigue tester
[12], described in Section 19.3, can be used as a tensile tester if the vibrator is not
activated. It has been redesigned as a Universal Fibre Tester (UFT) [13]. Mwaisengela
[14] discusses its operation in detail, and describes the addition of a temperature-
controlled chamber. An updated version of the UFT also allows for temperature
control [15]. Sikorski et al. [16] describe a flexible thermomechanical analyser,
which treats elongation and tension as described above. The instrument, which is
computer controlled, has facilities for twist insertion and torque measurement, but its
most notable feature is that the test specimen is enclosed in a chamber which can
subject to rapid programmes of temperature change [17]. Fudge et al. [18], in a paper
on hagfish slime threads, describe a micromechanical tester, which measures tension
by the deflection of a fine glass micro-beam. The test thread was extended by a
constant speed motor and the deflection of the beam was monitored by a video-
camera mounted on a low-power microscope. Data was recorded and analysed by
LabView collection software. Kawabata [19] describes a sensitive tester for single
fibres.

The SIFAN tester (see Section 3.7.1) enables tensile tests to be combined with
observations of fineness along the length of a fibre, thus enabling the stress at the
point of break to be found.

13.4.3 Other testers

In the mechanical era, there were several ingenious methods for securing constant
rate of loading. The simplest method is direct loading, which was used, for example,
by Leonardo da Vinci in the 15th century in measuring the strength of wire. Water or
shot can be fed into a bucket attached to the specimen. The load on the specimen is
controlled by the flow of water in the Krais instrument [20]. Alternatively load can
be increased by the movement of a rider on a balance, as described by Saxl [21], or
by electromagnetic methods, as described by Barratt [22]. Unwinding a chain does
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not, in its simplest form give constant rate of loading, since the elongation of the
specimen alters the load. However, de Meulemeester and Nicoloff [23, 24] described
an ingenious way of overcoming the difficulty in a chainomatic tester. A widely used
method was the inclined-plane tester. The test specimen is fixed to a carriage on a
planar track. As the track is inclined the load on the specimen increases at a constant
rate. Since the loading is by dead weight, inertia errors may occur and lead to an
oscillation, with the elongation lagging initially behind the load. There may also be
an error due to centrifugal force if the carriage moves down too rapidly. The Scott IP
testers were examples of this type of instrument. Raes, et al. [25] have described an
inclined-plane instrument that is mounted on the stage of a polarising microscope in
order to permit cotton fibres to be mounted at positions related to reversals.

One old form of tester is worth mention because it was used by Meredith in his
classical researches (see Table 13.1), which provide the most comprehensive comparative
data on a variety of fibres. The tester designed by Cliff [26] secures constant rate of
loading by the use of a very soft loading system, which can be activated by a suitable
drive with a negligible error due to extension of the specimen. The tester uses a
spring in torsion, as shown in Fig. 13.9. The rotation of the free end of the spring
through an angle φ applies a load F to the specimen, given by:

FR = K(φ – θ) (13.4)

where R = radius of arm connected to specimen, K = torque per unit angle of rotation
of spring, and θ = angle of rotation of rod due to elongation of specimen.

With a weak spring and a long rod, θ << φ, so that we can put:

F
K
R

 = 
φ

(13.5)

A constant rate of rotation gives a constant rate of loading.
Another tester which was widely used before Instron testers became available was

the Cambridge Textile Extensometer, which could be used for constant rate of loading
or constant rate of elongation tests. This type of tester was used for another set of
comparative tests (see Table 13.1). The test specimen is mounted between a spring,

φ

Rotated at constant rate

Spring in torsion

Mirror

Bearing

R

θ Specimen

13.9 Cliff tester.
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which can be extended at a controlled rate to apply tension, and a drive to give
controlled elongation. Between the spring and the specimen, an electrode is located
between two other fixed electrodes. For CRL tests, the spring is driven at a constant
rate which causes contact with the electrode on the spring side; the elongation motor
is then driven to maintain a balance of tensions. Conversely, for CRE, the elongation
motor is driven at a constant and the spring motor is activated by the electrical
contacts. The two motors are linked to a paper recorder to provide a load–elongation
curve. Creep and stress relaxation tests can be made by holding one side or the other
constant.

13.4.4 Direct measurement of work of rupture

The work of rupture may be obtained from the load–elongation curve, but it can also
be measured directly by the ballistic test. A pendulum (Fig. 13.10) is released from
a given angle to the vertical and on its swing engages with one of the specimen jaws
and breaks the specimen. The energy necessary to break the specimen is lost by the
pendulum, and thus we have:

work of rupture = loss of potential energy = M g x (13.6)

where M = mass of pendulum and x = difference in height of final positions of
pendulum, with and without the specimen.

This method is more rapid than a normal load–elongation test, but the variation of
load with time will depend on the properties of the specimen and the conditions of
the experiment. The method has been discussed in detail by Lang [27].

13.4.5 Other experimental features

Some other experimental features that are common to the above methods may be
mentioned here. Single-fibre specimens are best if it is required to investigate the
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13.10 Ballistic tester.
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properties of the fibres themselves, since the results for bundles of fibres will be
affected by the form of the specimen and the variability of the material, as described
in more detail later (see Section 14.4). The clamps holding the specimen must not
damage it. If this happens, there will be an undue proportion of breaks at the jaw. But
undue extension or slippage within the jaws must also be avoided. Care must be
taken not to stretch the fibres during the operations preliminary to the test, since this
will change the fibre properties. An adequate system of sampling must be used, to
take account of the variation in behaviour from one fibre to another. Moisture-
absorbing fibres should be in equilibrium with an atmosphere of controlled humidity
and temperature, which should always be approached from the same side, preferably
the dry side.

13.4.6 Meredith’s experimental procedure

It is useful to study one particular experimental procedure in more detail, and the
methods used by Meredith [2] have been chosen, since he made the best early
comprehensive set of measurements of load–elongation curves of textile fibres. He
tested single fibres, 1 cm long, at 65 ± 2% r.h. and 20 ± 2 °C. Unbiased samples of 25
or 50 fibres of each material were selected, and the fineness of each fibre was
measured by weighing a 2 cm length on a micro-balance. The load–elongation curve
was then obtained on a Cliff load–elongation recorder, at a constant rate of loading
of 10 gf den–1 min–1 (0.15 mN tex–1 s–1).

The method of drawing an average or typical stress–strain curve for a given
material is interesting. It is important that the characteristic shape of the curves
should be preserved, but straightforward averaging of all the curves would result in
the transformation of a sharp bend to a smooth curve if it occurred in somewhat
different points in different specimens. Meredith chose the five curves whose strength,
breaking extension and yield point were nearest to the mean values of these quantities.
From these curves, he took the loads corresponding to 20, 40, 60, 80 and 100% of the
breaking elongation of the specimen and expressed them as percentages of the breaking
load of the specimen. These percentages were then averaged for the five curves. Thus
a series of related percentages of breaking load and breaking elongation was obtained.
The mean breaking stress and breaking extension were then used to convert the
percentages to absolute values of stress and extension. The typical stress–strain curve
was drawn through these points, the yield point being put in at its average value.

13.5 Fibre properties

13.5.1 General

Meredith [2] carried out an extensive set of tests to give comparative data on the
fibres available in the 1940s as described in Section 13.4.6. A selection of the results
is given in Fig. 13.11 and Table 13.1. It should be remembered that these values apply
only to the particular types of material tested and to the particular conditions of test.
A later set of comparative data for manufactured fibres of the 1950s is given in Fig.
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13.11 Stress–strain curves of various fibres tested at 65% r.h., 20 °C, 0.15 mN
tex–1 s–1. From Meredith’s [2] 1945 data. Note: Durafil is Lilienfeld rayon; Fibro
is staple viscose rayon; Lanital is a casein fibre; acetate rayon is secondary
acetate.

Table 13.1 Tensile properties of fibres at 65% r.h., 20 °C, 1 cm test length, 0.15 mN tex–1 s–1 [2]

Fibre Tenacity Breaking Work of Initial Yield Yield Work
(N/tex) extension rupture modulus stress strain factor

(%) (mN/tex) (N/tex) (mN/tex) (%)

Cotton
St Vincent 0.45 6.8 14.9 7.3 – – 0.49
Upper 0.32 7.1 10.7 5.0 – – 0.46
Bengals 0.19 5.6 5.1 3.9 – – 0.49

Flax 0.54 3.0 8.0 18.0 – – 0.50
Jute 0.31 1.8 2.7 17.2 – – 0.50
Hemp 0.47 2.2 5.3 21.7 – – 0.50
Ramie 0.59 3.7 10.6 14.6 – – 0.47
Viscose rayon 0.18 27.2 30.6 4.8 57 2.0 0.62

Courtaulds
continuous-

filament
Fibro 0.21 15.7 18.8 6.5 68 1.9 0.59
Tenasco 0.27 16.9 19.7 6.0 66 1.6 0.50

Acetate 0.13 23.7 21.6 3.6 75 3.2 0.72
(Celanese)

Fortisan (cellulose) 0.59 6.4 19.1 16.1 113 0.8 0.51
Silk 0.38 23.4 59.7 7.3 156 3.3 0.66
Nylon 0.47 26.0 76.0 2.6 407 16.0 0.61
Wool

Botany 64s 0.11 42.5 30.9 2.3 57 5.0 0.64
Crossbred 56s 0.14 42.9 37.5 2.1 62 5.1 0.62
Crossbred 36s 0.12 29.8 26.6 3.0 74 3.6 0.78

Glass 0.75 2.5 9.8 29.4 – – –
Steel wire 0.26 8.0 17.7 28.5 – – –
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13.12 and Table 13.2. Another useful set of comparative data was published by du
Pont [31] at this time.

For the second generation of synthetic fibres, the high-modulus, high-tenacity
fibres (HM–HT), there is no comparative data for fibres tested in a single investigation.
It is necessary to take data from a variety of sources, for which test conditions may
not be the same. A set of stress–strain curves is shown in Fig. 13.13(a) and another
set, which gives a comparison with nylon and polyester (PET) fibres in Fig. 13.13(b).
Table 13.3 lists the tensile properties of a selection of HM–HT fibres. Table 13.4
gives values for some chemically and thermally resistant fibres.

The complete collection of fibres can be roughly divided mechanically into five
groups, which are illustrated in Fig. 13.14. The weak inextensible fibres such as rock
wool are of little interest. The natural and regenerated fibres and some synthetics
have moderate strength and extensibility. The tough synthetic fibres have higher
strength combined with extensibility. The HM–HT fibres have high strength and low
extensibility. The elastomeric fibres have low tenacity, when related to their unstrained
dimensions, and high extensibility.
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13.12 Stress–strain curves of various fibres. From Farrow [28, 29] and Ford
[30]. Note: viscose rayon variants are Fibro (regular staple), Vincel (high-wet
modulus) and Tenasco (high-tenacity, industrial); Terylene is polyester fibre;
Orlon is acrylic fibre.
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13.5.2 Cotton and the other natural cellulose fibres

The stress–strain curve for cotton is slightly concave to the extension axis, and there
is no obvious yield point. Meredith [2] found considerable variation between different
varieties of cotton. In general, the finer cottons showed a higher tenacity and a higher
initial modulus than the coarser cottons. The breaking extension ranged from 5 to
10% but was not related to fineness. Figure 13.15 shows stress–strain curves of five
cottons from the 1970s. The Punjab–American cotton is much stronger than the
1940s Bengals cotton in Table 13.1.

Meredith [34] later showed that there was a better correlation between tenacity
and molecular orientation than there was between tenacity and fineness. The orientation
may be measured by the birefringence of the fibre, that is, the difference (n|| – n⊥)
between the refractive indices for light polarised parallel and perpendicular to the
fibre axis. The orientation value decreases as the spiral angle in the cotton fibre
increases (see Section 1.4.3). Figure 13.16 shows the correlation between tenacity
and the difference in the refractive indices for 36 different samples of cotton of 26

Table 13.2 Tensile properties of fibres at 65% r.h., 20 °C [28–30]

Fibre Tenacity Breaking Work of Initial
(N/tex) extension rupture modulus

(%) (mN/tex) (N/tex)

Viscose rayon
high-tenacity 0.41 12 28 8.8
polynosic 0.26 7 11 13.2

Triacetate 0.12 30 18 3.1
Casein 0.10 63 44 3.5
Nylon 6.6

medium-tenacity 0.48 20 63 3.0
high-tenacity 0.66 16 58 4.4
staple fibre 0.37 43 101 1.0

Nylon 6 (Perlon) 0.29 46 77 0.6
Polyester fibre (Terylene)

medium-tenacity 0.47 15 53 10.6
high-tenacity 0.56 7 22 13.2
stape fibre 0.47 37 119 8.8

Acrylic (Orlon 42 0.27 25 47 6.2
staple-fibre)

Modacrylic (Dynel) 0.34 34 63 8.8
Poly(vinyl alcohol) 0.17 26 24 2.2
Poly(vinyl chloride) 0.24 17 23 3.5
Polyethylene

Courlene (low-density) 0.08 20–40 11–26 0.9
Courlene X3 0.34 10 19 4.4
(high-density)

Polypropylene (Ulstron) 0.65 17 71 7.1
Glass 0.40 1.9 3.9 21.2
Elastomer

polyurethane 0.0309 540 65 0.0071
rubber 0.008 520 14 0.0026
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13.13 Typical stress–strain curves of HM–HT fibres.

Table 13.3 Illustrative values of tensile properties of HM–HT fibres from manufacturers’
literature

Fibre Tenacity Initial Breaking Tensile Initial
(N/tex) modulus extension strength modulus

(N/tex) (%) (GPa) (GPa)

HMPE
Spectra 900 2.6 124 3.5 2.5 120
Spectra 1000 3.1 177 2.7 3.0 172

Aramid
Kevlar 29 2.1 58 4.4 3.0 83
Kevlar 49 2.1 80 2.9 3.0 115
Kevlar 149 1.6 98 2.5 2.3 141

Carbon (Hysil Grafil)
XA 1.8 128 1.4 3.2 230
High-strain 2.1 128 1.7 3.7 230
High-modulus 1.3 183 0.7 2.5 340
Ultra-HM 1.7 218 0.8 3.1 405

Silica
Enka LT 0.14 7 2.0 0.25 13
Enka HT 0.40 28 1.4 0.8 56

Tyranno 1.2 83 1.5 2.8 200
Glass–E 1.4 2.9 4.8 3.5 72

   –S 1.8 35 5.4 4.6 87
Silicon carbide

Niccalon 1.0 81 1.5 2.7 210
Whisker 3.2 220 1.2 8.4 580

Nextel 0.63 56 1.1 1.7 150
Alumina – FP 0.36 97 0.4 1.4 380

Alumina–zirconia
PRD-166 0.50 90 0.6 2.1 380

These are illustrative examples, taken from manufacturers’ literature.
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different varieties. Similar results are obtained by using X-ray methods to measure
molecular orientation [35], and a correlation is also found between initial modulus
and orientation. It must, however, be noted that it has been reported [36, 37] that the
spiral angle of cotton fibres is constant within the range 20–23° and that the apparent
differences are really due to the effect of convolutions.

Hessler et al. [38] investigated the effect of the length of chain molecules in the
cotton and found that this also gave a good correlation with the tenacity of different
types of cotton. Thus it is not clear which is the effective factor in determining the
tenacity of different varieties of cotton.

Morlier et al. [39] investigated the difference between fibres within a given sample
of cotton for six different varieties of cotton. In most cases, they found that tenacity

Table 13.4 Tensile properties of chemically and thermally resistant fibres [32]

Fibre Tenacity Break extension Initial modulus
(N/tex) (%) (N tex)

Polyvinylidene chloride (PVDC) 0.20 15–30 0.44–0.68
Polytetrafluorethylene (PTFE) (Teflon) 0.14 20 –
Polyetheretherketone (PEEK) 0.65 20 4–5
Polyphenylenesulphide (PPS) 0.27–0.47 25–35 2.7–3.7
Melamine-formaldehyde (Basofil) 0.2–0.4 15–20 6
Novoloid phenolic resin (Kynol) 0.12–0.16 30–50 2.6–3.5
meta-Aramid (Nomex) 0.485 20 7.5
Polyimide (P84) 0.35–0.38 33–38 3–4
Polyamide-imide (Kermel) 0.25–0.59 8–20 4.9–9.4
Semi-carbon oxidised acrylic 0.14–0.21 15–21 5–8
Polybenzimidazole (PBI) 0.24 28.5 2.8
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13.14 Mechanical classification of the fibre types: A, HM–HT fibre; B, weak
inorganic fibre, e.g. rock wool; C, tough synthetic fibre; D, weaker textile fibre;
E, elastomeric fibre.
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and breaking extension increased with increasing length of fibre. An example of their
results is given in Fig. 13.17. Meredith found no correlation between strength and
fineness within a sample of cotton. Timpa and Ramey [40] found an increase of
strength, measured in four laboratories according to HVI standards, from 0.2 to 0.3
N/tex with increasing length from 21.2 mm (staple length code: 26) to 32 mm (code:
40); they also found a significant increase of strength with molecular weight, albeit

13.15 Stress–strain curves for various cottons. After Sparrow [33].

13.16 Correlation between tenacity and birefringence of cotton at test lengths
of 1 mm and 1 cm. From Meredith [34].

0 2.0 4.0 6.0 8.0 10.0
Extension (%)

S
tr

es
s 

(N
/t

ex
)

0.6

0.5

0.4

0.3

0.2

0.1

St Vincent

Montermat

Uppers

Ishan

Punjab–American

Te
n

ac
it

y 
(c

N
/d

te
x)

6

5

4

3

2

1

0
40 42 44 45 48 50 ×10–3

Double refraction (n′ – n′)

1 mm

1 cm

0.5

0.25

0

N
/t

ex

g
/d

en

0

6

4

2

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres296

with considerable scatter. Foulk and McAlister [41] report an extensive study of the
tensile properties of cottons with three micronaire values, each subdivided into seven
length groups.

With the advent of HVI testing of cotton, the US Department of Agriculture
(USDA) has given the designations of tenacity values in Table 13.5 as an indication
of cotton fibre quality. The values are lower than those from Meredith’s single fibre
tests, reflecting the influence of bundle testing discussed in Chapter 14.

Hearle and Sparrow studied the effect of convolutions on the behaviour of cotton
fibres [42]. If a fibre is stretched, the convolutions are pulled out. If the fibre is
extended in the wet state and dried while held under tension, the extended form is
temporarily set. Figure 13.18(a) shows the effect on the stress–strain curve at 65%
r.h. The treated fibre is stiffer, and shows a higher tenacity and lower break extension.

The bast fibres, in which the molecules are very nearly parallel to the fibre axis,
show a greater tenacity, a higher modulus, a lower breaking extension and a lower
work of rupture. They constitute the strongest but least extensible of natural fibres.
The jute tested by Meredith gave lower values of tenacity than the other bast fibres,
but it has been shown by Mukherjee et al. [43] that a better-quality jute has a tenacity

13.17 Correlation between tenacity and length for a Sea Island cotton. From
Morlier et al. [39].

Table 13.5 USDA descriptive designations for HVI
tenacity values of cotton

Designation HVI tenacity

Specified Equivalent
grams per tex N/tex

Very weak <20 <0.196
Weak 21–23 0.206–0.226
Average 24–26 0.235–0.255
Strong 27–29 0.265–0.284
Very strong >30 >0.294

Te
n

ac
it

y 
(c

N
/d

te
x)

5

4

3
0 1 2 3 4 5

Length array group (cm)

0.5

0.4

0.3

N
/t

ex

g
/d

en

5

4

© Woodhead Publishing Limited, 2008



Tensile properties 297

of 0.56 N/tex under similar conditions; this is as strong as flax or hemp. Franck [44]
includes a large collection of reported values of mechanical properties of bast and
other plant fibres. The values are generally similar to those for flax, jute, hemp and
ramie in Table 13.1.

13.5.3 Regenerated cellulose and related fibres

The stress–strain curves of rayon and acetate fibres show an initial rapid rise with a
marked yield point, followed by a nearly flat portion and a rise again as breakage
approaches. The curves vary widely for different types of rayon and different
manufacturing methods. Differences are due to the spinning method and the degree
of stretch imposed. A highly stretched fibre, such as the formerly produced Durafil,
has high molecular orientation, which gives high strength and low extensibility,
similar to the bast fibres. Rayons used for apparel are weaker and more extensible.
Tyre-cord rayons, such as Tenasco, are intermediate in value.

The effect of orientation is clearly shown in the set of curves in Fig. 13.19, for
acetate of varying degrees of orientation. If cellulose yarns are regenerated from the
acetate, as they were in Fortisan, the locus of strengths is somewhat higher. Acetate
fibres are, in general, weaker and more extensible than viscose rayon fibres. The
load–elongation curves of acetate fibres, measured at constant rate of elongation,
often show a drop after the yield point.
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13.18 Load–extension curves of Acala cotton: A, normal fibre; B, after
stretching wet and drying.
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There are also important differences in the tensile properties of viscose rayon,
depending on their fine structure. An improvement in structure will cause the whole
locus of breaking points to be moved farther from the origin, so that strength is
increased without the loss of extensibility that occurs when orientation is increased.
This is illustrated in Fig. 13.20, and the great advances that were made in high-
tenacity rayon tyre yarns in the 1950s are shown in Table 13.6. More extensible
analogues of these fibres are used as high-strength staple fibres. Rayons made until
the 1950s had a micellar structure, which results in a low-wet-modulus and a low
strength as shown later in Fig. 13.26.

The modal rayons, which include polynosic fibres, are fibrillar in texture, and are
stiffer, and closer to cotton in properties, than earlier rayon fibres (see Fig. 13.21).
They have a high-wet-modulus and better wet strength. The reasons for this are
discussed in Section 20.2.2. Lyocell fibres, such as Tencel, are similar in tensile
properties, but somewhat stronger and stiffer. White et al. [47] give dry tenacities and
break extensions of 0.38–0.42 N/tex at 14–16% dry and 0.34–0.38 N/tex at 16–18%.

Chamberlain and Khera [48] investigated the variation in the properties as the
outer layers of viscose and cuprammonium rayon filaments are removed chemically.
A typical result for viscose rayon is shown in Fig. 13.22. 1t appears from these results
that the outermost layers are less extensible than the layers below the surface, but the

13.19 Stress–strain curves of filaments of varying degrees of orientation. The
dotted curves are secondary cellulose acetate and the full curves are cellulose
fibres regenerated from acetate. The lowest curve in each set is for
unoriented material. From Work [45].
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variation in tenacity cannot be worked out, since the stress would concentrate in the
least extensible parts of the fibre. The results for cuprammonium rayon were different
for the two samples of fibre tested.

From reports by different workers, Muri and Brown include tenacities N/tex and
break extensions of 0.154/14.5% and 0.183/ 6% for calcium alginate fibres and
0.204/10% for zinc alginate [49].

13.5.4 Protein fibres

Silk, like nylon, is characterised by fairly high strength and breaking extension,
which combine to give a work of rupture very much greater than that of the other
fibres tested by Meredith. The wide range of spider silks include fibres of very high

Table 13.6 Properties of viscose rayon tyre cords.
From Wilkinson [46]

Type Tenacity Breaking
(N/tex) extension

(%)

Textile rayon 0.19 20
Tenasco 0.30 10
Tenasco 35 0.35 10.5
Tenasco 70 0.36 13.5
Tenasco Super 105 0.47 12.5

13.20 Load–extension curves for viscose rayon, showing changes produced
by increasing orientation and improving structure.
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strength combined with high extensibility, which leads to very high work of rupture
[50, 51].

Wool and other hair fibres are characterised by low strength but great extensibility.
Owing to the high breaking extension, and to the shape of the curve, the work of
rupture is not low despite the low strength. Different types of wool give slightly
different curves, but these are always characterised by an initial linear Hookean
region up to 2% extension, a yield region of very low slope from 2 to 30% extension,
and finally a post-yield region of greater slope, up to a breaking extension around
45%.
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13.21 Stress–strain curves of lyocell (Tencel), modal and regular viscose rayon
compared with cotton. From Courtaulds Lyocell Overview.

13.22 Change of tenacity and braking extension of viscose rayon as outer
layers are removed. From Chamberlain and Khera [48].
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The very extensive experimental studies that have been carried out on wool have
been reviewed by Chapman [52] and Feughelman [53]. Much of the work has been
done on wet fibres, and Collins and Chaikin [54] have found, as illustrated in Fig.
13.23, that, if the effects of fibre irregularity are eliminated, the separate regions
become even more distinct, with sharp turning points between them, and the yield
slope becomes very small.

Anderson and Cox [55] have shown that although there was a very wide scatter of
the results, the tenacity of wool fibres from a given lock of wool increased with the
fibre diameter. There was a slight positive correlation between breaking extension
and fibre diameter.

Regenerated protein fibres are weak and extensible and even weaker when wet. In
addition to the fibres manufactured in the 1950s, this also applies to the attempts to
produce fibres from spider silk proteins derived from genetically engineered sources.

13.5.5 Synthetic fibres

The general tendency in melt-spun synthetic fibres, as shown by Figs 13.11 and
13.12 and Tables 13.1 and 13.2, is for moderately high strength to be combined with
moderately high breaking extension, which results in a tough fibre, though this is
open to modification through the amount of drawing. The lower part of the stress–
strain curve is very sensitive to the treatment of the fibre and may or may not show
a yield point. There is commonly another yield point at a high stress, close to the
breaking stress, though this may be cut off by premature rupture. Although their
breaking points lie close together, polyester fibres have a markedly higher initial
modulus than nylon and polypropylene fibres. This has a practical effect on the
handle of fabrics. Differences in the shape of the stress–strain curves of commercial
polyamide and polyester fibres can be attributed to changes in the annealing and
drawing processes during manufacture.
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13.23 Stress–strain curves of wool fibres: A, with good uniformity; B, more
irregular fibre. From Collins and Chaikin [54].
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The tensile properties of synthetic fibres depend to a considerable extent on the
molecular weight of the polymer and on the conditions of spinning and drawing. A
good example of this is polyester fibre, which can have a variety of stress–strain
curves, as shown in Fig. 13.24. As the degree of orientation is increased by drawing,
strength and stiffness increase and breaking extension decreases. If the molecular
weight increases, the locus of breaking points moves upwards, but the initial parts of
the stress–strain curve are little altered.

The results in Fig. 13.24 are for an early Terylene polyester fibre produced by
winding up an undrawn, low orientation fibre and then drawing it under different
conditions. Ward [57], and Long and Ward, [58] have studied the drawing behaviour
of polyester fibres, previously drawn to different degrees. After an initial stiff region,
the fibre yields and joins a common curve to the break point (Fig. 13.25. Recovery
from any point on the draw curves is approximately along lines parallel to the elongation
curve of the fibre with the highest draw ratio. The yield at the end of the stress–strain
curve of a drawn fibre is the final stage of the draw process. For practical operation,
the maximum draw cannot be imposed, because a certain margin has to be left or
there would be a risk of breakage during the drawing operation. In polybutylene
terephthalate (PBT, 3GT) a crystaline phase transition and in polyethylene naphthalate
(PEN) crystallisation effects complicate the relation between drawing and properties
[57].

The early separation of spinning and drawing gave way to a continuous spin-draw
operation, but this did not appreciably change the mechanical behaviour. A greater
change when spinning at higher speed, c. 3000 m/min, gave partially oriented yarns
(POY), for which drawing could be completed in subsequent draw-texturing or other
processes. Figure 13.26 shows stress–strain curves for polyester fibres spun at different
speeds. If the curves are translated to an equivalent draw ratio, then after the initial
elongation, they fall on a master curve similar to Fig. 13.25. Polyester fibres spun at
around 6000 m/min are sometimes referred to as fully oriented fibres (FOY). What
this means is that they are oriented to a degree that allows them to be used directly
in some textile fabrics without additional drawing. However, it can be seen from Fig.
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13.24 Stress–strain curves of polyester fibre (Terylene) at varying orientations
[56].
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13.26(a) that they are more extensible than conventional drawn fibres and they will
have a lower tenacity based on the as-spun linear density.

For maximum stiffness and strength, which naturally combine with low breaking
extension, polyester fibres are subject to additional heat treatments under tension.
These high-tenacity yarns were initially developed for tyre cords, but are also used
in other technical textiles. Typical properties of a high-tenacity polyester yarn would
be a tenacity of 0.8–0.85N/tex with a breaking extension of 13–18%. This is considerably
stronger than the early high-tenacity polyester listed in Table 13.1. The fact that both
strength and break extension have increased means that the stress-strain curve has
been extended to a higher locus without much change in stiffness.

PEN fibres have a higher modulus than PET fibres. Polytrimethylene terephthalate
fibres have a lower modulus and are more similar to nylon in tensile properties.

The effect of draw ratio and spinning speed for nylon is broadly similar to that for
polyester. Figure 13.27 shows stress–strain curves for nylon 66 fibres spun at different
speeds. High-tenacity nylon yarns reach about 0.85 N/tex in tenacity, but have a
breaking extension of 20%, which makes then tougher and more extensible than
polyester yarns.

Much detailed information on the effect of spinning speed on mechanical properties
and structure of polyester, nylon and polyolefin fibres is included in the book edited
by Ziabicki and Kawai [62].

The shape of the stress–strain curve of both nylon and polyester fibres can be
considerably altered by heat treatments under tension. Figure 13.28 shows a set of
stress–strain curves, related to the original fibre dimensions, for nylon fibres subjected
to heat treatments by Hearle et al. [63]. Another example of the influence of subsequent
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degrees. Note that the stress is a true stress, based on the changing area of
cross-section. The numbers attached to the curves are the initial draw ratios.
From Ward et al. [59].

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres304

heat treatments is shown by Figure 13.29 for polyester fibres tested at 20 °C and 65%
r.h. as received, and under the same conditions after exposure to water at 95 °C: the
shape of the curve is markedly different in the two cases. Figure 13.30(a), from an
extensive study by Mwaisengela [14] shows stress–strain curves after free annealing
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(a) with strain based on as-spun length, (b) with curves translated to an
equivalent initial draw-ratio. From Perez [60].
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for a moderately high-tenacity polyester yarn spun at 800 m/min, but drawn 4× and
heat-set at 160 °C, as used for sewing thread. The low-stress yield has been eliminated
by the heat setting, but reappears after annealing. When re-plotted using original
dimensions, Fig. 13.30(b), the fibre shows shrinkage of up to 18% and all the curves
come together at about 0.3 N/tex and 8% extension. The heat treatment causes a
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13.27 Stress–strain curves of nylon 66 fibres spun at different speeds. From
Shimizu et al. [61].
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13.28 Stress-strain curves of 70 denier (78 dtex) nylon yarns after various heat
treatments: A, as received; B, 200 °C, zero tension; C, 200 °C, 0.3 N; D 200 °C,
0.75 N; E, relaxed in boiling water; F, 200 °C, zero tension, then relaxed; G,
200 °C, 0.75 N, then relaxed; H, 200 °C, 0.1 N, then 240 °C, 0.5 N; I, 200 °C,
0.5 N, then 160 °C, 0.1 N; J, 200 °C, 0.1 N, then 160 °C, 0.5 N, then relaxed [63].
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small loss in strength. Commercially provided polyester yarns may be similar to this
yarn in showing no low yield point and having low shrinkage or, if they have been
processed differently, may have stress–strain curves with a low yield point like the
stress–strain curve in Fig. 13.30(a) at 120 °C. Mwaisengela [14] found a similar
behaviour in a high-tenacity nylon 66 yarn, as shown by the tangent modulus plot in
Fig. 13.31. The initial stiff region leads to the low yield point, represented by the
minimum in the modulus, which is followed by a gradual stiffening and then a lower
modulus as break is approached.

Wang et al. [64] report that the strength of polypropylene can be increased to
0.88 N/tex by a second stage drawing process at 140 °C, but some whitening of the
fibre is observed. This is an indication of defects in the fibre and the breaking
extension is 18.4%, compared with 22% for fibres drawn at lower temperatures.

Figure 13.32 shows the stress–strain curve of an acrylic fibre under standard
conditions. As in all acrylic fibres, there is a yield point at around 2% extension.
Although treatments can give higher strength and lower breaking extension, commercial
acrylic fibres are usually at the lower strength and higher extension range for synthetic
fibres. Acrylic fibres are not quite as tough as nylon, polyester or polypropylene
fibres.

Staple polylactic acid (PLA) fibres have stress–strain curves in extension similar
to wool, with tenacities of 0.32–0.36 N/tex and a break extension of 55% [65]. Elastic
recovery is 99.2% form 2% extension and 92.6% from 5% extension, but is not as
good as wool from higher extensions.

13.5.6 High-performance fibres

For the characterisation of the tensile stress–strain properties of HM–HT fibres, two
aspects merit special mention. Experimentally, the high strength of the fibres makes
the problem of securing a grip that holds but does not weaken the specimen more
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13.29 Stress–strain curve of polyester fibre under standard conditions: A as
received; B, after treatment in water at 95 °C [30].
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acute; and, because of the high stiffness, any softness of the gripping system, including
deformation of the jaws and the load cell, will cause greater errors in determination
of fibre extension, especially for short samples. In interpretation, the large density
differences cause large changes in relative values of strength and stiffness for different
fibres, depending on whether specific stresses, normalised by linear density, or stresses,
normalised by area, are quoted.

Some typical stress–strain curves of HM–HT fibres were shown in Fig. 13.13.
Numerical data in Table 13.3 were given on both a mass and volume basis. It must
be stressed: (1) that these are not like the data in Tables 13.1 and 13.2, obtained in
single scientific comparisons of many fibre types, but are mostly from manufacturers’
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13.31 Tangent modulus plot for nylon 66 yarn free annealed at different
temperatures. From Mwaisengela [14].

S
p

ec
if

ic
 s

tr
es

s 
(N

/t
ex

)

0.36

0.27

0.18

0.09

0
0 10 20 30 40 50

Extension (%)

0.5

0
0 100 200

W95

W20

S, ST

W95

13.32 Stress–strain curves of Courtelle acrylic fibre: S: 65% r.h., 20 °C, as
received; ST, 65% r.h., 20 °C, after water at 95 °C, W20, in water at 20 °C, as
received; W95, in water at 95 °C, as received.

–12 –8 –4 0 4 8 12 16 20 24
Extension (%)

Ta
n

g
en

t 
m

o
d

u
lu

s 
(N

/t
ex

)

8

6

4

2

80 °C

100 °C

150 °C180°C
220 °C

220°C

100 °C

150 °C

180 °C

80 °C As received

A
s 

re
ce

iv
ed

© Woodhead Publishing Limited, 2008



Tensile properties 309

literature; (2) that process differences can cause substantial differences in properties;
(3) that most of these fibres are in the first or second generation of development, and
improved performance can be expected in future. The examples quoted in Table 13.3
are typical of the range found, but variants and fibres from other manufacturers may
have somewhat different properties. For improved forms of HMPE fibres, van Dingenen
[66] quotes values up to 3.7 N/tex at a break extension of 3.8% for Dyneema SK76.
For its Tenax carbon fibres, Enka quoted moduli from 238 to 440 GPa, strengths from
2.15 to 4.7 GPa, and breaking extensions from 0.4 to 1.8%. Test methods can also
cause differences: for example, Simon and Bunsell [67] report a reduction in mean
strength of Nicalon SiC fibres from 2.04 GPa at a 15 mm test length to 1.29 GPa at a
220 mm length owing to coefficients of variation of around 30%; and similar effects
would occur in other fibres.

To a first approximation, HM–HT fibres follow Hooke’s Law, with stress proportional
to strain, and break is sharp without any yield. There is no appreciable deviation from
linearity in ceramic, glass and carbon fibres. The lower-modulus aramids, like Kevlar
29, show a stiffening with extension, but this is reduced in the higher-modulus forms,
Kevlar 49 and 149, which have been subject to further processing. The HMPE fibres
show a softening at high extension. The concave deviation of the aramids is most
marked at low stresses, but the convex deviation of HMPE is most marked at high
stresses.

A rough guide to comparative values of strength, stiffness (average modulus), and
extensibility that can be expected from different sorts of HM–HT fibre is shown in
Fig. 13.33, but, for any purposes needing precision, the actual properties should be
checked or measured.

Table 13.4 listed tensile properties of fibres that are used for their thermal or
chemical properties. Their mechanical properties are generally somewhat inferior to
the corresponding general-purpose textile fibres.

13.5.7 Elastomeric fibres

At the other end of the performance limits from HM–HT fibres, there are elastomeric
fibres, which show good elastic recovery up to high extension. Natural rubber can be
used, but the most important fine fibres are spandex, with Lycra as one example.
Figure 13.34 shows a comparison of spandex and rubber fibres: their extensibilities
are similar, but the spandex fibre is twice as strong. Based on the initial linear
density, the strength appears low; but the true stress at break is about 0.5 N/tex, which
is similar to that of nylon and polyester fibres.

13.6 Other factors

13.6.1 Variability and time dependence

As discussed in the next chapter, particularly for natural fibres, variability must be
taken into account in studying tensile properties. The weak link effect means that
strengths may be much lower than expected.
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13.33 Comparison of regions of mechanical properties approximately covered
by different classes of fibres: (a) on weight basis; (b) on volume basis: A,
aramid; C, carbon; Ce, ceramic; G, glass; M, metals; P, polyethylene (HMPE);
T, textile fibres such as nylon or polyester; W, single-crystal whiskers. The
radiating lines show breaking extensions, assuming Hooke’s Law.
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13.34 Stress–strain curves of Lycra spandex fibre (L) and natural rubber (R)
[68].
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The rate of extension is another factor influencing tensile properties, but this is
included in the consideration of rheology in Chapter 16. Generally an increase in rate
of testing, often expressed as reduced time to break, leads to lower extensibility and
greater strength.

13.6.2 Effect of moisture and temperature

Figure 13.35 shows stress–extension curves for various fibres at different relative
humidities. All the fibres become more extensible at higher humidities, the modulus
becoming smaller and the breaking extension greater, but, whereas cotton and other
natural cellulose fibres become stronger, the rest of the fibres become weaker. Table
13.7 gives values of the tensile properties of a number of fibres expressed as a
percentage of the values under standard conditions. The properties of those synthetic
fibres which absorb little or no water would not be expected to vary with humidity.

As an example of a set of very detailed results, Fig. 13.36 shows the effect of
relative humidity on the stress–strain curves of wool fibres. It will be noted that the
major effect is to raise the yield point. This behaviour is also found in other fibres.

The mechanical properties of fibres also change with temperature. Table 13.7
illustrates the differences between the behaviour at 20 °C and that at 95 °C when wet.
The tenacity and stiffness are lower at the higher temperature, but the breaking
extension is usually higher. Prolonged exposure to high temperatures can lead to
permanent degradation of fibres.

13.35 Stress–strain curves at various humidities [69].
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Table 13.7 Effect of moisture and temperature on tensile properties [28, 30]

Ratio of values: wet/65% r.h Ratio of values: wet, 95 °C/wet, 20 °C

Fibre Tenacity Breaking Work of Initial Tenacity Breaking Work of Initial
extension rupture modulus extension rupture modulus

Cotton, Uppers 1.11 1.11 0.92 0.33 1.00 1.00 1.00 1.00
Viscose rayon

high-tenacity 0.64 2.00 0.78 0.02 0.90 1.25 1.25 0.75
polynosic 0.70 1.21 0.62 0.08 0.95 1.06 1.00 0.83
normal 0.50 1.58 0.69 0.03 0.90 1.03 0.89 0.80

Acetate 0.54 1.41 0.63 0.17 0.43 1.98 0.75 0.07
Triacetate 0.62 1.27 1.10 0.57 0.56 1.79 0.91 0.30
Silk 0.92 1.63 1.31 0.25 0.71 0.96 0.67 0.67
Wool, merino 0.69 1.33 0.65 0.40 0.55 1.37 0.82 0.50
Fibrolane (casein) 0.32 0.95 0.18 0.05 0.29 0.67 0.33 1.00
Nylon 0.80 1.05 0.87 0.82 0.79 1.76 1.19 0.21
Terylene (polyester fibre) 1.00 1.00 1.00 1.00 0.72 1.40 0.85 0.42
Orlon (acrylic fibre) 0.84 1.08 0.98 1.00 0.35 4.26 1.04 0.02
Polyprpylene fibre 1.00 1.00 1.00 1.00 0.45 2.47 1.13 0.21
Fibreglass 0.80 0.78 0.63 1.00 0.68 0.78 0.53 0.86
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Du Pont [31] published data on the influence of temperature on the stress–strain
curves of various fibres. Tests in water (Fig. 13.37) illustrate the effect of temperature
alone; but those in air combine an effect of moisture, since at –57 °C the humidity
would be close to 100 r.h., at 21 °C it was 65% r.h., and at the high temperatures it
would be close to 0% r.h. The influence of temperature on the stress–strain properties
of wet wool is shown in Fig. 13.38.

Daniels [71] has shown that the breaking extension of undrawn nylon fibres at –
196 °C is only about 12%, but the value increases abruptly to 70% at a draw ratio of
2. The breaking extension then progressively decreases to a value of about 20% at a
draw ratio of 4. Hall [72] found that, in drawn polypropylene monofilaments, the
breaking extension decreased rapidly from 75% at 35 °C to 50% at 10 °C and 20% at
–16 °C the final long yield region of the stress-strain curve was missing at lower
temperatures.

Rosenbaum [73] gives stress–strain curves of acrylic fibres at various temperatures
and shows that the resistance to extension at 100 °C or more is very small. The low
resistance to extension of an acrylic fibre is also shown in Fig. 13.32.

Measurements of the initial modulus of wet fibres at temperatures between 20 and
100 °C have been made by Guthrie [74], and some of his results are shown in Fig.
13.39. The presence of water reduces the modulus of viscose rayon to a low value,
and temperature has little further effect; nylon is also little affected. Polyester, triacetate
and acrylic fibres all show a very marked fall in modulus as the temperature is raised.
This has technical consequences in dyeing, and other forms of hot wet processing, of
these materials.

Other data on the effect of temperature on modulus are reported by Ross [75].
Ceramic and carbon fibres retain their strength well up to high temperatures; but

glass will lose strength, especially for long times under load, as its softening point is
approached. Para-aramid and other liquid crystal fibres retain their strength up to
moderately high temperatures, c. 400 °C. HMPE suffers considerable strength loss
when the temperature increases above about 50 °C, as shown in Fig. 13.40. Since the
effect of an increase in temperature is to speed up deformation mechanisms, the
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13.36 Effect of relative humidity on stress–strain curves of wool at room
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13.37 Comparative stress–strain curves of fibres at various temperatures: (a) in water; (b) in air [31]. Dacron is polyester; Orlon
is acrylic.
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13.37 (Continued)
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13.38 (a) Effect of temperature on stress–strain curves of wet wool [52]. (b)
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counterpart to this is strength loss with time, as shown in Fig. 13.41. Later improved
forms of HMPE fibre have improved creep resistance, which implies lower strength
loss with temperature.

13.6.3 Effect of light

When exposed to light, or to ultraviolet or infrared radiation, textile fibres may
deteriorate and show a decrease in strength and breaking extension. The degree of
deterioration depends on the type of fibre; on the fibre fineness, and the extent to
which the fibres are protected by other neighbouring fibres; on whether any dyes,
finishes or other agents are present on the fibre; and on the type and intensity of the
radiation. The last-named factors are in turn affected by the type of exposure, for
example, whether it is in full sunlight, partly shaded, behind glass, or in artificial
light; and, for daylight exposure, by the geographical location and the time of
year.
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In testing materials for light resistance, it must be remembered that other factors,
such as mildew, moulds, fungi, industrial fumes, smoke, flexing, abrasion and sand
carried in the wind, may cause more deterioration than the sunlight.

Although there have been many ad hoc tests, little fundamental information is
available. Table 13.8 gives the relative order of resistance to deterioration. Table 13.9
gives values for the loss in strength of undyed cotton and nylon fabrics exposed to
sunlight and shows that if ultraviolet radiation is excluded, the damage is considerably
reduced.

13.6.4 Effect of chemical environment

The tensile properties of fibres may also change with the chemical environment. For
example, the properties of wool change remarkably in alcohol and in acid conditions,
as illustrated in Fig. 13.42. and in salt solutions. Wool supercontracts in a first stage
in a cold lithium bromide solution and in a second stage in a stronger hot solution.
The resulting stress–strain curves are shown in Fig. 13.43. After the first stage, the
initial Hookean and yield regions have been lost. After the second stage, the post-
yield stress is lost. Other fibres are affected by different chemicals. More severe
chemical treatments lead to permanent changes in mechanical properties.

Table 13.9 Loss in strength of nylon and cotton fabrics [78]

Residual tensile strength (%)

Behind untreated Behind ultraviolet
film absorbing film

Cotton, after 4 months, in
Florida 64 92
Arizona 48 85

Nylon, after 2 months, in
Florida 15 60
Arizona 13 39

Table 13.8 Relative loss in strength due to sunlight [77]

Exposed behind glass Exposed outdoors

Bright Orlon acrylic

Semi-dull Orlon acrylic

Bright Dacron polyester

Semi-dull Dacron polyester

Bright acetate, bright nylon, type 680 dull
nylon, bright rayon, cotton

Silk, and most other semi-dull fibres

Most dull fibres; excluding dull
Dacron, or those with a light-degradation
inhibitor, such as type 680 nylon

Bright Orlon acrylic

Semi-dull Orlon acrylic

Bright acetate, bright Dacron, bright nylon,
type 680 dull nylon, bright rayon, cotton

Semi-dull Dacron polyester

Silk, and most other semi-dull fibres

Most dull fibres; excluding dull
Dacron, or those with a light-degradation
inhibor, such as type 680 nylon
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13.42 Effect of chemical environment on stress-strain curves of wool. (a) 1
water and alcohols, 2 methyl, 3 ethyl, 4 n-propyl, 5 n-butyl or n-amyl; (b) 3
water and acids, 1 n butyric, 2 propionic, 4 acetic, 5 formic. From Peters and
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14.1 Introduction

Textile fibres are not uniform: their composition and fineness vary both from one
fibre to another in a sample and along the length of each fibre (see Fig. 3.6(a)).
Consequently, their tensile properties are also variable. The variability is of direct
interest, since it is just as important to know the range of values of a given quantity
in a specimen that is being tested as it is to know the mean value. For example, the
variation of properties from one fibre to another influences the distribution of load on
fibres in a textile structure, so that a material may be more valuable if it is more
uniform, even though it appears to be less satisfactory in terms of its average properties.

The variability also has important indirect effects on the results of measurements
of mechanical properties. These may even result in a change in the order of ranking
of specimens when the test conditions are changed.

The dimensions of a fibre also vary as a test is made. When a fibre is extended, it
will become narrower. The extension and narrowing may not be uniform along the
specimen. These changes during a test must not be neglected in the fundamental
study of the behaviour of fibres.

14.2 Variability, specimen length and strength

14.2.1 The weak-link effect

The weak-link effect in its simple form can be expressed as follows. Suppose that we
could determine the strength at every point along the length of a fibre. We should find
that it varied from point to point, as shown in Fig. 14.1. If a gradually increasing load
is applied to this whole specimen, it will break at its weakest point, giving a strength
S1, but if the specimen is tested in two half-lengths, each will break at its own
weakest place, one giving the value S1, and the other a value S2, which is necessarily
greater than S1. The mean strength S1/2, measured on half-lengths, is the mean of S1

and S2, and must therefore be greater than the strength measured on the whole length.
Similarly, going to quarter-lengths, we get the four values, S1, S2, S3, S4, and the mean
strength S1/4 is greater still. This increase will continue until at very short lengths the
mean strength tends to the value S0, which gives equal areas of the curve above and
below the line S = S0, since each small element will break at its own value of strength.

14
The effects of variability
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The weak-link effect described above has the following results:

• The mean measured strength of a specimen decreases as the test-length is increased.
A typical example is shown in Fig. 14.2, which shows results from a commonly
used bundle-breaking test, the Pressley test (see Section 14.4.2).

• The decrease in mean measured strength will be more rapid the more irregular
the fibre is.

• The order of ranking of specimens may alter if the test-length is altered. Figure
14.3 illustrates this. At very short lengths, the fibre shown in (a) appears stronger,
but at the length l the more uniform fibre in (b), appears stronger. As an example

14.1 Weak-link effect.
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of such a reversal in ranking, Meredith [2] quotes the values in Table 14.1 for
cotton and nylon fibres.

The same effects occur in yarns as in fibres, and it is in relation to yarns that the
weak-link effect has been most studied. In the absence of detailed results for fibres,
some results for yarns will be included here, since the same ideas should be applicable
to fibres.

If one wishes to estimate the strength that would be obtained at some greater test
length than that actually used, the simplest method in principle is to group the results
together in the appropriate numbers and to take the mean of the lowest value in each
group. An example is given in Table 14.2. This method was tedious in practice, and
several attempts at mathematical analysis have been made. However, with computers
available, there is now no reason to avoid the direct numerical methods.

(a) (b)

14.3 Change in order of ranking of materials. S0 is greater for (a) than for (b),
but S1 is greater for (b).

Table 14.1 Tenacity and length [2]

Tenacity (N/tex) for test length of:

1 cm 1 mm 0.1 mm

Cotton 0.31 0.43 0.59
Nylon 0.47 0.50 0.54

Table 14.2 Estimating strength value

Strength values Mean
obtained with
1 cm length 4 5 3 4 6 4 5 3 6 4 4.4

Strength values 4 3 4 3 4 3.6
selected for
2 cm lengths
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14.2.2 Peirce’s theory [3]

Let φl(S) · dS be the probability that the strength of a specimen of length l should lie
between S and (S + dS). The function φl(S), shown in Fig. 14.4, thus gives the
distributions of breaking loads. It is assumed that this function does not vary significantly
from one part of the batch of specimens to another. From the values of the distribution
φl(S), one can work out the mean value Sl and the standard deviation σl by the usual
methods.

We now wish to find the distribution of breaking loads for specimens of length nl,
that is, the probability, φnl(S) · dS, that the strength of a specimen of length nl lies
between S and (S + dS). The condition for this to occur is that the weakest of the n
portions of length l of which the complete specimen of length nl is made up should
have a strength lying between S and (S + dS). In other words, any one of the n
portions must have a strength between S and (S + dS), and the other (n – 1) portions
must have a strength greater than S. The probability that any one of n lengths l has
a strength between S and (S + dS) is n · φl(S) · dS. The probability that the strength

of a length l shall be greater than S is 
S

l S S
∞

∫ ⋅φ ( ) d ; and thus the probability that all

(n – 1) lengths shall have a strength greater than S is 
S

l

n

S S
∞

∫ ⋅








φ ( ) d

( –1)

. The probability

that the strength of a specimen of length nl lies between S and (S + dS) will therefore
be given by the product of these two terms, that is:

φ φ φnl l
S

l

n

S n S S S( ) = ( ) ( ) d
( –1)∞

∫ ⋅








 (14.1)

By using this relation, the frequency distribution can be worked out for any length of
specimen. The relation is valid whether n is less than or greater than unity. Figure
14.5 shows an example of the application of this formula to cotton yarns.

14.4 Distribution of strengths.

φ l
(S

)

S S + dS S
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For further mathematical development, it is necessary to assume a form for the
function φl(S). It is simplest to assume a normal distribution. This gives:

φ
σ π

σ
l

l

S SS l l l( ) = 1
2

 e –( – ) /42 2
(14.2)

where Sl  is the mean value of Sl, and σl is the standard deviation of Sl. This relation
can be substituted in equation (14.1), and the new distribution is then defined. Figure
14.6 shows an example of this. It will be noticed that, even though we start with a
symmetrical normal distribution, the derived distributions at other lengths are skew.

The distribution φnl(S) is thus known in terms of Sl, σl and n. Analysing this
expression, and making some mathematical approximations, Peirce obtained equations
giving the mean strength Snl  and standard deviation σnl for specimens of length nl.
The relations are:

S S nl nl l –  = 4.2 (1 –  )–1/5 σ (14.3)

σ
σ

nl

l
n = –1/5 (14.4)

Table 14.3 shows a comparison of values obtained by using these relations with
experimental results for cotton fibres. It will be seen that Peirce’s relation gives too
high a value for the shorter length. This is also found with results for yarns. It is
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14.5 Application of Peirce’s theory to cotton yarn. Curves 1 and 2 are
experimental curves for test-lengths of 9 and 27 inch (230 and 690 mm),
respectively; curve 3 is the calculated curve for 686 mm (27 in.) test-lengths
from the data in curve 1.
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useful to summarise here the approximations in Peirce’s theory that cause these
deviations. They are:

• the assumption that the distribution of strength is independent of the part of the
sample considered;

• the assumption of a normal frequency distribution;
• the mathematical approximations.

14.2.3 Other treatments

An improvement on Peirce’s theory has been worked out and applied to yarns by
Spencer-Smith [5]. It is first necessary to clear away the assumption, which has been
implicit in the previous discussion, that breakage occurs at a point. In fact, the
disturbance involved in a break will be spread over a certain length, which Spencer-
Smith called the fracture zone. Any theory of the weak-link effect should therefore
consider a succession of fracture zones.

Spencer-Smith further pointed out that the strengths of neighbouring fracture
zones in yarns are related to one another. This will also hold for fibres, since the same
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14.6 Application of Peirce’s theory to a normal distribution. Curves for various
test-lengths nl, calculated from the normal distribution at n = 1.

Table 14.3 Tenacity in N/tex and test-length, cotton [4]

Cotton S σ S S
variety 1 cm 1 cm 1 mm 1 mm

calc. expt

St Vincent 0.473 0.136 0.688 0.609
Sakel 0.405 0.180 0.688 0.535
Uppers 0.288 0.136 0.503 0.477
Ishan 0.324 0.093 0.467 0.446
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molecules will be passing through neighbouring zones, and the dimensions and
composition of neighbouring zones cannot be very different. There will thus be a
tendency for strong zones to group together and for weak zones to group together.
This means that, in testing a number of specimens, most of the weak places will be
concentrated in a few of them, and thus only a few will give breaking values. Instead,
some higher values will be included, and the mean strength will appear higher. Table
14.4 shows a numerical example of this effect. It is in this respect that Spencer-
Smith’s theory is an advance on that of Peirce, where the values were, in effect,
redistributed at random.

Spencer-Smith has worked out the theory in detail and obtained the relation

S S W n F nf n f f –  = ( ) ( )⋅ ⋅ σ (14.5)

where f is the fracture-zone length, Sf and Snf are the mean values for lengths f and nf,
respectively, σf is the standard deviation for length f, W(n) is a statistical function,
tabulated by Tippett [6] for values of n, and F(n) is the serial correlation function.

F n
n

n n n r n r

n m r rm n

( ) = 1 [ ( –1) – 2( –1) – 2(  –  2)

– 2(  –  ) 2 ]

2 1 2

–1
1/2

…

… } (14.6)

where rm = correlation coefficient for the strengths of zones a length mf apart.
In this expression, W(n) is a numerical factor, F(n) is a factor taking account of the

correlation of strengths of neighbouring zones, and σf brings in the variability. The
product W(n) · F(n) replaces 4.2 (1 – n–1/5) in Peirce’s expression.

Spencer-Smith’s theory has been applied only to yarns, and examples are given in
Fig. 14.7. The agreement with experiment is still not perfect.

In many studies of fracture, a Weibull distribution is found to give the best statistics
and has been applied to weak link theory. The basic two and three parameter equations
for the Weibull distribution and the change of mean strength with length are as

Table 14.4 Four-zone lengths with zones (a) perfectly grouped and at random

(a)

Zone strength 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1

Four-zone strength 4 3 2 1

Mean for four-zone length = 2.5

(b)

Zone strength 4 1 2 1 2 3 1 2 4 4 2 1 3 2 3 4

Four-zone strength 1 1 1 2

Mean for four-zone length = 1.25
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follows.

φl
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m = – /β (14.8b)

log  –  log  = – (1/ ) logS S m nnl l (14.9a)

log  –  log  = – ( / ) logS S m nnl l β (14.9b)

where N is the number of independent segments with strength S0, m is the Weibull
shape parameter and β was proposed by Watson and Smith [8] to account for diameter
variations, though its physical meaning is not clear.

Pickering and Murray [9] measured the variation of strength of a high-strength
carbon fibre and found a linear plot corresponding to equation (14.9a) with (1/m) =
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14.7 Comparison of theory and experiment for a spun-rayon yarn [7].
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0.126. The Weibull distribution itself should give a linear plot when log{log[1/(1–
φ)]} is plotted against log(S). Their results showed up a basic problem in weak-link
modelling. There was good linearity in the Weibull plots for the major part of the
distribution, but points at the extremes diverged from the line. Unfortunately the
extreme low values have most effect on failure at weak links. This is probably why
Pickering and Murray found errors of 8–25% in predicting strengths at 2 to 500 mm
from values at 1 mm test length. Amaniampong and Burgoyne [10] found that the
two-parameter Weibull distribution fitted polyester strengths but the three-parameter
was better for breaking strain. For aramid fibres the Gumbel distriburion gave a
better fit. They also found the problem of extreme values lying off the straight line.
Zhang et al. [11] discuss the application of Weibull and modified Weibull distributions
to gauge length effects on wool strength. Yu et al. [12] combined SIFAN (see Sections
3.7.1 and 13.4.2) and optical microscope studies of wool to differentiate between
breaks at thin places and breaks due to weaknesses in internal structure. They conclude
that about 40–50% of breaks occur at the position of minimum diameter, with the
remainder being associated with defects.

14.2.4 Difficulties in weak-link theory

Theories of the weak-link effect continue to be developed, though Peirce’s theory is
a useful approximation, and Spencer-Smith’s a better one. Spencer-Smith’s relation
is open to criticism on the grounds that it must be based on experimental results for
the fracture-zone length. Apart from the fact that this length is not known and may be
very ill defined, it is very likely that when jaws are clamped on the specimens at a
distance apart equal to the estimated fracture-zone length, the nature of the break will
be different from that at much shorter or much longer lengths. When the jaws are
close together, they will restrain deformation of the fibre, and the distribution of
strain, giving rise eventually to rupture, will be different. The effect of changes in the
mechanism of breakage cannot be included in any statistical theory, and it seems
likely that different relations would apply for lengths much greater than, and much
less than, the fracture-zone length. The variations for lengths near the fracture-zone
length would depend on the particular properties of the fibre.

These difficulties also apply to yarns, and the redistribution of twist is another
source of error there. Together these must account for the deviation of experiment
and theory shown in Fig. 14.7.

14.3 Variability and other quantities

14.3.1 Variation of stress and strain

The weak-link effect is concerned with the effect of variability on strength, and we
must also consider the influence of variability on other quantities. For a fibre under
a given tension, the stress will vary from place to place and will follow the variations
of cross-section. At each point, the specific stress will be given by the tension divided
by the linear density at that point.

As a consequence of the variation of stress, the strain will also vary from place to
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place. The thin places will extend more than the thick ones. Table 14.5 shows the
variation in diameter and extension along 5 mm lengths of a wool fibre. Provided that
all the lengths in a particular set of tests are equal, the average of the strain values for
each length will be the same whether the lengths are long or short.

The effect of variability on the shape of the stress–strain curve of wool fibres has
been extensively examined by Collins and Chaikin [14–17]. He et al. [18, 19] have
reported simulations of the stress–strain behaviour of fibres with variable thickness
for linear elastic and non-linear tensile properties.

14.3.2 Tensile modulus

Owing to variation in composition, the modulus may vary from place to place in a
fibre or between the fibres in a given sample. With an irregular specimen, there will
also be an effect due to specimen length. This arises because of a difference in the
averaging. Suppose the specimen consists of n sections, each of length x, and the
extensions of the sections are represented by δx, varying from section to section.
Then, if the modulus is measured on a specimen of length nx, we have:

modulus = 
( )/

 = (1/ )S
x nx

Sx xΣ δ
δ (14.10)

where S = stress, and δx  = mean value of δx. But, if the modulus were measured on
the lengths x and then averaged, we should have:

modulus = 1  
( )/

 =  1  = 1
n

S
x x

Sx
n x

Sx
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Σ Σδ δ δ
















 (14.11)

where 1
δx





  is the mean value of 1

δx
.

There is a difference between (1/ )δx  and 1
δx





  and thus the mean value of the

modulus may vary with the length tested.
It is obvious that an apparently lower value of modulus results from softness of the

Table 14.5 Variation along successive sections (5 mm lengths) of a wool fibre [13]

Fibre No. 1 Fibre No. 2

Diameter of Extension (%) of section with overall Diameter Extension (%)
section extension (%) of: (µm) (overall = 13.9%)
(µm) 5.2 15.5 24.2 32.9

30.0 2.0 6.0 20.0 28.0 29.8 4.0
29.9 0.0 5.9 19.6 29.4 30.2 10.2
28.0 3.9 21.6 27.4 35.3 28.2 17.6
28.0 9.6 21.2 25.0 34.6 26.4 22.0
26.6 10.4 22.9 29.2 37.5 24.8 15.5

(break) (break)
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tester load cell and deformation within the gripped region of the fibre. There will be
a more serious error if there is slippage of the fibre in the grips. These effects mean
that the apparent modulus will increase as the test length increases. Pan et al. [20]
report substantial increases in initial modulus of fibres as gauge length increases
from 10 to 100 mm and regard this as a change in fibre properties and not just a
testing artefact. However, it is difficult to see how, except for the immediate vicinity
of clamps, the stiffness of a length of fibre could be influenced by distance from the
gripped points.

14.3.3 Breaking extension

The weak-link effect also affects breaking extension. If a fibre breaks under a low
load owing to the presence of a weak place, the rest of the specimen will have a
comparatively small extension and the breaking extension will be low. The mean
breaking extension will decrease as the specimen length increases.

14.4 Composite-specimen effects

14.4.1 Theoretical

If, instead of testing a single fibre, one tests a number of fibres together, the form of
the specimen has a considerable influence on the result of the test. Practical cases are
usually complicated and difficult to formulate mathematically, but the simple examples
given by Peirce [3] may be used as approximations. It is assumed that the fibres are
free to act independently.

• Fibres gripped at the ends, of equal original length, and of uniform breaking
extension. All the fibres will break together and therefore, however variable the
breaking loads may be, each fibre will have developed the maximum possible
load, and the breaking load of the composite specimen will be equal to the sum
of the breaking loads of the fibres.

• Variable fibres gripped at the ends, of equal original length, in a constant rate of
extension test (CRE). The fibres with the lowest breaking extension will break
first. Let the fraction of fibres having a breaking extension between e and
(e + de) be φ(e) · de. Then, when the extension is e, the fraction f of the total
number of fibres remaining unbroken will be:

f e e
e

 = ( )  d
∞

∫ ⋅φ (14.12)

The force on the specimen will be influenced by any correlation between modulus
and breaking extension but, if we assume a constant modulus, E, the stress will be
given by:

stress =  =    =  = ( )  dS f Ee Ee e e
e

⋅ ⋅
∞

∫ φ (14.13)
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The stress will be a maximum when dS/de = 0, that is, when:

E e e Ee e
e

 ( ) d  –  ( ) = 0
∞

∫ φ φ (14.14)

e
e e e e

∞

∫ φ φ( ) d  = ( ) (14.15)

Writing ê for this value of e, and substituting in equation (14.9), we get:

maximum stress = Eê2 · φ(ê) (14.16)

The mean breaking stress of the single fibres would be Ee , so that the ratio of the
breaking stress of the composite specimen to the mean breaking stress of the fibres
is ( )  ( )2ê e ê⋅ φ .

Figure 14.8 gives an example of this behaviour for a linear stress–strain curve and
a normal frequency distribution. This clearly shows the reduction in strength resulting
from the early breakdown of some of the fibres.

• Variable fibres gripped at the ends, of equal original length in a constant rate of
loading test (CRL). Below the maximum load, the relation will be the same as in
the previous case, Fig. 14.8, but then the specimen will fail completely because
a decreasing load is not allowable.

• Fibres gripped at the ends, of variable original length. When a specimen is
arranged between jaws, some of the fibres may not lie straight. This is illustrated
in Fig. 14.9. The effect of this is to cause a much greater unevenness in the

14.8 Composite-specimen stress–strain curve, calculated for constant rate of
extension of fibres with identical linear stress–strain curves but normal
distribution of breaking extensions.
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sharing of the load. When the fibres that are initially straight start to break, the
fibres in which there was some ‘slack’ to take up will be less extended or may
even not be contributing to the load at all. Consequently, the maximum load that
can be developed will be much less.

• Filaments under uniform tension, all slipping when one breaks. This would be
the case if the filaments were taken over a number of light pulleys. It is exactly
the same as a single long specimen.

• Filaments uniformly extended, all slipping when one breaks. The lea test for
yarns approximates to this condition. It is similar to the last case except that there
will not be the same tension in each end of the specimen, owing to variations in
the extensibility of the fibres.

There is a tacit assumption that a smooth stress–strain curve is found as in Fig.
14.8. This would be valid for an infinite number of fibres in the bundle. In practice
there will be discontinuities. As the load increases and the jaws separate, a point is
reached at which the first fibre breaks. The load is then taken by fewer fibres. In
CRE, there would be a drop in tension; in CRL, there would be an increase of
extension.

The mechanism of rupture is different when the fibres interact with one another.
This is shown by the behaviour of twisted continuous filament yarns, as described by
Hearle et al. [21]. A zero-twist yarn has a lower strength than one with a small
amount of twist. Transverse compressive forces in the twisted yarn cause weak
places in one fibre to be supported by neighbours. This will continue, with more
fibres breaking, until the situation is reached in which the increase of load due to the
breaking of a fibre is sufficient to cause another fibre to break and so on. The process
is thus cumulative and the whole specimen ruptures. This happens at a load that is
less than the sum of the breaking loads of the individual fibres. In twisted yarns,
strength increases up to a twist angle of about 7°, when the effect of obliquity leads
to a reduction in strength.

There is an extensive literature on the statistics of strength of interactive bundles
of fibres, which is particularly important for composites, but also relevant to yarns
and cables. An account of the chain of bundles model with load sharing is given by
Phoenix [22], who also contributes a more recent review [23]. However, apart from
bundle tests, the subject is of marginal relevance to the properties of fibres and will
not be pursued here.

14.9 Fibres of varying length between jaws.
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14.4.2 Practical bundle tests

Bundle tests are used extensively for rapid testing of cotton fibres. The earlier Chandler
test was replaced by the Pressley test [24], a version of which is included in HVI test
lines for cotton.

In the Chandler test, the combed bundle of fibres is wrapped with two spirals of
sewing thread. At the centre, where the two spirals meet, the specimen is free to
break. From the length of thread for ten revolutions, the circumference of the bundle
is obtained, and consequently the breaking load per unit area can be calculated.

In the Pressley test, a bundle of fibres is combed straight and then clamped between
jaws and broken. The fibre bundles are cut to a standard length and weighed, so that
the breaking stress can be calculated. The results may vary considerably according to
the width of the bundle, the tightness of clamping, the skill and technique of the
operative, and the particular jaws used. However, provided that frequent checks are
made with standard samples, reproducible results can be obtained. The original Pressley
test had nominally a zero gauge length1, but since then gauge lengths of a few
millimetres have been proposed.

An advantage of a bundle test is that it automatically takes account of variability,
which is a factor with a practical influence on yarn strength. The disadvantage is the
more limited information and the lack of reproducibility.

14.5 Variability in practice

Table 14.6 shows values of the coefficient of variation of various quantities among
1 cm specimens tested by Meredith. It will be seen that the natural vegetable fibres
show a large coefficient of variation; the natural protein fibres and rayon are rather
more regular, and synthetic fibres such as nylon show only a small variability.

14.6 Changes in specimen during test

When fibres are extended, they usually contract in diameter. Consequently, the true
stress increases more rapidly than does the stress based on the original dimensions of
the fibre. This is important in fundamental studies of the subject, since what appears

Table 14.6 Variation within a sample of fibres [25]

Coefficient of variation (%)

Fineness Breaking Tenacity Breaking
load extension

Cotton 24 46 43 40
Bast fibres 24 45 40 31
Rayon 12 20 17 23
Silk 17 19 20 15
Nylon 9 8 7 18
Wool 21 34 28 32

1The gauge length is the length of specimen between the jaws of the tester.
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to be a basic property of the material may be a function of the conditions of test.
If σ is the true stress, and σ′ is the nominal stress based on the original dimensions,

we have:

load = F = σA = σ′ A′ (14.17)

σ σ =   ′ ⋅ ′





A
A

(14.18)

where A is the true area of cross-section and A′ is the original area of cross-section.
If the specimen extends uniformly and the volume remains constant, we have:

Al = A′ l′ (14.19)

′
′

A
A

l
l

 =  = 1 + ε (14.20)

σ = (1 + ε)σ′ (14.21)

where l = length of specimen, l′ = original length of specimen and ε = strain.
The maximum load will occur when

d
d

 = d
d

 + d
d

 = 0F A Aε σ ε
σ
ε (14.22)

But, from equation (14.20):

d
d

 = – 1
(1 + )2

A Aε ε
′ (14.23)

–
(1 + )

 + 
(1 + )

d
d

 = 02′ ′A Aσ
ε ε

σ
ε (14.24)

d
d

 = 
(1 + )

σ
ε

σ
ε (14.25)

This condition is satisfied at the point where a line from (–1) on the strain axis is a
tangent to the curve, as in Fig. 14.10. This shows that the breaking load corresponds
to a rather arbitrary condition in terms of true stress and thus has little fundamental
significance.

14.10 True and nominal stress–strain curves.

–1 0 Strain

Nominal
stress

True
stress

Max. load
point

Stress
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However, the specimen will probably not extend uniformly and the weaker places
will extend more than the stronger ones. This results in a further increase of stress on
the weak places, so that the process is cumulative and breaking may occur. This
means that the true stress near the point of break will increase even more rapidly than
appears from Fig. 14.10.

It will be clear from this, and other parts of this chapter, that, in an investigation
of the behaviour of a material (with a view to understanding it, rather than to using
it), the mean stress–strain curve for the whole specimen gives only a rough idea of
what is actually taking place. Exact stress–strain relations at particular points in the
specimen would be much more valuable.
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15.1 Introduction

The extent to which a fibre becomes permanently deformed when it is stretched is of
great technical importance. It may be just as serious a form of damage as actual
breakage of the fibre. The values of stress and strain above which permanent deformation
occurs may well be the limiting values in use. In some specialised applications, such
as ropes used in rock-climbing, the fibres may safely be taken beyond their yield
point once, but their properties will then be so altered that they are unfit for further use.

Elastic recovery, that is, the behaviour on removal of stress, is only a special case
of the general phenomenon of hysteresis. In a cyclic change of stress or strain, the
results will not fall on a single line. After a few initial cycles, the fibre will become
conditioned and the results will tend to fall on a loop, as in Fig. 15.1. This means that
energy is used up by internal friction, and consequently the material will heat up and
may tend to dry out. This is important where fibres are subject to repeated loading,
as in tyres, and the heating will affect their properties. In these uses, fibres showing
little hysteresis are desirable.

On a molecular scale, recoverable or elastic deformation is due to a stretching of
inter-atomic and intermolecular bonds, as in Fig. 15.2(b), while non-recoverable or
plastic deformations result from a breaking of bonds and their re-forming in new
positions, Fig. 15.2(c), or to the stabilisation of new chain conformations.

As with other tensile properties, recovery is time dependent. This leads to hysteresis,
even if, after time, the recovery is complete. Although creep is defined as elongation

15
Elastic recovery

Strain
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s

15.1 Hysteresis loop.
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under constant load, part of the elongation under increasing load can be regarded as
slow ‘creep’, which is followed by slow ‘creep recovery’.

15.2 Definitions

Elasticity, a much misused word, has been defined by the American Society for
Testing and Materials as ‘that property of a body by virtue of which it tends to
recover its original size and shape after deformation’. Its opposite is plasticity. It
should not be used as synonymous with extensibility.

A deformation may be divided up, as shown in Fig. 15.3, into an elastic part,
which is recovered when the stress is removed, and a plastic or permanent part.
Quantitatively, it is convenient to use the following definition:

elastic recovery = elastic extension
total extension

Complete recovery will then have the value 1 (or 100%), incomplete recovery will
have a proportionately lower fraction, and no recovery at all will have the value zero.

Instead of studying dimensional recovery, one may study and define work recovery
in a similar manner:

a b c d e a b c d e a b c d e

a′ b′ c′ d′ e′
(a)

a′ b′ c′ d′ e′
(b)

a′ b′ c′ d′ e′
(c)

15.2 Schematic illustration of elastic and plastic deformations: (a) initial
configuration; (b) elastic deformation with straining of links; (c) plastic
deformation with re-forming of links in new positions.

Plastic extension Elastic

Total extension

Lo
ad

Total work

Recovered work

15.3 Elastic and plastic extension.
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work recovery = 
work returned during recovery
total work done in extension

It should be noted that (1– work recovery) gives the proportion of the total work that
is dissipated as heat.

15.3 Experimental methods

The method used by Meredith [1] in his classic series of comparative tests, is typical
of experiments on elastic recovery, though Instron-type testers would now be used.
He studied the same fibres as he had used in tests of their tensile properties.

In measurements of recovery, the particular programme of application and removal
of stress is important. Meredith used the Cliff constant-rate-of-loading tester and
applied the load at a rate of 10 gf/(den min) (0.15 mN/(tex s). When the required load
had been reached, it was left on the specimen for 2 min. The load was taken off at the
same rate and left off until 1 min after the start of unloading. The procedure was then
repeated for higher loads. Preliminary experiments had shown that this timing was
the minimum that would give a reasonable approach to equilibrium. Tests were made
at stresses of 0.3, 0.5, 1, 2, 2.5, 3, 4 and 5 gf/den (26.7, 44.5, 89, 198, 222.5, 267, 396,
445 mN/tex) (up to break) and at the yield stress. The results were found to be little
affected by test-length. A 1.5 cm length was used for short fibres and a 5 cm length
for long fibres. The relative humidity was 65% and the temperature 20 °C.

Figure 15.4 gives a typical record obtained in the tests and shows the division into
elastic and permanent extensions. From this, the elastic recovery can be calculated.
Note the extension and recovery at constant stress due to creep during the dwell
periods. In an Instron test at constant rate of extension, there would be a decrease of
stress at constant extension due to stress relaxation, as shown in Figure 15.5.

15.4 Stress–strain curves of viscose rayon in loading and unloading. After
Meredith [1].
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15.4 Results

15.4.1 Comparative values

Elastic recovery may be plotted against stress or strain. The first shows the extent to
which a given force will cause permanent damage to a fibre. The second shows what
proportion of a given extension will be recovered and the amount of the permanent
deformation. Figs 15.6 and 15.7 show Meredith’s results.
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15.5 Test procedure used by Hockenberger et al. [2].

15.6 Elastic recovery plotted against stress. After Meredith [1].
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In cotton, the elastic recovery from a given strain is almost independent of the
variety, but, since coarse cottons have a lower modulus, it follows that they will show
less recovery from a given stress. Cotton shows no yield point (or it may be more
correct to say that the yield point is at zero stress and zero strain). The elastic
recovery falls steadily to about 0.3. Compared with that of other fibres, the recovery
of cotton is only moderate. In particular, even small strains leave an appreciable
proportion of permanent deformation.

The bast fibres show poor recovery from strain but can withstand large stress
without great permanent damage.

Viscose rayon and acetate show a marked yield point. Below this point, the recovery
is good, but above it the curve drops rapidly, and the recovery is poor. The stretched
rayons can stand higher stresses without suffering permanent deformation.

Wool and hair also show a yield point, but the drop in the curve is less rapid, and
even near break there is still considerable recovery. These fibres are not good under
high stresses but can recover from large strains. Thus they show 60% recovery from
an extension of 35%. By contrast, in the casein fibre tested, the curve drops rapidly
above the yield point, and the large additional extension that can occur before break
is almost entirely non-recoverable. Thus, though the stress–strain curves of wool and
casein are similar, their recovery behaviour is quite different, and this is one of the
reasons why the regenerated-protein fibres of the 1950s did not last.

Wet wool fibres show complete recovery up to the end of the yield region (30%
extension) and very good recovery from higher strains. However, the path of the
recovery curve is different from that of the extension curve, as shown in Fig. 15.8,
and thus there is energy loss in cyclic deformation.

Silk shows fairly good elastic recovery from both stress and strain.
Nylon shows the best elastic recovery of any of the fibres tested by Meredith,

whether considered on the basis of stress or on that of strain. Even near break, its
recovery falls only to 0.7. Although, in strength and extension at break, nylon is
surpassed by some other fibres, these curves show its superiority in resisting permanent
damage as a result of undue stress or strain.
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15.7 Elastic recovery plotted against strain. After Meredith [1].
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After some time on a package, spandex fibres such as Lycra acquire a temporary
set, and the first elongation shows a high stiffness. As shown in Fig. 15.9, a small
amount of the initial extension is not recovered; in subsequent elongations, a steady
hysteresis cycle with good reversible behaviour is established [3].
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15.8 Stress–strain behaviour of wool in extension and recovery. The stress is
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15.9 Cycling response of spandex fibre: 1, first elongation; 2, 6th cycle loading
and unloading [3].
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It is interesting to compare values of the yield point obtained from stress–strain
curves (see Section 13.5) with those from recovery curves (arbitrarily defined as the
point of 95% recovery). This is done in Table 15.1. It will be seen that there is
qualitative agreement, though the values from the stress–strain curves are generally
higher than those from the recovery curves.

Beste and Hoffman [4] measured the elastic recovery of fibres, by means of a
slightly different experimental procedure, and obtained results in general agreement
with those of Meredith. They made tests at relative humidities of 60 and 90%, and
examples of their results are given in Table 15.2. It will be seen that at small strains
the elastic recovery is less at the higher humidity, but at larger strains it is greater for
a number of the materials. They also measured work recovery, and some of their
results are shown in Fig. 15.10. This shows that, at large strains, the energy dissipated
by nylon is considerably less than that by other fibres.

Table 15.1 Yield point

Fibre From-stress-strain curves From recovery curves

Stress Strain Stress Strain
(mN/tex) (%) (mN/tex) (%)

Cotton – – 9 1
Viscose rayon 59 2 39 1
Acetate 69 3 39 2
Stretched rayon 118 0.8 88 1
Wool 59 5 39 4
Casein 49 5 29 1
Silk 156 3.3 98 4
Nylon 402 16 127 8

Table 15.2 Effect of humidity on elastic recovery [4]

Material Elastic recovery (%) from:

1% extension 5% extension 10% extension

60% r.h. 90% r.h. 60% r.h. 90% r.h. 60% r.h. 90% r.h.

Cotton 91 83 52 59 – –
Viscose rayon 67 60 32 28 23 27
Acetate 96 75 46 37 24 22
Wool 99 94 69 82 51 56
Silk 84 78 52 58 34 45
Nylon 90 92 89 90 89 –
Polyethylene 98 92 65 60 51 47

terephthalate
(Dacron)

Polyacrylonitrile 92 90 50 48 43 39
(Orlon)

Casein 90 76 47 43 30 25
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15.4.2 Influence of test conditions on recovery

Values obtained for elastic recovery are very sensitive to conditions. Guthrie and
Norman [5] studied the influence of the time te for which viscose rayon fibres were
held at constant strain and the time tr of recovery at zero stress. The rate of extension
and contraction was 100%/min. Figure 15.11 shows their results and indicates that
any value between 25 and 65% could be obtained, depending on the test procedure.
Even if, as is often done, the two times were made equal, the values would range
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15.10 Work recovery of fibres After Beste and Hoffman [4]: A, wool; B, Dacron
polyester fibre; C, acetate; D, casein; E, nylon; F, Orlon acrylic fibre; G, silk; H,
cotton; I viscose rayon.
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from 50 to 38%. Similar behaviour in other fibres has been described by Guthrie and
Wibberley [6], and the problem has also been discussed by Hadley [7].

Temperature will also influence recovery behaviour, as described for acrylic fibres
by Beevers and Heap [8]. Ford [9] lists the elastic recoveries, wet and dry, at 20 °C
and 95 °C, for many types of fibre. Figure 15.12 shows values for continuous filament
nylon 66 and polyester fibres, both of which have tenacities of about 0.45 N tex and
breaking extensions of 20%. Polyester fibres show better recovery than nylon at low
stresses, but fall off more at high stresses. For glass fibres the elastic recovery was
85% for all conditions and strains.

A comparative set of work recovery values from a comprehensive study of recovery
reported by du Pont [10] is given in Table 15.3. The comparatively poor work recovery
of nylon is due to ‘creep’ and ‘creep recovery’, which leads to substantial hysteresis.
Polyester shows better recovery from small strains than nylon, but poorer from large
strains.

15.5 Change of properties as a result of straining:

mechanical conditioning

Stretching a fibre far enough to leave it with a permanent set causes other changes in
the properties of the fibre. This is illustrated in the idealised model of Fig. 15.13.
When the fibre is first strained, the stress–strain curve OA is followed, but, on
removal of the load, recovery takes place along AB, the permanent extension OB
being left. If the fibre is again stressed, the curve BAC is followed. Re-plotting this
as a new stress–strain curve (Fig 15.13(b)), we see that the effect of the first straining
has been to raise the yield stress and reduce the breaking extension (and consequently
the work of rupture). This has practical implications, since it means that the properties
of fibres may be changed by high forces during processing. It also means that if a
structure is highly strained in use, even though it is not broken, its properties will be
altered, and it may no longer serve its proper function.

The rise in the yield stress means that the application of a given stress to a fibre
for some time usually results in almost perfect recovery from subsequent stresses
below this value. This treatment is known as mechanical conditioning. Table 15.4
gives values of elastic recovery from near the breaking point before and after mechanical
conditioning at 80% of the breaking elongation. It will be seen that there is little
permanent deformation in the tests after mechanical conditioning, even though this
is taken to a greater extension.

Averett et al. [12] studied a partially oriented nylon fibre (draw ratio of 2.5×),
which shows a large plastic extension beyond the yield point. Figure 15.14 shows its
response to cyclic loading at increasing loads. The initial modulus is appreciably
lower than in the initial elongation. Figure 15.15 shows the division between elastic
and plastic extension.

If a fibre is repeatedly taken through a given cycle of stress, the loading and
unloading curves in successive cycles will gradually come closer together until they
form a continuously repeated loop. This is illustrated in Fig. 15.16. The area within
the loop will be a measure of the energy dissipated in each cycle.
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15.12 Elastic recovery under various conditions. S, as received tested at 65% r.h., 20 °C; ST, 65% r.h., 20 °C after water at 95 °C;
W20, in water at 20 °C; W95, in water at 95 °C: (a), (b) nylon 66; (c), (d) polyester. (a) and (c) From given stress; (b) and (d) from
given strain.
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15.6 Swelling recovery

For fibres that absorb water, the ‘permanent’ (plastic) extension as defined in Figs
15.3 and 15.5 is partly recovered on immersion in water or treatment in steam. The
fibre will revert almost to its original form on subsequent drying. When a fibre is
wetted, it usually extends owing to swelling, but the swelling recovery may cause a
net contraction. Swelling recovery may be useful as a means of restoring the original
fibre properties, but it also means that fibres that have been stretched in processing
will shrink on wetting. Table 15.5 shows values of swelling recovery obtained by
Leaderman [14]. Viscose rayon shows almost complete recovery in water, as does
silk in steam, but acetate shows only partial recovery.

Immersion of ‘permanently’ strained wool fibres in water for 24 hours serves to
restore their properties to a standard state. This procedure was used by Feughelman
[15] to make repeated tests on the same wool fibres.

Table 15.3 Percentage work-recovery values [10]

Acetate Polyester Nylon Acrylic Rayon Wool
fibre fibre

From 1% extension 60 81 51 55 32 80
3% extension 32 34 42 28 18 43
5% extension 17 22 47 14 13 27
15% extension 7 19 43 10 11 15

At 8% r.h 42 38 38 31 22 50
92% r.h. 21 28 78 26 16 58

In water at 21 °C 20 41 73 22 58 43
76 °C 7 21 95 13 80 61

at 50 °C
In air at – 70 °C 55 57 45 56 25 68

177 °C 5 33 54 29 12 25
After holding 1 s 47 49 60 40 27 66

900 s 13 23 24 10 8 25

Standard conditions (except as indicated above): 21 °C, 65% r.h.; 3% extension; 30 s holding
time.

Cotton had a work recover of 67% under standard conditions.
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15.13 Change in fibre properties on straining.
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15.7 Simple recovery models

15.7.1 Idealised fibre stress–strain relations

In dealing with other materials, ideal elasticity (Hooke’s Law) or ideal plasticity (a
Hooke’s Law region leading to a constant plastic-yield stress) is often assumed.
Neither of these is very suitable for representing fibre behaviour. Instead, a form that
gives a reasonable approximation to the behaviour of many fibres is shown in Fig.
15.17. It is often helpful to use this form in studying the response of fibres to
complicated loading sequences, though some fibres, of which wool is a notable
example, deviate markedly from the idealised behaviour. The idealised model is
characterised by four parameters: two slopes, yield strain and breaking strain.

Table 15.4 Effect of mechanical conditioning on elastic recovery [11]

Material Elastic recovery % near breaking point

Before mechanical After mechanical
Conditioning conditioning

Cotton yarn 56 80
Fortisan (stretched cellulose) 72 94
Acetate 30 92
Silk 36 93
Viscose rayon 39 74
Dacron polyester fibre 55 92
Orlon acrylic fibre 58 92
Vicara (zein protein) 43 97
Casein 39 80
Nylon 72 92
Wool 59 88
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15.14 Cyclic responses of a partially orientated, 33 µm diameter nylon fibre at
increasing loads. Gauge length of 25.4 mm means that 10 mm elongation =
40% extension. From Averett et al. [12].
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15.7.2 Recovery, work of rupture and durability

In use, fibres are frequently subjected to shocks of given energy, well below their
work of rupture. Failure does not occur initially, but a succession of repeated shocks
can lead up the stress–strain curve to the point of break, as shown in Fig. 15.18.

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

Lo
ad

 (
N

)

UP

UE

0 1 2 3 4 5 6 7
Elongation (mm)

15.15 Elastic energy UE and plastic energy UP after load-cycling for the
partially oriented nylon fibre. From Averett et al. [12].
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15.16 Load – elongation curves for acetate under repeated stressing to 90% of
breaking load. After Hamburger [13].

Table 15.5 Swelling recovery [14]

Material Permanent extension Permanent extension (%)
(%) after recovery in:

Water Steam

Viscose rayon 1.7 0.08 –
Silk 1.2 0.7 (–0.02)
Acetate 4.1 3.3 1.6
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If the imposed shock has an energy w, and if the work recovery in a given cycle is
r, then the amount of energy used up in the cycle is w(1 – r). If the additional elastic
energy in the final cycle is ignored, it follows that failure will occur when the total
energy used up equals the work of rupture W of the fibre. This means that the life of
the fibres, expressed in terms of the number N of shocks that it will resist, is given by:

Σ
1

 (1 –  ) = 
N

w r W (15.1)

If, to show up the nature of the relation more clearly, we take w and r as constants,
we find that:

N W
r w

 = 
(1 –  )

(15.2)

Long life therefore results, rather obviously, from gentle use, giving a low value of
w, and more importantly, from the use of fibres with high work of rupture W and good
recovery properties, namely, values of r close to 1.

15.7.3 A simple model of cyclic testing

Hearle and Plonsker [16] have explained some of the features of cumulative-extension
and other forms of cyclic testing on the basis of a simple model of recovery behaviour

Strain
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s

15.17 Simple idealised fibre stress–strain curve.
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w

w (1 – r) W

Strain

15.18 Behaviour of idealised fibre subject to repeated shocks of energy (w).
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with the essential features shown in the stress–strain curve, Fig. 15.19, which is not
quite as restricted as Fig. 15.17. The assumptions are as follows:

• The stress–strain curve in simple extension is ABE. If a specimen is strained to
any point B and allowed to recover to C, it is assumed that, on re-straining, the
original stress–strain curve will be rejoined at B and then followed towards E.

• It is assumed that, on first reaching any strain level, such as B, the elastic
recovery r, defined as the ratio of elastic strain R to total strain ε, will be a
function only of strain ε. In particular, r will be independent of the previous
history at lower strain levels.

These are the two basic assumptions, but we can add three others, as follows:

• Repeated application of the same level of strain B does not lead to any change in
the elastic-recovery value.

• Viscoelastic time-dependent effects are ignored.
• Break occurs at the same point E irrespective of the previous history, so that any

true ‘fatigue’ effects are not taken into account.

We can now note the behaviour in simple cycling procedures. Simple extension-
cycling between fixed limits of imposed strain without the removal of slack is shown
in Fig. 15.20(a). Initially, the stress–strain curve is followed from A to B; recovery to
zero strain goes along BCA; and then re-straining to B reverses the path ACB. The
strain level B cannot be exceeded, and the path BCACB is followed in all succeeding
cycles. It will be noted that the return path from C to B has been shown here as
different from the path from B to C: this, while it is avoided in the simpler model
shown in Figure 15.19, is not incompatible with the basic assumptions.

Simple load-cycling, as in Figure 15.20(b) between the levels A and B, is almost
identical, except that there is an immediate reversal at C, without traversing the
region of slack fibre back to the original length at A.

Figure 15.21 illustrates the behaviour of the basic model in cumulative-extension
cycling. An imposed strain ε1 is applied to the material and then released; the material

P R
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Strain ε
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Break
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15.19 Idealised model of recovery behaviour.
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has a permanent strain P1 after this first cycle. The slack P1 is removed, and then the
imposed strain ε1 is again applied. The strain on the material in the second cycle is
now ε2 = P1 + ε1; after the second cycle, the permanent strain is P2, and this is
removed before applying ε1; and so on. The gradual increase of strain is given by
noting that, in the (n – 1)th cycle:

permanent strain = Pn–1 = (1 – rn–1)εn–1 (15.3)

in the nth cycle:

total strain = εn = Pn–1 + ε1 = (1 – rn–1) εn–1 + ε1 (15.4)

permanent strain = (1 – rn) εn (15.5)

in the (n + 1)th cycle:

total strain = εn+1 = Pn + ε1 = (1 – rn) εn + ε1 (15.6)
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15.20 Model in (a) simple extension-cycling and (b) load-cycling.
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15.21 Model in cumulative extension-cycling.
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The strain will have reached a limiting value when the total strain in successive
cycles remains unaltered, that is, when:

εn = εn + 1 (15.7)

εn = (1 – rn) εn + ε1 (15.8)

εnrn = ε1 (15.9)

In general, the condition for the limiting extension is thus:

εr = ε1 (15.10)

where ε1 is the constant strain imposed in each cycle. This condition states that, at the
limit, the strain recovered after a cycle just equals the imposed strain, so that there is
no additional straining in the next cycle.

If elastic-recovery values are known as a function of ε1, then equations (15.3) to
(15.6) can be used to compute the total elastic and permanent strains in each successive
cycle.

Three different types of behaviour are predicted during cumulative extension cycling:
(1) if the limiting extension is less than the breaking extension, the specimen will
steadily increase in length until it reaches the stable limiting value; (2) if the limiting
extension is greater than the breaking extension, the specimen will fail before it
reaches the limit; and (3) there may be no limiting extension, and hence the specimen
will extend indefinitely and finally fail by breaking. The distinction between (2) and
(3) is, in a way, artificial, since both describe a steady increase in extension up to the
breaking point. However, in some instances, extrapolated recovery curves would
lead to a limit, whereas in other instances they lead away from a limit. In using the
recovery values for nylon, there is a rather sharp change at a level of imposed
extension of 10.7% from a stable limit to an indefinite increase in length.

15.7.4 Experimental behaviour in cyclic testing

For comparison with the predictions given in Fig. 15.20, Fig. 15.22 shows the behaviour
of an acetate fibre in simple extension and load cycling. Contrary to the behaviour of
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15.22 Behaviour of 2.5 tex acetate in (a) simple extension-cycling and (b)
load-cycling.
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the model, there is a gradual reduction of peak stress and increase of permanent
extension (decrease of elastic recovery) in successive cycles of simple extension
cycling; and there is a corresponding increase of total and permanent extension in
load cycling. These effects correspond to the occurrence of some secondary creep
(non-recoverable time-dependent extension) as the test proceeds.

In cumulative-extension cycling, the experimental results as illustrated in
Fig. 15.23 for acetate and nylon do show that, at low imposed strains, a limiting
extension is reached, whereas at high imposed strains the extension continues until
break occurs. The computed values based on recovery values predict appreciably less
permanent extension than is observed in practice, which is due to deviation of the
behaviour of real fibres from that of the simple model. Time-dependent aspects of
cumulative-extension are discussed in Section 16.2.5 and in relation to fatigue in
Section 19.3.
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15.23 Behaviour of (a) acetate and (b) nylon at various levels of imposed
extension in cumulative-extension tests.
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16.1 The study of time dependence

So far, we have been discussing the mechanical properties of fibres, with only a brief
mention of one of the main characters: time. The extension caused by a given applied
force, or the stress resulting from a given strain in the fibre, depends on how long the
force or the strain has been present and on the earlier mechanical history of the fibre.

On the application of a load to a fibre, it will, after an instantaneous extension,
continue to extend as time goes on. On removal of the load, the recovery will not be
limited to the instantaneous recovery but will continue to take place. This behaviour
is illustrated in Fig. 16.1(a) and is known as creep and creep recovery. It may continue
for a very long time, as illustrated in Fig. 16.2. Creep is extension with time under an
applied load: the complementary effect is stress relaxation, the reduction of tension
with time under a given extension. This is illustrated in Fig. 16.1(b): when the fibre
is stretched, an instantaneous stress is set up, but this gradually decreases as time
passes.

The continued deformation and possible rupture of the specimen when a load is
applied for some time have important consequences in the testing of mechanical
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16.1 (a) Creep under constant load and recovery under zero load, showing
instantaneous extension, A–B and D–E; total creep, B–C; primary creep, E–F;
and secondary creep, G–H. (b) Relaxation of stress under constant extension.
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properties, since it means that the results of a test, for example the stress–strain curve
obtained, will depend on the timing. This in turn creates interest in the high-speed
properties of fibres, the study of which needs special experimental techniques, since
conventional methods of testing have time-scales that cannot be shorter than a few
seconds. With very rapid tests, there is the further complication that they may be
more nearly adiabatic than isothermal.

An alternative means of studying time dependence is to subject the fibre to an
oscillating load: dynamic testing.

The four methods suggested are the simplest of the infinite variety of time sequences
of stress and strain that a fibre might experience. Between them, they conveniently
cover a wide range of times. The timescales for which the methods are easily used are
as follows:

• creep: long times, from 1 minute to 1 month
• stress relaxation: medium to long times, from 1 second to 1 hour
• stress–strain curves, including impact methods: short to medium times, from 1/

100 second to 10 minutes
• dynamic testing: short times, from 0.1 millisecond to 1 second.

These time ranges can be increased somewhat by more elaborate or difficult experimental
methods.

Effects in the processing or use of fibres are liable to cover all the time ranges and
to involve more complicated variations of stress and strain with time. One aim of the
development of the academic subject of fibre rheology should be to provide means
of predicting behaviour in real situations.

16.2 Creep

16.2.1 Primary and secondary creep

Figure 16.1(a) indicates the effect of applying a constant load to a fibre for a given
time and then removing it. The instantaneous extension is followed by creep. The
removal of load gives rise to an instantaneous recovery, usually equal to the instantaneous
extension, followed by a further partial recovery with time, which still leaves some
unrecovered extension. The total extension may therefore be divided into three parts:
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16.2 Creep of 16.5 den (1.8 tex) nylon under a load of 30 gf (0.29 N)
continuing for one year [1].
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the immediate elastic deformation, which is instantaneous and recoverable; the primary
creep, which is recoverable in time; and the secondary creep, which is non-recoverable.
The mechanisms of creep will be discussed in Chapter 20, but it is worth noting here
that there are two main effects. At low stress, creep is due to localised molecular
rearrangement, which may or may not be recoverable. At high stress, molecules slide
past one another in non-recoverable deformation.

O’Shaughnessy [2] has studied the division of the total extension of viscose rayon
yarn into its three parts. He measured the creep under a constant load and the recovery
after various times of loading. Figure 16.3 gives examples of his results plotted on a
logarithmic scale, and it will be seen that the secondary creep continues after the
primary creep has ceased.

Figure 16.4 shows results calculated from experiments by Press [3] at longer
times. In these experiments, recovery was measured only after the full time for creep,
and the division between primary and secondary creep depends on the assumption,
derived from the superposition principle (see Section 20.7.7), that the time-dependent
part of the recovery curve is identical with the primary creep curve.

If, after recovery, the same load is applied again, the rate of creep is less than that
in the first test on the specimen. The primary creep takes place at its initial rate, as
before, but the secondary resumes at the rate at which it left off. The mechanical
conditioning effect is a special case of this, since it means that if the load has been
applied for long enough for the rate of secondary creep to become negligible, then
there will not be any appreciable secondary creep in later experiments unless the load
is further increased. The recovery will therefore be complete. The use of logarithmic
timescales may cause some confusion here. The important practical point in mechanical
conditioning is that there should be negligible secondary creep on the timescale of
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16.3 Primary and secondary creep of viscose rayon at 60% r.h. [2].
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the experiments; this may be so even when a plot on a logarithmic scale shows that
secondary creep has not ceased, and this is illustrated in Fig. 16.5.

The secondary creep gives rise to the major part of the permanent extension of a
fibre and is usually negligible below the yield point. Thus a comparison of the
amounts of secondary creep that occur in various fibres after particular loading
histories is given by the figures for inelastic extension in Chapter 15.

16.2.2 Leaderman’s experiments on primary creep

Leaderman [4] carried out a classical investigation of primary creep in viscose rayon,
acetate, silk and nylon. In his experiments, 280 mm (11 in.) specimens were mounted
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16.5 Comparison of linear and logarithmic timescales.
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on one arm of a balance. At zero time, the other arm of the balance was released so
that a given load was applied to the filament, whose extension was followed by a
cathetometer. Measurements were made every 15 seconds for the first minute and
thereafter at longer intervals up to 24 hours after the application of the load. Most of
Leaderman’s tests were made at 65% r.h. and 21 °C, but there were also arrangements
for testing dry fibres over a range of temperatures.

To ensure that only primary creep was involved, the stresses employed were small
and the specimen was first mechanically conditioned, since it was found that the first
application of a load resulted in some permanent deformation but that subsequent
applications showed perfect recovery.

When extension is plotted against time, curves such as the one in Fig. 16.6 are
obtained. To show the behaviour over a long time, it is more useful to plot the results
on a logarithmic scale of time. This is done in Fig. 16.7, which shows the results
obtained by Leaderman for various fibres. It is clear from these graphs that the
amount of extension occurring as primary creep is comparable to that occurring
instantaneously.

In viscose rayon and acetate, the recovery curves are identical with the creep
curves inverted, as is shown in Fig. 16.8(b). In silk, the recovery curves are the same
shape as the creep curves but lie slightly higher than those in Figure 16.8(b). This
means that the instantaneous contraction on removing the load is less than the
instantaneous extension found on applying it.

In nylon at low loads, the recovery curve is the same as the creep curve, but at high
loads the behaviour is that shown in Fig. 16.8(c). It will be seen that the instantaneous
contraction is less than the instantaneous extension, but the rate of recovery is greater
than the rate of creep, so that after a long time recovery is complete. The rate of
recovery is, in fact, found to be the same for all loads above a certain level.
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16.6 Primary creep of viscose rayon [4].
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The shape of the creep curves appears to be different for the different fibres. This
is largely a result of the limits on the times for which tests can be made. It is not
possible to make measurements at very short time intervals, and it is not practicable
to make them at very long time intervals. If this could be done, we should expect all
the curves to be sigmoidal, as in Fig. 16.9. It will be seen from this diagram that the
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16.7 Primary creep of various fibres [4].
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shape of curve found experimentally depends on which portion of the curve lies
within the experimental time range. The effect of time may be summarised by a
function Ψ(t), which equals the ratio of the primary creep (excluding the instantaneous
extension) at a time t to the primary creep occurring between 1 and 90 min under the
same load. Values obtained from Leaderman’s data are plotted in Fig. 16.10.

The effect of load may be summarised by the quantity x(90), which equals the
extension occurring between 1 and 90 min. Values are given in Fig. 16.11, which is
analogous to a stress–strain diagram. One notable feature is that for nylon at high
loads the amount of creep becomes independent of the load.

It follows from the application of the superposition principle, which is discussed
later in Section 20.7.7, and is confirmed by Leaderman’s experiments, that the total
extension xt occurring after a time t is then given by:
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16.9 Creep curves over a wide range of times.

16.10 Values of Ψ(t), calculated from Leaderman’s data [4], plotted against
time. The value of instantaneous extension has been estimated, so that
intercepts of graphs are approximate. Slopes that give creep during a given
time interval are correct.
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xt = x0 + x(90) · Ψ(t) (16.1)

where x0 = instantaneous extension. This means that, in addition to its special definition
(which refers to its absolute magnitude), x(90) gives the relative amount of primary
creep at different loads after the same time, in the same way that Ψ(t) gives the
relative amount of primary creep at different times under the same load. An interesting
result of Leaderman’s work, confirmed by many later studies, is the very high level
of primary creep in nylon. This has important technical consequences.

16.2.3 Generalised creep curves

O’Shaughnessy [2] showed that the creep of viscose rayon at various loads showed
a certain regularity when the elongation divided by the stress was plotted against the
time, as shown in Fig. 16.12. It will be seen that, at long and short times, the results
for all the loads appear to come together, though for many of the loads this would be
at times beyond the experimental range. Thus the creep curves can be regarded as
lying between two loci, crossing from one to the other with a characteristic sigmoidal
curve (when plotted on a logarithmic time scale) at times that depend on the load.

In a later paper concerned with the creep of nylon, Catsiff et al. [5] carried the
generalisation of the curves a stage further. The creep curves obtained at various
loads, shown in Fig. 16.13, have been fitted to a single master curve by vertical and
lateral shift and by multiplying the elongation scale by an appropriate factor. The

16.11 Values of x(90), calculated from Leaderman’s data, plotted against stress
[4].
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16.12 Generalised creep curves for viscose rayon at 6% r.h. [2].
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experimental results for the various loads group closely round the master curve, and
thus, in view of the considerable overlap, it would appear that the agreement is
something more than an inevitable result of the procedure for obtaining the master
curve.

16.2.4 Influence of various factors on creep

Steinberger [6] found that the creep of acetate increased with the humidity, as is
shown in Fig. 16.14. The change was small below 40% r.h. but was considerable at
higher humidities. With cuprammonium rayon, Steinberger found that the creep
increased at high humidities, but at low humidities he obtained irregular results.
Catsiff et al. [5] found a similar irregular behaviour in the effect of humidity on the
primary and secondary creep of nylon over the whole range of moisture conditions,
although the instantaneous elongation increased regularly with humidity.

Leaderman [4] found that the creep of acetate fibre increased as the temperature
increased. This was also observed by Feughelman [7], who measured the creep of
wool fibres in water at various loads and temperatures, with the results shown in Fig.
16.15. His results were found to fit relations of the form:

1  =  + ε t

a
t

b (16.2)

where εt is the strain at time t, and a and b are constants at constant temperature and
load.

Ripa and Speakman [8] found a wide variation in creep rates in individual wool
fibres, with a few fibres showing an abnormally high rate of creep. A fibre with a high
rate of creep follows a normal creep curve for the first 60 min and then turns steeply
upwards to give the rapid creep, which suggests that some primary resistance to
extension has been broken down. Ripa and Speakman showed that the fibres with a
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16.14 Effect of humidity on creep of acetate [6].
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high rate of creep had a low sulphur content, which suggested that the high rate was
associated with a breakdown of cystine crosslinks.

16.2.5 A cumulative-extension test

A set of experiments that involves secondary creep is the cumulative-extension test
used by Meredith and Peirce [9]. This test is also interesting as an example of a type
involving a cycle of stresses and strains, and to some extent it simulates the repeated
loading of fibres in use. This may show up behaviour different from that under a
constant or steadily increasing stress or strain. As is indicated in Section 15.7.3, a
pure recovery model would indicate a rapid approach either to break or to a limiting
extension. The continuing effects are due to the viscoelastic behaviour of the fibre.

The method used was to apply cyclically to the specimen a simple harmonic
extension followed by a period of dwell, during which any permanent extension was
taken up. The time sequence is shown in Fig. 16.16. The extension was controlled by
an eccentric cam and the dwell period with take-up of slack by the release of pawls
on a ratchet. Because of the taking-up of the permanent extension, the stress would
increase in each cycle, so that mechanical conditioning would not be effective.

The cumulative extension En after n cycles was defined by the relation

E
l
ln
n = 100 log 
0

(16.3)

where l0 = initial length and ln = length after n cycles. The advantage of this definition
is that it is additive, for we have:

E E
l
l

l
l

l
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E0 1 1 2
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0
0 2 +  = 100 log  + log  = 100 log  = → → →





 (16.4)

For small strains, En is approximately equal to the simple strain, 100(ln – l0)/l0%.
The samples tested were cords of 2000–20 000 den (222–2222 tex). Although they
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16.15 Effect of temperature on creep of a wool fibre under load of 58.8 mN in
water [7].
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were fibre bundles, they indicated comparative fibre behaviour. The tests were made
at 65% r.h. and 21 °C. It was found that the residual tension had a considerable effect,
since it determined the part of the stress–strain curve at which the test was operating.
The standard value used was 10 mN/tex. The cumulative extension decreases as the
frequency is increased; the standard tests were made at l cycle/second (1 Hz).

In expressing the results, one could give the cumulative-extension (1) after a given
number of cycles of a certain imposed extension, (2) after a number of cycles of the
same stress pattern, or (3) after the same amount of energy has been imposed in a
given number of cycles. Each of these has some significance, and the difference
between them is analogous to the difference between breaking extension, breaking
load and work of rupture.

Table 16.1 gives examples of the results obtained in these tests. Fibres showing a
high value of the cumulative-extension are those which suffer most permanent
deformation as a result of repeated straining. Nylon and linen show the least cumulative-
extension, though their properties differ in that linen breaks at a lower extension than
does nylon. Wool stands up well to extension but extends permanently for large
inputs of energy. Casein and viscose rayon show the largest cumulative-extensions.

The type of information given by tests such as this should be added to that given
by simpler tests so that a ‘personality’ for each fibre can be built up.

Some of the fatigue testing described in Chapter 19 has used cumulative-extension
testing; the simple recovery aspects of the problem are discussed in Sections 15.7.3
and 15.7.4.

16.2.6 Comparative creep behaviour

Except when cumulative-extension keeps imposing higher strains, creep is comparatively
small in cellulosic and protein fibres, except at high loads. In nylon, primary creep is
higher. The creep of nylon is also shown when it is used as a matrix in composites
[10]. Table 16.2 shows results of tests made on yarns used in high-performance
ropes. Polyester and aramid fibres show a small amount of creep. The creep of Kevlar
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is due to the removal of misorientation at low stresses. Other liquid-crystal fibres,
Vectran (melt-spun aromatic copolyester), PBO and M5, have little or no creep.
Creep of HMPE fibres is covered in the next section.

16.2.7 Creep of high-modulus polyethylene (HMPE) fibres

The high creep of HMPE is a factor that has to be taken into account in using the
fibre. It is not a problem for ballistic protection but would be for mooring oil-rigs for

Table 16.1 Cumulative-extension results [9]

Material Imposed extension of 2% Cumulative-extension
(%) after imposed

En – E1 Stress in nth cycle Cycles energy per unit mass of:
(mN/tex) to break 0.1 J/g 1 J/g

in 100  in 1000
n = 10 n = 1000 n = 10 n = 1000 cycles cycles

Cotton 1.98 — 68 — 331 5.2 breaks
Linen 0.66* — 263 — 75* 1.0 1.1
Viscose 1.79 10..8 51 80 1420 11.7 16.0
rayon
Durafil† 1.14 — 177 — 224 1.8 1.9
Acetate 0.35 2.48 37 49 >5000 18.5 breaks
Silk 0.36 1.92 108 144 >5000 1.0 1.6
Nylon 0.28 1.03 51 63 >5000 1.0 1.4
Wool 0.48 1.44 25 29 >2000 5.1 9.2
Casein 1.33 7.12 21 26 >2000 breaks breaks

*Imposed extension of 11/2%.
†Lilienfeld rayon, from 1948.

Table 16.2 Creep in one decade of log-time as quoted in Deepwater Moorings: An
Engineer’s Guide, TTI and Noble Denton [11]

15% break load 30% break load

1–10 days 10–100 days 1–10 days 10–100 days

Polyester
Diolen 855TN 0.240% 0.166% 0.093% 0.034%
Trevira 785 0.119% 0.069% 0.165% 0.009%

Aramid
Kevlar 29 0.023% 0.066% 0.046% 0.021%
Kevlar 49 0.011% 0.030% 0.041% 0.009%

HMPE
Spectra 900 1.7% 13% broken broken

7/182 days* 0.7/4 days*
Spectra 1000 1.1% 6.3% 8% broken

11/321 days* 1/28 days*
Dyneema SK60 0.16% 0.47% 0.98% 8%

70/>354 days* 7/123 days*

*The figures in days for HMPE fibres are (time to start of rapid creep)/(time to break).
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long periods. The amount of creep varies with the type of HMPE fibre. The first
commercial HMPE fibre, Spectra 900, had very severe creep as shown in Table 16.2.
Adoption of a second heat treatment under tension in Spectra 1000 and Dyneema
SK60 reduced the creep, and it was further reduced in Dyneema SK65 and SK75.
Alternatively Dyneema SK76 is optimised for ballistic protection with high energy
absorption.

Extensive studies of creep of HMPE fibres have been reported by Govaert [12] and
Jacobs [13]. The creep follows three regimes, as shown in Fig. 16.17: I creep rate
decreasing with time (primary creep); II creep rate nearly constant (secondary creep);
III increasing creep rate leading to fracture (tertiary creep). Creep increases under
increasing load (Fig. 16.18(a)), and increasing temperature (Fig. 16.18(b)). Two
other ways of showing creep data are given in Fig. 16.19. Plotting creep compliance
(strain/stress) in Fig. 16.19(a) shows the extensibility increasing with time, stress and
temperature. A Sherby-Dorn graph, introduced by Wilding and Ward [15, 16], is a
log–log plot of creep rate against elongation. Figure 16.19(b) shows creep rate falling
to a constant value at high elongations. Measurements of creep recovery by Govaert
et al. [17] indicated that the creep could be divided into reversible and irreversible
elongations (Fig. 16.20). Linearity of the log–log plot shows that each from can be
represented by a power law, ε(t) ∝ tn.

Jacobs [13] gives additional information on the effects of molecular weight and
draw-ratio on creep of HMPE fibres. Increasing either will reduce creep, but makes
fibre production processes more difficult. Creep can be reduced by using branched
polyethylene or by crosslinking, but both have other disadvantages.

16.3 Stress relaxation

When a fibre is held stretched, its stress gradually decays. It may drop to a limiting
value or may disappear completely. This phenomenon is known as relaxation.

Meredith [18] described an experimental procedure for investigating this. Attached
to one end of the specimen, which was usually 20 cm long, was a strong spring. On
the release of a catch, the spring extended the specimen to a stop fixed at a known
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16.17 Three regimes in creep of HMPE fibre [13].
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extension. The extension of the specimen took less than 10 milliseconds, and thus the
relaxation of the stress, indicated by a cantilever and mirror system, could be recorded
from very short times up to a day.

Figure 16.21 shows a typical result for stress plotted against time. From this it
appears that, after a rapid initial decay of stress, the rate of decay drops to zero. In
fact, on plotting on a logarithmic scale, as in Fig. 16.22, it becomes clear that the
stress is still decreasing after 24 hours. Meredith stated that the stress had not reached
a constant value after 2 weeks. It will be seen that, between 1/10 and 105 s, the
decrease in stress is of the order of 50%, the exact percentage varying with the fibre
and the extension.

The curious behaviour of acetate yarn, in which the stress in the first part of the
test decays more rapidly at the higher extensions, so that after 1 s the stress is greater
for a 2% extension than it is for larger extensions, is believed to be due to a temperature
effect. A rapid extension beyond the yield point, with a large energy loss, causes a

16.18 (a) Creep of Dyneema SK66 at 30 °C under various loads. (b) Creep of
Dyneema SK75 under 0.6 GPa at various temperatures [12].
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rise in temperature of the order of 11 °C for a 20% extension. It takes several seconds
for the excess heat to be lost from the specimen, so that the initial part of the
relaxation curve could be considerably affected.

Figure 16.23 illustrates the relaxation of wool fibres in water at various temperatures
by plotting the ratio of the stress at a given time to the stress after 1 h against time on
a logarithmic scale. There is considerable scatter in the results obtained on different
fibres. The rate of relaxation increases as the temperature increases.

Feughelman [20] has pointed out that the effective initial modulus lies between
high and low values, depending on the amount of time allowed for relaxation. The
limiting values are the same for all humidities, but the relaxation time is about 500 min
at 0% r.h., 100 min at 65% r.h 40 min at 90 r.h., and less than 1 min at 100% r.h.

16.19 (a) Creep compliance of Dyneema SK66 at different temperatures and
stresses. • 0.25 GPa; � 0.4 GPa; � 0.5 GPa; � 0.75 GPa; � 1 GPa. From Jacobs
[13] replotted from [14]. (b) Sherby-Dorn plot for creep of Dyneema SK66 in
Figure 16.18 (a). From Jacobs [13] replotted from [14].
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16.20 Recoverable and non-recoverable creep of HMPE fibres. From Jacobs
[13].

16.21 Stress relaxation in viscose rayon [18].

16.22 Stress relaxation in viscose rayon plotted against time on a logarithmic
scale [18].
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Figure 16.24 is an example of the relaxation behaviour of human hair in water, as
studied by Wood [21]. It will be seen that the curves have a rather complicated shape,
with two points of inflection –one between 1 and 10 s, and one between 1000 and
10 000 s.

The stress relaxation of nylon and polyester fibres at a range of temperatures and
humidities has been studied by Meredith and Hsu [22]. The data for the polyester
fibre relaxing at different strain levels may be presented as a composite sigmoidal
curve as shown in Fig. 16.25. The curve as drawn is correct for relaxation at 1%
extension, but for other extension values it must be shifted along the time-axis by an
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16.23 Relaxation of wool fibres in water with 15% extension at various
temperatures [11] (f/f1 is the ratio of the stress after the given time to the
stress after 1 h).

16.24 Relaxation of human hair in water at 35 °C [21].
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amount (∆ log t) shown in the inset graph. Superposition was not possible in this way
for the nylon data, but Murayama et al. [23] were able to superpose stress relaxation
curves for nylon for a constant extension of 2% at different temperatures. Both
Murayama et al. [24] and Pinnock and Ward [25] have used time–temperature
superposition on polyester fibre data. Figure 16.26 shows stress relaxation of nylon
6 [26]. A fast rate of elongation was used, so that measurement started at 0.1 seconds
and continued for 1 day. The percentage decrease in stress is almost constant from
different starting stresses and is almost the same for stress relaxation in water.

Figure 16.27 shows stress relaxation on polyester (PET) and nylon 6 fibres reported
by van Miltenburg [27]. At various imposed elongations, stresses were monitored at
1 second intervals over 100 minutes and are shown as percentages of the stress at the
start of the relaxation. In both fibres, the rate of stress relaxation increases rapidly to
a maximum value (minimum in the residual stress plot) at around 2% extension. The
changes correlate with values of the tangent moduli shown in the lower plots. A
similar correlation was found for viscose rayon. Plots of the stress relaxation of
HMPE and aramid fibres are shown in Figure 16.28. There was no correlation with
tangent modulus, but these fibres have a different structure so that different mechanisms
can be expected.

As described in Section 13.5.6 and shown in Fig. 13.29 and others, the stress–
strain curves of nylon and polyester fibres may or may not show a minimum in the
tangent modulus, depending on the prior treatment of the fibre. The nylon 6 fibre in
Figure 16.26 has an almost constant tangent modulus, which would correlate with the
lack of change of stress relaxation with starting stress.
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16.25 Composite stress–relaxation curve for a mechanically conditioned
150 den (17 tex) Terylene polyester fibre yarn at 65% r.h. and 25 °C. The
separate points are for tests for relaxation from different extensions. From
Meredith and Hsu [22].
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As demonstrated in Fig. 16.29, when a fibre is extended (OA) and immediately
retracted (A→B→…..→G→H→I) at the same rate, it may show inverse relaxation.
When retraction is stopped between A to P, the stress decreases as usual in stress
relaxation. From P to Q, the stress first increases and then decreases. Beyond Q, there
is only inverse relaxation. In the final section from G back to the original length at
I, the fibre will buckle under zero tension. Nachane and Sundaram [28, 29] report on
relaxation and inverse relaxation in polyester fibres and represent the behaviour by
empirical equations with exponential terms. Whereas in extension the molecular
structure is pulled into a less favourable state, from which it can relax towards
equilibrium at a lower stress state, in substantial retraction it goes back beyond the
equilibrium state and so the stress increases in inverse relaxation. The actual molecular
mechanisms may be quite complicated.

16.4 Time and tensile testing

16.4.1 High-speed tests

At low speeds, that is, for tests lasting more than a few seconds, the conventional
methods described in Chapter 13 can be used. At higher speeds, other methods must
be adopted.

One way is to use an impact test. In this method, a moving large mass is engaged
with one end of the specimen, while the other end is held fixed and connected to a
load-measuring device. There must be appropriate mechanical arrangements to ensure
that the free jaw is engaged only after the mass has attained its required speed. The
moving mass may be a rotating flywheel [30], the bob of a pendulum [31], a falling
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16.27 Upper diagrams: stress relaxation plotted against elongation and time to 100 minutes. Lower diagrams: tangent modulus
plotted against elongation: (a) polyester (PET) yarn; (b) nylon 6 yarn. From van Miltenburg [27].
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16.28 Stress relaxation plots over 100 minutes for: (a) gel-spun HMPE fibre; (b) aramid fibre. Note the scale difference: HMPE
drops to a low of 40%, but aramid only to 85%. From van Miltenburg [27].
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weight [32] or a rifle bullet [33–36]. In the past, the load measurement could be by
means of a cantilever arm and mirror, recording on photographic paper, or by a
resistance strain-gauge, a capacitive or inductive pick-up, or a piezo-electric crystal,
connected through an appropriate circuit to an oscilloscope. Nowadays, digital recording
would be used. If the weight is massive, its speed will not change on breaking the
specimen, and thus there will be a constant rate of extension. If the recorder or
oscilloscope has a linear time-base, it will record the load–elongation curve directly.
In this way, rates of extension of from 10 to 3000% per second can be obtained.

At still higher rates of straining, the velocity of transmission of the strain along the
specimen becomes important, and more complicated experimental arrangements are
necessary. Schiefer and his colleagues [37–40] have been able to work out stress–
strain curves at rates of straining of 1000–15 000% per second from successive
photographs of the configurations of a clamped length of yarn subjected to a transverse
impact. They had made earlier investigations at similar rates of straining by determining
the lowest velocity of impact at which a yarn would break when one end was impacted,
the other end being either free or attached to a small free mass.

Mi [41] adapted a catapult method, originally developed by Stevens and coworkers
[42, 43] for heavy duty testing, for a study of wave propagation in twisted yarns. The
essential principles of the method, which could be used to determine stress–strain
relations, are shown in Fig. 16.30. A driving member (Kevlar cord), which is highly
stretched, is joined to the test specimen by a clamped connector. When the clamp is
released, the driving member rapidly contracts, thus extending the test specimen at a
high rate. Force and displacement are recorded. The elongation velocity can be
varied by altering the pre-strain of the driving member, but is limited by the mass of
the connector. The deformation of the much lighter test specimen has little effect on
the rate. The typical time for the connector to reach the stop was 1 millisecond. The
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16.29 Inverse relaxation of polyester. From Nachane and Sundaram [28].
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initial rise in force and elongation is followed by a damped oscillation due to the
impact of the clamp on the stop. If the stop was not present, elongation could proceed
to break, but safety precautions would be needed.

16.4.2 Temperature and time: isothermal and adiabatic changes

In an imperfectly elastic material, energy will be dissipated in internal friction when
the material is extended. This energy is represented by the area inside a hysteresis
loop and is turned into heat. In a slow test, this heat will be given off to the surroundings
and there will be no appreciable change of temperature of the specimen, but in a rapid
test there will be less opportunity for loss of heat and the specimen will rise in
temperature. Experiments thus range between two limiting cases: the isothermal,
with no change of temperature, and the adiabatic, with no loss of heat. Since the
properties of a fibre vary with temperature, the results obtained in the two types of
test will be different, and this must be remembered in interpreting the effect of time.

An interesting example of adiabatic (or nearly adiabatic) conditions occurs in the
drawing of fibres. Marshall and Thompson [44] have shown that it offers an explanation
of the occurrence of characteristic draw-ratios. The process is illustrated in Fig.
16.31. Any attempt to alter the draw-ratio by changing the relative speeds of the
rollers merely results in the neck’s moving backwards or forwards, the actual draw-
ratio remaining constant. If the neck reaches the back roller, the filament breaks, and,

10

9

8

Flag

4 1 7 5 3 2 6

16.30 Catapult test method. 1, driving member; 2, test specimen; 3, connector;
4, stretching device; 5, quick release clamp; 6, force transducer; 7, stop
device; 8, displacement detector (optical switches); 9, charge amplifier; 10,
oscilloscope. From Mi [41].

Neck

Slow let-off Fast take-up

16.31 Drawing of synthetic fibre.
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if it reaches the front roller, intermittent portions of undrawn material pass through.
In either case, the technical consequences are serious.

Figure 16.32 shows the isothermal stress–strain curves for (undrawn) polyester
fibre. If extension takes place adiabatically, however, the temperature rises and the
path OABC should be followed. But, under actual drawing conditions, a decreasing
load is an unstable condition, so that the line AC is followed. It is this sudden
increase in length past the unstable region ABC that results in the formation of a neck
and determines the characteristic draw-ratio. If the whole process is slowed down,
there will be some loss of heat, the temperature rise will be smaller, and thus the
draw-ratio will be reduced. This is found in practice. The draw-ratio is also affected
by the mean temperature at which the drawing is carried out.

Godfrey [45] examined the effect of heat dissipation during plastic deformation,
taking account of heat transfer to the surroundings. The model assumes that the fibre
behaves in the idealised elastic/plastic way shown in Fig. 16.33, with the plastic
stress line decreasing linearly with increase of temperature. Figure 16.34(a) shows
that, for a 7.2 dtex nylon fibre, the deformation is close to isothermal at a rate of
extension of 10% per second and close to adiabatic at 500% per second. Figure
16.34(b) shows the reduction in tension as the specimen heats up. Godfrey’s numerical
data is expressed in terms of a dimensionless temperature rise, ∆T/T, and a dimensionless
time, t*, which is proportional to imposed strain and depends on fibre dimensions,
thermal and mechanical properties, and ambient conditions. For a thick (195 tex)
nylon yarn, there is appreciable heating at a strain rate of 10% per second.

There may also be a difference, analogous to the difference between adiabatic and
isothermal changes, due to the influence of moisture. As was discussed in Section
12.3.2, the equilibrium regain of a fibre at a given vapour pressure depends on the
stress in the fibre. On the application of a tension to a fibre, its equilibrium regain
increases. Consequently, there will be a difference between tests made rapidly, which
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16.32 Isothermal and adiabatic load–extension curves of Terylene polyester
fibre. Isothermals: a, 20 °C; b, 30 °C; c, 40 °C; d, 50 °C; e, 60 °C; f, 70 °C; g,
80 °C; h, 100 °C; i, 140 °C. Adiabatic: (A) from 20 °C. (Dotted portions obtained
by interpolation).
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16.33 Idealised fibre stress–strain curve with yield stress decreasing linearly
with temperature.

will be at constant regain, and those made slowly, which will be at constant vapour
pressure. Since the change in regain with tension is very small, the difference between
the two will be small in tensile tests. A loss of moisture due to adiabatic heating
would have a larger effect.

16.4.3 Influence of rate of loading on breakage

The breaking load of a fibre depends on the rate at which the load is applied. As a first
approximation, we can say that the breaking extension is independent of the rate of
loading. If we apply a constant load to a fibre, we get the behaviour shown in Fig.
16.35, that is, instantaneous extension followed by creep and then, when the critical
extension is reached, breakage. The time for this to happen will be shorter the greater
the load. Thus the time to break decreases with increasing load.

There is a similar effect in testing when the load is increased throughout the test.
If the rate of increase of load is slow, there is more time for creep to occur, and
consequently the breaking extension is reached at a lower load. The breaking load
therefore increases as the rate of loading increases.

Meredith [30] tested yarns over a millionfold range of rates of extension and
found that the relation between tenacity and rate of extension was approximately
linear (actually slightly concave to the tenacity axis) for most fibres. For breaking
times ranging between a second and an hour, the following formula may be used
without much error:

F1 – F2 = kF1log10(t2/t1) (16.5)

where F1 is breaking load in a time t1, F2 is breaking load in a time t2, and k is the
strength–time coefficient.

Values of the strength–time coefficient are given in Table 16.3. They show that the
strength of these textile fibres increases by 6–9% for each tenfold increase of rate of
extension. Meredith stated that the same formula applies to constant rate of loading
and constant rate of extension tests.

Some values of tenacity and other tensile properties obtained in Schiefer’s very
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high-speed tests are given in Table 16.4, together with comparative values obtained
in ordinary tests. The increase in strength and modulus means that performance in
ballistic testing is better than expected from low-speed tests, though the reduction in
breaking extension will act in the opposite way. The counterpart to this is that
performance will be worse for long-term loading as in mooring oil-rigs. Table 16.5
shows expected time to break under various percentages of the 1 minute break load.
It is estimated that k is less than 0.05 for aramid yarns and slightly more for polyester.
Since safety factors are below 50%, creep rupture is not significant for this application.
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16.34 Simulated response of 7.2 dtex nylon fibre extended at various strain
rates. Adapted from Godfrey [45].
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16.35 Breakage of fibre under various loads.

Table 16.3 Strength–time coefficients [46]

Material k

Cotton 0.088
Viscose rayon 0.083
Acetate 0.060
Flax 0.079
Silk 0.079
Nylon 0.080
Wool 0.073

Table 16.4 Results of high-speed tests [32]

Material Rate of Tenacity Breaking Initial
straining (N/tex) extension modulus
(% per second) (%) (N/tex)

High-tenacity nylon 1/60 0.55 16.7 3
5000 0.67 14.7 5

Fortisan (highly oriented) 1/60 0.56 5.4 14
cellulose) 2000 0.80 5.2 22
Fiberglas 1/60 0.42 2.8 22

1000 0.54 1.8 28

Table 16.5 Creep rupture. From TTI and Noble Denton [11]

Time to fail at percentage of 1 minute break load

k 20% 30% 50% 80%

0.05 2 × 1010 years 2 × 108 years 2 × 105 years 200 hours
0.08 2 × 104 years 1000 years 3 years 5 hours
0.1 200 years 19 years 60 days 100 minutes
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In a fatigue test, when some fibres in an assembly have broken, the increased stress
on the remaining fibres leads to creep rupture as the final failure mechanism. For
nylon, the loss of strength is marginal.

HMPE fibres do not follow equation (16.5), but fail more rapidly than a value of
k = 0.1 would indicate. Creep rupture in long-term loading is a serious concern.
Figure 16.36 shows how the strength of HMPE fibres at 21 °C has a tenfold decrease
in strength between normal testing speeds and a rate of strain of 10–7% per second,
which corresponds to a time to break of about 1 year. Figure 16.36 also shows the
large influence of temperature. At lower temperatures in the sea, break would take
longer, but in warm conditions it would occur sooner. Schwartz et al. [48] found that
the strength of Spectra 900 increased from 2.13 GPa at a strain rate of 0.4% per
minute to 3.34 GPa at 100% per minute. They express the results by a Weibull
distributions associated with a power law breakdown rule.

The rate of extension affects the breaking extension in different ways for different
fibres. Thus, in an acetate yarn, the breaking extension, which was about 30%, varied
by less than 0.5% for rates of extension between 0001 and 1000% per second, but in
a viscose rayon yarn the breaking extension increased from 20.6 to 26.6%, and in a
silk yarn it increased from 15.3 to 23.1%, over the same range. In a nylon yarn, the
breaking extension increased from 15.9% at 0.0013% per second to 20.7% at 22%
per second and then decreased to 14.5% at 1096% per second. Where the strength
increases with the rate of extension and the breaking extension is constant or increases,
then the work of rupture will be greater in the more rapid breaks, but, in nylon at high
speeds, the decrease in the breaking extension has a greater effect than the increase
in breaking load, and the work of rupture decreases. This must be considered where
fibres are used under impact conditions.

16.4.4 Stress–strain curves

Stress–strain tests take some time, and consequently there is an opportunity for creep
to occur. The slower the test, the more time there is available, and thus the greater the

16.36 Effect of strain rate and temperature on breakage of HMPE (Dyneema)
yarn. From van Dingenen [47].
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extension at a given load. This is illustrated in Fig. 16.37, which shows results for
viscose rayon, acetate, silk and nylon. Because of creep, the slower curves are nearer
to the strain axis than the faster curves. This effect is particularly marked at the
higher loads. There are two reasons for this. Near the end of the test, there has been
more time for creep, and above the yield point the rate of creep is greater.

If the stress–strain curves are non-linear, there will also be a difference between
constant rate of loading and constant rate of extension tests, owing to the different
proportions of time spent on different parts of the curves. For a stress–strain curve
that bends towards the strain axis, as in Fig. 16.38(a), we see that a greater proportion
of the time is spent on the part of the curve at high loads in a constant rate of
extension test than is the case in a constant rate of loading test. In the example shown,
three-quarters of the time is spent above the point A and one-quarter below it, compared

16.37 Stress–strain curves at various rates of extension [30]: (a) viscose rayon;
(b) acetate; (c) silk; (d) nylon. The figures against the curves refer to the
percentage rates of extension per second.
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with the reverse proportions in a constant rate of loading test. The result of this is
that, in a constant rate of extension test, whereas there will be slightly less creep in
the early stages, there will be a greater total amount of creep at the end of the test,
since the rate of creep is greater at high loads. The two curves will therefore differ as
shown in Fig. 16.38(b).

The stress–strain curves obtained for a fibre thus depend on the time taken in the
test and on the way in which the time is distributed. There will be consequent effects
on the quantities, such as modulus and yield point, derived from the curve. An
example of the change in Young’s modulus (up to 1% extension) of wet wool with
rate of extension is shown in Fig. 16.39. Meredith [30] also found that the initial

0 5 10 15 20 25
Extension (%)

(c)

S
p

ec
if

ic
 s

tr
es

s 
(N

/t
ex

)

0.5

0.4

0.3

0.2

0.1

0.0013

0.079

1096 296
22

2.0

0 5 10 15 20
Extension (%)

(d)

S
p

ec
if

ic
 s

tr
es

s 
(N

/t
ex

)

0.6

0.5

0.4

0.3

0.2

0.1

0.0013

0.04

1096

296
22
2.0

16.37 (Continued)

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres388

modulus increased almost linearly with log (rate of extension). Values of the initial
modulus obtained by Schiefer et al. [32] are included in Table 16.4. In viscose rayon
and acetate, the yield points occur at increasingly higher stresses as the rate of
extension increases, but the parts of the curves beyond the yield point are almost
parallel.

Hall [35] found that it was possible to express the stress–strain curves of rayon,
nylon, polyester, acrylic and polypropylene fibres, at 12 rates of strain between 10–2

and 50 000% per second, by equations of the form:

σ
ε

ε
ε = 

( ) + ( )
( )

2

1

f f t
f

(16.6)

where σ, ε and t are stress, strain and time, respectively. Hall’s experimental results
[50] for polyester and acrylic fibres are shown in Fig. 16.40.
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16.38 (a) Stress–strain curve showing equal intervals of time at constant rate
of loading (CRL) and constant rate of elongation (CRE). (b) Difference between
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Determinations of stress–strain curves at high rates have also been reported by
Holden [36], Smith et al. [34, 51] and Skelton et al. [52]. Smith et al. [51] found that,
at a rate of extension of 4100% per second, polyester fibre yarn broke at 8% extension,
without any yield region and at a higher strength level than in the fracture at low
speed with breakage at 20% extension. The change in mode of fracture of nylon and
polyester fibres is described in Section 19.2.1.
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16.39 Change of modulus of wet wool with rate of extension [49]: note that
x-axis is for decreasing rate.

16.40 Stress–strain curves at various rates [50]: (a) polyester fibre: A, 23 000;
B, 6400; C, 120; D, 7.7; E, 1.3; F, 0.018 % per second; (b) acrylic fibre: A, 60
000; B, 7500; C, 420; D, 7.7; E, 0.99; F, 0.001 % per second.
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16.5 Dynamic tests

16.5.1 Static and dynamic testing

In the conventional methods of testing described in Section 13.4 and most of the
high-speed tests described in Section 16.4.1, although the time of application has
influenced the result, it has been possible to observe directly the stress–strain relation
without considering the equation of motion of the system. Consequently, these tests
may be described as static (or quasi-static) tests. There are, however, other tests in
which the equation of motion must be considered, and these are one type of dynamic
test. However, if there is a monotonic increase of stress, they are considered with the
static tests. The high-speed impact tests described in Section 16.4.5 are examples of
this situation. It is necessary to take account of the dynamic effects when the inertia,
either of part of the apparatus or of the specimen, cannot be neglected. Thus the
inertia effects involved in old-fashioned pendulum testers or in inclined-plane testers
(Section 13.4.3) are examples of the occurrence of dynamic effects as sources of
error in what are intended to be static tests. The dynamic tests dealt with in this
section are of two types: (1) cyclic loading and (2) tests in such a short time that the
propagation of the stress wave means that the stress cannot be regarded as constant
along the specimen.

16.5.2 Characterisation of viscoelastic behaviour

It is now necessary to consider how the results of dynamic tests may be expressed. Let
stress = f and strain = e at time t. If we apply a sinusoidal extension to the fibre (the
converse argument will apply for sinusoidal loading), starting at time t = 0, we have:

e = em sin ωt for t ≥ 0 (16.7)

where em is the strain amplitude, and ω is the angular frequency in radians/second
(equal to 2π × frequency in Hz).

In general, the fibre will respond so that the stress f shows (1) an initial transient
response; and (2) an ultimate ‘steady-state’ response, which may have a complex
shape and which may change slowly with time owing to the effects of creep and
stress relaxation.

The steady-state stress variation will certainly have an amplitude and be related in
phase to the imposed extension. In the simplest situation, we can therefore put:

f = fm sin (ωt + δ) (16.8)

where fm is the stress amplitude and δ is the angular phase difference.
Equation (16.8) is only strictly valid for materials that obey the laws of linear

viscoelasticity. For these materials, the interrelations between the various parameters
discussed below will apply correctly, but for non-linear materials, including most
fibres except at very small strain, the relations will be only approximately true. It is
common practice to interpret the data from dynamic tests as if equation (16.8) were
valid, the more complicated functional relation between stress and time being ignored.
The differences are indicated in Fig. 16.41.
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Another simplification is to separate the static and dynamic components of the
stress and strain. Thus, when a sinusoidal extension is imposed on a constant extension,
we have:

e = e0 + em sin ωt (16.9)

f = f0 + fm sin (ωt + δ) (16.10)

In the consideration of dynamic behaviour, the constant parts e0 and f0 can be ignored
and equations (16.7) and (16.8) used instead of equations (16.9) and (16. 10). This is
particularly important in fibres, where the whole nature of the deformation changes
owing to buckling if the stress f becomes negative. The dynamic variation must
therefore always be superimposed on a static loading.

The subject is complicated by the number of ways in which the dynamic behaviour
can be represented. We note that, with the above simplification, the response will be
given by two parameters, but there are several possible pairs.

Representation (1):

The most direct method of expressing experimentally observed results is by quoting:

modulus from ratio of amplitudes = fm/em

e

f

f

δ
(a)

(b)

(c)

0
  

2π
ω  

4π
ω   

6π
ω

Time increment

16.41 Dynamic structures and steady-state response: (a) imposed sinusoidal
strain variation; (b) stress variation for linear viscoelastic material; (c) stress
variation for a non-linear material, showing also a longer-term trend.
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phase angle or loss angle = δ

However, these quantities are less convenient in other ways.
The phase lag is shown up as a hysteresis loop in the stress–strain relation.

Representation (2)

Equation (16.8) transforms to:

f = fm (cos δ sin ωt + sin δ cos ωt) (16.11)

Thus the stress response can be regarded as the addition of a component fm cos δ, in-
phase with the strain, and a component fm sin δ, which is 90° out of phase.

This leads to a definition of the two quantities:

‘in-phase’ modulus (usually termed dynamic modulus)

= 
in-phase stress amplitude

strain amplitude
 = 

cos 
 = m

m

f
e

E
δ

(16.12)

ratio of out-of-phase stress amplitude to in-phase stress amplitude
(usually termed loss factor or dissipation factor)

= sin 
cos 

 = tan δ
δ δ (16.13)

We may note that, in the analogous situation in alternating-current electricity, the
quantity usually used is power factor = cos φ = sin δ, where φ = (π/2) – δ.

Representation (3):  Voight model

A system that obeys equations (16.7) and (16.8) can be physically represented at any
given frequency by an ideal (Hookean) spring, with stress proportional to strain, in
parallel with an ideal (Newtonian) dashpot, with stress proportional to rate of strain,
as shown in Fig. 16.42. The stress is given additively as:

Ep ηp

f

16.42 Parallel combination of spring and dashpot (Voigt model).
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where Ep is the spring modulus and ηp is the viscous coefficient of the dashpot.
Substitution from equation (16.7) gives:

f = Epem sin ωt + ηpωem cos ωt
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(16.15)

We see that this is the sum of in-phase and out-of-phase components and is similar
in form to equation (16.11), which thus proves the equivalence of the representation.
The relations between the quantities are:

f E em p
2

p
2 2 1/2

m= ( + )  η ω (16.16)

tan  = 
p

p
δ

η ω
E

(16.17)

Ep = E (16.18)

The parameter ηpω is often used as an alternative to tan δ to express the loss properties.
It may be noted that in a creep test, with constant f0, the basic equation (16.14) of

the parallel model has the solution by integration:
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η τ (16.19)

where τp = ηp/Ep = creep time constant. There is thus a link between this expression
of the dynamic properties and exponential creep behaviour, illustrated in Fig. 16.43.

It must be remembered, however, that this will apply in this simple form if the
parallel model is a complete representation of the system at all frequencies. But the
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16.43 Behaviour of ideal specimen under constant load.
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model was introduced here only to represent behaviour at a particular frequency. In
general, the parameters Ep and η will vary with frequency.

Representation (4): Maxwell model

The behaviour at any given frequency can also be represented by an ideal spring in
series with an ideal dashpot, as in Fig. 16.44. The basic equation of this model is
given by the addition of strains in an infinitesimal increment of time:

d
d

 = 1  
d
d

 + 
s s

e
t E

f
t

f
η (16.20)

Substitution of equation (16.7) and rearrangement lead once again to an expression
that is similar in form to equation (16.11). The parameters are related by the equations:

Es = Esec2δ (16.21)

tan δ = Es/ηsω (16.22)

These quantities are less simply related to the other parameters and so are less
useful. They do, however, provide a link to stress–relaxation behaviour because, with
constant strain τ0, the solution of equation (16.20) is:

f = (Ese0) exp (–Est/ηs) = (Ese0) exp (–t/τs) (16.23)

where τs = ηs/Es = relaxation time constant. But it must again be stressed that, in a
real system, the parameters Es and ηs would vary with frequency, so that the simple
relations would not apply.

Representation (5)

In a single cycle, the energy loss per unit volume (or per unit mass, if f is a specific
stress and the moduli are in corresponding units) is given, with the notation of
equation (16.15), by:

Es

ηs

f

16.44 Series combination of spring and dashpot (Maxwell model).
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The expression may be rearranged to give alternative forms

(energy loss/radian) per unit volume
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2 2e f
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η ω

η ω
η ω

 = 1/2fmem sin δ (16.25)

This indicates why δ is referred to as a loss angle. The representation in this form is
important because it shows that, when the out-of-phase component is large (high
values of tan δ or ηpω), then there will be considerable energy dissipation, with
consequent heating, if the material is subject to cyclic loading.

Representation (6)

For further mathematical development of the subject, the use of complex number
notation is useful, just as it is in alternating current electricity.

With i = (–1) , we can put:

e = em exp(iωt) = em(cos ωt + i sin ωt) (16.26)

Our earlier basic relation, e = em sin ωt, thus corresponds to the imaginary part of the
above expression. If we follow through the analysis, and, at the end, take the imaginary
part, this will therefore represent the behaviour of the system1.

We now introduce a complex modulus E with a real part E′ and an imaginary part
E″: E = E′ + i E″. By the usual definition of a modulus, we have:

f = Ee = (E′ + iE″) em exp (iωt)

= em(E′ cos ωt – E″ sin ωt) + iem(E′ sin ωt + E″ cos ωt) (16.27)

The imaginary part of this expression, em(E′ sin ωt + E″ cos ωt), is identical in form
to the expression for f in equations (16.11) and (16.15), so that the equivalence of the
representation is proved. The parameters of this representation, which is very widely
used, are:

1For this representation, though not for the others, it would have been simpler to shift the time
origin, which is immaterial in the steady-state situation, and to use e = em cos ωt. The real part of
the complex quantities would then correspond to the actual (‘real’) behaviour. But, since the
exp(iωt) factor is dropped anyway in analysis, there is no great harm in the other notation.
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real part of modulus (often termed real modulus)

= E′ = Ep = E as defined above (16.28)

imaginary part of modulus (often termed imaginary modulus or loss modulus)

= E″ = ηpω = E′ tan δ (16.29)

The advantage of this approach for mathematical purposes is that the factor exp
(iωt) can be omitted and the analysis performed with the modulus in either the vector
or the complex form:

F = Ee = (E′ + i E″)e (16.30)

At the end of the analysis, the real part gives the in-phase component and the imaginary
part the out-of-phase component. This is particularly valuable in dealing with composite
systems or complex geometries. The same rules apply as in Hookean elasticity.

Summary of representations

The interrelations of the various representations are conveniently summarised by the
vector diagram (Fig. 16.45). We note the identity of E, Ep and E′, which are often
referred to as the storage modulis because they define energy stored and recovered,
and the identity of E″ and ηpω, referred to as the loss modulis representing dissipated
energy, and their close relation to tan δ. One extreme situation occurs when there is
ideal elasticity, ηpω = 0; the stress is in phase with strain, and there is no energy loss.
The other extreme occurs with pure viscosity, with Ep = 0, the stress 90° out of phase,
and a large energy loss. The relations, together with the intermediate situation, are
illustrated in Fig. 16.46.

The use of more complicated spring and dashpot models in an attempt to represent
the complete behaviour of fibres, as distinct from a response at a single frequency, is
discussed in Section 20.7.1.

Es

16.45 Summary of representations of linear viscoelasticity.

ηsω

δ

φ

E ″ ηpω

δ φ
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90° out of
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16.5.3 Methods of dynamic testing

A variety of methods may be used in dynamic testing. The frequencies for which the
methods described below have been used are given in Table 16.6.

Direct observation of stress–strain loop

At low frequencies (up to about 10 Hz), the methods described in Section 13.4 may
be adapted to impose cyclic loading or extension and to record the stress–strain loop

16.46 Representation of perfectly elastic, purely viscous and viscoelastic
materials: (a) relations between sinusoidal stress and strain; (b) vector
diagram; (c) stress–strain curve.

Table 16.6 Frequency range of dynamic tests

Method Frequency range

Direct observation of stress–strain  loop up to 10 Hz
Free vibrations 1–50 Hz
Forced resonant vibration 1–300 Hz
Direct observation of forced vibrations 1–200 Hz
Flexural resonance of specimen (see Section 17.2.3) 20 Hz–10 kHz
Velocity of sound waves – continuous 500 Hz–30 kHz
Pulse velocity 10–100 kHz

f

e

f

e

f

e

f

f

f

Perfect
elasticity

f = Ee

Viscoelastic

    
f Ee

e
t

 =  +  
d
d

η

Pure viscosity

    
f

e
t

 =  
d
d

η

  

π
2

δ

0   π 2π 3π
Radians

(a)
(b) (c)

ηω

δ
E

ηω

E

e

e

e

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres398

directly. The values of fm, em and the energy loss are simply found from the loop as
shown in Fig. 16.47, and hence the other parameters can be calculated. As has been
stated, this is really a quasi-static method.

Free vibrations

A truly dynamic method available over much the same frequency range is the study
of the free vibrations of a mass suspended by a filament. Figure 16.48 illustrates the
method used by Ballou and Smith [53]. The vibrations of the mass modulate the
amount of light received by the photocell, and thus the frequency and damping of the
oscillation may be followed on the recorder. A linear variable differential transformer
(LVDT) or laser measurement of displacement could now be used in this method.

If A is the area of cross-section, l the length of the specimen and x its extension
beyond its rest position, the restoring force will be given by substituting x = el in
equation (16.14) and multiplying the stress f by A. The equation of motion of the
system is therefore:

em

fm

Area = energy loss/cycle

16.47 Hysteresis loop obtained in stress–strain test.

Specimen

Mass
Photocell

Lens

Lamp
Amplifier

Recorder

16.48 Oscillations of a free mass attached to a fibre.
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where m is the suspended mass.
This is a damped simple harmonic motion, which will have a frequency given by:
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(16.32)

and a logarithmic decrement2 given by

λ
πη
ω

 = 
p A

ml
(16.33)

From these expressions, Ep and ηp can be calculated. If the damping is small, the
following approximate relations hold:

E
ml
Ap

2=  ω (16.34)

η
ω λ

p = 
ml
A

(16.35)

In a similar method, Lincoln [54] recorded photographically the oscillations of an
out-of-balance beam, one arm of which was connected to the specimen.

Van der Meer [55, 56] has used the free vibration of a torsion pendulum restrained
by a pair of yarns, as illustrated in Fig. 16.49, to measure dynamic properties in air
and water. At any instant, two yarn sections are extending and two are contracting, so
that they are subject to a dynamic tensile loading.

Forced resonant vibrations

Alternatively, the specimen may be subjected to forced oscillations by means of an
electromagnetic drive, as illustrated in Fig. 16.50. The equation of motion will then be:

m x
t

A
l

x
t

E A x
l

F t d
d

 –   1 
d
d

 –   =  cos 
2

2 p pη ω (16.36)

where F = amplitude of the applied force and ω = frequency of the forced vibration.
If the amplitude of the vibration is plotted against the frequency, it will give a

resonance curve. The resonant frequency is given by:

ω 0
2 p

 = 
E A

ml
(16.37)

and the width of the resonance curve, when the amplitude of the vibration is 1/√2
times its maximum value, by:

2If x1 and x2 are successive maxima of the vibration in the same direction, the logarithmic decrement
is defined by the relation x1/x2 = eλ.
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∆ω
η

 = 
2

p A

ml
(16.38)

Thus the parameters Ep and ηp can be calculated. If the damping is large, slightly
more complicated expressions must be used to find Ep and ηp.

A method suitable for use with single filaments between 1 and 100 Hz has been
described in detail by Dunell and Dillon [57], and a similar method has been used by
Tipton [58].

The vibrator consists of a solenoid of fine wire wound on a paper core and mounted
in a magnetic field. Dunell and Dillon also discussed the corrections needed to take
account of the frictional resistance and elastic reaction of parts of the vibrator itself.
The use of this method is limited to conditions in which the length of the specimen
is much less than the wavelength of the propagated wave. At high frequencies, the
specimen must be short.

16.49 Torsion pendulum as used for tensile dynamic oscillation by van der
Meer [55, 56].

Specimen S

S

N

16.50 Forced oscillations with electromagnetic drive.
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Direct observation of forced vibrations

Probably the most widely used method is the direct observation of forced vibrations
by means of the apparatus developed by Takayanagi [59, 60] (marketed as the Rheovibron
tester) or similar procedures with newer transducers and digital recording and analsyis.
These instruments are often referred to as dynamic mechanical analysers (DMA).
The Universal Fibre Tester [61, 62], which was derived from a fatigue tester described
in Section 19.3, is an instrument that can be used in the same way.

The principle of the method is illustrated in Fig. 16.51. An oscillator, which can be
set at various frequencies, typically 110 Hz, excites a vibrator, which subjects the
fibre to a cyclic strain. A transducer at the other end of the fibre detects the resulting
tension variation. The outputs from the load transducer and a strain transducer are fed
to appropriate electronic circuits; and the values of the ratio of load to elongation and
of tan δ are directly indicated or recorded. Means of varying temperature are incorporated
in the Rheovibron tester.

Velocity of sound: continuous transmission

At higher frequencies, the inertia of the specimen itself cannot be neglected, and the
methods used must take account of this. The problem is essentially one of measuring
the velocity of longitudinal (sound) waves in the specimen. The method was first
applied by Lotmar [63], who excited the specimen by friction and matched the note
produced with that of a standard specimen. Later, Ballou and Silverman [64] investigated
the standing waves set up for certain positions of a reflecting pickup when one end
of a filament was excited with a known frequency.

Probably the best method is the interference method adopted by Ballou and Smith
[53], which could now be modified by analogue to digital conversion and signal
processing. As illustrated in Fig. 16.52, one end of the specimen is excited
electromagnetically, and consequently sound waves travel along the specimen and
can be picked up by a piezo-electric crystal detector. The signal from the detector is
amplified and filtered and fed into a cathode-ray oscilloscope (CRO), together with

Oscillator
circuits

Strain
transducer

Vibrator Fibre

Stress
transducer

Measurement
and computing

circuits

Output
recorders

16.51 Principle of Rheovibron tester.
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a signal direct from the generator. The resultant trace on the oscilloscope will depend
on the difference in phase of the two signals and will be a maximum whenever the
two are in phase. Thus, as the pick-up is moved along the specimen, an interference
pattern of maxima and minima will be observed. The time taken for the waves to
travel the distance between successive maxima must be equal to the period of the
oscillation. Therefore:

c L =  
2
ω
π





 (16.39)

where c = velocity of sound waves in cm/s, L = distance moved by pick-up between
successive maxima and (ω/2π) = frequency in Hz.

If the damping is small, the velocity of sound in a medium is given by:

c E2  = ρ (16.40)

where ρ = density. Thus the value of the dynamic modulus may be calculated. The
specific modulus is equal to c2.

From the attenuation of sound along the specimen, which will be given by the
reduction in amplitude of the interference pattern on the oscilloscope, we get:

η
ρα
ω

 = 
2 3

2

c
(16.41)

where α = attenuation in nepers/cm.3

If the damping is appreciable, these expressions must be modified. Corrections
must also be included for the effect of standing waves owing to reflection from the
end of the specimen. The full expressions are given in the paper by Ballou and Smith
[53].

A similar method was used by Hillier and Kolsky [65, 66], but they compared the
transmitter and receiver signals connected to separate beams of a double-beam
oscilloscope.

Generator

Drive

CRO

Pick-up

Specimen

Filter

Amplifier

16.52 Interference method for finding velocity of sound waves.

3Neper (Np) = loge (x1/x2), where x1 and x2 are successive values of amplitude (in this case at 1 cm
intervals).  The neper is analogous to the decibel, which is based on log10.  1 Np = 8.686 decibel.
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Pulse-velocity methods

Instead of exciting the whole specimen into continuous vibration, one may measure
the velocity of a train of waves of known frequency by determining the time taken for
a short pulse to travel along the specimen. This method has been used by Chaikin and
Chamberlain [67] at 100 kHz. The circuit arrangements indicated in Fig. 16.53 illustrate
the basic principles, but later instruments use other transducers, electronics and
information technology.

A brief pulse of the required frequency is transmitted along the specimen from a
crystal of Rochelle salt and eventually arrives at the receiver, which is a condenser
microphone. The time of travel is measured by a method similar to that used in
recording echo pulses in radar systems. At the instant that the pulse is transmitted, the
two beams of a cathode-ray oscilloscope are released and start to travel at constant
speed across the screen. The receiver is connected to one of the beams and a mark
appears on the trace at the instant at which the pulse arrives. A timing unit is connected
to the other beam to give a series of time marks. Thus the time taken for the pulse to
travel can be found from a photograph of the traces.

In order to avoid errors due to delays in the circuit, the time taken for travel along
specimens of varying length is determined. The slope of the graph of time against
length, determined by the method of least squares, then gives the velocity of travel
of the pulse. Young’s modulus is given by equation (16.40): E = ρc2. The method is
not suited to the measurement of attenuation, so the viscous parameter η cannot be
found.

Another apparatus, incorporating two transducers, transmitter and receiver, that
touch the specimen and an electronic circuit to measure the time interval for the pulse
to travel from one to the other, has been described by Hamburger [68] and used by
Moseley [69, 70]. It is commercially available as a pulse propagation meter (PPM).
Some care is needed in the interpretation of results of pulse propagation tests, since
at 10 kHz, as used by Moseley, and a typical recorded sonic velocity of 1 km/s, the
wavelength will be 10 cm. This is about the distance apart of the transducers, so that

Specimen

Receiver

Pulse
generator

unit
Crystal

transmitter

Beam release

Time
signal

2beam
CRO

Camera

Amplifier

16.53 Pulse-velocity method.
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the measurement is one not of a short pulse of waves travelling along the specimen,
but of the times between the triggering of the transducers by the transient at the
beginning of the pulse. This is a complex situation, which makes the true test frequency
unknown and can lead to error if the pulse changes in shape during transmission. At
higher frequencies, as used by Chaikin and Chamberlain [67], the error will be less.
Mi [41] modified the PPM to have receivers at different distances on either side of
the transmitter, which eliminated any errors associated with time detection differences
at transmitter and receiver and allowed attenuation to be determined.

16.5.4 Cyclic dynamic modulus

The fact that the dynamic storage and loss moduli are not the constant values of the
simple model is shown in studies by Bosman [71]. Figure 16.54(a) shows cyclic
loading plots at different positions on the load–elongation curve of a high-tenacity
polyester yarn. The continuing shift of the hysteresis loops is due to creep. Other tests
were carried out a constant strain amplitudes. Figure 16.54(b) shows that the moduli
change with number of cycles, the storage modulus increasing and the loss factor (tan
δ) decreasing. Figure 16.55(a) shows that the dynamic modulus E′ increases with
increasing mean load and decreases with increasing strain amplitude. Figure 16.55(b)
shows that the loss modulus E″ is independent of mean load but increases with strain
amplitude. The latter effect has important consequences for heating when large fibre
assemblies, such as ropes, are cyclically loaded. Not only is there a direct effect of
the increased amplitude but the rise in E″, which is also shown in a plot of tan δ,
means that a larger fraction of the input energy is dissipated as heat. Tan δ increases
from 0.006 at 0.25% strain amplitude to 0.15 at 2%, a 25-fold increase.

Selden and Dartman [26] report the values for nylon 6 given in Table 16.7. The
most consistent effects are an increase in both E′ and E″ with pre-load, a decrease in
E′ and an increase in E″ with dynamic strain. Values of tan δ are only slightly higher
at the higher dynamic strain.

16.5.5 Values of dynamic modulus

The relation of the dynamic modulus (sonic modulus) to the moduli determined by
a stress–strain test is illustrated by the results of Charch and Moseley [69], shown in
Fig. 16.56. For an Orlon acrylic fibre yarn, the dynamic modulus, measured with a
10 kHz pulse, had a value of 14.7 N/tex, which was somewhat larger than the value
of 12.4 N/tex observed for the initial modulus in a stress–strain test at 1700% per
second, and considerably larger than the value of 7.9 N/tex found at 1/60% per
second (1% per minute). Similar results were obtained for other fibres.

In continuing extension, the incremental modulus given by the slope of the curve
decreases markedly at the yield point. By contrast, the dynamic modulus, which
shows up the response to a superimposed oscillation, usually increases. Even up to
strains as small as 1%, Chaikin and Chamberlain [67] found a small but significant
increase in the dynamic modulus of nylon, though the values for wool and hair were
constant.
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Figure 16.57 shows results obtained by de Vries [72] for a variety of regenerated-
cellulose fibres. The variation of dynamic modulus with extension falls into two
parts: up to a critical strain, ec, the modulus is constant, with a value E, but above this
value it increases linearly with strain. The critical values for the various fibres fall on
a curve given by:
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16.55 Change in (a) dynamic modulus E′ and (b) loss modulus E″ of high-
tenacity polyester yarn after 10 000 cycles at various mean loads and strain
amplitudes.
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Table 16.7 Dynamic moduli of nylon 6 fibres. Based on Selden and Dartman [26]

Pre-load E′ (GPa) E″ (GPa) tanδ
(mN/tex) 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz

Dynamic strain = ± 1%
27 1.39 1.69 1.97 0.32 0.37 0.34 0.23 0.22 0.17
45 2.56 2.71 3.14 0.54 0.64 0.58 0.21 0.24 0.18
91 2.58 3.55 4.14 0.82 0.77 0.59 0.32 0.22 0.14
182 5.14 7.28 8.19 1.15 0.96 0.75 0.22 0.12 0.09

Dynamic strain = ± 2%
27 1.08 1.56 1.78 0.27 0.40 0.40 0.25 0.26 0.22
45 1.45 2.00 2.25 0.37 0.51 0.49 0.26 0.26 0.22
91 1.77 2.63 3.08 0.58 0.54 0.51 0.33 0.19 0.11
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16.56 Stress–strain curves of Orlon acrylic fibre yarn at rates of strain of: A,
1700; B, 1.7; C, 0.017% per second, showing relation of initial slope to
dynamic modulus [69].

16.57 Dynamic modulus of cellulose fibres. AB is locus of ec. CD is locus of
breaking extensions in tensile tests. F, saponified acetate; L, Lilienfield rayon;
M, model filament; remainder are viscose rayon [72].
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E ecc
0.63 ⋅  = 1.73 kN/mm2 (16.42)

The critical strain ec is found to be more nearly equal to the yield point given by
recovery experiments than to that given by the shape of the stress–strain curve. De
Vries also found that, during relaxation of stress at constant extension, the dynamic
modulus changed very little, and not at all after the first 30 s, even though the stress
decreased by as much as 30%. Measurements of dynamic modulus during load–
extension tests carried out at various rates also indicate that the dynamic modulus
reaches equilibrium in less than a minute as a single-valued function of the strain.
This value is independent both of the particular stress-history of the specimen leading
to the given strain and of the value of the stress in the specimen at the time of
measurement. It was, however, found that only values of E above the critical strain
were reversible; once a specimen had been extended into the range of increasing E,
the initial constant portion of the curve was not repeated.

Figure 16.58 shows values obtained by Tipton [58] for a variety of textile yarns.
He also found that the dynamic modulus fell slightly and that the loss factor increased
as the amplitude of the dynamic strain was increased.

The orientation and crystallinity of the specimen will have a considerable influence
on the dynamic modulus. Table 16.8 shows the various types of regenerated-cellulose
filaments studied by de Vries, together with the values of the dynamic modulus at
low strain. The modulus is much greater in the more highly oriented specimens. The
effects of both crystallinity and orientation in Dacron polyester are shown in Table
16.9, which presents data obtained by Ballou and Smith [53]. Other values, obtained
by the pulse propagation technique, have been reported by Dumbleton [73].

If other factors are unchanged, the dynamic modulus can be used as a measure of
orientation; but care must be taken, since many treatments, for example, the effect of
annealing or hot stretching of synthetic fibres, change the structure in other ways,
which also influence the modulus. It must be remembered that all one is measuring

16.58 Dynamic modulus with static strain for various textile yarns [58].
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in determining the dynamic modulus is the response of the fibre as a whole to a rapid
cyclic extension.

16.5.6 Transitions in dynamic moduli

There are many mechanisms by which a fibre can deform. Some of these, such as the
stretching of atomic bonds, are characterised by large stresses and small strains but
occur at very high speed; others, such as the uncoiling of chains, lead to large strains
under low stresses but take a long time owing to viscous drag. The typical effect of
one of these mechanisms on the dynamic moduli is illustrated by the simple model
shown in Fig. 16.59(a). At high frequencies, only the stiff mechanism operates and
the modulus is high, but at low frequencies the soft mechanism can operate and the
modulus is low. At the extremes, there is little energy loss: at high frequencies, there
is little viscous displacement; at low frequencies, there is little viscous resistance.
But near the transition, when the structure is just becoming mobile, the viscous
resistance is very important in causing a large energy loss, or, what comes to the
same, in causing a large phase lag. The ‘loss’ quantities (E″, ηpω, tan δ) will therefore
go through a maximum, as shown in Fig. 16.59(b). With a variety of mechanisms, a
sequence of drops in E′ and peaks in E″ can be expected. Unfortunately, there are no
studies of fibres over a wide enough range of frequencies to enable one to plot
experimental data analogous to Fig. 16.59(b). However, it is found that the modulus
increases with frequency; for example, Chaikin and Chamberlain [67] obtained the
comparative values given in Table 16.10. This table also includes some data from
other sources.

Table 16.8 Dynamic modulus of regenerated-cellulose filaments at 8.8 kHz [72]

Material Ec (GPa)

Nearly isotropic model filaments 5.4
Stretched model filaments 5.4–23
Viscose rayons of low, medium and high tenacity 8–20
Very high-tenacity viscose rayon 20–30
Lilienfeld rayon 35
Fortisan 40

Table 16.9 Viscoelastic constants of poly(ethylene terephthalate) [53]

Frequency Orientation Crystallinity E (GPa) η (N s/mm2) τ = η/E (µs)

8 Hz None None 2.3 1.11 480
8 Hz None High 0.95 0.53 560
8 Hz High None 11.4 4.67 410
8 Hz High Low 12.0 6.48 540
8 kHz High Low 15.3 0.020 1.3

12 kHz High Low 15.3 0.012 0.8
16 kHz High Low 15.3 0.008 0.55
34 kHz High Low 16.3 0.007 0.45

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres410

It is possible, however, to observe the transitions by causing the structure to loosen
up, to become mobile, for oscillations of a given frequency. This can be achieved by
raising the temperature, so that thermal vibrations become more effective, or by
plasticising the structure, most easily with water, so that the intermolecular forces are
reduced.

The thermal transitions will be discussed in detail in Chapter 18, but one example
is given here. Figure 16.60 shows the changes in the real and imaginary (loss)
modulus of nylon 6.6 fibres with a transition at about 90 °C.

The transitions in dynamic properties can also be studied in bending or torsion, as
will be described in the next chapter.

16.5.7 Strain-wave propagation: limiting impact velocity

At very high rates of extension, or impact, the tension wave (or stress wave) and the
associated strain wave take a significant time to travel along the fibre. Smith et al.

Table 16.10 Dynamic modulus values

E′ (GPa) E″ (GPa)

Fibre Static 1.5–100 Hz 10 kHz 100 kHz 1.5–100 Hz

[67] [57] [68] [67] [57]

Viscose rayon 4.2 10.6 17.1 19.5 0.48
Wool 3.1 8.6
Nylon 2.9 5.8 8.5 7.0 0.38
Steel 1.93 1.98

16.59 (a) Simple model of viscoelastic behaviour. (b) Real and imaginary
moduli of model.
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[33] have studied the propagation of strain waves along yarns. The theory and the
interpretation of data are complicated, but the order of magnitude of the effects can
be indicated by noting that the strain wave front velocity is about 3900 m/s in a
polyester fibre yarn and 2800 m/s in a nylon yarn. A comparison of experimental
results with a theoretical prediction suggested that appreciable creep and stress relaxation
occurred within 50 µs of impact but that there was no creep or stress relaxation
between 50 and 300 µs. The very rapid effects will, of course, be due to different
mechanisms from the slow creep and relaxation discussed previously. Mi [41], using
the PPM found similar values for the wave velocity in polyester and nylon and
7500 m/s in aramid (Kevlar). Attenuation of the signal was as exp(–ηL), where η is
the attenuation coefficient and L is the length travelled, so that there is a decrease of
0.37 times in a length 1/η. The values of 1/η were: nylon, 2.3 m; polyester, 3.4 m;
aramid 20 m.

As the speed of impact is increased, a point is reached at which the material is
unable to accommodate the rapid displacement of the end of the specimen by propagating
strain along the specimen. There is thus a critical velocity at which the specimen
breaks on impact. Smith et al. [74] have shown how the critical velocity may be
estimated from stress–strain curves. The estimated values lie between 100 and
300 m/s for different yarns and are generally greater in fibres with an appreciable
region of low modulus at the high level of extension before break.
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17.1 Introduction

The last four chapters have been concerned with tensile properties, the extension of
fibres under loads applied along the fibre axis. The influence of forces in other
directions is also interesting and of practical importance. The bending and twisting of
fibres influence the behaviour of bulked yarn filaments and the drape and handle of
fabrics. Recovery from bending is a factor in creasing. Twisting and bending both
play a part in the arrangement of fibres in a yarn, and transverse compressive forces
are involved when tension is applied to a twisted yarn. Bending strength and shear
strength may be important in wear. It is these properties that will be considered in this
chapter.

17.2 Bending of fibres

17.2.1 Flexural rigidity for small curvature

The flexural rigidity (or stiffness) of a fibre is defined as the couple required to bend
the fibre to unit curvature. Curvature is the reciprocal of radius of curvature. By this
definition, the direct effect of the length of the specimen is eliminated. The flexural
rigidity may be calculated in terms of other fibre properties. The problem is similar
to that of the bending of beams. Suppose we have a specimen of length l, bent
through an angle θ to a radius of curvature r, as shown in Fig. 17.1. Its outer layers
will be extended and its inner layers compressed, but a plane in the centre, known as
the neutral plane, will be unchanged in length. As a result of the extension and
compression, stresses will be set up that give an internal couple to balance the
applied couple.

Consider an element of area of cross-section δA, at a perpendicular distance x
from the neutral plane:

elongation of element = x θ = xl
r

(17.1)

tension in element 
xl r

lE A
/

 δ (17.2)

where E = Young’s modulus,

17
Directional effects
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the moment about an axis in the neutral plane

=     =   2x
r

E A x E
r

x Aδ δ (17.3)

total internal couple =   (  ) = 2
2E

r
x A

E Ak
r

Σ δ (17.4)

where A = ∑ δA = area of cross-section and k2 = ∑ (x2 δA)/∑ δA. (17.5)

E A k2 is often referred to as EI, where I is the moment of inertia of the cross-
section. The parameter k is analogous to a radius of gyration, taken about the neutral
plane. It may be related to a shape factor η, which is 1 for a circular fibre, by the
expression:

k A2  = 1
4

 π η (17.6)

Since A c = ρ (17.7)

where ρ = density and c = linear density of filament,

and E = ρEs (17.8)

where Es = specific modulus

total couple = 1
4

 s
2

π
η

ρ
E c
r

(17.9)

flexural rigidity1 = 1
4

 s
2

π
η

ρ
E c

(17.10)

1It should be noted that this equation is in a consistent set of units. In SI: Es in N/kg m; c in kg/m;
ρ in kg/m3; and flexural rigidity in N m2. In likely practical units, with Es in N/tex, c in tex, and ρ
in g/cm3, the equation becomes: flexural rigidity = (1/4π) (η Es c

2)/ρ × 10–3 N mm2.

l

r

θ

θ

x

δA

17.1 Bending of a fibre.
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It follows from this relation that the flexibility of a fibre depends on its shape, its
tensile modulus, its density and, most of all, its thickness.

The densities of the ordinary textile fibres range only between 1.1 and 1.6 g/cm3,
so that this is not a very large factor. Values of the modulus obtained in tensile tests
have been given in Chapter 13. They range from over 200 N/tex for HM–HT fibres to
about 10 N/tex for polyester fibre and as low as 2 N/tex for wool The shape factor
becomes greater, and the rigidity increases, the more distant the material is from the
centre. This is illustrated in Fig. 17.2. It will be seen that with an asymmetrical shape
there may be a difference according to the direction of bending. In practice, the fibres
will usually twist so as to bend about the easiest direction. For simple shapes, values
of η may be obtained by integration from a relation derived from equations (17.5)
and (17.6). For more complicated shapes, either numerical computation or experiment
will be necessary. Table 17.1 gives some typical values.

Since the fineness comes in as a squared term, and in view of the range of values
occurring in practice, from around 0.01 tex for microfibres and smaller for nanofibres
to 1 tex for a coarse wool and higher for some hair fibres and manufactured monofils,
it will be the most important factor in determining the flexural rigidity. The choice of
fibre linear density is thus important in deciding flexibility.

In order to compare material properties, it is convenient to introduce a quantity
that is independent of the fineness of the specimen. We may call this quantity the

Shape factor

increasing

17.2 Shape factors.

Table 17.1 Flexural rigidity (after Finlayson [1])

Fibre Shape Specific flexural rigidity R1

factor η (mN mm2/tex2)

Viscose 0.74 0.19
Acetate 0.67 0.08
Wool 0.80 0.20
Silk 0.59 0.19
Nylon 0.91 0.14
Glass 1.0 0.89
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specific flexural rigidity Rf, which is the flexural rigidity of a fibre of unit linear
density2. It equals (couple/curvature)/(linear density)2 and is given by:

R
E

f
s = 1

4
 π
η
ρ (17.11)

Values of Rf obtained by using values of the modulus obtained in tensile tests are
given in Table 17.1. They show the great flexibility of acetate filaments and the
stiffness of glass.

The above analysis assumes that the fibre modulus E (or Es) is constant. In reality,
fibre stress–strain curves are mostly non-linear, so that the analysis applies only to
small strains, namely to the relation between the initial flexural rigidity and the initial
tensile modulus. For a neutral plane in the centre of the fibre, the maximum tensile
strain, which will be positive on the outside and negative on the inside of the bend,
equals r/R in a circular fibre, where r = fibre radius and R = radius of curvature of
bend. Since fibres are so fine, quite small values of R (high curvature) result in fairly
small strains, so that, in many practical situations, though not in severe creasing, it is
only the initial flexural rigidity that is relevant.

17.2.2 Non-linearity at large curvatures

For more severe bending, the behaviour is represented by a moment–curvature relation.
Non-linearity of stress–strain relations must then be taken into account. For most
fibres, yield occurs at a lower stress in compression than in tension. This means that
resistance to deformation will be less on the inside of a bend than on the outside.
Consequently, in order to minimise strain energy, the neutral plane will move towards
the outside. If the fibre shape and the stress–strain curves in tension and compression
are known, the position of the neutral axis and the resistance to bending can be
calculated.

A common procedure is to calculate an effective bending modulus EB

(or EBs) from the above equations. The difference from the modulus measured in
tension gives an indication of the difference between compressive and extensional
resistance.

Chapman [2] developed this approach by presenting his results as bending ‘stress–
strain’ curves. This is a convenient way of normalising the information to eliminate
the direct effect of fibre dimensions. He defined the bending strain as b/R, where b
is half the thickness in the plane of bending. If the neutral plane is in the mid-way
position, this is the maximum strain in the fibre. However, there will be lower strains
in other parts of the fibre, with a complicated distribution if the fibre is irregular in
shape. If the neutral plane shifts from the mid-position, the maximum strain (at the
greater distance from the neutral plane) will be larger.

Equation (17.4) may be written as:

2The consistent SI units for specific flexural rigidity are N m × m/(kg m–1)2 or N m4
 kg–2. If E is in

N/tex and ρ in g/cm3, then Rf  = (1/4 π) (η Es/ρ) × 10–3 N mm2/tex2.
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moment =  =   or  = 
2

2M
E Ak

b
b
R

Mb
Ak

E
b
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 (17.12)

This equation is analogous to Hooke’s law, and (Mb/Ak2) has the dimensions of
stress. Chapman therefore terms it the ‘bending stress’ and uses it in the more general
non-linear situation.

Lee [3] has modified the standard analysis and derived the bending moment versus
curvature relation for rectangular, elliptical and hollow cross-sections with a power
law relation for the stress–strain properties of the material. In a later paper [4], he
treats a greater variety of cross-sections. Jung and Kang [5] also analyse the large
deflection of fibres with non-linear elastic properties. He and Wang [6] treat the
buckling of fibres with irregular cross-sections.

17.2.3 Measurement of bending

The flexural rigidity of coarse monofilaments may be measured by supporting the
specimen at either end and finding the deformation due to a load at the centre. A
tensile tester may be modified as shown in Fig. 17.3 [7].

Peirce [8] suggested studying the deformation of loops under an applied load.
Carlene [9] used this method for viscose rayon filaments. A circular ring was suspended
and loaded by a rider, as shown in Fig. 17.4. Peirce showed that:

flexural rigidity = 0·0047mg(2πr)2 cos 
tan 

θ
θ (17.13)

where mg = weight of rider, r = radius of ring, θ = 493d/2πr and d = deflection of
lower end of ring.

Guthrie et al. [10], following a method devised by Khayatt and Chamberlain [11],
measured the deflection of short lengths (from a fraction of 1 mm to 2.5 mm) of
filaments clamped at one end and loaded at the other. The loading was applied by
pressing the specimen against a razor edge attached to the arm of a torsion-balance.
The deflection could be measured by a microscope with a micrometer eyepiece. If the
deflection was small, it could be shown that:

17.3 Adaptation of tensile tester for measurement of flexural rigidity of coarse
fibres.
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flexural rigidity = 
Fl

d

3

3
(17.14)

where F = force applied to specimen, l = length of specimen from clamp to razor-
edge and d = deflection of specimen.

The flexural rigidity may also be measured dynamically [12, 13]. One end of a
specimen is vibrated transversely, and the frequency is varied until the position of
resonance, at which the amplitude of vibration of the specimen is a maximum, is
reached. At least 0.5 cm of straight fibre is required for a test, and it may be observed
with a microscope. The method may be used at frequencies between about 20 Hz and
10 kHz. The air damping may usually be neglected, and the rigidity is then given by:

flexural rigidity = 
4 2 4 2

4

π ρA l f

h
(17.15)

where A = area of cross-section of specimen, ρ = density of specimen, l = length of
specimen, f = resonant frequency and m depends on the harmonic that is being
excited and is a solution of the equation cos h × cosh h = –1 (for the fundamental m
= 1.8751).

The loss modulus or tan δ may be determined from the width of the resonance
peak, as described in Section 16.5.3.

Yu and Liu [14] used a buckling test shown in Fig. 17.5(a) to measure bending
resistance. Figure 17.5(b) shows the variation of displacement with axial compressive
force. The force rises to a maximum, which is the critical value at which buckling
occurs. Yu and Liu solve the differential equations for the bending mechanics and
show that the effective bending modulus can be determined from the linear plot of
critical stress against (D4/L2), where D = fibre diameter and L = fibre length.

There are three experimental difficulties in measuring the full bending moment
versus curvature relations: the manipulation of fine fibres at small radii of curvature;
the measurement of small moments; and the maintenance of a uniform curvature in
the specimen (most simple methods of bending lead to a variable curvature, as is
apparent for example, from Figs 17.3, 17.4 and 17.5). Chapman [15] has described

r

d

mg

17.4 Measurement of flexural rigidity by a loop.
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an apparatus that overcomes these difficulties. It is based on a principle introduced in
a fabric-bending test by Livesey and Owen [16]. The essential features of Chapman’s
method are shown in Fig. 17.6. Curvature is applied by rotation of one fibre mount,
and the couple is determined by using a sensitive electronic microbalance to measure
the force on a lever arm attached to the other mount. Provided that the lever arm is
long, the errors due to non-uniform curvature are negligible.

17.2.4 Experimental results

Table 17.2 gives examples of the results of experiments on bending obtained by
Owen [17], using a double-pendulum method. If the fibre is non-uniform, one would
expect a difference between the moduli found in bending tests and those found in
tensile tests, since the outer layers play a larger part in bending than do the centres

17.5 (a) Axial buckling test. (b) Force displacement plots with critical condition
circled. From Yu and Liu [14].

Rotation
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17.6 Principle of Chapman’s fibre-bending tester [15].
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Table 17.2 Flexural and torsional properties of fibres 65% r.h.20 °C [18]

Fibre Specific flexural Modulus GPa Specific torsional Shear modulus
rigidity —————————————— rigidity (kN/mm2)
(mN mm2/tex2) bending tension (mN mm2/tex2)

Cotton 0.53 7.7 0.16
Viscose rayon

Fibro (staple) 0.35 10 8.7 0.058–0.083 0.84–1.2
Vincel (high wet modulus) 0.69 20 0.097 1.4

Secondary acetate 0.25 4.2 0.064
Triacetate 0.25 3.8 0.091
Wool 0.24 3.9 5.2 0.12 1.3
Silk 0.60 14 0.16
Casein

Fibrolane 0.18 2.3 0.11
Nylon 6.6 (3 types) 0.15–0.22 2.5–3.6 1.9–3.8 0.041–0.060 0.033–0.48
Polyester fibre

Terylene 0.30 7.7 6.2 0.067 0.85
Acrylic fibre (3 types) 0.33–0.48 6.0–8.1 4.9–7.0 0.12–0.18 1.0–1.6
Polypropylene 0.51 5.2 2.4 0.14 0.75
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of the fibre. In practice, Guthrie et al. [10] found that the modulus in bending tests
was greater than that in tensile tests at similar rates of loading for acrylic, polyamide
and polyester fibres. Kärrholm and Schröder [19] obtained the same results for viscose
rayon, but Khayatt and Chamberlain [11] found the bending moduli in wool to be
lower than the tensile moduli. Yu and Liu [14], using the buckling test, found bending
moduli of 1.47 GPa for wool, 2.15 for alpaca and 4.58 for silk.

In dynamic tests, Guthrie et al. [10] found that the modulus of viscose rayon was
constant between 40 Hz and 7 kHz; but Horio et al. [20] observed a drop in the
modulus near 20 Hz. This is shown in Fig. 17.7, together with values of E″ and η (see
Section 16.5.2). This suggests that there is a peak in the absorption and a drop in the
modulus at a low frequency.

Meredith [18] reported dynamic-bending measurements of tan δ, as shown in Fig.
17.8 for four synthetic fibres, with peaks in the important range between 0 and
150 °C. He also reported rather complicated results for cellulosic and protein fibres.
Other results have been given by Meredith and Hsu [13].

Elder [21] reported on the effect of temperature and humidity on the bending
modulus of some synthetic monofilaments. It is interesting to note that nylon 6 and
6.6, polyethylene, and polypropylene are on the lower part of a sigmoidal curve
between 20 and 80 °C, but polyester fibres are on the upper part. For example, at 65%
r.h., the bending modulus of nylon 6 falls from 3 GPa at 15 °C to 1.3 GPa at 40 °C but
then changes less, whereas Terylene polyester fibre is close to 13 GPa between 20 and
40 °C but falls to 10.3 GPa at 80 °C. A change in relative humidity of from 30 to 85%
at 20 °C causes the bending modulus of nylon to fall from 5.5 to 1.5 GPa.

Experimentally, for viscose rayon, the flexural rigidity has been found to be
proportional to (tex)n, where the index n is slightly less than the theoretical value of
2. Guthrie et al. [10] found n = 1.96 for Fibro staple fibre, and Carlene [9] found
n = 1.80 and 1.82 for other specimens of viscose rayon.

0 20 40 60 80 100
Frequency (Hz)

Poorly
oriented

Highly
oriented

E

E″

η

η

E

E″

10
–6

 η
 (

N
s/

m
2 )

15.0

12.5

10.0

7.5

5.0

2.5

0

3.0

2.5

2.0

1.5

1.0

0.5

10
–1

0 E
, 

10
9 E

″ 
(N

/m
2 )

17.7 Values of E, E″ and η in in bending of two viscose rayon monofils [20].
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Skelton [22] reported that the bending recovery of 15 denier (1.67 tex) nylon fell
steadily from close to 100 % for small curvature to about 20 % at high curvature.

17.2.5 Bending stress–strain relations

Love [23] showed from elasticity theory that a modulus defined as the ratio of
bending stress to bending strain is identical with the tensile modulus for a uniform,
transversely isotropic beam. In the absence of other complications, the bending and
tensile stress–strain curves should coincide near the origin.

If the fibres being tested are elliptical, with semi-axis a perpendicular to the plane
of bending and semi-axis b in the plane of bending, then the bending strain is (b/R)
as defined above, and the bending stress is (4M/πb2a).

A comparison of bending stress–strain curves with tensile stress–strain curves is
shown in Fig. 17.9. Generally similar results were found by Chapman with finer
fibres, though it was not possible to carry the tests to such large bending strains.

In all the manufactured fibres, the bending stress–strain curves lay below the
tensile curves and indicated that yield in bending, due to yield on the compression
side of the bend, occurred more easily than yield in tension. This was accompanied
by the development of kink-bands on the inside of the bend. Observations of these
kink-bands were described by Bosley [24] and Jariwala [25, 26]. Typical examples
are shown in Fig. 17.10. Application of tension after a single bend removes the
visible kink-bands and there is no loss of strength. The occurrence of kink-bands
depends on test conditions. In polyester fibres, kink-bands develop in a single bend
at 20 °C but not at 100 °C, whereas in nylon they appear at 100 °C but not at 20 °C.
The development of kink-bands into flex fatigue failure, including the effect of
temperature and humidity, is discussed in Section 19.5.2.
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17.8 Tan δ measured in dynamic bending of fibres at 0% r.h at frequencies of
200–300 Hz: A polypropylene; B, acrylic fibre; C; nylon; D polyester fibre.
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However, in horsehair (and wool), the bending curve is higher. If the yield behaviour
were the same in compression as in tension, Chapman showed that the bending yield
stress would be about 1.7 times as great as the yield stress in a tensile test. In fact, the
bending yield stress in horsehair is twice the tensile value, and this indicates that the
yield stress in compression is larger than the yield stress in tension. In this situation,
the neutral plane will move towards the outside of the bend, whereas in the synthetic
fibres it will move towards the inside.

Chapman [2] also studied the influence of ambient conditions in bending modulus
and found, as would be expected, a decrease in stiffness with increase in temperature
and humidity. In another paper, Chapman [27] described studies of bending-stress
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17.9 Bending (B) and tensile (T) stress–strain curves from Chapman [2]: (a)
nylon 6 fishing line; (b) high-tenacity polyester fibre filament; (c)
polypropylene monofil; (d) horse hair.
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relaxation and recovery. Whereas wool and nylon usually did show complete recovery
in time, polyester fibres were left with a permanent set, probably as a result of the
compressive yielding.

17.2.6 Loop strength and knot strength

If a filament is loaded in a bent state, it will break more easily than when it is straight.
This is due to the initiation of breakage by the high extension of the outside layers.
The reduction in strength, of which some values are given in Table 17.3, is greatest
in fibres with the lowest elongation at break. A similar effect is observed when there
is a knot in the filament, and values for the decrease in strength due to this cause are
also given in Table 17.3.

200 µm
(a) (b)

100 µm

7.10 Kink-bands in bent polyester fibres: (a) shown by polarised light
microscopy; (b) visible on the surface in scanning electron microscopy.

Table 17.3 Loop and knot strengths

Fibre
  

Loop strength
Tensile strength

  100×
  

Knot strength
Tensile strength

  100×

Cotton 91
Viscose rayon 58 90
High-tenacity viscose 96.5 63

rayon
Acetate 95
Wool 85
Silk 88
Nylon 82.5 86 98,88
Orlon acrylic fibre 80.9
Dacron polyester fibre 72.8
Fibreglas 8.4 5

(from Coplan [28]) (from Bohringer (from Berry
and Schieber [29]) [30])
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17.2.7 Compression and bending in high-performance fibres

There is a major difference between different types of HM–HT fibres in their resistance
to bending, which is related to their resistance to axial compressive stresses. Yielding
in compression with the formation of kink-bands, which is described above for nylon
and polyester fibres, is a more severe problem in highly oriented linear-polymer
fibres. Yielding occurs by internal buckling of cylindrical elements. This is really a
manifestation of the Euler buckling of a column, which occurs under a low stress
when the aspect ratio L/D of the element is long. The simple Euler treatment is for a
single element, but analogous effects occur in multiple assemblies provided that the
interaction between the elements is not so high that shear between elements is prevented.
For single rods or bundles without any lateral cohesion, the buckling will be into a
smooth bending curve; but, where there is some interaction between neighbouring
elements, it is more likely to occur as sharp kinks of the form indicated in Fig. 17.11.
Details of the occurrence of kink-bands in aramid fibre filaments have been discussed
by van der Zwaag et al. [31]. Such effects can occur at any structural level: fibres in
a yarn or a composite; fibrils or other elements within a fibre; or the linear molecules
themselves. Sometimes, the forms may be biased by particular structural features,
such as crystal twinning or particular molecular conformations; but this is essentially
a secondary effect and merely reflects that the yield will occur in the easiest of
various possible ways.

It is, of course, difficult to study single fibres in compression because, except at
impossibly short test lengths, they buckle as a whole before the internal yielding
occurs. However, the formation of kink-bands in compression can be demonstrated
by the dynamic effects of snap-back after breakage. Quantitative estimates of
compressive strength can be obtained from tensile recoil measurements [32], and
some experimental results are listed in Table 17.4. Values of compressive strength
can also be inferred from loop tests, and van der Zwaag and Kampschoer [33] found
that the compressive strength of aramid fibres ranged from 0.5 GPa for a low-
modulus type to 0.9 GPa for a high-modulus type. The values for HMPE were much
lower. Compressive yield can also be shown in composites. For example, although
the initial moduli in tension and compression of a Kevlar 49/epoxy unidirectional
composite are almost the same, there is yield in compression at a strain of about 0.3%
at a stress of about one-fifth of the tensile breaking stress. The yield determines the

17.11 Compressive deformation to a kink-band.
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maximum stress that an oriented linear polymer fibre can sustain. Consequently, the
compressive strength is the same low value as the compressive yield stress.

Kawabata [34] developed a microcomposite method for measuring axial compression
of fibres. A fibre bundle, which has been dipped in liquid epoxy resin is pulled into
a Teflon tube with an inner diameter of 1 mm. After curing, the composite, which has
a fibre volume fraction of 0.8 to 0.85, is extracted and cut into 5 mm lengths.
Compression forces up to 2 kN are applied through a steel plunger giving deformations
of less than 2  µm, which can be measured on an LDVT. The fibre stress is calculated
from a simple mixture law. Figure 17.12, which includes axial extension, shows the
low yield stress in axial compression. Results for a number of fibres are shown in
Figure 17.13. HMPE and polyester fibres have a lower compressive yield stress than
aramids. Another way of presenting the data by plotting the tangent modulus against
strain is shown in Fig. 17.14. The low compressive modulus of the Kevlar fibres
corresponds to the approach to the minima in Fig. 17.13. Glass shows a constant
modulus, indicating linearity in extension and compression. The ceramic fibre Tyranno
is also linear in extension and compression. The carbon fibre shows an increasing
modulus, indicating a constant upward curvature in the stress–strain curve from
compression to extension.

Table 17.4 Comparison of tensile strength and compressive strength
measured in recoil [32]

Fibre Tensile strength Compressive strength
(GPa) (GPa)

Kevlar 29,49 3.4 0.37
Polyethylene, gel-spun 2.7 0.07
Carbon, Magnamite AS4 3.6 1.4

Thornel P-55 2.1 0.4
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17.12 Aramid (Kevlar 29) fibre in axial extension and compression. From
Kawabata [35].
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In contrast to the easy compressive yield of the one-dimensional structures, the
three-dimensional bonding in ceramic and glass fibres allows no mechanism for
compressive yield. If there is a high degree of three-dimensional interlocking in
carbon fibres, there will be no mechanism for yield in compression, and the compressive
strength will be high. But, in more perfect graphitic structures, the compressive
strength will be lower.

The counterpart to the low compressive strength of the oriented linear polymer
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17.13 Axial compression behaviour of aramid fibres compared with HMPE
and polyester. From Kawabata [34].
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17.14 Longitudinal modulus as a function of strain. From Kawabata [34].
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fibres is that they can suffer severe bending without breaking, whereas the three-
dimensionally bonded fibres cannot do so.

Materials such as carbon, glass and ceramic fibres, which are linear elastic in
tension and compression, follow the classical behaviour in bending, as shown in Fig.
17.1. The neutral plane remains central and leads to equal and opposite tensile and
compressive strains on the outside and inside of the bend. If the radius of curvature
of the bend is R and the fibre radius is r, the maximum strain present is r/R, and, when
this equals the breaking strain, rupture will occur. Consequently, DuPont’s alumina
FP fibre with a breaking extension of 0.4% cannot be bent into a curvature tighter
than 250 fibre diameters without breaking.

In contrast to this, when there is yield in compression, the neutral plane will move
out to allow most of the deformation to occur by the easier compression mode. The
situation is illustrated in Fig. 17.15. Mathematically, equation (17.2) has to be modified
because the compressive force on an element on the inside of the bend, beyond the
small region of elastic deformation, will be given by fyδA, instead of (x/R) YδA,
where fy is the yield stress and Y is Young’s modulus. The division of area between
the tension side, δAt, and the compression side, δAc, will be given by a minimisation
of the deformation energy, Ub, where:

Ub = ∑1/2(x/r)2YδAt + ∑fy(x/r)δAc (17.16)

Schoppee and Skelton [36] have developed the bending–breakage test shown in
Fig. 17.16, and this confirms that Kevlar fibres can be bent back on themselves
without breaking. If the neutral plane had remained central, this would have implied
a tensile strain of 100%. Values for various fibres are shown in Table 17.5. The fibres
that do not yield in compression break at curvature levels close to those that would
be predicted from the tensile breaking extensions. It is reasonable that the breaking
strains calculated from bending tests should be larger than those from tensile tests,
since they are effectively made on a very short test length, comparable with the fibre
diameter.

17.15 (a) Stress–strain relations for Hookean material (H) and material
yielding in compression (Y). (b) Bending response: H, neutral plane central; Y,
neutral plane moving out.

Stress

Strain
Y

H

H Y
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17.3 Twisting of fibres and the shear modulus

17.3.1 Torsional rigidity

The torsional rigidity of a fibre, its resistance to twisting, is defined as the couple
needed to put in unit twist, that is, unit angular deflection between the ends of a
specimen of unit length. The shear modulus is defined as the ratio of shear stress to
shear strain, the shear strain being measured in radians.

The torsional rigidity can be obtained in terms of the shear modulus (or modulus
of rigidity) in the same way that the flexural rigidity can be obtained in terms of the
tensile modulus, since twisting bears the same relation to shearing as bending does
to stretching.

We consider the twisting of a cylinder of length l, as shown in Fig. 17.17. After it
has been twisted through an angle θ, a line AB has been sheared through an angle φ
to the new position AC. The shear stresses set up give an internal couple opposed to
the applied torque. The shear angle, which is zero at the centre, increases in proportion
to the distance from the centre, x. Consider an element of area δA at a distance x from
the centre:

shearing force = vφδA = v(θx/l)δA (17.17)

where v = shear modulus (force/unit area). Therefore:

moment about the centre line = v(θx/l)δA · x = vθx2δA/l (17.18)

total torque = (v θ/ l ) ∑x2δA = vAk2θ/l (17.19)

where Ak2 = ∑x2δA (17.20)

Table 17.5 Rupture in bending [36]

Fibre Breaking strain Maximum apparent
in tensile test (%) strain in bending (%)

Glass 6.2 7.3
Graphite HM-S 0.8 1.4

HT-S 1.4 2.8
Kevlar 49 3.0 100

17.16 The bending test developed by Schoppee and Skelton [36].
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We can define a shape factor, ε, by the relation:

k
A2 = 

2
ε
π (17.21)

This gives ε = 1 for a circular fibre. The shape factor ε is different from η in bending,
since, in equation (17.19), x is the distance from the centre line, whereas in equation
(17.5), x is the distance from the neutral plane.

When equation (17.18) is converted to a relation involving specific shear modulus
n, linear density c, density ρ and twist per unit length τ, it becomes:

total torque = 
2ε

ρ τnc





(17.22)

The torsional rigidity may be defined either as the torque to produce unit twist in
radians per unit length, when it will equal (εnc2/2πρ), or as the torque to produce one
turn per unit length, when it will equal (εnc2/ρ). The expression shows the effect of
shape, density, modulus and fineness on the torsional rigidity of a fibre. As in bending,
since fineness comes in as a squared term, it is the most important factor. It is
convenient to introduce a quantity, the torsional rigidity of a specimen of unit linear
density (in tex), independent of the fineness of the particular specimen, and this may
be called the specific torsional rigidity3, Rt. It is given by:

R
n

t = 
ε
ρ





 (17.23)

We have no direct values of the shear modulus, since these are found by torsional
measurements, as described in the next section.
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17.17 Twisting of a fibre.

3See footnotes 1 and 2 on pages 415 and 417 for notes on units.
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The determination of shape factor has been discussed by Meredith [37]. For simple
shapes, the value of the shape factor may be obtained theoretically by integration, no
measurement on the fibre being necessary. For slightly more complicated shapes,
there are expressions for the shape factor that require the substitution of certain
parameters of the fibre cross-section, for example, the major and minor axes of
elliptic cross-section, or the relative areas of wall and void in hollow fibres.

For very complicated shapes, such as that of rayon, an experimental analogy may
be used. If a membrane is formed across a hole having the same shape as the cross-
section of the fibre and is then distended by air pressure, the shape factor will be
proportional to the volume between the film and the plane of the plate containing the
hole. This analogy depends on the fact that both problems are governed by equations
of the same form. The experiment may be carried out by having a burette communicating
with a vessel fitted with two plates, one having a hole of circular cross-section and
the other a hole of the shape of the cross-section that is being investigated. The holes
are covered with a soap film, and the volume needed to raise the circular membrane
to a given height (and thus to a given air pressure) is measured first with both soap
films being distended, and then with the irregular hole sealed off. Thus the volumes
contained under the two membranes can be determined. The areas of the holes are
also measured, and the shape factor is given by:

ε =  1

2

2

1

2V
V

A
A











 (17.24)

where V1 and A1 are the volume and area for the irregular hole, and V2 and A2 are the
volume and area for the circular hole.

Table 17.6 gives expressions for the shape factor for various cross-sections and
shows the values given by Meredith [37]. Lee [38] provides a more detailed analysis
of the torsional rigidity of fibres with a generalised elliptical cross-section.

The above analysis is only valid for small twist. In Figure 17.17, AC = AB sec φ,
which causes a tensile strain of (sec φ – 1), increasing from the centre to the outside,
where ϕ equals the twist angle α. Table 17.7 compares the shear strain, equal to tan
α, with the tensile strain. At low twists, tensile strain can be neglected, but it must be
taken into account at high twists, particularly as tensile modulus is greater than shear
modulus. The tensile strains will be strongest for twisting at constant length. Figure
17.18 shows the development of torque and tension in a nylon monofilament twisted
at constant length. At zero tension, the fibre will contract on twisting, reducing the
tensile strain at the outside but giving a compressive strain at the centre.

17.3.2 Experimental methods

A method used by Morton and Permanyer [40] for measuring torque–twist relations
is indicated in Fig. 17.19. The specimen is mounted between a rotating head A and
a torsion-wire of known properties, which is connected to another rotating head C.
The principle of the method is that, as the specimen is twisted by the rotation of A,
the other head, C, is rotated so as to maintain the pointer B freely in a constant
position, marked by the indicating pointer D. Owing to the absence of rotation of B,
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Table 17.6 Shape factors for torsion (after Meredith [37])

Cross-section Expression for shape Fibres approximating Shape factor ε
factor ε to the cross-section

Circular 1 Cuprammonium rayon, 1
nylon, casein, Ardil,
Terylene, Saran, glass,
polythene, etc.

Elliptical, l = b/a
    

2
 + 1/e e

Wool >0.977

Thin elliptical tube of constant thickness
    

(2  – 1 + ) (1 + )
2(  + ) (1 – )

2 2

3

e x x
e x x

Kapok 5.07 (mean of
a/a1 = x, b1/a1 = e 10 values)

Thick tube, constant wall thickness Approximately 
    

4
( – )

m

o i

πA l
A A l

Cotton 0.71
Flax 0.96, 0.92
Ramie 0.77 (mean values)

b
a

b1

a1
b

a

t

Area A0

Area Am

Area Ai

Mid-way line,
length l
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0.95
Irregular, determined by soap-film method

Viscose
  

    

Fibro

Tenasco
viscose rayon






0.93Rayon
0.94

Fortisan 0.97

Acetate  
  

Celanese
Seraceta





0.73

0.69

Race-rack, e = c/2r
    

3(4  + )

[3 (1 + 2 ) + 8 ( + 3)]

2

2 2

e

e e e

π
π π

Orlon 0.57
Vinylon 0.66
Vinyon 0.67

Rectangular, e = b/a
    

2 (1 – 0.63 )
3

πe e Tussah silk 0.35
Calcium alginate 0.51

Quadrant of circle 0.84 Silk 0.84

Table 17.6 (Continued)

Cross-section Expression for shape Fibres approximating Shape factor ε
factor ε to the cross-section

c

r

a

b
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the twist in the specimen is given by the number of turns taken by A, which may be
rotated at a constant rate. The torque is obtained from the twist of the torsion wire,
which is calculated from the angle turned through by C. Values are noted at intervals
as the test is in progress. The same apparatus can be used for measuring the relaxation
of torque. With sensitive transducers, the method could be automated [41].

A torque transducer suitable for fibres is described by Sikorski [42, 43] as part of
the flexible thermomechanical analyser (FTMA) described in Section 18.5.2. It
incorporates semiconductor strain gauges in a commercially available flexible pivot.
Twist is directly inserted. The instrument is computer controlled to give programmed
changes in two independent variables selected from tension, torque, elongation and
twist together with temperature control. Another sensitive torsion tester is described
by Kawabata [44].

Table 17.7 Comparison of shear and tensile strains at surface of a circular fibre

Twist angle α Shear strain (%) tan α Tensile strain (%) sec α – 1

1° 0.17 0.015
5° 8.7 0.4
10° 18 1.5
45° 100 41
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17.18 Development of tension and torque in an 80 µm diameter nylon
monofilament twisted at 5 turns/second. From Sikorski et al. [39].
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Values of the torsional rigidity can also be found dynamically, by observing the
oscillations of a torsion pendulum, which consists of a bar suspended by the fibre. It
may be shown that:

torsional rigidity of fibre = 8 3

2
π Il
t

(17.25)

where I = moment of inertia of the bar about the fibre axis, l = length of fibre and t
= period of the oscillation, corrected, if necessary, for the damping.

Meredith [37] used 1.5 cm lengths of fibre with light-alloy inertia-bars, ranging in
mass from 16 to 110 mg and in length from 1.3 to 2.6 cm. By a suitable choice of bar,
the tension on the filament could be kept between 0.49 and 1.96 mN/tex, and the
period of oscillation between 4 and 10 s. Under these conditions, the damping was
negligible. Owen [17] used a double-pendulum method.

17.3.3 Results of torsional experiments

Figure 17.20 shows torque-twist relations obtained by Morton and Permanyer [41].
They are similar to tensile stress–strain curves. Table 17.2 includes values of the
specific torsional rigidity and shear modulus of fibres determined in Owen’s dynamic
tests [17], in which the strain was small. The results are directly comparable with
Owen’s bending results in Table 17.2. The specific torsional rigidities range from
0.05 to 2 mN mm2/tex2.

Meredith [37] found a very low value for specific torsional rigidity of polyethylene
(0.054 mN mm2/tex2) and high values for glass (6.4 mN mm2/tex2), as expected from
its material properties, and kapok (73 mN mm2/tex2), due to its hollow form. Shear
moduli are typically five to ten times lower than tensile moduli, but in the ratio is

C

Torsion
wire

Fibre

B D

Drive for
rotation

A

17.19 Measurement of torque–twist relation [40].
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greater in highly oriented fibres, such as flax and Tenasco (28). Muraki et al. [45]
found shear moduli of 1.28 to 1.42 GPa for wool compared with tensile moduli of
3.55 to 3.73 GPa.

Table 17.8 gives values of tensile and shear moduli of fibres measured with a
torsion pendulum by Zeronian et al. [46]. Values of the shear moduli cover a three-
fold range from 0.5 to 1.6 GPa, but the tensile moduli cover a 50-fold range, reflecting
the much higher orientation of the HM–HT fibres.

Torsional rigidity is very much affected by moisture, fibres being easier to twist as
their regain increases. This is shown by the results in Fig. 17.21, in which the
torsional rigidity, compared to a value of 1 when dry, is plotted against the relative
humidity. Clayton and Peirce [48] found that the rigidity of cotton fibres decreased
as the temperature increased; the temperature coefficient was 0.28% per °C in the dry
state, rising to 1.48% per °C at 8.3% regain.

17.20 Torque–twist relations for various fibres at 65% r.h. and 20 °C [41].

Table 17.8 Tensile and torsional properties. From Zeronian et al. [46]

Fibre Tensile Torsional E/ν Breaking
modulus– (shear) twist
E (GPa) modulus– angle (°)

ν (GPa)

Polyester (PET) experimental filament 9.01 0.85 10.5 44
Polyester (PET) high-speed spun (POY) 1.98 0.65 3.05 77
Polyester (PET) drawn POY 8.81 0.85 10.4 32
Nylon 6 filament 3.41 0.49 6.96 48
Polypropylene filament 2.09 0.57 3.67 60
Gel-spun polyethylene (HMPE) 93.7 0.84 111 22
Polybenzimidizole (PBI) staple fibre 6.78 1.37 4.95 25
Aramid (PPTA) Kevlar 49 filament 94.2 1.60 58.9 17
Polyplhenylenesulphide (PPS) staple 4.62 1.39 3.32 46
Vectran M filament 62.2 0.56 111 18
Vectran HS heat-set filament 69.5 0.56 124 20
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Meredith [37] found that the torsional rigidity was independent of tension for the
acrylic fibre Orlon between 0.98 and 9.80 mN/tex, increased slightly for nylon; and
increased by 1.3% for an increase of tension of 0.98 mN/tex in crimpy wool, where
the configuration of the fibre would be altered.

Guthrie et al. [10] found that the torsional rigidity of viscose staple Fibro was
proportional to (tex)1·9. The difference from the theoretical index of 2 can be accounted
for by a difference of shape in fibres of different fineness.

Chamberlain and Khera [49] found that the specific torsional rigidity increased as
the outer layers of viscose rayon filaments were removed. Meredith [18] found that
the average coefficient of variation of shear modulus was 22% for cellulosic fibres,
15% for protein fibres, and 12 for synthetic fibres.

Skelton [50] reported that the torsional recovery of nylon falls from 100% for low
strains to 60% for high strains. Figure 17.22 shows torque–twist and recovery response
of a polypropylene fibre.

17.3.4 Torsion and time

Creep and relaxation will occur in twisting just as they do in extension. Fig. 17.23
gives examples of the relaxation of torque found by Permanyer [47]. When log(torque)
is plotted against log(time), straight lines are found. At low twists, there is a change
of slope at about 30 minutes. Figure 17.24 shows stress relaxation and inverse relaxation
after recovery in a nylon monofilament.

If determined in tests made over a wide frequency range, the dynamic modulus
would also be expected to vary, but Meredith [37] found no change in nylon for
periods of oscillation between 5 and 16 seconds. He also found that the damping of
the oscillations was very small when the period of oscillation was long.

Kawabata et al. [51] found torsional creep compliance of Kevlar 29 to be about
300 times greater than the longitudinal compliance.
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17.21 Variation of torsional rigidity with humidity [47].
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17.3.5 Breaking twist

If a fibre is twisted far enough, it will eventually rupture. The twist for which this
occurs may be called the breaking twist. It has been confirmed experimentally by
Schwab [52] and Koch [53] that, as would be expected theoretically, the number of
turns to rupture is inversely proportional to the fibre diameter. To obtain a characteristic

17.22 Torque–twist and recovery of 0.54 tex polypropylene fibre. From Sikorski
et al. [39].
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17.23 Relaxation of torque [47].
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property of the fibre material, one may use the breaking twist angle α. This is the
angle through which the outer layers are sheared and is given by:

tan α = πdτb (17.26)

where d = diameter of fibre and τb = breaking twist in turns per unit length.
Typical values of breaking twist angles found by Koch [53] are given in Table

17.9. The general pattern of the results is the same as that for breaking extensions.
The effects of some changes of testing conditions are given in Table 17.10.

Table 17.8 includes breaking twist angles measured at constant length by Zeronian
et al. [46] using an apparatus described by Ellison et al [55]. The breaking twist
angles correlate with break extensions, which reflects the fact that break is triggered
by the elongation at the fibre surface.

17.4 Shear strength

It would be difficult to measure directly the relation between shear stress and shear
strain. Finlayson [56] made direct measurements of shear strength by using a bundle
of fibres placed in a hole passing through both jaws of the apparatus. The jaws are
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17.24 Torque–twist behaviour for a 75 µm diameter nylon monofilament,
followed by stress relaxation, recovery and inverse relaxation. From Sikorski
et al. [39].
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then pulled apart and the force required to break the bundle is measured. Breakage
must occur through shear. It was found that the breaking load was proportional to the
total count of the bundle, which indicated that any composite specimen effect was
small. The tensile strength was measured on the same specimens, and the results are
given in Table 17.11. It will be seen that shear strength is less than tensile strength,
the difference being particularly great in a stretched rayon.

17.5 General elastic deformation

17.5.1 Elastic constants

For small strains, the properties of a homogeneous, perfectly elastic, but anisotropic
material may be expressed in terms of a number of elastic constants [23, 57–59]. As
indicated in Fig. 17.25, there are three tensile stresses, perpendicular to each face of
a cube, and three shear stresses, paired together in two perpendicular directions in the
plane of each face. These are related to six possible strains, extension in three mutually

Table 17.9 Breaking twist angle [53]

Fibre Range of α°

Casein 58
  

1
2

–62
Polyamide fibre, staple 56–63

Polyamide fibre, continuous-filament 47
  

1
2

–55
  

1
2

Polyester fibre, staple 59
Polyester fibre, continuous-filament 42–50

Acetate 40
  

1
2

–46

Wool 38
  

1
2

–41
  

1
2

Silk 39

Viscose rayon, normal 39
  

1
2

–35
  

1
2

Cotton 37–34

Polyacrylonitrile fibre 33–34
  

1
2

Viscose rayon, high-tenacity 31
  

1
2

–33
  

1
2

Flax 29
  

1
2

–21
  

1
2

Viscose rayon, very high-tenacity 23

Glass fibre 2 1
2

–5

Test conditions 65% r.h.; room temperature; 1 cm lengths;
tensile stress of 10 N/mm2; 240 turns/min.

Table 17.10 Effect of conditions on breaking twist angle [54]

Change in breaking twist angle

Change in condition Viscose rayon Acetate

Test length, 5 → 60 mm 25.2 → 28.7° —
Rate of twisting, 30 → 565 turns/min Negligible Negligible
Humidity, 65% r.h. → wet None 28 → 36°
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perpendicular directions and shear about three mutually perpendicular axes.
Consequently, there are 36 elastic constants in the stress–strain matrix. However, the
matrix is symmetrical, so that the number reduces to 21 for the most asymmetric
structure. As the symmetry of the material increases, the number of constants decreases,
until, in a completely isotropic material, only four constants (Young’s modulus,
Poisson ratio, shear modulus and bulk modulus), of which only two are independent,
are usually considered.

It is rare for fibres to be isotropic, and the simplest assumption, which is likely to
hold reasonably well for many fibres, is that there is no difference in properties
between different directions at right angles to the fibre axis, although these are
different from the properties parallel to the fibre axis. Under these conditions, which

Table 17.11 Shear strength [29]

Shear tenacity Tensile tenacity
(mN/tex) (mN/tex)

Fibre 65% r.h. Wet 65% r.h. Wet

HIghly oriented cellulose 104.0 94.2 706 589
Nylon 111.8 95.2 392 353
Flax 81.4 73.6 255 284
Vinyon 98.1 94.2 275 245
Viscose rayon 63.8 31.4 177 69
Silk 115.8 88.3 314 245
Cotton 84.4 76.5 235 216
Acetate 57.9 50.0 118 78
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Y1

Y1
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Y3
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Y3
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X2

Y1
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17.25 Direction of principal stresses.
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may be called transversely isotropic, the number of common constants may be reduced
to seven: two Young’s moduli, YL and YT; two shear moduli, nLT and nTT; and three
Poisson ratios, σLT, σTL and σTT. Their directions are illustrated in Fig. 17.26. Of
these, YL is the modulus measured in tensile or bending tests and nLT the shear
modulus involved in torsional rigidity. The number of independent constants is reduced
to five by the relations:

n
Y

Y YL
TT

T

TT

LT TL

T
= 

2(1 + )
  = σ
σ σ

(17.27)

For this system, the bulk modulus, k, that is, the ratio of a hydrostatic stress to the
resulting volume strain, is given by:

k
Y

 = 
2 + ( / ) –  2 ( + 2 )

T

TL LT TT TLσ σ σ σ (17.28)

In a fibre with radial symmetry, as illustrated in Fig. 17.27, all that is justified is
the orthotropic system with three mutually perpendicular axes of symmetry. With

nTT

YL

σ LT

nLT

σTL σTT

YT

17.26 Elastic constants of a transversely isotropic fibre.

L

R

T

17.27 Directions of principal axes in a fibre with radial symmetry.
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orthogonal curvilinear coordinates, the directions are taken as longitudinal, radial
and tangential. There are 12 constants

YL, YR, YT; nLR, nRT, nTL; σLR, σRT, σTL; σRL, σTR, σLT

with three relations between them:

σ σLR

L

RL

R
 = 

Y Y

σ σRT

R

TR

T
 = 

Y Y

σ σTL

T

LT

L
 = 

Y Y
(17.29)

A detailed account of orthotropic elasticity is given by Jayne [60].
In fibres, particularly natural fibres, with an internal structure, a simple model is

not a true representation. Transversely isotropic or orthogonal symmetry may apply
locally but the elastic constants vary from place to place. This gives rise to complicating
effects. For example, in cotton the helical orientation of the molecules leads to an
untwisting, namely a shearing, of the fibre under axial tension. In wool the properties
will differ in ortho- and para-cortex and in the cuticle (and in meso-cortex and
medulla, if present). However, for experiments on whole fibres, it may be convenient
to present results as if the simple model was valid.

It may also be noted that the particular elastic constants mentioned are not the only
ones that could be defined. It is quite common to use compliances, ratio of strain to
stress, instead of moduli. The transverse deformation may be given by the ratio of
transverse strain to axial stress instead of by the Poisson ratio, which is the ratio of
transverse strain to axial strain. Moduli could be defined as at zero transverse strain,
with another constant to give transverse stress developed, instead of at zero transverse
stress, and so on. The constants also serve as surrogates for full stress–strain relations.

17.5.2 Measured properties

Tensile tests account for the overwhelming majority of studies of the mechanical
properties of fibres. In addition, as already described, there have been a number of
studies of torsional behaviour. Thus the only moduli (or more generally the stress–
strain relations) for which information is easily available are YL and nLT.

Bending, as described earlier, also involves YL, but, while tensile behaviour is
averaged over the whole fibre, bending is influenced more by outer layers. Comparison
of the two gives information on variations in modulus, particularly between skin and
core. Bending also gives information on behaviour in compression. Marlow [61]
reports that the initial moduli in tension and compression are equal: indeed, a
discontinuity at the origin would be highly improbable. This result was confirmed by
Elder [62], who examined various synthetic fibre monofilaments in tension, compression,
and bending up to 1% strain. However, Chapman’s results in Section 17.2.5 show
that at larger strains the yielding behaviour is different.
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Direct studies of axial compression have been made by cutting sections of fibres
or monofils and compressing them between plates. Miles [63] found that, although
nylon bristle shows the same modulus in tension and compression, the compressive
stress–strain curve deviates markedly from the tensile stress–strain curve at strains
greater than 1.5%. Whereas the tensile stress–strain curve is approximately linear up
to a stress of 0.2 N/tex and a strain of 15%, the compression curve bends over to
reach a stress level of 0.04 N/tex, which is substantially constant above 5% compression.

Compression between plates may also be used to study the transverse properties
and obtain information on YT. Figure 17.28 shows the principles of the test.

The Poisson ratio σLT (transverse contraction for imposed extension) can be studied,
with some difficulty, by several methods: direct microscopical examination; diffraction
methods [65]; and methods involving the insertion of a fibre in a tube and noting the
change in electrical conductance [66] or fluid flow. Values of about 0.39 have been
reported for nylon. Banky and Slen [67] found values between 0.42 and 0.63 for
wool.

A complete study of elastic constants was made by Hadley et al. [68], who obtained
values of the five independent elastic constants for several manufactured fibre
monofilaments, with diameters of 100–300 µm. The experimental methods used were
as follows:

• axial extension, by applying loads and measuring length changes with a travelling
microscope, 1 minute after loading, to obtain the axial modulus YL;

• axial Poisson ratio σLT by measuring the change of diameter of monofilament by
means of a microscope with a calibrated eyepiece;

• transverse compression to give thickness of contact between monofilament and
plates and change in diameter parallel to plane of contact (the former is mainly
dependent on the transverse modulus YT; the latter is related to the transverse
Poisson ratio σTT by an extension of Hertzian contact theory);

• torsion measurements with a vibration pendulum, giving the shear modulus nLT.

By calculation from these observations, the values of all the constants can be obtained.
Figure 17.29 shows how the three moduli vary with the draw-ratio. In general, the

tensile modulus changes most rapidly in the range of draw-ratio values that are

17.28 Principle of method of measurement of transverse moduli [64].
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commonly found. Consequently, the ratio of tensile to shear modulus, which plays an
important part in the buckling of filaments in bulked yarns, can be varied considerably.
Table 17.12 collects a set of values, including all the usual constants, together with
values of the moduli obtained by Morris [64] under wet and dry conditions.

In spruce wood, which has orthotropic symmetry, Barkas [57] found the values
given in Table 17.13. The wood had a density of 0.5 g/cm3 and a regain of 12%. It
will be noted that YT << YL, nTT << nLT, and σTL << σLT or σTT, as would be expected
for a material that is highly oriented along the fibre axis.

In the highly oriented HM–HT fibres, such as aramids HMPE and PBO, the weak
bonding between the molecules will give low values of the transverse modulus, YT,
both shear moduli, nLT and nTT, and the Poisson ratio, σTL. The PIPD ‘M5’ fibre has
the somewhat higher shear modulus of 7 GPa due to the hydrogen bonding.

In perfect graphite, there is a very high degree of anisotropy, as shown by Fig.
17.30. The maximum Young’s modulus, for extension within the planes of atoms, is
estimated to be 1060 GPa, but across the planes it is only about 37 GPa [69]. The
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17.29 Variation of moduli with draw-ratio: a, nylon; b, polyester fibre; c,
polypropylene fibre [68].
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shear modulus between planes is estimated to be 4 GPa, but that within planes,
180 GPa and, through planes is estimated as 15 GPa. These properties must be reflected
in carbon fibres, though the exact effect will depend on the extent of disorder,
disorientation, and interconnection between the planes. Good orientation of planes
parallel to the fibre axis implies that the shear modulus (nLT in Fig. 17.26), which
determines torsional rigidity, will be low. If the overall arrangement of planes is such
that the fibre is transversely isotropic, the transverse modulus YT and the shear
modulus nTT will be an average of high and low values; but, if the structure is
layered, as in Fig. 17.31, which approximates to the form of pitch fibres, there will
be substantial transverse anisotropy.

Glass and ceramic fibres are isotropic, so their Young’s modulus Y will be the
same in all directions. Poisson ratios σ have typical values of around 0.3, and, since
there are only two independent elastic constants in an isotropic material, the shear
modulus n will equal Y/2(1 + σ), namely about 40% of the tensile modulus. There
will be no directions of particular weakness in the structure.

Table 17.12 Elastic constant data for drawn nylon and drawn and undrawn polyester fibre
[68] and for three other fibres [64]

Constant* Nylon Undrawn Polyester fibre Polyester fibre
polyester fibre A† B‡

YL 3.45 2.27 9.09 14.08
YT 1.37 2.50 1.12 0.62
nLT 0.61 0.93 0.74 0.74
nTT 0.54 0.89 0.39 0.23
σLT 0.48 — 0.43 0.44
σTL 0.19 — 0.05 0.02
σTT 0.27 0.38 0.44 0.37

Constant* Nylon Courtelle acrylic fibre Viscose rayon

YL dry 2.50 2.80 2.85
wet 0.95 2.77 0.15
YT dry 0.91 0.21 0.14
wet 0.74 0.20 0.0075

*Values of Y and n are expressed in GPa.
†Drawn to a birefringence of 0.153.
‡Drawn to a birefringence of 0.187.

Table 17.13 Elastic constants of spruce wood [57]

Moduli (kN/mm2) and Poisson ratios

Young’s moduli YL YL = 16.6 YT YR = 0.85; YT = 0.69
Shear moduli nLT nLT = 0.84; nLR = 0.63 nTT nRT = 0.037
Poisson ratios σLT σLR = 0.36; σLT = 0.52 σTT σRT = 0.43; σTR = 0.33

σTL σRL = 0.018; σTL = 0.023
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17.5.3 Transverse compression

Kawabata [70] developed the instrument shown in Fig. 17.32(a) for measuring transverse
compression on single fibres. As indicated in Fig. 17.32(b) and (c), the fibre is
compressed between a top plane, 0.2 × 0.2 mm2, and a bottom plane. Both surfaces
are mirror finished steel. Other features of the instrument are the driver, force transducer,
LDVT for deformation, and provision for heating and wetting. The displacement
resolution is 0.05 µm, which is adequate for testing fibres with a diameter of 5 µm or
more. Figure 17.32(d) shows the deformation geometry for a fibre of radius R (diameter
D) for a contraction U under a force F per unit length. Kawabata modifies the
analysis used by Ward et al. [71, 72] to give the following equations between measures
of stress f = F/D and strain u = U/D:

u
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E E
R
b

 = 
4

 1  –   0.19 + sinh  
T

LT
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π
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(17.30)

17.30 Variation of modulus of perfect graphite crystal with direction [7].

17.31 Carbon fibre oriented in layers across the fibre.
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If ( σLT
2 /EL) << (1/ET), i.e. when longitudinal modulus >> transverse modulus, the

equations simplify to:
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(17.32)

b
f R
E

2
2

T
 = 

8
π (17.33)

A finite element computation showed good agreement with predictions of the
equations used by Kawabata [70]. The sinh–1 term causes little divergence from
linearity except for small values of f. The experimental results for Kevlar 48 diverged
from the relation between f and u at low stresses, probably due to an artefact of
mounting the specimen, and at high stresses, which would be a change in material
properties. Calculated moduli were obtained from intervals along the linear part of
the experimental curve.

Figure 17.33 shows force/deformation plots for aramid fibres in transverse squashing
and recovery and Fig. 17.34 shows the much larger resistance to deformation in

Driver
magnet

Driver

Force
transducer

Linear
differential

transformer

Drive rod

Heater

Top plane

Heater
Water

(a)

Botton plane

Specimen

F

(b)

(d)

0.2 mm

R

R

F

(c)

Fibre diameter
7 ~ 30 µm

17.32 (a) Transverse compression instrument. (b) Section through
compression zone. (c) Plan of compression zone. (d) Compression geometry.
From Kawabata [70].
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17.33 Deformation and recovery of aramid fibres in transverse compression.
From Kawabata [70].
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17.34 Inorganic fibres in transverse compression, with Kevlar for comparison.
Tyranno is a silica fibre. PRD-166 is an alumina/zirconia fibre (not
commercialised), CF 1400 is a carbon fibre. From Kawabata [70].
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inorganic fibres. The log–log plot of axial and transverse moduli in Fig. 17.35 shows
a comparatively small difference between the moduli in nylon, which is in agreement
with earlier data. There are only small increases in transverse modulus in going to
polyester and HM–HT fibres, but the axial modulus increases greatly. In the glass
fibre, the moduli are almost equal, but other inorganic fibres show anisotropy with
the axial moduli increasing and the transverse moduli decreasing. This is to be
expected in carbon fibres where the graphitic planes are axially oriented, but is
surprising in the ceramic fibres. Table 17.14 gives values of transverse and axial
moduli and strengths. Transverse creep compliance was about 600 times greater than
axial compliance [51].
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17.35 Comparison of transverse moduli ET and axial moduli EL. Britlle type: •
carbon (PAN), � carbon (pitch), � ceramic, � glass. Yielding type: � PET, �
nylon 6,  nylon 66, � kevlar, � HMPE From Kawabata [70].

Table 17.14 Elastic moduli measured by Kawabata [45, 70]

Fibre type Transverse Axial Transverse Axial
modulus modulus strength strength
(GPa) (GPa) (GPa) (GPa)

PAN-based carbon 6.03–10.08 235–343 0.95–3.34 3.08–5.19
Pitch-based carbon 3.08–9.95 126–379 0.079–0.64 2.35–4.73
Alumina 12.7 341 2.34 1.34
Silica 26.5 160 6.73 3.34
Aramid 1.59–2.59 63.4–179 0.042–0.077 2.18–3.57
Wool 0.97–1.01 3.55–3.73
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17.5.4 Interactions of stresses

For small stresses and strains, it is assumed in elasticity theory that the effect of each
stress is independent and that the total effect of a complex stress situation can be
obtained by summing the separate effects of all the stresses. Thus the initial tensile
modulus of a fibre would be unaffected by slight twisting. But, when the strains
become large, there will be an interaction between the effects.

Dent and Hearle [73] examined the tensile properties of twisted single fibres. The
experiments were performed in two ways: with constant length during twisting and
with a constant low tension during twisting. Twist values are given as the twist factor
τ√c (tex1/2cm–1), where τ is the twist in turns/cm and c is the linear density in tex.
This is related to the twist angle α by the relation:

σ√c = 1/2√(105/πv) tan α (17.34)

where v is the fibre specific volume in cm3/g.
Figure 17.36 illustrates the effect of twist on the stress–strain curves, with constant

length twisting. The tendency to contract during twisting displaces the start of the
curve up the stress axis. The initial moduli become less at high twists, and the
breaking point occurs much earlier when the twist factor becomes large. A comparison
of results obtained in constant tension twisting is given in Fig. 17.37. In most fibres,
though not in cotton and wool, the strength is fairly constant up to twist factors of
between 30 and 50 tex1/2/cm but then decreases rapidly. Failure due to twist alone
occurs at twist factors between 50 and 120 tex1/2/cm.
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17.36 Stress–strain curves of nylon fibre twisted to various levels at constant
length [73].
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17.37 (a) Change of tenacity, based on linear density before extension, of
fibres twisted at constant tension [73]. (b) Change of breaking extension,
based on length in twisted state before extension, and of contraction, based
on length before twisting, of fibres twisted at constant tension: 1, nylon; 2
Terylene polymer; 3, cotton, 4, viscose rayon; 5, acetate; 6 Acrilan acrylic; 7,
wool [73].
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Hearle and Zhou [74] have reported a study of the effect of combined torque and
tension on Kevlar. The effects are generally similar, except that, in constant-length
twisting, the strength of Kevlar falls to zero at a twist factor of 30 tex1/2/cm, which
is about half the value found in nylon and polyester fibres.

Table 17.15 Compression of fibre mass [76]

Fibre Initial height, in., 15 min recovery
under 1-gf load* (%)

Saran 0.80 100
Nylon 1.00 90
Wool 1.00 31
Casein 0.50 24
Orlon acrylic fibre 1.20 17
Dacron polyester fibre 1.10 14
Acetate 0.84 11
Viscose rayon 1.30 8

*1 gf = 9.81 mN; 1 in. = 2.54 cm.

(a)

(b)

17.38 Recovery of compressed rayon staple on wetting: (a) immediately after
immersion; (b) 30 s later After Kolb et al. [76].
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Another example of the application of combined stresses is in the observation by
Wilson [75] of a change in the breaking extension of nylon under combined axial and
transverse stress.

17.6 Compression stresses on fibre masses

One other type of stress that has been studied is the application of a compressive
stress to a mass of staple fibres. Kolb et al. [76] placed 0.3 g of fibres in a cylinder
of 13 mm (1/2 in). diameter, measured the height under a load of 1 gf, and then
compressed it under a pressure of 689 MN/mm2  (100 000 lbf/in2) for 1 min. Table
17.15 shows values of the initial height and of the recovery after 15 min. It will be
noted that fibres that show good tensile recovery also show high recovery after
compression. The fibres showed a crushed appearance where they crossed one another.
By contrast, the nylon is seen to be little affected. The synthetic fibres recovered
better in hot air, and viscose rayon recovered 100% in water. The photographs in Fig.
17.38 show the effect of water on the rayon staple.
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18.1 Introduction

18.1.1 Changes of state in polymers

Most materials are characterised by transitions between three states: solid, liquid and
gas. Melting and boiling occur so sharply that they can define the limits of temperature
scales or be used to identify chemical substances. Polymers behave differently. Firstly,
the molecules are so large that decomposition occurs before there could be any
possibility of vaporisation. In many polymers, such as cellulose and aramids,
decomposition occurs before melting can take place. Secondly, when it occurs, melting
is not sharp. There is a gradual softening before a viscous melt forms. The flow
properties change strongly with temperature, so that melt-spinning conditions must
be carefully chosen. Thirdly, there are important transitions in the solid state. Different
allotropic crystal forms are also found in many materials and are of minor importance
for fibre behaviour. Transitions within amorphous regions and more subtle effects in
crystalline regions play a major role in the processing and use of fibres.

Simple amorphous polymers show one important transition in the solid state. At
low temperatures, they are glassy solids; at high temperatures, they are elastomeric.
In natural and synthetic rubbers, the transition occurs below room temperature. In
plastics, such as polystyrene or polyvinyl chloride, the transition is above room
temperature. There are complications. Firstly, the transitions are time dependent as
well as temperature dependent. Secondly, unless the polymer molecules are very
long and entangled or are lightly crosslinked, the rubbery state merges into viscous
flow. There are two other polymeric states. At high degrees of crosslinking, the
materials are rigid thermoset resins. Regular polymers can form crystals. All of these
features are involved in thermal transitions of fibres, many of which combine crystalline
and amorphous material.

Figure 18.1 illustrates the above effects. Below –20 °C, natural rubber (Fig. 18.1(a)),
is a hard solid with a shear modulus over 1 GPa. It then falls sharply to a value over
a thousand times smaller. If there is no crosslinking, the viscoelastic modulus continues
to fall as temperature rises. However a moderate degree of vulcanisation forms cross-
links through sulphur bridges and the material has good rubbery properties from –20
°C to 150 °C. With more crosslinks, the transition from the glassy to the rubbery state
moves to higher temperatures. In polystyrene (Fig. 18.1(b)), the transition from glass

18
Thermomechanical responses
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to rubber occurs at around 100 °C. The influence of rheology is shown by the change
in transition temperature and the change to rubbery flow according to the time available.
For large changes in rate, from milliseconds to years, the changes in transition
temperature will be much larger. The sigmoidal creep curves in Fig. 18.2 could
represent the behaviour of a given polymer at different temperatures.

18.1.2 The nature of transitions

Melting of crystals and boiling of liquids are first-order transitions. The structure
changes from the regular packing in crystals to the mobile disorder in a liquid and
then to the dispersion into the available volume for a vapour. In addition to the
transformation of mechanical state, they are characterised by latent heats and changes
of volume.

A thermodynamic second-order transition involves no change of molecular
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arrangement. Snapshots of the molecular arrangement above and below the transition
would be virtually the same. But there is a change in response of the structure, shown
up by changes in the second-order quantities, namely the rate of thermal expansion
(dV/dT), the specific heat (dH/dT), and so on. The difference between first- and
second-order transitions is shown graphically in Fig. 18.3.

The change in amorphous polymers from the glassy to the rubbery state has many
of the characteristics of a second-order transition, but is not as sharp and is time
dependent. The transition would not be obvious to anyone merely watching a polymer
such as polystyrene being heated (in contrast to the clear indication of the melting of
wax). It would be apparent if the material were allowed to deform, since it suddenly
becomes flexible.

There is a distinction between sharp and broad transitions. This may be, and often
is in polymer materials, merely a reflection of local variations in structure, for example,
in crystal size or perfection or in local packing, so that the observed effect is really
a collection of sharp transitions spread over a range of temperatures. Even in a
uniform system, transitions vary in sharpness depending on the extent to which they
are cooperative. A highly cooperative transition with a large total energy change,
such as the change from crystal lattice to liquid disorder, will be sharp. It makes no
sense to say that a crystal is half-melted (except in terms of a molten region progressively
spreading over the crystal with sharp boundaries between the regions), since the only
way of defining the crystal is by saying that a large number of neighbouring molecules
are packed regularly together. However, at the other extreme, the dissociation of a
molecule into two parts (e.g. H2 → H + H) is not at all cooperative: each molecule
splits independently of the rest and the degree of dissociation can change steadily
from 0 to 100% over a broad transition range of temperature. Some of the transitions
in fibres lie between these two extremes.

18.1.3 Observation of transitions

Melting can be directly observed, for example by putting a fibre on the hot stage of
a microscope and noting when it flows. However, the change may not be very sharp.
Softening of the material, which leads to fibres sticking together, gives an impression
of melting. Values of melting points for a given fibre vary. For example, in earlier
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accounts the melting point of nylon 66 is given as 250 °C but later to values between
255 and 265 °C.

More information can be obtained from thermo-analytical techniques using
commercial instruments. In differential scanning calorimetry (DSC), the heat required
to increase the temperature of a sample is compared with a reference. The heat flow
is controlled to maintain a constant heating rate and to keep both temperatures the
same. A plot of heat flow against temperature would indicate the value of the specific
heat1. Since latent heat is ideally taken up at a constant temperature, it should show
as an infinite negative spike. Experimental limitations would spread the spike to a
limited extent, but in a typical fibre test as shown in Fig. 18.4 the spread is much
larger, indicating the range over which melting occurs. The positive spike at about
120 °C indicates some additional crystallisation or increased crystal perfection. The
broad peak above 50 °C may be due to some rearrangement of the structure to a lower
energy state. The initial rapid decrease is an artefact of the start of heating. The heat
flow rate between peaks and troughs gives values of specific heat and integration of
the peak or trough gives values of latent heat of crystallisation or melting.

An alternative to DSC is differential thermal analysis (DTA) in which heat flow is
maintained constant. Differences in temperature between sample and reference give
similar information to DSC and enable specific and latent heats to be computed.
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18.4 A typical print-out from a DSC scan of a polyester fibre melting around
260 °C. Courtesy of Du Pont.
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Measurements of volume or other dimensional changes with temperature are not
very convenient for fibres. The most instructive way of studying the secondary
transitions in the solid state is by measurement of dynamic mechanical analysis
(DMA), as described in Section 16.5.3, with the typical plot in Fig. 18.5 showing the
decrease in the modulus E′ and paer in the modulus E″ in the transition region.
Measurements of dielectric constant and dielectric loss can be made, but while these
are good for polymer films or blocks, they are not well suited to fibres. Changes of
dielectric properties with frequency and temperature are included in Chapter 21.

Thermomechanical analysis (TMA) measures changes in length at constant tension
or vice versa and has been less used on fibres than DMA. The other common thermal
measurement, thermogravimetric analysis (TGA), measures chemical decomposition
through loss of weight and is not relevant to this book.

18.2 Melting

18.2.1 Characteristic features

Melting is an obvious phenomenon. The fibre loses its identity and contracts to a
molten globule. In bulk, the molten material is a viscous liquid, quite different from
a collection of solid fibres. Melting can also be detected in other ways, though
different experimental methods do give slightly different values of melting point,
particularly if the heating rate changes. The fibre loses strength, so that, at the
melting point, a small weight suspended by the fibre will fall. At the melting point,
the fibre becomes sticky. And on melting, the material takes up its latent heat, detectable
as an endotherm peak in calorimetry, as described above.
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18.5 Real and imaginary dynamic moduli of nylon 6.6 fibres: plotted on a
logarithmic scale. From Murayama et al. [3].
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The melting of textile fibres is an essentially irreversible process. To some extent,
this is true of all materials: a wax statuette cannot be reformed without the mould.
But in fibres, it is not only the external form but also the fine structure that cannot be
reproduced without repeating the manufacturing sequence of extrusion, drawing and
other treatments. Typical values of fibre melting points are given in Table 18.1.

Apart from differences attributed to experimental error, there are differences between
different specimens of the same type of fibre as a result of structural differences. A
major source of difference is the size and perfection of crystalline regions.
Thermodynamically, the melting point is the temperature at which the values of the
free energy F in the crystalline and molten states are the same, so that they are in
equilibrium together. We therefore have:

∆F = ∆U – Tm∆S = 0 (18.1)

T U
Sm = ∆

∆ (18.2)

where ∆ refers to the difference between the states, U is the internal energy, S is the
entropy and Tm is the melting point.

The situation is shown graphically in Fig. 18.6. In a small or imperfect crystal,
which forms on initial crystallisation, the internal energy is not as low as in large
perfect crystals, owing to the surface or defect energy contributions. The melting
point is therefore low, but increases as crystals grow and defects are eliminated on
annealing. An example of this effect is shown in Fig. 18.7, in which the variation of
melting point with the thickness of polyethylene single crystal lamellae is plotted. It
may be noted that a value of about 140 °C is usually quoted for bulk linear polyethylene,
with values of about 110 °C for branched polyethylene, where the crystals are necessarily
less perfect. The extrapolated value for large perfect crystals is 146 °C.

The dependence of melting point on crystal size and perfection is important in
melt-spun synthetic fibres, because, as a result of their formation by rapid quenching
and drawing, they will contain many small imperfect crystals. Annealing, by exposure
to temperatures approaching the quoted melting point, will serve to melt the smallest
and least perfect crystals and allow larger, more perfect ones to grow or, more
generally, will allow a molecular rearrangement, with a removal of defects, which
leads to bigger and better crystalline regions. There will also be some increase in
total crystallinity, although this will be relatively small, since, to a considerable

Table 18.1 Fibre melting points (approximate values)

Polyethylene – low density 120 °C
 – high density 135 °C

Polypropylene 170 °C
Secondary acetate 250 °C
Cellulose triacetate 300 °C
Nylon 6 215 °C
Nylon 6.6 260 °C
Polyester fibre 260 °C
(Cellulosic and protein fibres decompose before melting)
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degree, an increase in ordering in one region of a structure of long chains can only
be achieved by accumulating disorder in other regions.

Another well-known phenomenon is the depression of the melting point in the
presence of impurities. This shows up in fibres as a lowering of the melting point in
the presence of water, as is shown experimentally by observing the melting of fibres
enclosed in a glass capsule full of water. In nylon, the wet melting point is 80 °C
lower than the dry melting point, and even in polyester fibres it is 35 °C lower [5].
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18.6 Classical free energy diagram for melting and annealing.
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18.7 Variation of melting point of polyethylene single crystals with lamellar
thickness. From Bair et al. [4].
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A situation that is specific to polymers is the strong dependence of melting point,
particularly the internal melting during annealing, on the state of stress on the system.
The cause of this is the existence of the tie-molecules that link the crystalline regions.
If these are under tension, then the melting of part of the chain will relieve the tension
in the tie-segment and allow its entropy to increase. There is thus not only the usual
contribution to ∆S from the portion transferring from crystal to melt but also a
contribution from the change in the linked segment. The latter part will be greater if
the chains are under tension. Looking at it another way, one can say that stress from
the tie-molecules will help to break up the smaller crystals.

18.2.2 Multiple melting phenomena

Nylon and polyester fibres, among other polymeric materials, show interesting effects
of multiple melting in differential calorimetry. When a fibre sample is heated, a
negative peak is indicative of the absorption of latent heat and thus of melting. Figure
18.8 shows such data for undrawn nylon yarn as received and after annealing at
220 °C. In the untreated yarn, the peak is at 256 °C, but on annealing a second peak
appears below 240 °C. With further annealing this becomes more prominent and rises
in temperature level, to reach 260 °C eventually. This suggests that there are two
structures with different melting behaviour. Bell [6] calls the first, produced by rapid
melting, form I and the second, given by annealing, form II. There is a point at which
both give a peak at 256 °C, but the two can be distinguished by seeing if annealing

18.8 DSC data for undrawn nylon 6.6 yarn after annealing at 220 °C for
various times. From Bell et al. [6].

240 250 260 °C 240 250 260 °C
No treatment 1 hour

240 250 260 °C 240 250 260 °C
16 Hours 792 Hours

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres466

causes the second peak to appear or not. The change from form I to form II also
occurs on cold drawing, as shown in Fig. 18.9. Similar effects are found for polyester
(PET), (Fig. 18.10). Even after a day’s annealing, form II melting has only reached
about 240 °C, whereas the drawn fibre in Fig. 18.4 has an endotherm at 260 °C.
Presumably the higher stiffness of the polyester molecule hinders the growth of
larger perfect crystals except in an oriented structure where the molecules are more
nearly parallel.
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18.9 Change in areas of melting endotherms with draw ratio for nylon 66.
From Bell and Murayama [7].
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18.10 Effect of annealing time at 220 °C on DTA plots for polyester (PET) that
had been crystallised for 0.5 h at 110 °C: 1, no annealing; 2, 0.25 h; 3 2 h; 4,
6.5 h; 5, 23.5 h. From Bell and Murayama [7].
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The experimental evidence on the subject was reviewed by Hearle and Greer [8].
They suggested that form II consists of crystalline micelles, as in Figs 1.16 and
18.11, which become larger on annealing, whereas form I is another state of the solid
polymer in which many individual chain repeat units will be in register with neighbouring
units, but interspersed with disorder so that there are no separate crystalline and non-
crystalline regions, as in Fig. 1.18(c). Although there are problems in applying
thermodynamics to metastable states, they explained the effects in terms of changes
in free-energy, F = (U – TS). Hearle [10] took the argument further, as shown in Fig.
18.12. As temperature increases, (–TS) becomes numerically greater leading to a

(a) (b)

18.11 (a) A fringed micellar model proposed by Hearle and Greer [9]. (b) An
alternative form, from Hearle [10].

18.12 Free energy of various forms. From Hearle [10].
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decrease in free energy along the glass→liquid line. The lines for form II correspond
to the effect of annealing with the melting point increasing as crystals grow and
become more nearly perfect, as shown in Fig. 18.6. There is nothing remarkable in
this. The question is where form I fits in. Hearle [10] made the controversial suggestion
that form I is a dynamic crystalline gel. Figure 18.13(a) is a schematic view of a form
I structure in unoriented polymer, which anneals to form II shown in Fig. 18.13(b).
The dynamics are as follows. In a liquid near the melting point (Fig. 18.14(a)),
molecules are locally in crystallographic register but are continually changing position
in a state of dynamic equilibrium. In the polymer form II (Fig. 18.14(b)), the locally

(a) (b)

18.13 Schematic of possible structures of (a) form I and (b) form II in
unoriented polymer. For clarity, the packing is much more open than in
reality. From Hearle [10].

(a) (b)

B

C

A

E

D

18.14 (a) Molecules locally in crystallographic register in a liquid. (b) Chain
segments locally in register in form I. From Hearle [10].
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linked segments would also be in a state of dynamic equilibrium. However, when the
segments (A) separated, the neighbours (B, C, D, E) would still be linked. This would
be happening all over the material with links breaking and re-forming, but always
maintaining the continuity of a solid. The entropy of this form would be greater than
the static structure of form II, so that the slope of the free energy diagram would be
steeper, as shown in Fig. 18.12 and would intersect with the liquid line to give the
melting point of form I. However, annealing would allow the material to fall through
the energy barriers to form II with small imperfect crystals having a lower melting
point. Further annealing would give larger and better crystals with a higher melting
point, eventually passing that of form I. The changes between the several structures
in various circumstances are shown in Fig. 18.15(a), with the thermodynamic
justification in Fig. 18.15(b).

Whether or not the above explanations are correct, the important practical point is
to note the complexity of melting behaviour and the difference in forms that can
occur. Commercial fibre samples may be in either form I or form II, depending on
their thermomechanical history.

18.2.3 Sticking and bonding

At temperatures below the melting point as defined above, thermoplastic fibres stick
together. For example, in early studies of false-twist texturing, Burnip et al. [11]
found that nylon yarn would pass through the heater at 255 °C but emerged as solid
rod. The filaments had not become liquid but they had merged together. The sticking
temperature is sometimes referred to as the meting point, since it implies a degree of
molecular mobility that is not normally found in a solid.

This property of fibres is utilised in thermal bonding of nonwovens. Mukhopadhyay
et al. [12] used the flexible thermomechanical analyser described in Section 18.5.2 to
measure the strength of thermal bonds. Figure 18.16 shows the experimental
arrangement. Fibre loops are held together at specified tension, temperature and time.

After cooling to room temperature, two arms are then cut and the force required
to break the bond is measured. Table 18.2 shows measurements of bond strengths of
four polypropylene fibre types and one copolyester. Except for the low bond strength
for PP4, where an SEM picture shows that the material has become too nearly
molten, the bond strengths correlate with commercial bonding performance. For
optimum bonding, it is clearly necessary to choose the right fibre and the right
bonding conditions. In a later paper, Mukhopadhyay [13] showed that pre-wetting
polypropylene fibres gave good bonding at a lower temperature.

Kim et al. [14] present computaonal analysis of thermal bonding in bicomponent
fibres.

18.3 Dynamic mechanical responses

18.3.1 Dynamic moduli

As described in Section 16.5.2, the real (storage) modulus depends on the elastic part
of the deformation, and the imaginary (loss) modulus or tan δ depends on the time-
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dependent part. Above and below the transition region, the elastic deformation, with
high or low modulus, is dominant. In the transition, the structural response is sluggish,
so that there is substantial energy absorption, which gives the peak in loss modulus
and the phase difference between stress and strain given by the peak in tan δ.
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18.15 (a) Schematic of changes between various forms. (b) Changes between
forms on free energy diagram. From Hearle [10].
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18.3.2 Observed behaviour

The dynamic and loss moduli of various polymers as measured by Takayanagi [15]
are shown in Fig. 18.17. For the simplest semicrystalline polymer, polyethylene, a
glass transition is shown by a sharp drop in modulus E′ and peak in E″ (also shown
in tan δ) around –120 °C. This can be attributed to the onset of freedom of rotation
around —CH2— bonds. There is then a reduction of slope of the modulus plot, which
is clearer in data by Kawaguchi [17], and a trough in tan δ before a steeper fall in
modulus and increase in tan δ over a long temperature range towards melting. In
polystyrene, which is too stiff at room temperature to be useful as a textile fibre, there
is a single transition at around 100 °C in plots that show the major influence of
crystallisation.

Polypropylene has a single transition near room temperature, which is also shown
by the peak in tanδ in dynamic bending in Fig. 18.18. This accounts for the sluggishness
of its response. Any cyclic deformation is damped by the large energy absorption.
The transition will be due to the onset of bond rotation, occurring at a higher temperature
than in polyethylene because of the bulky side group.

Table 18.2 Thermal bonding of four polypropylene fibres and a copolyester. 10 mN tension
gives 17 mN/tex on each arm. From Mukhopadhyay et al. [12]

Bonding conditions Fibre properties

Temperature (°C) 160 100 150 150 20 150 Commercial
Time (seconds) 60 60 60 60 thermobonding
Tension (mN) 10 20 10 20 performance

Fibre type Bond strength mN/tex Fibre strength
mN/tex

PP1 96 391 125 Very poor
PP2 124 355 113 Poor
PP3 240 134 191 308 113 Good
PP4 161 168 224 255 101 Very good
Co-polyester 103, 132 Fibre 122 70 Good

broke

(a) (b) (c)

18.16 Testing bond strength: (a) fibres as mounted; (b) in heated chamber
under controlled tension; (c) ready to measure bond strength. From
Mukhopadhyay et al. [12].
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Nylon 6 shows two low-temperature peaks in E″, which correspond to the peak in
polyethylene but reflect bonds becoming free at different temperatures. Similar peaks
in tanδ are reported by Kawaguchi [17] and, in nylon 66, by Bell and Murayama [7]
film at slightly lower temperatures, though this may be due to different test conditions.
In rapidly quenched film, referred to in the above discussion of multiple melting as
form I, the low-temperature transition was split between two peaks, but in slowly
cooled film, form II, the whole transition was in the higher of the two peaks. Polyester
shows a single peak in the low-temperature region.

The low-temperature peaks are of academic interest, but the peak at about 70 °C
in nylon and 120 °C in polyester has great practical relevance to the behaviour of the
fibres in processing and use. The transition curves are influenced by crystallinity and
orientation, as shown by the results for polyester fibre in Fig. 18.19. The variation of
the transition temperature (as indicated by a maximum in tan δ) with draw-ratio in
polyester fibres is shown in Fig. 18.20 Davis [21] found that there was a change with
time in polyester held at 150 °C at a stress of 5.5 mN/tex. The storage modulus
increased and tan δ decreased by about 10%, approaching equilibrium after 30 minutes.
He also showed that the storage modulus was about 30% higher in an annealed fibre
than in a direct spun fibre. In a paper on the relation between the transition and dye
diffusion, Davis [22] showed that both storage and loss moduli are higher for nylon
66 in glycerol than in water and decrease as the amount of water in a glycerol/water
mixture increases.

In addition to the fairly large transitions shown up by large peaks in the loss
modulus, there may be minor transitions, causing small peaks or shoulders. These
may be due to other deformation mechanisms, though Moseley [23] attributed a large
collection of small peaks at large strain amplitudes to non-linearity of response, and
Dumbleton and Murayama [24] showed that lack of uniformity in a fibre could cause

18.18 Tan δ measured in dynamic bending of fibres at 0% r.h. at frequencies
of 200–300 Hz: A polypropylene; B acrylic fibre; C nylon 6.6; D polyester fibre.
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the appearance of extra peaks. Kveder and Rijavec [25] report dynamic modulus and
loss data for partially oriented and drawn nylon 66 yarns.

The two transitions are also shown in dielectric properties of polyester film as
described in Section 21.6, which includes the combined influence of temperature and
frequency.

18.19 Dynamic modulus and tan δ of PET as measured by Kawaguchi [18] at
about 100 Hz: A, undrawn, 2% crystallinity; B, undrawn, 50% crystallinity; C,
drawn 5×, 25% crystallinity.
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18.20 Effects of draw-ratio on temperature of maximum tan δ for polyester
fibres, from data by Meredith [19] and Kondo et al. [20].
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The influence of water on the transitions is shown by the work of van der Meer
[26, 27], as illustrated in Fig. 18.21. In dry viscose rayon, there appears to be a
transition somewhere above 200 °C, but in wet rayon it shifts to below 0 °C. In
nylon 6, the transition falls from about 80 to 10 °C; and there is a slight effect even
in polyester fibres. The change in the position of the tan δ peak of nylon 6.6 with
relative humidity is shown in Fig. 18.22.

Figure 18.23 demonstrates how the peak in tan δ can be traversed by varying
relative humidity, instead of temperature or time. The acrylic fibre has a large transition
near 100 °C, which is shown in Fig. 18.18. The large decrease in stiffness is shown
by the dramatic changes in stress–strain curves in Fig. 18.24. Experimental
demonstration of the transition just below 100 °C was given by Rosenbaum [28],
who found sharp changes in axial thermal expansion, breaking extension and creep
rate. In this material, the mobility is mainly restricted by the intermolecular forces
caused by the strong electric dipoles in the —C≡≡N groups, and the transition occurs
when freedom of relative movement of chains in less-ordered regions becomes possible.
Another transition, at a slightly higher temperature, will be due to a similar effect in
the ordered regions. However, the individual chains still remain stiff enough for the
fibre to be solid, and a further increase in mobility occurs at a considerably higher
temperature when the chain changes from its regularly coiled, cylindrical, rod-like
form to a more flexible, random coil. Results for some natural polymer fibres are
shown in Fig. 18.25.

The low modulus and high extensibility of elastomeric fibres depend on their glass
transition temperature being below the working temperature. Measurements of dynamic
mechanical properties by Houston and Meredith [30], illustrated in Fig. 18.26, show
a rather sharp transition for natural rubber between –50 and –20 °C but a more
spread-out transition for the spandex fibre Lycra from about –80 to + 20 °C.

18.3.3 A comparison of temperature effects

Hearle [31] suggested that an ideal set of transitions for a fibre material was of the
type shown in Fig. 18.27. The low-temperature transition (A) gives some freedom to
the non-crystalline regions, and thus gives moderate extensibility and high toughness
to the fibre, without making it too soft and extensible. The working region near room
temperature is free of transitions. The greater freedom required to allow crystallisation
to occur appears at the higher transition (B). Then the melting point (C) is higher still
but well below the temperature of chemical degradation.

These properties are shown, in considerable measure, by nylon and polyester
fibres, except that the higher transition in wet nylon does come down to room
temperature, and chemical degradation impinges on the melting point. The latter
effect means that the material must not be kept in the molten state, certainly in the
presence of oxygen, for any length of time. Even appreciably below the melting
point, prolonged exposure can cause a loss of strength, as indicated by the results in
Table 18.3.

Where there is a single glass-to-rubber transition, the fibres are too soft if the
transition is below room temperature, as in polyethylene, or too stiff and brittle if
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18.21 Variation of E′ and tan δ with temperature wet and dry: (a) viscose
rayon; (b) nylon 6; (c) polyester fibre.
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the transition is above room temperature, as in polystyrene. If the transition
straddles room temperature, as in polypropylene, the properties are acceptable but
not ideal.

In fibres that are not melt-spun, the above requirements are not as critical, although
in one way or another there must be some freedom in the structure at room temperatures
and a greater freedom at higher temperatures. Moisture often plays a part in this.

All the fibres made from linear polymers are fundamentally thermoplastic (as
distinct from crosslinked polymers, which are not), but in some, such as cellulose,
the thermoplastic character cannot be exhibited because chemical decomposition,
leading to charring or burning, sets in first. Acrylic fibres and wool are on the
borderline, where both effects occur at similar temperatures.
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18.22 Effect of temperature on tan δ for nylon at various humidities. From
Meredith [19].

18.23 Effect of relative humidity at 20 °C on tan δ: A, viscose rayon; B, nylon
6.6; C, nylon 6; D, Acrilan acrylic fibre.
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18.4 Transitions in keratin fibres

As can be expected from their complex multilevel structure, the transitions in wool
and other keratin fibres are complicated. There are three defined transitions, which
are reviewed by Wortmann [33]. All are strongly dependent on regain as well as
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18.24 Stress–strain curves of Courtelle acrylic fibre. S, 65% r.h., 20 °C as
received; ST, 65% r.h., 20 °C, after water at 95 °C; W20, in water at 20 °C, as
received; W95, in water at 95 °C, as received.
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bending: A, mercerised cotton; B, viscose rayon; C, secondary acetate; D,
wool. From Meredith [29].
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temperature. In increasing temperature, these are referred to as β, α1 and denaturation
transitions. The α-transition is also called the glass transition, but it is more instructive
to regard the glass-to-rubber transition as occurring in two stages at the β and α
transitions.
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18.26 Dynamic mechanical response of elastometric fibres: (a) dynamic
modulus; (b) tan δ [30].
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18.27 Transitions in an ‘ideal’ fibre. From Hearle [31].

1Not to be confused with the mechanically induced α ↔ β transition in helical crystals.

Table 18.3 Loss of strength on prolonged exposure of high temperatures [32]

Percentage strength retained

After 20 days After 80 days

Fibre At 100 °C At 130 °C At 100 °C At 130 °C

Viscose rayon 90 44 62 32
Cotton 92 38 68 10
Linen 70 24 41 12
Glass 100 100 100 100
Silk 73 — 39 —
Nylon 82 21 43 13
Polyester, Terylene 100 95 96 75
Acrylic, Orlon 100 91 100 55
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18.28 (a) Tan δ for low-temperature transition in horsehair at 110 Hz at
different regains. (b) Modulus and tan δ for rhinoceros horn: 1a and 1b cut
parallel to growth; 2a and 2b cut perpendicular to growth. From Druhala and
Feughelman [34].

Druhala and Feughelman [34, 35] investigated the β-transition by cyclic tensile
testing and found a peak in tan δ at about –40 °C in horsehair in a fairly dry state
(2.4% regain), dropping to about –90 °C at 13.7% regain, (Fig. 18.28(a)). This is
similar to the low-temperature transition in nylon, which, as indicated in Fig. 20.15,
is associated with freedom of rotation around covalent bonds. In proteins both main
chain and side chain bonds are immobile below the transition region. A comparable
measurement on rhinoceros horn, Fig. 18.28(b), shows the decrease in modulus at the
transition. The variation in the transition temperature is shown by the lower curve in
Fig. 18.29.

Wortmann et al. [37] investigated the α-transition by measuring the recovery from
cohesive torsional set as mobility was induced. They found the transition at 175 °C
in dry wool decreasing with increasing moisture content as shown by the upper curve
in Fig. 18.29. The behaviour is similar to that of nylon, which has a transition going
from around 100 °C when dry to near 0 °C when wet. Phillips [38] and Kure et al.
[39] studied the transition by DSC. As shown in Fig. 18.30, a sample of wool,
referred to as aged, has an endothermic peak at 50 °C, which presumably reflects the
release of some temporary set in the amorphous matrix. This is followed by an
increase in the heat flow rate, namely an increase in specific heat, between 75 and
125 °C, which is interpreted as a glass transition. If the sample is heated to the final
temperature and then cooled, the endotherm at 50 °C is no longer present in a subsequent
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Phillips × [38].

DSC trace, but the heat flow at the glass transition is still present. In wool, the
temperatures are higher in the dry material, and run into the temperatures of denaturation.
Phillips [38] found that an endotherm at 60 °C was present in a fibre aged for 52 days
at 20 °C, disappeared after rapid cooling, and reappeared in a trace after 15 days at
20 °C.

Wortmann et al. [33, 37, 40] has shown that for both wool and human hair the β
and α transition temperatures Tt vary with moisture content according to the simple
mixture equation proposed by Fox [41] as shown in Fig. 18.29:
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where m1 and m2 are the mass fractions and Tt1 and Tt2 relate to dry and wet wool.
By fitting and extrapolating the experimental data, the α-transition in wool has Tα1

= 174 °C, which is in agreement with torsional data by Menefee and Yen [42], and
Tα2 = – 148 °C, which agrees with values found for ice and glassy water (m1 = 0 and
m1 = 1) [43, 44]. For the β-transition, Tβ1 = – 49 °C and Tβ2 = – 210 °C.

The highest temperature transition can be studied by high-pressure DSC in order
to maintain water in the material. Wortmann and Deutz [45, 46] report measurements
on eight keratinous materials. Figure 18.31 shows a single endotherm peak at 143 °C
in mohair and double peaks in wool at 138 and 143 °C. The transition is interpreted
as a ‘melting’ of the helical crystalline fibrils, though it is influenced by restraints
from the amorphous matrix. It is called denaturation, since it is an irreversible process.
The enthalpy ∆H = 17.1 J/g. If heating is stopped just past the first peak in wool and
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© Woodhead Publishing Limited, 2008



Thermomechanical responses 483

the fibre is then rapidly cooled, a tightly crimped coil is formed. This indicates that
the first transition occurs in the ortho-cortex, which has super-contracted, and the
second transition occurs in the para-cortex, which has a higher cystine content.
Differences in denaturation temperatures in different keratins are attributed to the
varying cystine concentrations in the matrix.

The denaturation temperature decreases from 210 °C in the dry state to 150 °C at
a moisture content of 25% [47, 48]. Wortmann [33] considers various explanations
for the effect of water, but concludes that there is a gap in understanding that requires
further investigation.

18.5 Thermomechanical responses

18.5.1 Thermomechanical analysis

TMA is another way of studying thermal changes in materials. Specimens are held
under constant tension and the length changes monitored. Commercial instruments,
such as the Mettler Thermomechanical Analyser, have attachments for fibre testing.
The simplest response gives a measure of the coefficient of thermal expansion. With
fibres, the interest is more in reversible or irreversible shrinkage and in the step
changes at transitions, though these are not as clear as the peaks in DMA. Buchanan
[49] gives an extensive account of the dependence of thermal shrinkage on the prior
history of nylon and polyester fibres.

Figure 18.32 is a typical TMA trace in a paper on the structural characterisation
and properties of polyvinyl chloride (PVC) fibres [50]. The rise between 80 and
90 °C is a second-order transition, which is followed above 130 °C by an elastomeric
thermal shrinkage as the structure loosens up. The trace terminates with a slight
lengthening, which is due to the fibre extending under the applied tension as it
becomes softer in the approach to melting.

The tendency to contraction, but not expansion, can be studied by the alternative
procedure of measuring tension changes at constant length. Figure 18.33(a) shows
shrinkage force measurements for a polyester (PET) yarn [51]. From a low pre-
tension, the shrinkage force increases over the lower transition range from 75 to
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18.32 TMA trace of drawn PVC fibre. From Kim and Gilbert [50].
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150 °C and then falls as the fibre softens. Pre-treatment at 180 °C almost eliminates
the shrinkage tension. The tension has dropped to almost zero at 250 °C, which can
be taken as one measure of the melting point. A stepwise approach to the equilibrium
shrinkage force (Fig. 18.33(b)), shows a maximum at 60 °C, which is attributed to a
‘classically defined glass transition’.
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18.33 Shrinkage force measurement of a polyester (PET) yarn (15 tex, 48
filaments). (a) Heated at 25 °C/min from pre-tensions of 0.5 mN/tex and
50 mN/tex for yarn as made � and for yarn pre-treated at 180 °C for 20 s at
5 mN/tex �. (b) For fibre as received: A and B are standard shrinkage force
tests; C is equilibrium shrinkage force. From Berndt and Heidemann [51].
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18.5.2 A flexible thermomechanical analyser for fibres

Sikorski and coworkers [52–54] describes a thermomechanical analyser that was
specially developed for fibres and incorporates twisting as well as tensile changes.
There were later enhancements, particularly in software for computer control, data
retrieval and data processing [55]. The fibre specimen is clamped between jaws that
are contained within a heating chamber and connected by rods to external functions.
Temperature is controlled and can be rapidly changed by mixing streams of hot and
cold air through a valve controlled by a stepper motor. Two more stepper motors
control specimen length and twist. Tension is measured by a piezoelectric transducers
for fast response and a strain-gauge transducer for quasi-static measurements. Torque
measurement by the new transducer was described in Section 17.3.2. Twist was
measured by an optical encoder and extension by an LDVT. With this tester, a great
variety of test sequences can be studied.

18.5.3 Irreversible shrinkage

In addition to the reversible changes of dimensions with temperature, which occur in
all materials, many fibres show an irreversible contraction or sometimes an irreversible
expansion on heating. What happens depends on the prior process history of the
fibre, so that manufacturers can supply nylon and polyester fibre in high- or low-
shrinkage variants.

Figure 18.34 shows the irreversible changes in length of typical nylon fibres with
increasing temperature. In order to achieve the same effect, the temperatures must be
about 70 °C greater dry than in steam. In nylon fibres as produced, the shrinkage in
boiling water is usually about 10%, but the value is very sensitive to subsequent heat
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18.34 Irreversible shrinkage of nylon on heating [56].
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treatments, and examples of the range of values are shown in Table 18.4. Similar
effects are observed in polyester fibres, and spontaneously extensible fibres can be
made by appropriate thermomechanical treatments. The more rapid shrinkage that
occurs as the melting point of nylon is approached is shown in Fig. 18.35.

As an alternative to measuring shrinkage, the increase in tension on heating fibres
at constant length may be observed. Some examples of studies on nylon 6 are shown
in Fig. 18.36. The unset fibre shows a rapid build-up in tension. Corresponding to the
tendency to irreversible shrinkage there is an irreversible build-up of tension, so that
subsequent lines lie at a higher level. The positive slope of these lines corresponds to
the reversible contraction, and is another manifestation of the occurrence of rubber
elasticity in nylon. However, the results are also remarkable for the fact that successive
setting treatments, wet at 120 °C and dry at 170 °C for 30 min, cause the lines to shift
to progressively higher tension levels, the values always being highest when the final
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18.35 Length changes in the experiments of Dismore and Statton [58] on
annealing nylon 6.6.

Table 18.4 Shrinkage of 7.8 tex nylon 6.6 yarn in boiling water [57]

Treatment Tension (N) Shrinkage % in boiling water

As received 9
Dry heat (°C)

200 0 0
200 0.1 2
200 0.3 7
200 0.5 6
200 0.75 8
160 0.1 5
240 0.1 4
160 0.5 9
240 0.5 5

© Woodhead Publishing Limited, 2008



Thermomechanical responses 487

treatment was wet. This demonstrates that complicated and continuing structural
changes can occur in repeated treatments.

Mukhopadhyay and Hearle [60] report tests with the flexible thermomechanical
analyser, which show that it is necessary to avoid artefacts due to expansion and
contraction of the rods linked to the jaws. With a modified procedure, Fig. 18.37
shows shrinkage tension measurements of polyester (PET) and nylon 6. The general
pattern is a rapid rise in tension followed by some stress relaxation. The fall in
tension on cooling corresponds to a reversible contraction on heating. The residual
tension corresponds to the irreversible shrinkage. Figure 18.38 shows that the high
spike in the curve in Fig. 18.37(a) is due to the shrinkage tension in unset polyester
peaking at 180 °C during the rise in temperature.

Acrylic fibres that have been stretched, for example, by stretch-breaking, and left
with a ‘permanent’ extension, will contract severely on heating. This is the analogue
of swelling recovery in rayon, which was discussed in Section 15.6. The plastic
deformation of the structure is released when it is freed at the higher temperature.
High-shrinkage fibres of this type are used in combination with non-contracting (or
already contracted) fibres in high-bulk yarns.

The main mechanisms giving rise to an irreversible shrinkage are probably the
following.
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18.36 Tension–temperature curves for nylon 6 fibres, as produced and after
successive setting treatments at 130 °C wet and 170 °C dry. From Koshimo
[59].
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18.38 Expansion of the timescale in the initial part of Fig. 18.37(a). From
Mukhopadhyay [61].
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18.37 Shrinkage–tension plots for fibres rapidly heated, held at constant
temperature and then cooled. (a) Polyester (PET) monofilament, 88 µm
diameter, heated to 200 °C, as received and pre-set at 180 °C for 30 mins.
(b) Nylon 6 monofilament, 85 µm diameter, heated to 180 °C, as received
and pre-set at 160 °C for 30 mins. From Mukhopadhyay [61].

(a)

(b)

© Woodhead Publishing Limited, 2008



Thermomechanical responses 489

• Oriented non-crystalline material, resulting from the original drawing of the
fibre or from mechanical hysteresis or from heating under tension, will revert to
an unoriented or less oriented state when it is loosened by heating.

• The annealing of crystalline regions may reduce their length, as indicated in Fig.
18.39. This will certainly be true if the chain molecules fold in order to crystallise
better, but it may also be true when they move relatively so as to come into better
register.

• Small crystallites may melt, with the chains shrinking axially to a random coil.
Recrystallisation elsewhere will tend to stabilise the shortened form.

18.5.4 Other property changes

Accompanying the thermal shrinkage, there are many other changes in properties,
and a full account of the effects in synthetic fibres has been given by Statton [62].

Figure 18.40, which comes from the same experimental series as Fig. 18.35,
shows that, up to about 190 °C in nylon 6.6, there is little change in strength but an
increase in breaking elongation, which can be accounted for as being due to the
addition of the thermal shrinkage to the breaking extension. But the more rapid
shrinkage above 190 °C is accompanied by a loss in strength and a corresponding
reduction in breaking elongation.

The dyeing behaviour of fibres is altered in complicated ways by heat treatments.

(a)

(b)

18.39 Length changes that may occur on annealing of crystalline regions with
(a) chain-folding and (b) rearrangement of chains.
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Thus, in some experiments on nylon 6, exposure at about 120 °C causes an increase
in dye uptake, but for temperatures above 190 °C there is a decrease: the rates of dye
diffusion also change. This connection shows the need for great uniformity of heat
treatments if dye faults are to be avoided.

The structural changes observed by Dismore and Statton [58] in the nylon samples
for which observations are shown in Figs 18.35 and 18.40 included some increase in
crystallinity (as indicated by the X-ray orientation index) but a reduction in dynamic
modulus, an increased intensity of small-angle X-ray diffraction and an increase in
long-period diffraction, and more fluid-like mobility as indicated by nuclear magnetic
resonance (NMR) results. These results suggest that the crystalline regions are becoming
larger and more perfect, while remaining oriented, with the non-crystalline material
becoming less oriented and more mobile.

Gupta [63] summarises a number of papers on the effect of heat-setting polyester
(PET) yarns at various temperatures both free to shrink and at constant length. The
fibres were structurally characterised by wide- and narrow-angle X-ray diffraction,
polarising optical microscopy, infrared spectroscopy and electron microscopy. The
properties reported on are density, sonic modulus, boiling water shrinkage, tensile
stress–strain response, recovery from elongation and uptake of disperse dye.

18.6 Setting

18.6.1 Technical importance and characteristic features

The ability to set fibres, namely to stabilise their state either in an existing form or
after deformation, has major effects in processing and use. Traditionally, this was
carried out on natural fibres by ironing, which combines pressure, heat and, most
importantly, drying. The advent of synthetic fibres, which could be heat-set,
revolutionised the technology. Fabrics could be heat set, either in a smooth form or
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18.40 Changes in strength and breaking extension in the experiments of
Dismore and Statton on annealing nylon 6.6 [58].
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in sharp creases or pleats. To a considerable degree, the set was held during use and
laundering, which gave ‘non-iron’, ‘drip-dry’ and ‘wash-and-wear’. Processing
continuous filament yarns to give bulk, stretch and texture was the most important of
new fibre processing operations. The ‘ease-of-care’ features of synthetic fibres stimulated
the natural fibre community to develop setting procedures in order to compete with
synthetics.

Setting can be characterised as either temporary or permanent, though the terms
are somewhat loosely used. Temporary set is commonly lost in use and certainly by
going back into the setting conditions and re-setting in a new form. Permanent set
cannot be undone except by going to more severe conditions, if this is possible.

Setting can also be characterised by how it is achieved. This may be by chemical
action. In cotton, rayon and other cellulosic fibres, chemical crosslinks between the
molecules are introduced by treatment with resins. In wool, the natural cystine crosslinks
are broken and re-formed in new positions. These chemical setting treatments are
outside the scope of this book, except insofar as they influence physical properties.
In moisture-absorbing fibres, hydrogen bonds are broken on wetting and can re-form
in new positions on drying to give a temporary set. Setting on drying is seen on
drying of cotton, wool or hair. It is interesting to note that Kärrholm et al. [64] found
that a more severe wrinkling in wool fabrics occurred when the relative humidity was
changed while the material was in the deformed state. Finally there are the thermal
transitions, which have been described in this chapter. The observation of heat setting
and its interaction with moisture raises important scientific and technical questions.
The whole subject of setting was discussed in detail in the book edited by Hearle and
Miles [65], but important research has been done since this was published.

Any thermal transition that causes a peak in the loss modulus must give rise to a
setting effect, since it implies that part of a structure that is rigid below the transition
is mobile above it. If the fibre is cooled through the transition in a deformed state,
than it will become rigid and be set in the new form. The secondary transitions cause
temporary setting effects, since the structure is not changed. A reference state can
always be reproduced by taking the fibre above the transition and cooling it free of
any restraint. The transitions below room temperature are of little practical importance
for setting, but the ones above room temperature do give important temporary set to
fibres. At higher temperatures, but well below the melting point (around 200 °C for
nylon 66 and polyester), a permanent set is achieved. Successive setting can be
achieved by successive treatments under conditions that will disturb the structure
once again. In nylon, industrial experience in false-twist texturing indicates that it is
necessary to go to more severe conditions of temperature or stress to re-set the fibre.
In polyester, second-stage heating, which gives yarns with high bulk but low stretch,
is carried out at lower temperatures than in the first heater where the yarn is set in the
twist state prior to untwisting. The definition of permanent set appears to be weaker
in polyester than in nylon.

It must be remembered that any thermal treatment severe enough to cause a
permanent heat-set will also cause the mechanism of temporary set to operate. A
subsequent less severe treatment, for example, in boiling water, will release the
temporary set but not the permanent set. Fibres set under tension will therefore show
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a shrinkage when later heated. The temporary set may also act as the material cools
down. On first unwinding a textured yarn from a package, it will not show any
texture, but on exposure to heat, the temporary set will be released and the bulk will
develop. The texture can also be developed by ‘milking’ the yarn, namely by repeated
tensioning.

18.6.2 Heat setting of polyester and nylon

An important series of experiments on the heat setting of polyester (PET) monofilaments
was reported by Salem [66] and Buckley and Salem [67, 68]. The monofilaments had
been melt-extruded in the laboratory and drawn 5× to give a diameter of 51 µm
(27 dtex). Any pre-setting was carried out with the fibre taut at constant length. The
setting sequence is shown in Fig. 18.41. For torsional experiments, after releasing
any initial twist, specimens were clamped and twisted at constant length, transferred
to heating in oil or air, then removed to room temperature and released from the
clamps to allow recovery. The fractional recovery f, which is a measure of the degree
of set, is defined as recovered twist/imposed twist. Thus f = 1 indicates no setting and
f = 0 indicates complete set. The quoted strain value is the shear strain at the surface
of the monofilament. For bending experiments, specimens were wound round Tufnol
or glass rods and clamped for the heat-setting sequence. The quoted strain value is
r/R, where r is fibre radius and R is rod diameter.

Figure 18.42 shows the interaction of two setting effects. If the material is tested
as produced, the setting is apparently complete in the range of 50–120 °C. Although
the recovery hardly changes, a temperature around 200 °C gives some added stability,

γr

0 tA tS tB tC tD Time

Temperature

Ts

T0

Strain

γ0

Stress

18.41 Heat setting sequence starting from zero stress at room temperature,
through imposed changes in strain and temperature with time (with assumed
stress change), followed by recovery at zero stress and room temperature
where T0 is the initial temperature, Ts is the setting temperature, ts is the
setting time and tA, tB tC and tD are times at each stage. γ0 is the imposed
shear strain on the outside of the twisted monofilament and γr is this strain
after release. From Buckley and Salem [68].
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which is suggested by the slight overshoot to negative values of f above 180 °C. The
clear evidence comes from re-setting. A specimen that has been pre-set at 200 °C has
only half the recovery in the range of 50–120 °C. The setting is completed in the
range of 180–220 °C. The 50–120 °C set is associated with the transition shown in
Section 18.3.2, e.g. in Fig. 18.21 or the ‘major transition’ in Fig. 18.27. It is a
temporary set, which is overcome by re-heating. The ‘permanent set’, which is used
in texturing and other processes, is in the 180–220 °C range. The unavoidable imposition
of temporary set on any permanent setting sequence must be taken into account in
interpreting the results of setting tests.

Figure 18.43 shows that the high-temperature set is moved to higher temperatures
as the pre-setting temperature is increased. However, the setting starts below the pre-
set temperature. Figure 18.44 shows that setting is time-dependent. A fibre pre-set at
200 °C for 35 minutes is almost fully re-set in 1 second at 220 °C, but takes one day
to reach the same set at 200 °C. Re-setting occurs at 175 °C, but is much slower and
still continuing after 1 day. Figure 18.45 shows that setting in bending is similar to
setting in torsion. Figure 18.46 shows that setting becomes more complete as the
level of deformation increases.

Mukhopadhyay [61] found a difference in clockwise and anti-clockwise heat setting
of a polyester monofilament.

A more limited set of tests on nylon 66 were reported by Hearle et al. [69]. Figure
18.47(a) shows similar behaviour to that in Figs 18.42 and 18.43 for polyester, with
a low-temperature set around 40 °C and a high-temperature set which can start at
140 °C and is complete at 180–240 °C with higher temperatures needed to overcome
the pre-set. Figure 18.47(b) shows a marked difference from polyester. There is time
dependence in the low-temperature set, but none in the high-temperature set. This
was confirmed in tests at other setting temperatures. Some uncertainty then appears
in the report. A set of tests on a different sample of nylon 66 shows time dependence
in setting temperatures from 150 to 200 °C, which is similar to that of polyester.
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18.42 Fractional recovery of polyester monofilament in torsion plotted against
setting temperature: A, pre-set at 200 °C; B, as produced. Setting time = 120 s.
From Buckley and Salem [67].

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres494

An abundance of technological experience shows that steam setting of nylon occurs
at a temperature about 80 °C below that in the dry state, corresponding to the lower
melting point. Most fabric setting is carried out in superheated steam at temperatures
around 120 °C compared to 200 °C for dry setting. Appreciably lower temperatures
are used for nylon 6, reflecting its lower melting point.
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18.43 Fractional recovery of polyester monofilament in torsion plotted against
setting temperature at various pre-setting temperature Tp. Pre-setting time
35 mins; setting time = 120 s. From Buckley and Salem [67].

18.44 Fractional recovery of polyester monofilament in torsion plotted against
setting time at various setting temperatures. Pre-set at 200 °C; setting time of
35 mins. From Salem [66].
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18.6.3 Overtwisting

There is a brief mention above of the occurrence of negative values of f, which
implies that the set has overtwisted to a value greater than the imposed twist. This
anomaly was reported by Arghyros and Backer [70] in their research on twist-texturing.
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18.45 Fractional recovery of polyester monofilament plotted against setting
temperature in torsion and bending at two pre-setting temperatures. Pre-set
at 200 °C; setting time of 35 mins. From Buckley and Salem [68].
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18.46 Strain dependence of fractional recovery in torsion and bending for
polyester monofilament heat-set at 150 °C for 2 mins after pre-set at 200 °C
and (in torsion) without pre-set. From Buckley and Salem [68].
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Figure 18.48 shows a sequence of changes in twisting, heating, cooling and releasing
at constant tension by Buckley et al. [71]. Note the contraction in length on both
twisting and heating and some length recovery on release. The data were reported in
terms of tangents of the shear angle α at the surface during setting and of an angle γ,
which is the difference between α and the shear angle after release, namely the shear
angle associated with the overtwist ∆φ in Fig. 18.48. As shown in Fig. 18.49, there
is a positive overtwist given by tan γ for setting above about 150 °C, and a negative
value of tan γ, which implies incomplete setting, for lower temperatures. The overtwist
increases with increased imposed twist. Similar results were found with other samples
of polyester and nylon. The overtwist decreased with increased tension and tan γ
became negative at higher tensions. Overtwist was decreased by pre-setting. Repetition
of the setting sequence, by clamping, heating, cooling and releasing, shows twist-
climbing with the overtwist increasing without more twist being inserted.
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18.47 Fractional recovery in heat-setting of nylon 66. (a) Plotted against
setting temperature for various pre-set temperatures. Pre-set of 2100 s; set
time of 120 s. (b) Plotted against setting temperature for set times of 180 and
2100 s. Pre-set at 150 °C for 2100 s.
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18.48 Sequence of changes in test of overtwisting. T, φ and F are independent
variables; Q and L are dependent variables; ∆φ is the overtwist. From Buckley
et al. [71].
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18.49 Overtwist of polyester monofilament plotted against imposed twist for
various setting temperatures. α is shear angle at surface during setting; γ is
difference from α after recovery (corresponding to ∆φ in Fig. 18.48).
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Buckley et al. [71] show that the phenomenon of overtwisting can be explained by
the length changes and thermo-elasticity of an oriented polymer. A quantitative analysis
follows a treatment of the thermoviscoelasticity of a twisted yarn [72].

18.6.4 Phenomenological treatment of heat setting

A simplistic treatment of heat setting illuminates some of the features of an extremely
complex subject. It is presented in terms of a model of force and length changes in
temporary set, but other modes such as torque and twist or bending moment and
curvature could be substituted. Normalised quantities, namely stress and strain, could
also be used. The treatment, which predicts degree of set, is a simplification of the
viscoelastic model of Buckley and Salem [67]. Other enhancements could be added
to the model to take account of secondary effects, but the simple model brings out the
primary features of setting.

Figure 18.50 shows a typical heat setting sequence: elongating, heating and cooling
at constant length, and releasing. The terminology is as follows. F = total force; L =

T0 T0 T T0 T0

Deform Heat Cool Release

LI

L L L
LR0

0
Initial

F
Fs

Fc 0

Set
Setting

Temperature

Length

Elongation

Force

18.50 Typical heat-setting sequence. F = total force, L = total length, L = total
elongation. A zero subscript indicates the stress-free state, S = setting state, R
= state after release.

18.51 (a) Simple model for heat-setting. (b) Expanded version showing forces
and lengths.
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total length; l = total elongation. Subscript [0] is for stress-free state; subscript [S] is
for setting state; subscript [c] is for cooled stake; subscript [R] is for state after
release. The degree of set is defined as set length/setting length = lR / lS.

The simple model, Fig. 18.51, consists of two springs, with spring constants E1

and E2, in series with a thermal lock TL, which can open or close. F1,2, L1,2, l1,2 are
forces, lengths, and elongations for springs 1 and 2. The combined spring constant
with TL open is Ex. For a series system, E E Ex

–1
1
–1

2
–1= ( + ) . The basic assumption of

the model is that setting is due to a single change between a more rigid state below
a transition temperature, when TL is closed, and a more mobile state above the
transition temperature, when TL is open. Setting is by release of restraint on heating
and application of restraint on cooling, while the material is held at constant length.
Linearity, absence of reversible expansion and contraction, time dependence, combined
modes of deformation, and change in moduli except at transition are secondary
features that are neglected.

Force–elongation plots are shown in Fig. 18.52. There is a reference state at O,
which is always reached if TL is opened above the transition temperature and both
springs drop to zero force. With TL closed at ambient temperature, deformation
would follow the line OA, or the dotted line IJ if the fibre had been set at another
state. With TL open above the transition temperature, the line OP would always be
followed.

A setting sequence from the reference state is shown in Fig. 18.53(a). The temperature
T0 is below the transition temperature and T1 is above. The fibre is first extended at
T0 (1→2), and then heated to T1 (2→3), with a consequent drop in force. (Any
approach to (3) would give the same final result.) The specimen is then cooled to T0

and released. Since TL is closed at T0, the recovery will be along a line with the slope
E1. The fibre is left in the set state (4). With TL open at (3) the force is in both springs
is (Ex lS). When the fibre is cooled and released with TL closed, spring 2 is clamped
and cannot retract, but spring 1 can recover by (Ex lS/E1). Hence:

set length =  = –  = 1 – R S
s

1
s

x

1
l l

E l
E

l
E
E

x

















(18.3)

18.52 Force–elongation relations. Lines from O are for initial state at
temperature T0 with TL open. Line IJ is with TL closed at intermediate state.
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The effectiveness of a setting operation on this simple model is determined by the
ration of the modulus above the transition temperature to the modulus below the
transition temperature.

Setting from a previously set state is shown by the sequence (1→2→3→4) in Fig.
18.53(b) and finished at the same set state. The sequence (1→5→6) shows the effect
of holding the specimen at its initial state, heating to T1, cooling and releasing.
Geometric modelling, which could be programmed for computing, would be the way
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18.53 (a) Heat-setting sequence from initial state of model. (b) Sequences
from an initial set state.
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to follow complicated sequences. Some experimental data [73] indicates that setting
of nylon and polyester monofils followed the predictions for temperatures up to
190 °C provided some stress relaxation was added to the model.

Although the model is highly simplified, it does indicate that the degree of set can
be estimated from the ratio of deformability at the cool temperature to deformability
at the setting temperature. For permanent setting, the model could be applied to an
initial set, but the structure would then be changed and it is the deformability of the
cooled structure that would be relevant. Heating again, unless it was to a higher
temperature that gave full mobility, and releasing would lead back to a new reference
state.

18.6.5 Setting mechanisms

Setting in cotton by introducing new bonds between molecules and in wool by
switching the position of cystine bonds are clear chemical mechanisms for permanent
setting of fibres in new forms, which are not changed in use. Setting by wetting and
drying, with hydrogen bonds being broken and re-formed in new positions, is a clear
mechanism for temporary set. The low-temperature effect in nylon and polyester
fibres at c. 100 °C is a temporary set that can also be explained by the changed
positions of hydrogen bonds or mutual attractions of benzene rings, as discussed in
Section 1.1.2. The mechanism for the high-temperature ‘permanent’ setting is difficult
to explain because there are so many possibilities. It is likely that various mechanisms
act together, with their relative importance varying according to the type of fibre and
its previous thermomechanical history. Possible mechanisms are reviewed below.

It should be re-stated that the permanent setting sequence will have the temporary
set superimposed and that reversible thermal expansion or contraction will also be
superimposed. Thermodynamically, permanent set must result from a transfer from
one free energy minimum to another at a lower level, which is made possible by
thermal vibrations. Such changes are almost always time dependent, certainly for
small systems, which is another complication. It must also be remembered that it is
not clear whether the high-temperature set of nylon and polyester is permanent or
temporary, albeit not being overcome in normal use.

• Larger and better crystals. The simplest explanation is that heating leads to
annealing, namely the melting of small or imperfect crystals and the growth of
larger, more perfect crystals. The mechanism is illustrated in Fig. 18.54, which
also shows the effect of lower melting points of wet fibres. At the start, there is
a distribution of crystal sizes and perfections, which give a range of melting
points. At a given temperature, the smallest crystals will melt and larger ones
will be formed. The process can be repeated at successively higher temperatures,
but cannot be reversed. This happens in metals, where the small crystal grains
butt on to larger ones. It is more difficult to see how it would work with a
distribution of polymer crystallites separated from one another without melting
of the whole material. Once a fine structure of crystalline and amorphous regions
is established, the pattern tends to remain. Furthermore the setting temperatures
are appreciably lower than the melting temperatures.
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• Defect mobility. In metals, defects can move to the surface of crystals and disappear.
This may well be a setting mechanism in polyethylene, where defects due to
mis–packing of —CH2— units occur and are a cause of imperfect crystallinity.
It may possibly also apply to polypropylene and other polymers with short repeats.
However, as discussed in Section 1.3.2, defect models are not sensible for polymers
with the long repeats found in nylon 6 or 66 and polyesters.

• Multiple melting. For rapidly quenched fibres, the change from form I to form II,
discussed in Section 18.2.2, would certainly provide a setting mechanism. However,
form II can be set, so that this cannot be a complete explanation.

• Crystallite mobility. A variant included in the discussion on multiple melting is
that, owing to thermal vibrations, individual crystalline micelles might be able to
melt and then recrystallise, as indicated in Fig. 18.55. Rather like molecules
moving between liquid and vapour, most micelles would be crystalline, thus
maintaining the integrity of the fibre, but a changing population would be molten.
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18.54 Distributions of melting points of crystals with different sizes.

18.55 Flipping between crystalline and locally molten states.
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Berry [74] has shown that small clusters of argon atoms can act in this way,
flipping between the two states over a certain temperature range. If the material
was deformed, the recrystallisation would take place in a slightly different form,
which stabilised a new state.

• Quantum superposition. Hearle [75] has suggested a more speculative variant
that at the setting temperature, there is a quantum superposition of ordered and
disordered states. Even though the molten state was at a higher energy, the
greater number of energy levels would encourage movement between the two
states.

• Movement through crystals. Molecules passing through a crystallite will be under
variable tension. The simplest case to consider is where one end is linked to the
network and the other is a free end. Above a certain temperature, it is possible
that thermal vibrations will give a high enough tension to pull the molecule
through the crystallite. The reverse would not occur, so that a new state would be
set. This effect is more likely if the fibre as a whole is under stress, though the
discussion in Section 20.3.2 indicates that tie-molecules are tensioned even when
there is no externally applied stress. Variants would apply if both ends are linked
to the network, but in different ways, or if there is chain folding.

• Plastic crystals. There are more extreme options for mechanically driven setting.
If a crystallite is subject to shear, layers of molecule would move relative to one
another if the yield stress in shear was exceeded.

• Drawing. The drawing of unoriented fibres into oriented forms is a form of set
induced by plastic yielding of the fine structure with rupture and re-formation of
crystallites. This mechanism is obviously not applicable to drawn fibres, but it
will be playing a part when partially oriented yarns are subject to draw-texturing.

• Kink-band formation. Another form of severe mechanical deformation is the
development of kink-bands in bending or shear (see Section 17.2.5). Heating
may lead to an annealing of the deformation and stabilisation in a new form.

All the above explanations relate to physical effects in the crystalline regions, with
some also involving molecular segments from amorphous regions. However, there
are two possible explanations that do not involve crystalline regions:

• Entanglement reptation. Buckley and Salem [67], citing a low molecular weight
commercial polymer, propose the structure in Fig. 18.56 for polyester (PET).
Some crystallites are linked together by tie-molecules to form blocks. Between
the blocks, there are only entangled chain ends. It is argued that the blocks can
move relative to another by viscous flow by a reptation mechanism in which
molecular segments progressively move through entanglements. This is accepted
behaviour for wholly amorphous polymers, and provides a simple explanation of
the time dependence of setting. The explanation is plausible if there is a high
degree of chain folding, as implied by the limited number of molecular segments
emerging from the crystallites in Fig. 18.56. Alternatively, it is possible that,
even if all crystallites are tied together, there could be reptation through
entanglements in the amorphous region between crystallites.

• Transesterification. It is possible that there is chain scission and re-formation,
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which can occur in the two ways shown in Fig. 18.57. This is most likely on
polyesters, where it is known as transesterification, but there would be an analogous
effect in polyamides. Fakirov [76] has reviewed the solid-state reactions that
would be relevant. One way of investigating the effects is by bonding together of
polymer films. Quantitative information comes from studies by Kugler et al. [77]
of the changes in length of deuterated segments of PET as measured by SANS
(small-angle neutron scattering). Based on extrapolations of their data, calculations
by Hearle [73] indictate that the rates of transesterification offer a plausible
mechanism for heat setting of polyester.

All the mechanisms involved in heat setting of nylon 66 and polyester (PET) in the
180–220 °C region should be reflected in studies of thermal transitions. Unfortunately
reported thermomechanical studies stop at about 180 °C, so that no direct observations
are available. The dielectric measurements of polyester film in Fig. 18.58 do show
the start of a rapid rise in tan δ at 160 °C at low frequency. This may lead to an energy
loss peak.

18.56 Structural model for polyester (PET) showing crystallites linked in
blocks by tie-molecules (T), possibly plus entanglements (E). Separate blocks
linked solely by entanglements. From Buckley and Salem [67].
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A1 B1

A2 B2

Initial

Deformed

Set

Initial Deformed Set
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Exchange at
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Reversible at 20 °C
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18.57 Two ways for changing links between crystals: (a) exchange of free end;
(b) break and re-formation of tie-molecules.
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18.58 Influence of temperature and frequency on dielectric properties of
Terylene film (after Reddish [78]: (a) relative-permittivity solid model, (b)
dissipation-factor solid model.
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19.1 Fibre-fracture morphology

Data on the tensile strength of fibres were included in Chapter 13 with its time
dependence in Chapter 16. Loop and knot strength and breaking twist were covered
in Chapter 17. This chapter is concerned with the forms of fracture and with fatigue
failures due to repeated deformation. As a result of scanning electron microscope
(SEM) studies since the 1970s, the appearances of fibre ends resulting from breakage
by high loads, fatigue or other causes have been classified into the 18 types shown in
Fig. 19.1, and a comprehensive collection of pictures of the fractography has been
published by Hearle et al. [1].

The following forms are included in Fig. 19.1 for completeness and will not be
discussed further: (14) the rounding of fibre ends, which develops after prolonged
wear on fibres that have broken in use in a textile material; (17) melting of thermoplastic
fibres; (18) the natural ends formed during the growth of fibres such as cotton.

19.2 Monotonic breaks

19.2.1 Tensile failures of manufactured fibres

Depending on the nature of the fibre, different forms of tensile fracture are found.
In elastic fibres, whether inextensible (glass and ceramic) fibres or highly extensible
(spandex)1, the break follows the classical mode of brittle failure described by Griffiths,
as illustrated in Fig. 19.2. When the load reaches a certain level, the break initiates
from a flaw and propagates rapidly as a smooth crack running across the fibre under
the influence of stress concentration at the tip of the crack. Usually, when the stress
on the unbroken part becomes sufficiently large, multiple-fracture initiation will start
and give a rougher portion to complete the break. In some cases, the crack runs at an
angle on the line of maximum shear stress for all or a part of the fracture.

The mechanism in ductile fibres, such as nylon and polyester fibres, is not dissimilar,
except that the crack propagates in a controlled manner under a gradually increasing

19
Fibre breakage and fatigue

1Note that although elastomeric fibres have a low initial modulus, they have a high modulus in the
final stage before break.
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total load and opens into a V-notch owing to the drawing (high plastic extension) of
the remainder of the fibre, until a final multiple crack initiation zone completes the
failure. The fracture morphology was described by Hearle and Cross [2] and is shown
in Fig. 19.3 with break starting at a point. The other end of the break is a mirror image
of the one shown. There are variant forms [1]. Many breaks start from an extended
defect perpendicular to the fibre axis. Occasionally the defect is angled, which distorts
the form of failure and may lead to multiple final stages. Rarely, cracks start from

1 2 2a 3 5 6 6a 7

4

8 9 10 11

12 13 14

15a 15b 16 17 18a

19.1 Classification of fibre ends. Tensile failures: (1) brittle fracture; (2) ductile
fracture, (2a) modified form (light-degraded nylon); (3) high-speed break in
melt-spun fibre; (4) axial split; (5) granular failure; (6) independent fibrillar
failure; (6a) fibrillar break intr fibrils collapsed onto free end; (7) stake-and-
socket break. Fatigue failures: (8) tensile fatigue; (9) flex fatigue kink-band;
(10) flex fatigue-split; (11) multiple split-bend and twist fatigue; (12) surface
wear; (13) peeling and splitting; (14) rounding. Other forms: (15a,b) transverse
pressure, (a) mangled, (b) localised; (16) sharp cut; (17) melt; (18) natural fibre
ends, e.g., (18a) cotton tip.
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more than one place, joining for the final stage, or start at an internal defect to give
a double cone leading to the final stage. In a heat-set nylon 6 fibre, there were small
multiple V-notches along the fibre, one of which had propagated to form the break.

A break in progress in a coarse nylon bristle is shown in Fig. 19.4. Such a break
can be detected long before the final failure. In these breaks of coarse bristles, put
into the Instron Tensile Tester in the undrawn form, Hearle and Cross were able to
identify five zones as shown in Fig. 19.5. These were A initiation, B controlled
ductile tearing, C ‘slip-stick’ crack growth, D fast crack growth and, E final overall
failure. In light-degraded nylon, the fracture, as shown in Fig. 19.6, appears to be
very different, but, in fact, it is probably due to similar failure mechanisms of ductile
crack growth, starting from many internal voids [1].

As the rate of loading increases, the size of the V-notch reduces. The final stage
becomes larger and may become smooth and rounded. After ballistic impact, by

10 µm 5 µm

(a) (b)

2 µm

(c)

5 µm
(d)

19.2 Tensile fracture of brittle fibres: (a) glass fibre with single cleavage plane;
(b) glass fibre showing mirror and hackled zones; (c) ceramic fibre, Nextel 312
(silicon carbide), showing diversion at end of crack; (d) spandex, Lycra.
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release of a pendulum or a relaxation catapult, the form of break changes completely
to a mushroom end, as shown in Fig. 19.7. This is due to a change from isothermal
to adiabatic conditions. The rapid plastic extension, following the start of break,
generates heat and softens or melts the region of the break. Snap-back after break
causes a collapse to the mushroom form.

Chemical degradation attacks outer layers first and, under tension, a crack may
form around the fibre. A variant of the tensile break then occurs with a circular ‘V-
notch’ leading to a circular catastrophic failure in the centre of the fibre [1]. In other
circumstances the shear stress at the tip of the circular crack may lead to an axial split
penetrating into the fibre, as shown in Fig. 19.8. The final failure is a stake-and-
socket break (Fig. 19.9).

10 µm

19.3 Tensile break of nylon fibre: experimental nylon 66 filament, with
initiation of break at point.

100 µm

19.4 Rupture of a coarse undrawn nylon 66 bristle, 1 mm diameter, extended
at a strain rate of 8 × 10–4

 s–1.
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Tensile breaks of acrylic fibres are quite different [1] as shown in Fig. 19.10. The
granular appearance is probably due to the independent fracture of many fibrillar
sub-units. Sometimes, the final granular break is preceded by a V-notch and sometimes
separate granular cracks are joined by an axial split. Granular breaks are also found
in regenerated cellulose fibres, polyvinyl alcohol (PVA) and polybenzimidazole (PBI)
fibres, ceramic fibres some carbon fibres, and thermally degraded nylon and polyester
fibres [1].

In acetate fibres, Simmens and Howlett [3] found, by optical microscopy, that
many surface cracks developed in highly stressed filaments, as shown in Fig. 19.11.
This can lead to multiple fracture, with the fibre finally shattering into many fragments.

E
D

C

B

A

19.5 Breakage zones in nylon bristle.

5 µm

19.6 Tensile breaks of light-degraded nylon 66, 16 dtex, exposed in summer in
Manchester, facing WSW: 24 weeks’ exposure.
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The occurrence of fissures during extension, but before fracture, has been observed
in many fibres by Cumberbirch et al. [4].

In the highly oriented linear-polymer fibres, para-aramid and HMPE, tensile fracture
occurs by long axial splits [5]. This is because the forces holding the molecules

10 µm

19.7 High-speed tensile break of nylon 66.

19.8 Shear cracking, following degradation round surface of fibre.

19.9 Stake-and-socket break of polyester fibre after exposure to n-butylamine
vapour.
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5 µm 5 µm

19.10 Granular fractures of acrylic fibres.

19.11 cracks in stressed acetate filaments as observed by Simmens and
Howlett [3].

together across the fibre are much weaker than the forces acting along the molecules
in the axial direction. If there are any defects or discontinuities in the structure, the
resultant shear stress causes rupture by an axial split in preference to the imposed
tensile stress causing a transverse crack. If the splits are slightly off-axis, they will
eventually cross the fibre and so separate it into pieces, with the break extending over
a length equal to many fibre diameters. An SEM picture of a break is shown in Fig.
19.12. Frequently, one end has a single split and the other end has a multiple split, as
illustrated in Fig. 19.13. This is a geometrical consequence of an axial crack starting
at the surface of the fibre and branching as it propagates along and across the fibre.
The extensive axial splitting means that, in fibre assemblies and composites, more
energy is absorbed during breakage than when fibres break sharply.

19.2.2 Tensile failures of natural fibres

Tensile breaks of natural fibres are strongly influenced by their particular internal
morphologies. In cotton, the form varies according to test conditions. At 65% r.h.,
Hearle and Sparrow [6] showed that tensile failure is started by splitting between
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fibrils (Fig. 19.14). The break occurs adjacent to a reversal, and the split, which
follows the helical path of the fibrils around the fibre, is due to the untwisting forces.
Eventually a tear develops along the edge of the concave region of the cross-section
to join up the two ends of the helical split, as illustrated in Fig. 19.15.

The form changes as the strength of bonding between fibrils varies. When it is
weak, in wet cotton, the break is fibrillar. The cause is illustrated in Fig. 19.16. Fibrils
can be regarded as independent entities, which break at different weak places. Eventually
all fibrils have broken over a short fibre length and the two ends separate. In the SEM,
the separate fibrils may be seen (Fig. 19.17), but often the broken fibrils coalesce into
a tapered end. Where the bonding is stronger, in dry cotton, the fracture runs across
the fibre as a granular break with little splitting. If the fibre is clamped at a nominally
zero gauge length without a reversal between the jaws, there is again usually little
splitting, with the break running straight across the fibre.

In resin crosslinked cotton, the increased bonding causes the break to be straight
across the fibre at 65% r.h. and has a split form, similar to Fig. 19.14, when broken
in water.

In wool and hair fibres, tensile failures occur by cracks running across the fibre in
a granular break, which may be coarse enough to reflect separate breaks of cells. It
is fairly common for cracks at different positions along the fibre to be linked by an

19.12 Tensile break of aramid fibre, Kevlar 29.

(a) (b)

19.13 Fractures of Kevlar: (a) multiple split; (b) single split end.
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axial crack. Cracks in the cuticular layer of wool have been examined by Makinson
[7].

Haly [8] noted that transverse striations developed in wool between 2 and 30%
extension. However, these are probably regions of high local deformation and not
cracks. Crazing in synthetic polymers is another phenomenon, in which there is some
continuity of material across an apparent crack.

19.2.3 Twist, lateral cohesion and compression

As stated in Section 17.3.1, the major deformation at high twist levels is extension of
the outer layers due to the longer helical path. This results in twist breaks being
essentially tensile breaks, which are distorted by the twisting and may include axial
splits [1].

19.14 Tensile fracture of cotton fibre under standard conditions.
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Law and Mukhopadhyay [9] describe in detail a method of measuring the lateral
cohesion of fibres. Briefly stated, a fibre is mounted between tabs and a micromanipulator
is used to open a split in the centre (Fig. 19.18(a)). Pieces of copper ribbon are then
stuck to the fibre in the positions shown in Fig. 19.18(b) and the split is cut on one
side The test specimen is then cut away (Fig. 19.18(c)) and mounted between jaws
(Fig. 19.18(d)) of a tensile tester, which incorporates a micro-balance and a micro-
drive unit. The tearing force required to pull the two ends apart can then be measured.

A

B
C

A A

B
C

A

xx

y y

19.15 Idealised picture of break of cotton fibre at 65% r.h. A, B and C are the
separate zones shown in Fig. 1.37. The split runs from x to y.

(a) (b) (c) (d) (e)

19.16 Schematic of fibrillar break. (a) Unbroken fibrils; (b) isolated breaks; (c)
all fibrils broken; (d) separated ends; (e) collapse of ends.
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The force is divided by the width of the tear, assumed to be the fibre diameter for a
central tear, and expressed in N/m (= J/m2). Figure 19.19(a) shows the tearing force
for an aramid filament, which has three regions as indicated in Fig. 19.19(b). SEM
examination shows that the tear is in regions 1 and 2. There may be a precursor crack
from the initial split formation, which reduces the tear force in region 1, or the
occurrence of a hemispherical skin tear may increase the force in region 2. Although
not mentioned by the authors, the energy loss in the bend at the splitting point must
also contribute to the tear force. The change to region 3 is due to the onset of multiple
splitting, which would increase the surface energy and hence require more force. It
is estimated that the lateral cohesion or energy for crack propagation is the value in
region 2, namely 160 J/m2. Other tests were carried out on acrylic fibres, but it was
not possible to test dry fibres. Never-dried fibres impregnated with glycerol were
used.

The failure properties in transverse compression have been studied by Settle and
Anderson [10] by pressing metal cutting wires against fibres. The loads needed for
cutting increase with the fibre and wire diameters: typical values are given in Table
19.1. With wires finer than 100 µm, the cutting load decreases rapidly. Subsidiary
experiments led to an estimate of the principal strains at failure, which were much
larger laterally than axially. The fibre was observed to be squeezed out sideways, and

5 µm

19.17 Fibrillar break of wet mercerised cotton.
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then, after a certain degree of penetration, a V-shaped cleft appeared and penetrated
through the fibre. The elastic recovery was poor (about 50%) even when the applied
load was only a quarter of the load needed for cutting.

Shin et al. [11] investigated the cut resistance of HM–HT yarns using the apparatus
in Fig. 19.20. Neighbouring yarns were removed from a piece of fabric clamped on
a base plate, in order to leave isolated yarns subject to the cut. The force–displacement
plot is shown in Fig. 19.21(a) for aramid Kevlar, HMPE Spectra and PBO Zylon. The
massive reduction in cut resistance when the slice angle is reduced from 90 to 80° is
shown in Fig. 19.21(b). Blade sharpness has a major effect, with a 2.5-fold increase
in resistance for a blade radiu change form 2 to 20 µm. Some end beaks were fairly
straight across the fibres, but others showed considerable squashing.

19.2.4 Fracture mechanics

Theoretical analysis of fibre strength and detailed understanding of how and why
strengths fall below maximum possible values are not easy. The basic theory of the
tensile strength of a perfect crystal is illustrated in Fig. 19.22. The internal energy U
is a minimum at the equilibrium spacing x0 between the atoms; but as the crystal is
extended, so that x increases, U reaches a maximum and then falls asymptotically to
zero. Differentiation of this curve gives the variation of force with extension (x – x0).

(a)

Glue

Cut
(b)

Cut Cut

(c)

(d)

19.18 Stages in measuring lateral cohesion of fibres. From Law and
Mukhopadhyay [9].
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The maximum value F, which is the ‘theoretical’ strength, occurs at the point of
inflection on the energy curve. It will be high when there are strong covalent bonds
between the atoms, weaker with intermediate attractions, such as hydrogen bonds
and dipoles, and least with weak van der Waals interactions. However, the theoretical
predictions of the shape of the variation of U with x are not exact, especially in terms
of the precise position and slope of the inflection point. More commonly, an approximate
value of F is estimated from the linear construction shown in Fig. 19.22(c), which
demonstrates that the theoretical strength should equal the modulus times a strain
level ec, related to the position at which the energy curve is expected to go through
its inflection. Generally, the maximum strength is expected to be about 0.1 times its
modulus.

Among the factors that lower modulus, disorientation and slip at the ends of
molecules will also lower strength, but the removal of crumpled disorder at low

19.19 (a) Tearing force for Kevlar 49 filament, (b) Schematic representation.
From Law and Mukhopadhyay [9].
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strains will not. Any non-uniformity in the distribution of stress between different
parts of the structure will lower strength.

Failure is a competitive phenomenon, determined by extreme value and not central
value statistics, and will always occur in whichever way is easiest. Even at the
theoretical level of a perfect crystal, this means that rupture may occur not under
tensile stress across the plane AB in Fig. 19.22(a) but under some other stress, such

Table 19.1 Loads required to cut fibres [12]

Fibre Fibre Wire Cutting Estimated principal
type diameter diameter load strains (%)

(µm) (µm) (N) Axial Lateral

Nylon 20 200 2.2 6 86
20 400 3.7 – –
40 200 5.0 12 81
40 400 8.0 – –

Polyester fibre 20 200 2.0 6 114
20 400 3.5 – –
40 200 4.2 15 107
40 400 8.5 – –

Wool 20 200 0.5 – –
20 400 0.7 – –
40 200 2.2 10 47
40 400 3.3 – –

Crosshead of mechanical
testing machine

Load cell

Specimen
gripping

plates

Mounting frame
(attached to upward-

moving ram)

Scale

Cutter
blade Slice

angle

Fabric
edges

To
videocamera30°

Isolated
fill yarn

specimen

19.20 Cut testing. From Shin et al. [13].
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as the resolved shear stress across CD. At the practical level, there are all the
complications of local variations in stress due to gross structural differences, of stress
concentrations at microscopic defects, and of uneven sharing of load at the molecular
level in an imperfect structure. As indicated above, the interaction of defects with

19.21 Cut test results: (a) force-stroke plot; (b) effect of slice angle. From Shin
et al. [11].
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very high anisotropy leads to completely different modes of failure in the oriented
linear polymer fibres. The simple argument also ignores the time-dependence associated
with thermal vibrations, which allows jumps over the point of inflection as discussed
in Sections 20.2.1 and 20.7.2.

The role of defects is critical. The foundations of fracture mechanics were laid by
A. A. Griffiths in 1921. He emphasised the role of flaws either on the surface or
internal, which led to stress concentrations. A direct approach models the stress
distribution round a defect. The crack will propagate when the stress at its tip exceeds
the fundamental value of the strength as discussed above. A more useful approach
depends on the relation between the elastic energy released by crack growth and the
increase in surface energy dS. The crack will propagate when dE > dS. The deeper the
defect, the greater the stress concentration or energy release, so that once the inequality
is reached the crack will continue catastrophically across the fibre.

The classical theory applies well to brittle fibres such as glass, where the deformation
is purely elastic. When there is also plastic deformation, the situation is more
complicated. If there is a small, localised, plastic zone, an additional energy term can
be added to dS without altering the basic analysis. Modifications can be made when
the plastic zone is large compared with the crack depth. The mechanics of the ductile
fracture of nylon and polyester fibres raises more difficulties. As indicated by the
tensile break of a polyester film in Fig. 19.23, the plastic deformation would extend

A

D B

F

C

U

xo

x

    ̂F
F

ec (x–x0)

(a)

(b)

(c)

19.22 Simple theory of tensile strength: (a) perfect crystal under tensile force
F; (b) variation of internal energy U with spacing x; (c) variation of force F
with elongation (x–xo).
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right across the fibre and for a considerable length along the fibre, where it is linked
to the unstressed region in line with the crack by a shear zone.

The mechanics of this complexity has not been analysed. It should be noted that
the material across from the crack is under a higher stress than unaffected remote
parts of the fibre length and is extended by larger amounts than the measured break
extension of the fibre. The stress-strain relation at these stresses is unknown.

Michielsen [12, 13] has studied the fracture toughness of nylon 66 monofilaments.
Applying fracture mechanics, he derives a value of 17 kJ/m2 for the energy release
rate at 65% r.h., rising to 31 kJ/m2 at 0% r.h. and falling to 16 kJ/m2 at 100% r.h.

In other forms of break, granular, axial splitting, fibrillar, the stress concentrations
that lead to failure are distributed in more complex ways. However, the fundamental
principle that cracks will propagate when it leads to a reduction of energy remains
valid. The problem is how to calculate the energy terms.

19.3 Tensile fatigue

The classic definition of fatigue, as found, for example, in metals, is of failure under
cyclic straining at a level that would not cause failure if applied as a constant strain.
There has been a search for similar effects in fibres.

One of the problems has been that in simple extension-cycling, the load progressively
decreases owing to stress relaxation: failure does not occur unless the imposed extension
is very close to the usual breaking extension. Most fatigue testers therefore operate
on the principle of cumulative-extension cycling, with the slack removed at the end
of each cycle. This work has been reviewed by Hearle [14]. However, as shown in
Section 15.7.3, a common result of such a test at larger imposed extensions is a climb
up the stress–strain curve to the normal breaking point. At low imposed extensions,
failure does not occur. There have been some indications that fatigue effects might be
important over a narrow range of imposed extensions.

Table 19.2 gives a comparison of the behaviour of fibres in such a cumulative-
extension test.

19.23 Tensile break of a marked polyester film.
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More interesting results have been obtained with a controlled-load fatigue tester
operating at 50 Hz [16]. The specimen is cyclically strained by a vibrator acting on
one end of the fibre, and the clamp at the other end is driven through a servo-system
to maintain the peak load constant.

Studies of nylon by Bunsell and Hearle [17] showed that, at high maximum loads,
failure occurred in the same time and the same mode as in a creep test. This gives the
failures about the line of constant maximum load in Fig. 19.24. Under these conditions,

Table 19.2 Median number of cycles to break for various yarns in cumulative-extension test
(from Booth and Hearle [15])

Imposed extension (%)

Fibre
  
2 1

2
5

  
7 1

2
10

  
1 1

2
2 15

Viscose rayon † 79 6
Acetate 32 000 58 6
Nylon >5 × 105 11 000 220 12
Polyester fibre >5 × 105 16 000 18 7

†Four out of ten had failed at 5 × 105 cycles.

Creep break

Tensile morphology break

Fatigue morphology break

Unbroken after > 105 cycles
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19.24 Failure conditions in fatigue-testing of nylon [17].
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the cyclic nature of the loading has no effect, and the behaviour could be predicted
from studies of creep failure.

However, at much lower maximum loads, between one-half and two-thirds of the
equivalent creep breaking load, failure occurred provided that the minimum load in
each cycle was zero. This gives the breaks about the line of zero minimum load in
Fig. 19.24. At an intermediate state, with higher maximum and minimum loads,
failure did not occur.

The fracture morphology is also different. In creep failure, and at the high maximum
loads, the fracture showed the V-notch typical of tensile failure, as in Fig. 19.3. But
the fatigue failures, at zero minimum load, were quite different in appearance. One
end showed a long tail, which had stripped off the other end, as shown in Fig. 19.25.
The sequence of events is that an initial transverse crack appears (Fig. 19.26(a)), and
this then turns and runs along the fibre, to become gradually wider and deeper (Fig.
19.26(b)), until final failure occurs with a tensile break across the reduced cross-
section. The angle of the crack in nylon is about 10°, so that the tail is about five fibre
diameters long.

In more recent work, Oudet and Bunsell [18] have shown that zero minimum load
was not an absolute criterion for tensile fatigue failure in nylon fibres. For a particular
sample of nylon, fatigue failures were found with a small positive minimum load.
They were still present, together with some creep failures, when the minimum load
was 4% of breaking load but were absent when it was increased to 6%.

A similar tensile fatigue failure is found in polyester fibres [19, 20], though the
fatigue lifetime is greater than that in nylon. Another difference is that the axial crack
in polyester fibre runs almost parallel to the fibre axis and leads to extremely long
tails (Fig. 19.27(a)). The other end shows where the material is stripped off (Fig.
19.27(b) and in this example the final failure has occurred where there is a weak

10 µm 20 µm

19.25 Opposite ends of break of nylon 66 fibre after 62 000 cycles at 50 Hz
between zero load and 71% of normal break load.
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place due to an internal defect in the fibre. Although the long axial splits eventually
lead to complete fibre rupture over the remaining cross-section in a single-fibre test,
they would not necessarily do so in an assembly in which the fibres are held together
by twist or other means and mutually support one another.

Bunsell and his colleagues have continued to study tensile fatigue failures in nylon
and polyester fibres. In nylon 6 and 66, final rupture occurs when the crack reaches
a point where the reduced cross-section leads to tensile failure, but in polyesters, PET
and PEN, it is by creep at a point further back along the crack [21]. The transverse

2 µm 20 µm

(a) (b)

19.26 (a) Initial transverse crack in tensile fatigue. (b) Shear crack runs along
the fibre.

50 µm 5 µm

19.27 (a) Break of polyester fibre after 83 000 cycles at 50 Hz between zero
load and 65% of normal break load. (b) Final break of a polyester fibre by
tensile fatigue.
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cracks, which initiate the failure, are attributed to hard inclusions, which may be
introduced as catalysts, antioxidants or flame retardants, at the interface between skin
and core about 1 µm below the surface [22]. In a study of the effect of temperature
on seeral mechanical properties, a threefold decrease in fatigue lifetime was found
for polyester fibres [23].

In the meta-aramid fibre Nomex, tensile fatigue occurs in a similar form to that in
nylon [19]. In an acrylic fibre Courtelle, tensile fatigue causes failure by axial splitting,
but there is no requirement that the minimum load should be zero in order to promote
this mode of fatigue failure. A comparison of typical tensile fatigue failure conditions
is given in Table 19.3. The breaking extension in the fatigue tests is lower than that
in the tensile tests. This confirms that a special fatigue mode of failure is occurring
and provides a means of differentiating from a creep failure after repeated cycling,
which occurs at the same breaking extension as in a tensile test.

In the para-aramid fibre Kevlar, tensile–load cycling causes a much greater degree
of axial splitting but no appreciable loss of strength [24]. In order to achieve failure
in around 105 cycles, it is necessary to go to at least 90% of the normal breaking load,
which is within the range of normal variability.

19.4 Torsional fatigue

Twisting, as discussed in Section 17.3, is the second easiest mode of load–deformation
response to study in the laboratory, provided that only a single test to break or a few
cycles of deformation and recovery are needed. However, fatigue testing, which
requires a large number of cycles at relatively high speeds, is not so easy. For example,
a typical test on a 1 cm test length twisted to half the breaking twist might involve a
million revolutions, reversing every 50 revolutions. In these circumstances, it is easy
to wear out a mechanical drive. Some studies of torsional fatigue, which were carried
out before SEM was available to examine fracture morphology, were reported by van
der Vegt [25] but these were made under rather severe conditions, which led to failure
in less than 1000 cycles, with twist angles ranging from about 11° for rayon to 45°
for nylon. There have been few later investigations.

Goswami and Hearle [26], as part of a comparative study of forms of fracture,
carried out some torsional fatigue on a 1 mm length of a 16.7 dtex nylon fibre,
vibrated to a twist angle of 45° at 5 Hz. Rupture occurred after about 16 hours. The

Table 19.3 Tensile fatigue failure conditions [21]

Fibre type As percentage of breaking load Fatigue life Breaking strain (%) in:

Minimum Maximum cycles tensile fatigue
load load test test

Nylon 6.6 (MT) 0 62 0.8 × 105 36 25
Nylon 6.6 (HT) 0 55 0.5 × 105 17 11
Polyester fibre 0 65 2 × 105 20 12
Nomex 0 70 0.2 × 105 20 14
Courtelle 20 65 0.04–2.6 × 105 55 45
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failure started with the development of several splits running along the fibre, which
led to the breaking away of chunks of material. Duckett and Goswami [27] have
described a multi-station torsional fatigue tester, which has been used for studies of
fibre failure related to pilling in fabrics [28].

Toney and Schwartz [29] report a linear decrease log(cycles to failure) with increase
of surface strain.

19.5 Flex fatigue

19.5.1 Test method

The simplest way of repeatedly bending a fibre is to pull it backwards and forwards
over a pin under sufficient tension to cause the fibre to follow the curvature of the pin
surface as illustrated in Fig. 19.28. If the tension is applied by a hanging weight, the
fibre is free to turn round, so that the application of tension on the outside of the bend
and compression on the inside occurs rather irregularly on different parts of the fibre.
It is therefore preferable to apply the tension by means of an elastic string [30] and
to mount a card to check that there is no rotation. A simple, approximate description
of the test would then be that a length of fibre, equal to the reciprocating stroke of the
drive vibrator, is subject to an alternation between a straight and a bent form.

Application of classical bending theory, as given in Section 17.2.1, predicts that,
in the bent state, the fibre strain would increase from zero at the centre plane to a
maximum tensile strain eb on the outside of the bend, and a maximum compressive
strain –eb on the inside. Depending on the position within the fibre, the material
would oscillate between zero strain and the maxima in tension or compression. The
value of eb is given by:

e r
R r

r
Rb  = 

 + 
  ≈ (19.1)

where r = fibre radius and R = pin radius.
In reality, there are a number of complicating factors, which will be discussed in

more detail in Section 19.5.4. Firstly, there is the additional strain due to the applied
tension. Secondly, the fibre cannot change abruptly from finite curvature on the pin
to zero curvature off the pin, since there must be a zone of varying curvature with
resulting shear stresses. Thirdly, friction on the pin will generate surface shear stresses.

19.28 Flex fatigue over a pin.
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These three effects are inherent in the mechanics of the test method and would be
present even if the fibre were ideally linear elastic (Hookean). But, in fact, most
fibres have non-linear stress–strain curves and, as shown in Section 17.2.4, yield
more easily in compression than in tension. Consequently, a fourth complication is
that the neutral plane shifts away from the geometric centre of the fibre, the maximum
tensile strain is reduced, and the maximum compressive strain is increased. An exception
to this rule occurs in wool and hair, which yield more easily in tension. Although the
‘bending strain’ eb is thus not strictly a measure of maximum strain, it is a convenient
quantity to quote as an indicator of the severity of bending in a flex fatigue test.

Temperature and moisture conditions are found to have a considerable influence
on flex fatigue, and the apparatus has therefore been modified so that four test
positions are enclosed within a box under controlled atmospheric conditions [31]. A
complete statement of test conditions should include: bending strain, tension,
temperature, humidity, and the state of the pin and fibre surfaces.

19.5.2 Modes of failure

The bending of fibres with yield in compression causes the appearance of kink-bands
as illustrated for polyester fibre in Fig. 19.29. A single bend causes no detectable
damage to the fibre. If tension is applied, the kink-bands are pulled out, and there is
no loss of strength. However, fatigue tests [1, 30, 32] show that repeated flexing leads
to failure. Three forms of damage occur in cycling over a pin. Initially, Fig. 19.30(a),
there is some surface wear due to rubbing on the pin. This is an artefact not directly
related to flexing and is discussed in Section 19.7. In addition, there are kink-bands,
which have started to break up into a fibrillar or crazed formation and some incipient
cracking. A complete crack, which would be on the compression side of the fibre, is
shown in Fig. 19.30(b). Shear at the tip of the transverse crack has led to an axial
crack. When the compression side of the fibre has failed, it ceases to be effective, and

200 µm

19.29 Kink-band, visible in polarised light, formed on the inside of a bent
polyester fibre.
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20 µm
(a)

100 µm
(b)

50 µm
(c)

(d)

100 µm
(e)

19.30 Forms of damage in flex fatigue over a pin: (a)–(c) polyester (PET) at
65% r.h., 20 °C; (d) nylon 66 at 60 °C, 30% r.h.; (e) polyester (PET) at 80 °C, 5%
r.h.; (f) nylon 6 at 100 °C, dry air.
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the other half of the fibre then bends independently, so that the same mechanism can
repeat itself, with the formation of more angular cracks, which constitute this mode
of failure in flex-fatigue tests. In tests in which the fibre is allowed to rotate, kink-
bands will come in from all sides and a final break occurs along the angle of kink-
bands (Fig. 19.30(c)). This mode of flex fatigue failure, which is directly related to
the compression that occurs in bending, is found in some examples of wear in use [1].
However, another mode of failure can also occur. Variable curvature results in shear
stresses, which lead to single or multiple splits, Fig. 19.30 (d, e). As the fibre is pulled
over the pin, the region of shear stress will travel along the fibre and cause long axial
splits. Failure by multiple splitting is the commonest mode of failure in use, but may
result from twisting, bending or a combination of both.

Observations of the development of damage in flex fatigue testing is reported by
Hearle and Miraftab [33].

19.5.3 Flex fatigue lifetimes

The statistical variability of fatigue tests of fibres is usually fairly high, and the
results are most conveniently expressed by survivor diagrams. Typical examples are
shown in Fig. 19.31 for nylon and polyester fibres flexed over a pin with a diameter
of 0.25 mm under standard atmospheric conditions (65% r.h., 20 °C). The mechanical
conditions are similar, but not identical, as indicated in Table 19.4 [31], which also
includes some statistical data on lifetimes. The median is the most convenient measure
to quote, since it avoids large errors due to a few abnormally large or small values.

Flex fatigue has been found to be very dependent on conditions of temperature and
humidity. A set of results obtained by Miraftab [32] for the 22 dtex nylon 6 fibre,
under the same conditions as given in Table 19.4, are shown in Fig. 19.32. The
median lifetime ranges between about 30 000 cycles at 5% r.h., 20 °C and 600 000

19.31 Survivor diagrams for nylon 6 (N6), nylon 6.6 (N6.6) and polyester (P)
fibres flex-fatigued under conditions shown in Table 19.4 [32].
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cycles at 70% r.h., 60 °C. The peak lifetime positions are remarkably similar to the
peaks in the loss modulus, as shown in Chapter 18. The closest comparison in terms
of temperature and humidity is with Fig. 19.33, though this is for nylon 6.6, but the
tan δ peaks in nylon 6 are similarly located (see Section 18.3.1). Miraftab’s flex
fatigue results for nylon 6.6 show the same trends, but the curves are shallower, and
the only sharp peak is at 60 °C and 70% r.h. For the polyester fibre, the peak lifetime
at 5% and 30% r.h. occurs at about 65 °C. The absence of an effect of humidity is
expected in this material, but the temperature is lower than for the peak in tan δ. At
higher humidities, the plots of flex fatigue life against temperature are almost flat.

The reasons for the association between a high flex fatigue life and dynamic loss

Table 19.4 Flex fatigue tests at 65% r.h., 20 °C [34]

Fibre Linear Bending Specific Fatigue lifetimes in cycles
density strain stress Mean Median Coefficient
(dtex) (%) (mN/tex) variance (%)

Nylon 6 22 16.1 54 35 825 34 725 32
Nylon 6.6 13.6 13.5 73 104 807 98 050 34
Polyester 13.3 12.4 75 194 616 187 825 44
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19.32 Effect of temperature and humidity on median-flex fatigue life of nylon
6, with test conditions as in Table 19.4 [31].
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in deformation are not clear. Furthermore, the test is complicated by the fact that a
number of properties of fibres are affected by temperature and humidity. In addition
to the bulk mechanical properties, the fibre friction will change and so alter the stress
pattern. Effects may be masked because one mode of breakdown takes over from
another as the mode with the shortest life. Miraftab [32] found that the dominant
forms of failure were as follows: kink-bands, type (9) in Fig. 19.1, at lower humidities
and temperatures; axial splits, type (10), at intermediate values; and surface wear,
type (12), at higher values.

Sengonul and Wilding [35, 36] studied the flex fatigue of Dyneema gel-spun
HMPE fibres. Figure 19.34 shows the fatigue life dependence on (a) tensile stress and
(b) temperature. Failure is by multiple splitting.

19.5.4 Mechanics of the flex test

A perfectly flexible fibre, with no resistance to bending, would follow the curvature
of the pin surface and then run straight to the clamps, as shown in Fig. 19.35(a). If we
ignore any deviations from this geometry, neglect the tension applied to the fibre, and
assume that the material follows Hooke’s law, there will be zero stress in the straight
part, and the analysis given in Section 17.2.1 will apply to the bent part. On the
central neutral plane, the stress and strain will be zero, but along the contact with the
pin there will be a compressive strain –eb given by equation (19.1), and a corresponding
specific stress –Eeb, where E is the tensile modulus of the fibre, and at the opposite
extremity there will be a tensile strain eb and a stress Eeb.

Most fibres, as discussed in Section 17.2.4, have non-linear stress–strain relations
and yield more easily in compression. Consequently, the neutral plane moves out in
order to balance the moments on either side (or minimise the deformation energy),
the compressive strain is increased, and the tensile strain is reduced. On the basis of
this model, it follows that if the fibre is not allowed to rotate, the material will
oscillate between zero strain and a magnitude of tensile or compressive strain determined
by the distance from the neutral plane. The compressive effect will be more damaging
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19.33 Effect of temperature on tan δ for nylon at various humidities. From
Meredith [34].
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than the tensile in an oriented linear-polymer fibre, and thus the kink-band mode of
failure can be expected. In wool and hair, the strain distribution, but not necessarily
the damage, will be reversed because yield occurs more easily in tension.

In reality, the forms are not as simple as indicated above, and other stresses will
also be present. Firstly, some tension is needed to hold the fibre in contact with the
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19.34 Flex fatigue at 50 Hz of HMPE fibres at nominal bending strain of 4.95%:
(a) effect of applied stress at 20 °C; (b) effect of temperature at 0.6 N/tex.
From Sengonul and Wilding [36].
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19.35 Comparison of fibre paths over a pin: A, perfectly flexible; B, real.
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pin. For the curved portion of the fibre, this superimposes a small tensile strain as a
correction to the strains indicated above, and the plane of zero stress is displaced
slightly inwards. However, it does mean that the straight part is under tension, and it
may well be that an oscillation between compression and even a small tension will
cause a greater disturbance of the fibre structure than one between compression and
zero tension.

Secondly, there will be normal and frictional forces at the contact between the
fibre and the pin. The most obvious effect of this is to add alternating shear stresses
in the material close to the contact point, and these can promote surface-peeling and
wear. However, a full analysis of contact stresses may show up other damaging features.

In well-designed experiments, these two effects can be regarded as minor corrections.
The tensile stress is kept small, and, if necessary, the frictional effects can be reduced
by allowing the pin to rotate. However, there is a third feature, which is more
fundamental. The assumption that the fibre changes abruptly from curved to straight
implies a discontinuity in bending moment, which cannot occur in practice. In reality,
the length in contact with the pin is reduced and there is a zone of gradually reducing
curvature, as shown in exaggerated form in Fig. 19.35(b).

Miraftab [32] has shown that, for a fibre with flexural rigidity B, under a tension
T, the contact length on the pin is reduced at either end by an amount l0 where l0

2

equals B/T. For the maximum curvature to be determined by the pin radius, the
applied tension must be large enough to make less than the nominal contact length for
a perfectly flexible fibre. Away from the ends of the contact region, the curvature is
given by:

c c l l = e0
– / 0 (19.2)

where l is the distance from the pin contact and c0 is the curvature of the pin surface,
equal to the reciprocal of the pin radius.

Standard textbooks on strength of materials, such as that by den Hartog [37], show
that the change in bending moment in variable curvature is balanced by a shear force,
S given by:

S B
c
l

B
c
l

l l = 
d
d

 = – e0

0

– / 0



 (19.3)

The standard theory also shows that, for a Hookean material, the shear stress in a
fibre of radius r is a maximum, equal to (4S/3πr2) at the centre plane of the fibre and
reduces in proportion to [1 – (y2/r2)]1/2 with the distance y from the central plane.

For the fibre over the pin, the highest shear stress will occur on the centre plane at
the point at which the fibre leaves the pin and will be given by –[4(B/T)1/2 c0/3πr2].
The shear stresses will decrease with the distance from the centre plane and with the
distance from the pin contact. However, it is these shear stresses that can cause the
fibre to fail by splitting.

A qualitative summary of the stress pattern is presented in Fig. 19.36, which is at
least a second approximation to reality, because there will be other complications
arising from localised stresses and from the non-linear and inelastic properties of
fibres. The lines in the diagram show how the major contributions to the stress at the
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centre plane and extremities of the fibres vary along the fibre. Under normal test
conditions, the axial displacement of the fibre by the drive mechanism will be much
longer than the nominal contact length over the pin and so will be longer than the
length over which the stresses are varying appreciably. Consequently, the material
will move backwards and forwards through the stress field, given by summation of
the components shown in Fig. 19.36, as the fibre is cycled.

19.5.5 Reduction in tensile strength after flex cycling

Hearle and Miraftab [33] report the loss of tensile strength due to flex fatigue. Figure
19.37(a) shows that change in the stress–strain curves of nylon 6.6 fibres after various

19.36 Main stresses in a flex fatigue test: C, on centre plane; I, on inner
surface in contact with pin; O, on outer surface; M, intermediate positions.
(a) Tensile stress due to bending (B) plus the constant tensile stress (T): note
that zero-stress line will move out for a fibre that yields easily in
compression. (b) Shear stress (S) due to change of curvature: there will be a
shift associated with displacement of the neutral plane. (c) Frictional shear
stress (F), alternating in direction as the fibre moves in opposite directions.
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times of flex cycling. The initial part of the stress–strain curve is unchanged, but only
a fraction of the tensile test covered the part of the fibre that was subject to flexing
over the pin. However, this zone provides a substantial yield section before breakage.
Nylon 8 has a similar behaviour, but polyester follow an unchanged curve up to the
reduced break point, except for the fibre fatigued for the longest time. Figure 19.37(b)
shows that the rate of loss of strength is similar for all three fibre types. The nylon
fibres typically show two V-notch breaks separated by a central split. Polyester fibres
showed more multiple splitting.
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19.37 Tensile testing of fibres after flex fatigue cycling at 50 Hz, so 10 mins =
30 000 cycles: (a) stress–strain curves of nylon 6.6 fibres; (b) residual strength;
* nylon 6.6, 6 � nylon polyester [33].
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19.6 Combined bending and twisting: biaxial rotation

19.6.1 Test methods

For coarse monofilaments, Lyons [38] introduced a method of studying bending
fatigue by biaxial rotation, as illustrated in Fig. 19.38(a). However, this method,
which was also used by Hearle and Vaughn [39] is not convenient for textile fibres
because it would be necessary to miniaturise the rotating and clamping arrangements
in order to achieve a high enough curvature and to control fine fibres. Nevertheless,
the mode of failure by multiple splitting is very similar to that found in many examples
of wear in use, so it was desirable to find a way of adapting it for testing fibres. The
solution is to concentrate the curvature by passing the fibre over a pin under a small
tension, as shown in Fig. 19.38(b) and (c). Surface wear, as a result of rubbing on the
pin, has not proved to be a problem, except in fibres such as wool and Kevlar, which
are highly susceptible to this form of damage. The friction will impose a drag and
generate torque and twist in opposite senses in the portions of fibre on either side of
the pin. Even in the tests on monofilaments without a pin, the splits followed helical
lines in opposite senses in each half of the test length, which indicated false twist
about the centre point, as shown in Fig. 19.38(a). As explained below, this is due to
hysteresis (‘internal friction’), and means that, in addition to the cyclic bending as the
fibre is rotated, torque also promotes failure.

In the first version of rotation over a pin [26, 40], indicated in Fig. 19.38(b), the
fibre rotation was driven from one end, with a weight hanging from the other end.
Although this method gave interesting results, some of which will be quoted later, the
fibre was not well controlled, and there were unwanted inertial forces from the
rotation of the weight. Consequently, a change was made to driving from both ends,
as shown in Fig. 19.38(c). Various different instrument designs were tried [41–44]
with different drive methods to the fibre ends and different methods of applying
tension to the fibre. The best method of tensioning consists of mounting the pin on
a holder that is free to slide up or down a guide. The mechanical design is simplified
if the drive shafts can be parallel, and the form used in one multi-station tester
designed by Clark [44], which proved satisfactory for fairly coarse textile fibres, is
shown in Fig. 19.39(a).

In later work [45], it was found that this apparatus was unsuitable for finer fibres.
The first problem was purely mechanical. The frame holding the pin was too heavy,
and, if it was made lighter, it tended to stick on the two guide bars. This problem was
cured by having the pin mounted on a rod sliding in a tube, as shown in Fig. 19.39(b).

(a) (b) (c)

19.38 Forms of fibre biaxial rotation: (a) without a pin; (b) over a pin, driven
from one end; (c) over a pin driven from both ends.
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The other problem involved the mode of fibre failure and depended on the test
angle, φ, as defined in Fig. 19.39(c). The fibre is bent through an angle φ/2 where it
is clamped to the drive shaft If φ is too large, jaw breaks, which are not determined
by conditions at the pin, can result. If φ is too small, the angle of wrap, θ = (π – φ),
round the pin becomes large. Under these conditions, it was found that anomalous
failures, called ‘direct breaks’, could occur after a small number of cycles and before
the false twist had fully developed [46]. Direct breaks appear to be associated with an
irregular motion of the fibre as it rolls and slips over the pin before reaching a steady
motion, with the torque fully developed and overcoming the external and internal
friction. Direct breaks show evidence of the fibre softening and melting, with localised
deorientation, contraction to form bulges, and the formation of voids seen in the
broken fibres. The detail of how this happens is not understood. For the coarser fibres
being studied by Clark and Hearle [43], it was possible to find suitable intermediate
values of φ that avoided both direct and jaw breaks. However, this was not possible
in the later work of Liolios [45] on finer fibres, and a new multi-station apparatus was
made with the drives aligned, as in Fig. 19.39(b), so that there was no bend where the
fibres were clamped, and jaw breaks were eliminated. With φ = 90°, the occurrence
of direct breaks was negligible.

19.6.2 The form of failure

In biaxial rotation without a pin, two zones of splits, which twist in opposite direction,
join in a more intense damage zone, which eventually ruptures (Fig. 19.40(a–c)). In
fairly thick textile fibre, the two regions with helical splits are separated by an
undamaged zone, which covers most of the length in contact with the pin (Fig.
19.40(d)). Rupture occurs at one of the positions at the end of splits. In finer fibres,

19.39 Arrangements in multi-station testers: (a) first type, with pin mounted
on a beam sliding on two shafts; (b) second type, with pin mounted on holder
sliding through single collar; (c) test angle, φ and wrap angle θ.
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100 µm
(a) 50 µm

(b)

100 µm
(c)

(d)

(e) (f)

19.40 (a) Nylon monofil, 67 tex, in biaxial rotation without a pin. (b) Severe
damage zone. (c) Break of the monofil. (d) Polyester fibre, 4.2 tex, after 1503
cycles in biaxial rotation over a pin. (e, f) Opposite ends of break at 2606
cycles.

© Woodhead Publishing Limited, 2008



Fibre breakage and fatigue 543

the helical splits join and there is no undamaged zone [1]. In most fibres, there would
be at least ten separate split portions in the final break, giving a brush-like end, but
nylon gives fewer and larger pieces. This form of break by multiple splitting is also
common in fibres after wear in use, though there can be confusion with splitting due
to simple flex cycling or other causes [1].

The sequence of damage and loss of strength in fibres, rotated at 15 Hz over a
0.254 mm diameter stainless steel pin in water at 20 °C, has been described by Calil
et al. [47]. For an 8.4 dtex polyester fibre, which gives a bending strain of 11%, there
is no loss of strength up to about 2000 cycles, and the only visible damage consists
of some kink-bands and some surface abrasion. There is then a linear loss of strength
with number of cycles, accompanied by progressively increasing splitting, up to
failure at about 4000 cycles. The helical splits cover the whole length of bent fibre.

In a thicker polyester fibre, of 42 dtex, with a bending strain of 20%, there were
two regions of strength loss, in which the visible damage increased, preceded by two
initiation regions (Fig. 19.41(a)). The final break divided into separate zones, both
along and across the fibre (Fig. 19.41(b)). The axial separation is associated with the
more severe stresses at the points at which the fibre leaves the pin, as discussed
below. The transverse separation is due to the neutral plane moving out as indicated
in Fig. 19.36. On rotation, this will cause an outer zone to suffer a damaging alternation
of tension and compression, which causes splitting in the first period of strength loss.
The inner zone will always be in compression in the early stages of the test and does
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19.41 (a) Variation in retained strength for a 42 dtex polyester fibre subject to
biaxial rotation in water at 20% bending strain. (b) The appearance of a fibre
broken after 2600 cycles [47].
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not start to break up until the outer zone is unable to resist stress and a further
initiation of damage has occurred.

19.6.3 Statistics of fatigue failure

Figure 19.42 shows a histogram of the fatigue lifetimes from ten tests on each of ten
stations for 17 dtex polyester fibres under typical test conditions in a laboratory
atmosphere [48]. It should be noted that the biaxial rotation test operates on a very
short length of fibre in contact with the pin (about eight fibre diameters for a 90°
wrap at 10% strain). There was no significant difference in the results from different
positions on the multi-station tester. The total range from 1878 to 9480 cycles is
acceptably low for fatigue testing. The distribution is slightly skewed. The histogram
for 17 dtex nylon had a similar shape, and the statistical parameters for both fibres are
given in Table 19.5.

In these results reported by Clark and Hearle [48] and in earlier studies by Calil
and Hearle [41] and Hearle and Wong [49], it was found that the statistics gave a
reasonable fit to a Weibull distribution, as might be expected for an extreme value
situation. However, from a practical viewpoint, the agreement was almost as good
with a normal distribution of log(cycles to break).
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19.42 Distribution of fatigue lifetimes for 17 dtex polyester fibre rotated at
2.5 Hz, with a bending strain of 10% and a tension of 58 mN/tex (0.65 gf/den),
at 20 °C, 65% r.h. [48].

Table 19.5 Statistics of fatigue failure [50] (test conditions as for Fig. 19.42)

17 dtx polyester fibre 17 dtex nylon

Number of tests 100 100
Mean cycles to break 3352 5507
Median 3293 5282
Standard deviation 736 1320
Coefficient of variation (%) 22 24
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In order to investigate statistical features, at least 100 tests are needed, but, for
comparative testing, about 20 tests are adequate. A survival diagram is the best way
to present the results, and the most useful parameters to quote are often the median
fatigue life and the coefficient of variation.

19.6.4 Effect of mechanical parameters on fatigue life

There are several geometrical and mechanical parameters that affect biaxial rotation
fatigue life. The state of the pin surface is usually not critical, unless it is highly
abrasive or the fibre is of a type highly prone to surface wear. Figure 19.43 shows the
influence of angle of wrap, as reported for 42 dtex polyester fibre by Clark and
Hearle [43]. It can be seen that there is a very sharp change from the short lifetimes
ending in direct breaks at high wrap angles to the longer times for fatigue breaks.
Provided that the direct break region is avoided, and the jaw break region is not
entered, the angle of wrap has only a small effect on fatigue life. As discussed in
Section 19.6.1, smaller wrap angles must be used to eliminate direct breaks in finer
fibres, and the design of equipment must then be changed to prevent jaw breaks.

The two most important normalised controlling parameters are the bending strain,
given in terms of fibre diameter and pin diameter by equation (19.1), and the specific
stress in the fibre. The latter is controlled by fibre tension, which, for the preferred
form of apparatus shown in Fig. 19.39 is given by:

T = 1/2W sec (φ/2) (19.4)

where W is the total weight of the pin holder.
The effects of these two parameters are demonstrated in Table 19.6. As would be

expected, the fatigue life decreases as the intensity of bending is increased and as the
tension in the fibre is increased. Note that, in the second set of results, the specific
stress on the fibre is decreasing, so that the effect of bending is under-estimated.

19.6.5 Environmental influences

It is easy to study the effect of different environments in biaxial rotation fatigue by
immersing the fibre over the pin in liquid in a trough or by enclosing the whole
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19.43 Change of mean fatigue life with wrap angle, θ (= π–φ), for 42 dtex
polyester fibre rotated at 5.3 Hz with bending strain of 14% and tension of 86
mN in air regions are: (D) direct breaks, (F) fatigue breaks and (J) jaw breaks
[43].
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apparatus in an environmental chamber for gaseous environments. The reduction in
the fatigue life of nylon in water compared with air under standard conditions has
been shown in Table 19.6. The effect of buoyancy means that the tension is lower in
water, so that the effect of the change of environment is slightly reduced. The effect
of temperature in the same series of experiments was to reduce the median fatigue
life of 17 dtex nylon 6.6, tested in water at 14.5% strain and 108 mN tension, from
4207 cycles at 20 °C to 2356 cycles at 66 °C [50].

A more extensive study of the effects of temperature has been reported by Clark
and Hearle [51]. The results for nylon 6 are shown in Fig. 19.44. The trend follows
the trend in dynamic loss, tan δ, with the position of the maximum fatigue life
increasing in humidity as the temperature is reduced. For polyester fibre, there is
little effect of humidity, but, subject to some scatter in the results, the maximum
fatigue life appears to decrease as the temperature increases from 0 to 80 °C. There
is a linear relation between log(fatigue life) and reciprocal of absolute temperature,
as shown in Fig. 19.45. In water, the fatigue lives of both nylon 6 and polyester fibre
decreased with increasing temperature. In polyester fibre, the magnitude of the effect
was similar to that in air, but in nylon 6 the effect was greater than that for air at 100%
r.h.

Table 19.6 Effect of bending strain and fibre tension on biaxial rotation fatigue

17 dtex nylon 6.6 rotated from one end with hanging weight [50]

Median life in thousand cycles

In air In water

Bending             Fibre tension (mN)
strain (%) 58 83 96 121 *58 83 96 121*

14 31 20 9.2 5.1 14 7.3 5.0 3.0
22 8.8 4.7 3.4 1.6 2.4 1.1 1.0 –
28 4.4 2.2 1.3 – 1.7 0.8 0.7 –

*not corrected for buoyancy

Polyester fibre rotated from both ends in air over same pin at 41 mN [43]

Linear density (dtex) Bending strain (%) Mean life  (thousand cycles)

8 10 9.0
17 14 5.5
27 17 3.0
42 20 2.2

8 dtex Polyester fibre rotated from both ends in water at 10% strain [43]

Fibre tension (mN) Mean life  (thousand cycles)

6 27
20 12
30 10
41 7.8
70 4.0
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The effect of changing pH on the biaxial-rotation fatigue of nylon 6.6 is shown in
Fig. 19.46 [50]. From alkaline conditions in sodium hydroxide solution down through
increasing concentrations of hydrochloric acid, there is no change in life until pH 2
is reached, but there is then a rapid linear decrease. The reduction in fatigue life is
proportionately much greater than the reduction in tensile strength.

Clark [52] found that atmospheres of hydrogen, carbon monoxide and methane
gave no difference from air in the fatigue life of nylon 6, but small amounts of nitrous
oxide (N2O) or sulphur dioxide (SO2) caused an appreciable reduction in the fatigue
lives of both nylon 6 and polyester fibre. Nitrogen dioxide (NO2) reduced the fatigue
life of nylon 6 to zero cycles but did not have as severe an effect on polyester fibres.
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19.44 Variation of mean fatigue life with humidity at, 0, 20 and 60 °C for 17
dtex nylon 6 rotated at 2.5 Hz with a bending strain of 10%, a tension of 100
mN, and a wrap angle of 90°; the plots for 40 and 80 °C are close to those for
60 °C [51].
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19.45 Relation between mean fatigue life on a logarithmic scale and
reciprocal of absolute temperature for 17 dtex polyester fibre, tested under
same conditions as for Fig. 19.44 [51].

80°

20°
0°

© Woodhead Publishing Limited, 2008



Physical properties of textile fibres548

19.6.6 Effects in different fibres

Unfortunately, there is not a good set of comparative data for the biaxial rotation
fatigue lives of different types of fibre, though similar multiple splitting failures have
been found in most general textile fibres. The study of failures in use would suggest
that rayon may be an exception [1]. Hearle and Wong [50] report that, in order to
obtain broadly similar fatigue lives, in the range from 300 to 8000 cycles, polypropylene
fibre will stand more severe conditions than nylon, which in turn is slightly more
resistant than polyester fibre, as also shown by the results in Table 19.5. However, as
shown above, the results are highly dependent on temperature and humidity.

In natural fibres, comparative results are difficult to obtain because of the variability
of fibre diameter. However, observations from experiments on cotton [42] and wool
and hair [53] have been reported.

19.6.7 Mechanics of biaxial rotation

The initial rationale for the biaxial rotation test was that it was a means of applying
cyclic bending to a fibre, not from straight to bent as in the flex fatigue test described
in Section 19.5, but from bent in one direction to bent in the opposite direction.
However, this is not done by flexing backwards and forwards in a plane as in Fig.
19.47(a). Instead, the same extreme positions are reached by rotating the fibre, as in
Fig. 19.47(b).
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19.46 Effect of pH on median fatigue life for 17 dtex nylon 6.6 rotated from
one end over a 273 µm diameter wire: A, with weight of 12 gf; B, with weight
of 2 gf [50].
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19.47 Cyclic bending: (a) in a plane; (b) by rotation.
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In order to understand the mechanics of the test, which is more complex than first
appears, we start by considering the simpler situation without a pin, in which a length
of fibre is bent into constant curvature, as in Fig. 19.48(a), and then rotated. For a
material following Hooke’s Law, there will be a central neutral plane, which rotates
as indicated in Fig. 19.48(b): the strain variation over the fibre would then be as
shown in Fig. 19.48(c), with a phase difference related to the position around the
fibre cross-section. If, as is common, the fibre yields more easily in compression,
with a stress–strain relation like that in Fig. 19.49(a), the neutral plane will move out,
as indicated in Fig. 19.49(b), and during rotation will define a cylinder, within which
the material is always in compression. The strain variation with time and position is
shown in Fig. 19.49(b). The stresses during the first bending are indicated in Fig.
19.49(a), but the situation for stress, strain and the position of the neutral plane will
evolve in successive cycles as the material follows the indicated hysteresis loop.

In the exceptional case of wool and hair fibres, which yield more easily in tension,
the above argument will be reversed. The neutral plane will move in the opposite
direction, and most of the fibre will be in tension. Effectively, the horizontal axis in
Fig. 19.48(b) will be moved downwards instead of upwards.

For a perfectly elastic fibre, as in Fig. 19.50(a), the bending moment will be the
only force present. As indicated in Fig. 19.50(b), the maximum stresses coincide with
the maximum strains at the top and bottom of the fibre, and they act normal to the
plane of the paper in opposite directions on the tension and compression sides.
Consequently, the bending moment vector, M, acts in the direction shown. On rotation
of the fibre, M remains fixed in space, but it changes direction relative to the material.
The situation is the same at all positions along a uniformly curved fibre, as indicated
in Fig. 19.50(c), in which three mutually perpendicular vectors represent the fibre

A

B

A

X

Y

C

B
(a)

(b)

0

A

X

C

Y

B

(c)

19.48 (a) Linear elastic fibre deformation in uniform curvature, showing
neutral plane dotted. (b) Cross-section, showing the line AOB from maximum
tension to maximum compression, which rotates during the test. (c) Strain
variation with time and position in the fibre.
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19.49 (a) Idealised stress–strain relation with yielding in compression: the
hysteresis recovery path is shown dotted. (b) Fibre cross-section showing
displacement of neutral plane. (c) Strain variation in the fibre.

19.50 (a) Elastic stress–strain relation. (b) Fibre cross-section showing
positions of maximum stress and strain and bending moment vector.
(c) Changing directions of fibre direction F, curvature direction C, and
constant direction of bending moment M. (d) Stress-strain relation with
hysteresis. (e) Fibre cross-section with stress leading strain and changed
direction of bending moment vector. (f) Translation of the bending-moment
vector from the centre of the fibre to the ends.
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direction F, the direction to the centre of curvature C, and the bending moment M,
which is always in the same direction perpendicular to the plane of the fibre.

However, if there is hysteresis, as shown in the simplest possible form in Fig.
19.50(d), energy is dissipated in each cycle. The work needed can be supplied only
through the drive shafts, which must therefore apply torque to the fibre in opposite
senses at either end. At the centre point, there will be zero torque, but this will
increase with distance from the centre as energy has to be supplied to increasing
lengths of material. The torques will cause the fibre to be false-twisted about the
centre point, just as if there were an external frictional drag.

The situation, in terms of forces and moments, is explained by noting that when
there is hysteresis, stress and strain are not in phase. Consequently, the position of
maximum stress will lead the position of maximum strain, and the bending moment
vector will change direction, as shown in Fig. 19.50(e). Considering effects along the
fibre, as shown in Fig. 19.50(f), it can be seen that a component of the bending
moment vector, which is in the vertical direction in the cross-sectional plane at the
centre point, must be balanced by an axial component at the ends, which is the
direction of a torque vector. However, Fig. 19.50(f) is oversimplified, except at the
centre point, because the moment vector will really have components in all three
directions, owing to the combination of in-phase and out-of-phase bending moments
and increasing torque.

The energy argument is not only simpler in qualitative terms; it is also the best
basis for quantitative estimates of the magnitude of the torque. An approximate
analysis has been made by Calil et al. [54] and a more precise treatment by Waterman
[55]. In the approximate treatment, we consider a length of fibre, 2x, bent in uniform
curvature through an angle θ, as in Fig. 19.51(a). If the fibre were bent backwards
and forwards in a plane between +θ and –θ through θ = 0, in the manner of Fig.
19.47(a), the relation between bending moment and bending angle could be represented
as in Fig. 19.51(b). The energy loss per cycle would be Mbdθ, and we can assume that
it will be similar in value when the bending cycle is caused by rotation, as in Fig.
19.47(b). At each end, there is an energy input per cycle of 2πMt from the drive
torque, Mt. The sum of the two inputs must equal the energy loss. A generalised form
of the equation for different lengths and variable bending would have the form:

2  2  = d dt
–

b× ∫ ∫π θM M x
x

x

(19.5)

(a)

x x

θ

(b)

θ

19.51 (a) Fibre bent through an angle θ. (b) Hysteresis loop between bending
moment and bending angle.

Mb
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The torque must increase from zero at the centre point to a maximum value at the
ends. For constant curvature through a total angle θ, the value is given by:

M Mt b = (1/4 ) dπ θ∫ (19.6)

If f is the ratio of the area of the ellipse in Fig. 19.50(b) to the area of the circumscribing
rectangle, ranging from zero for a perfectly elastic material to π/4 for a completely
lossy viscous material, Calil et al. [54] derived the following equation by the use of
the standard bending theory given in Section 17.2.1:

M
f Ec

R
f Ec x

R
 = 

4
 = 

2

2

2

2

2

η θ
π ρ

η
πρ

(19.7)

where η is the shape factor (1 for a circle), E is the specific modulus, c is the linear
density, ρ is the density and R is the radius of curvature.

The form of stress–strain relation given above would be applicable to a linear
viscoelastic material. The reality, with the more complicated non-linearity of yielding,
will be somewhat different but will be similar in principle.

For rotation over a pin, the friction between the fibre and the solid surface will also
contribute a torsional drag. The total torque M will be given by:

M = Mt + 1/2 Fr (19.8)

where Mt is given by equation (19.7), F is the total frictional force over the whole
length on both sides of the centre point and r is the fibre radius.

The variation in torque along the test length is indicated in Fig. 19.52. By putting
in what seemed to be reasonable values of the various parameters, Calil et al. estimated
that the torque due to hysteresis (‘internal friction’) would be at least ten times as
large as the torque due to surface friction. For a 42 dtex polyester fibre with a wrap
angle of 90°, the torque was estimated to be in excess of 1 µN m, which would
produce in excess of 1 turn/mm. This is in reasonable agreement with the angles of
the helical splits found in fatigue failures by biaxial rotation. Clearly, the torque
contributes in an important way to the failure of the fibres, which will have been
weakened by the tension/compression action in cyclic bending.

Torque

Position

Actual

Nominal contact

19.52 Variation of torque along the fibre in biaxial rotation test: the line with a
sharp discontinuity is for the fibre path A in Figure 19.35; the smooth curve is
for an actual path like B.
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The increase in torque with wrap angle is probably a cause of the change from
fatigue breaks to direct breaks, described in Section 19.6.

For rotation over a pin, there will also be the complications of variable curvature,
which were discussed in 19.5, since the fibre will follow the path illustrated in Fig.
19.35(b). The stresses due to bending, tension and shear will be the same as in Fig.
19.36, but the frictional force will be acting circumferentially instead of axially; and
the stresses will rotate within the fibre, instead of moving along the fibre. In addition,
there will be the torque shown in Fig. 19.52.

The most highly stressed part of the fibre will be where it leaves the pin because
at that point the bending stresses have not reduced, the shear stresses have abruptly
appeared, and the torque has reached its maximum value. As in the flex test, the
normal and frictional contact stresses may also influence fibre failure, particularly in
fibres that are prone to surface wear.

19.7 Surface wear and peeling

Another mode of fibre failure, which has been found to occur often in use [1],
consists of splitting and peeling of fibre surfaces when they are subject to abrasion.
The observed forms vary in appearance, but they are grouped in one poorly defined
class, type 13 in Fig. 19.1. Unfortunately, there is little information in the literature
on the experimental or theoretical fibre physics of these effects. Recent papers on
yarn-on-yarn abrasion [56–58] using the apparatus shown in Fig. 19.53 give some
comparative information and show that in wet conditions nylon does not last as long
as polyester fibres. The nature of the fibre finish is major determining factor. But the
method is complicated by the yarn structural effects. As mentioned in Section 19.5.2,
the flex fatigue test, in which a fibre is pulled backwards and forwards over a pin, can
lead to failure by surface wear.

In order to avoid the effects of repeated flexing, another method that has been tried
is wear of fibres held under tension over a rotating pin. The commonest form of wear
is a progressive peeling of the surface (Fig. 19.54(a,b)). This is eventually leads to
break over a reduced cross-section (Fig. 19.54(c)). Alternatively, the break may from
a long taper (Fig. 19.54(d)).

This form of failure clearly results from the contact forces. In external application,
these consist of a normal load, acting at right angles to the surface, and a frictional
force, acting tangentially in opposition to the relative motion. The direct effects of
these forces will be a transverse compressive stress and an axial shear stress within
the fibre near the surface, as shown in Fig. 19.55(a). This can lead to formation of a
crack developing from the surface (Fig. 19.55(b)). However, the internal stress
distribution resulting from contact stresses can become much more complicated,
especially when there is hysteresis [59]. High subsurface shear stresses can be present
and cause internal cracks (Fig. 19.55(c)). These cracks lead to peeling of slivers from
the surface and a reduction of the cross-section until a tensile break occurs. Alternatively
the shear stresses may lead to angled cracks crossing the fibre (Fig. 19.55(e)), to give
a tapered end. In Kevlar, surface wear eventually led to a break with multiple splitting
[1].
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19.8 Abrasion and wear

Other information on the failure of fibres can be obtained from studies of yarn and
fabric wear. Fibres in use are subject to a variety of different forces, which are
repeated many times until finally the fibres wear out. The abrasive wear of materials
depends to a considerable extent on the construction of the yarn or fabric, and no way
has been found to eliminate the influence of these factors and calculate a basic fibre
property, if indeed this exists at all. Wear resistance is more likely to be a complex of
several properties, whose relative influence is different in different uses.

It is, however, true that simple tensile tests of fibre properties do not give an exact
indication of resistance to wear. On the other hand, there is general qualitative agreement
between the results of various types of abrasion test and of tests of wear in actual use.
It is therefore not completely unreasonable, in the absence of further knowledge, to
consider abrasion resistance as a fibre property.

Table 19.7 gives some results obtained in practice, reduced so as to give nylon the
value 100 in all tests. These tests were carried out as follows:

A Taber Abrader, in which rubber-emery wheels are rubbed over a yarn sheet. The
figure gives the relative number of cycles for 60 loss in strength (Hamburger [60]).
B As A (Hicks and Scroggie [61]).
C As A, on fabric (Hicks and Scroggie [61]).
D Laboratory wear test (Schiefer et al. [62]).
E Yarn-on-yarn abrasion (du Pont [63]).

Crank and yarn
attachment

Gear motor

Pulley

70 mm 70 mm Pulley

25
4

m
m

Tension
weight

Interwrapped
yarn region

Pulley

19.53 Yarn-on-yarn abrasion tester.

© Woodhead Publishing Limited, 2008



Fibre breakage and fatigue 555

F Walker Abrader, in which yarn is twisted round a guide, and then round itself–
mainly yarn-on-yarn abrasion. Relative number of cycles to break. Staple-fibre yarns
(Abrams and Whitten [64]).
G As F – continuous-filament yarns (Abrams and Whitten [64]).
H Stoll flex and abrasion test. Yarn folded and rubbed over a bar. Staple-fibre yarns
(same as in F) (Susich [65]).
I As H – continuous-filament yarns (same as in G) (Susich [65]).
J As H – wet fabric (Dennison and Leach [66]).
K Flexing test. Cycles to break (Thomson and Traill [67]).
L Flex cycles to failure (du Pont [63]).
M Flex cycles to failure (Schiefer et al. [62]).
N Service-wear test on men’s socks. Days of wear (Schiefer et al. [62]).
The fibres have been arranged in the order of ranking found in most tests. The
exceptions are in italics, but it will be seen that there are few of these.

(a)
20 µm

(b)

(c) (d)

19.54 Wear of fibres over rotating pin: (a) nylon; (b) polyester; (c) wool, (d)
nylon.
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Table 19.7 Abrasion and wear – relative values

Fibre Conditions

A B C D E F G H I J K L M N

Nylon 100 100 100 100 100 100, 4 100 100, 73 100 100 100 100 100 100
Terylene, Dacron 42 696, 33 77, 57 62 62
polyester fibres 249, 21
Wool 20 28, 13 29, 17 100 11.6 64 33
Cotton 32, 5 44, 30 16 25.6 33
Silk 6 8.3 9, 1.8
Orlon acrylic 41 28 19 3.0 18,3 2.6 14, 12 9.7 13 83
fibre
High-tenacity 25 17 2.7 16 4.7 1.32 31.3
rayon
Viscose 17 10, 15 13, 15 6 1.6 6 3.2 9.1 18 3.7 3.3, 0.7 0.66 0.28 12
rayon
Acetate 17 7.5 9.3 4.5 3 0.31 5.3 7.2 2.2 0.5 0.053 5
Casein 1.5 0.45 1.9 0.12 1.8
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Another form of damage occurs within twisted ropes if a component yarn cycles
between tension and compression [1]. This is axial compression fatigue, with failure
at kink bands, similar to those in flex fatigue. Guidance design limites are 2,000,
40,000 and 100,000 cycles for aramid, HMPE and polyester fibres respectively [68].
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20.1 Introduction

20.1.1 A variety of approaches

The wide range of materials and phenomena concerned in the study of the mechanical
properties of fibres leads to a variety of useful theoretical approaches. A study of
changes in structure at various levels gives the best general scientific understanding
of the observed effects. One approach is to treat polymer fibres as composites of
crystalline and amorphous regions, even though, in dealing with regions of the order
of 10 nm (100 Å) in size, atomic and molecular effects must be borne in mind.

The chief technological interest is in deriving relations that will describe
mathematically the macroscopic properties of the material: the stress–strain curves,
recovery behaviour, creep, relaxation of stress, and so on. There are two main schools
of thought: the analytical and the integral. Analytical theories aim at breaking down
the behaviour into that of a combination of ideal elements. This may be done empirically,
but the more sophisticated theories are based on fundamental reasoning. Integral
theories aim at a single relation to fit the experimental results. An alternative
mathematical approach is the application to the problem of thermodynamics, dealing
with the changes of energy and entropy involved in deformation. The various theories
are neither exclusive nor completely separate, and there is a crosslinking of ideas.
Inorganic fibres are very different in structure and require different theoretical treatments.

20.1.2 Basic theory

Polymer fibres contain material in three main forms: crystalline; rigid amorphous
below the glass transition temperature; rubbery amorphous above the glass transition.
The behaviour will also be affected by the extent of secondary bonding, e.g. hydrogen
bonds, in amorphous regions. It is useful to give a brief account of the basic mechanical
theories for the three types of material.

Crystalline lattices are bonded by covalent, electrovalent or weaker intermolecular
bonds. In the simple case, shown by the full line in Fig. 20.1(a), increasing strain
gives a rise in energy up to a maximum value and then an asymptotic approach to a
reference level. Differentiation of the free energy curve results in the stress–strain
curve (Fig. 20.1(b), giving Hooke’s Law for small strains.

20
Theories of mechanical properties
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f U
e

Ee = d
d

 = (20.1)

where f = stress (or specific stress), U = free energy per unit volume (or per unit
mass), e = strain and E = initial modulus.

Owing to the strength of the bonding, a crystal is a high-stiffness material. Typical
moduli are of the order of 100 GPa for extended chain crystals dominated by bond
stretching, but are much lower with helical lattices when bond bending and twisting
can occur. The maximum stress occurs at the point of inflection on the free energy
curve. For uniform straining, the stress would then fall and approach zero as the free
energy reaches its asymphotic level with complete separation of parts of the crystal.
In practice, a local instability will lead to a catastrophic rupture at the point of
maximum stress, or earlier if there are stress concentrations or, for small crystals,
thermal vibrations leading a jump over the energy barrier.

The dotted lines in Fig. 20.1 relate to materials in which there can be a transition
from one crystal lattice to another, such as the α↔β change from helices to extended
chains in keratin. For uniform deformation, the stress curves go into negative stress
before increasing again, but, in practice, an instability will lead to a jump from one

20.1 Crystal lattice deformation. Full lines: a crystal which extends to rupture.
Dotted lines: a transition between different α and β forms. Note that in reality
the full lines would go to much higher values of free energy and stress than
the dotted lines. Following the transition, the dotted line would continue in
the form of the full line to give rupture of the β-lattice. (a) Free energy versus
strain. (b) Stress versus strain.
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form to the other at a critical stress fc. The stress drops to the equilibrium stress fe,
which is given by the slope of the common tangent to the two troughs in the free
energy curve.

The energy and stress relations for glassy polymers are similar to the full lines in
Fig. 20.1. In addition to bond stretching and bending, a major cause of the stiffness
is resistance to bond rotation. Polystyrene has a modulus of 3 GPa. In the simplest
case, the transition from glass to rubber is due to thermal vibrations becoming strong
enough to allow free rotation around main chain bonds (Fig. 20.2). There may be
secondary transitions associated with side chains or with intermolecular bonds. In
particular, in nylons, there are two major transitions, one due to bond rotation and the
other to mobility of hydrogen bonds. There is a similar effect in polyesters and the
consequences are discussed in Section 20.3.1.

The classical theory of rubber elasticity [1] is based on the assumption that there
are no changes in internal energy, so that the resistance to deformation depends only
on changes in entropy. The greatest number of possible conformations of a chain of
N freely orienting links, and hence the maximum entropy, occurs when the two ends
of the chain are closest together. As the chain extends, the number of possible
conformations decreases. The change in entropy, which can be related to the tension
in the chain, depends on the change in probability of chain ends being separated by
a distance r. An approximate solution, which is not valid at high extensions, for a
random chain gives a Gaussian function for the probability P(r):

P( ) = 
4

e
2

1/2
2 – 2 2

r
b

r b r

π






(20.2)

For large extensions, getting near to a fully extended chain, it is better to follow a
derivation by Flory [2, 3]. This depends on the fact that for a link of a length a at
an angle ψ, the length x along the chain axis is (a cos ψ). If the tension on the
chain is F, there is an associated potential energy of (–Fx)1. According to the

20.2 Freedom of rotation around main chain bonds.

1The negative sign results from an increase in x lowering a notional weight on the end of the chain
and hence a reduction in potential energy.
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Maxwell–Boltzmann law, the probability of a value between x and (x + dx) is
exp[– (–Fx/kT)]dx. This leads to a mean value of x of a[coth(Fa/kT) – (Fa/kT)–1]
= aL(Fa/kT), where L is the Langevin function, which first appeared in the theory of
the alignment of dipoles. The total end-to-end length l of the chain is N times the
mean value of x and the fully extended chain length L is Na. Hence:
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The first term is the Gaussian approximation in the entropic derivation and is reasonable
to use up to (l/L) = 0.4.

Rubbers are a network of flexible polymer molecules. If the chains are long
enough and sufficiently entangled, slippage of molecules past one another is inhibited
to the extent that a low-modulus plateau appears below the glass transition. However,
viscous flow will take place with time and, if the molecules are short, the plateau will
disappear. Commercial rubbers are vulcanised to form a network that is covalently
crosslinked by (—S—)n bonds or in other ways. This prevents long-term flow. Rubbers
are elastic with very low hysteresis, i.e complete recovery with very small differences
between stress–strain curves in extension and recovery.

Energy minimisation provides a means of calculating stress–strain relations [1, 3].
The details are complicated and only a brief account will be given here. The dominant
energy term is elongation of the flexible tie-molecules between crosslinks, which is
given by integrating equation (20.4) for the changes in l from the initial to the
extended lengths. There is also energy associated with change in volume, just as
there is in a liquid. Except when there is a large change of hydrostatic pressure, a
common procedure is to assume constant volume, which is close enough to give
acceptable values of l for most deformations, although paradoxically the stresses to
give exact constant volume are not small. A better procedure is to include in the
analysis a volume energy term derived from the relatively high bulk modulus2, and
at the end to neglect negligibly small contributions to the stress [3].

Affine deformation3 relates the changes in lengths of tie-molecules between network
points to the external deformation and hence, in principle, enables energy changes to
be calculated. The complications arise from the need to take account of different
initial lengths, extended lengths and orientations. If the Gaussian approximation is
assumed, i.e. only the first term of the series in equation (20.4), an averaging procedure
gives an algebraic solution for the shear modulus G:

2An advantage of this approach is that it eliminates an indeterminacy in the constant volume
theory.  Since there can be no volume change, any value of hydrostatic pressure gives the same
result.
3Affine: the strain matrix for any small element, e.g. as defined by the distribution of network
points, is the same as for the specimen as a whole.
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G = N k T (20.5)

where N = number of tie-molecules per unit volume, which can be related to the
density of crosslinks, k = Boltzmann’s constant and T = temperature.

A typical value of the shear modulus G is 0.5 MPa. With a Poisson ratio close to
0.5, this gives a tensile modulus of 1.5 MPa, many orders of magnitude less than the
modulus of crystals or glasses. The bulk modulus is more than 1 GPa, over 1000
times greater than the shear and tensile moduli and can clearly be neglected in most
modes of deformation.

For large strains, which require use of the full equation (20.4), the averaging is
more difficult, except by numerical computation. For an analytic solution, a three-
chain (XYZ) model can replace the distribution of orientations. This gives the following
equation for uniaxial stress f:
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(20.6)

where λ = extension ratio = (1 + axial strain) and n = number of freely orienting links
in the tie-molecules between network points.

Treloar (1) quotes the series for two more terms, which go to a sum of five powers
of λ. There are interesting features of equation (20.6) illustrated in Fig. 20.3, which
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20.3 Stress–strain curves for a typical rubber: A, experimental data, B, inverse
Langevin function form; C, Gaussian approximation.
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also shows the agreement between experiment and theory. The inclusion of (1/λ)2,
which also comes into the full treatment of the Gaussian approximation, means that
there is some initial curvature of the stress–strain curve. The later terms of the series
in λ determine the large strain behaviour with the stress rising more sharply and
becoming asymptotic to infinity when the chains are fully extended. The first term in
the series, which is the Gaussian approximation, does not include n. The stress
depends only on the number of tie-molecules and is independent of the number of
links that they contain. However the large-strain behaviour is dependent on n. It
should be noted that the number of freely rotating links n = (number of repeat units
in a tie-molecule/number of repeat units in a freely rotating link). This differentiates
different polymers. For a simple polymer, which can be represented by Fig. 20.2, the
freedom is limited to rotation with the angle between bonds remaining constant and
a freely rotating link is equivalent to three repeats. However, for different bonds and
other interactions, the number varies considerably. For polyisoprene (natural rubber),
in which the monomer includes four main chain and contains a double bond, a freely
rotating link corresponds to 1.73 monomer units.

Following the first edition of Treloar’s classic text in 1949, there were many
advances in the theory of rubber elasticity. Some of these dealt with the mathematical
approximations, but others dealt with physical differences between the idealised
model and real materials. In particular, there are internal energy changes as well as
entropy changes. Semicrystalline polymer fibres bring in other effects, but the basic
analyses described above can be used in theories for particular fibre types.

20.2 Structural effects in rayon fibres

20.2.1 The extension and recovery of ordinary rayon

Viscose rayon exhibits many features of fibre behaviour that are also shown by other
fibres. It is therefore a good example to consider first in qualitative and semi-empirical
quantitative theory. The stress–strain curve shown in Fig. 20.4 has three distinct
regions: an initial linear portion A, in which recovery is good; a region of easier
extension B, in which recovery is incomplete; and, finally, a region of increasing
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20.4 Stress–strain curve of rayon.
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slope C, leading to breakage. This curve may be explained in terms of the structure
of the fibres.

When a small force is applied to the fibres, extension will occur for two reasons:

• a slight stretching of the chain molecules themselves;
• a straightening of the molecules in the non-crystalline regions, with a resultant

straining of the hydrogen bond crosslinks between them.

The behaviour is thus analogous to that of a bundle of rods held together at irregular
intervals by short lengths of elastic. On the application of a force, there may be some
stretching of the rods, but there will be a greater stretching of the elastic links,
allowing the rods to change position. There will also be some change in bond angles
in the main chains.

The magnitude of the distortion of the molecules and crosslinks will be proportional
to the applied force, so that the stress–strain curve will be linear. On removal of the
force, the molecules and crosslinks will spring back to their original positions, and
recovery will be complete. The straining of the bonds occurs at rates comparable to
thermal vibrations of the atoms, namely, in times of the order of 10–13 second, so that
there is no detectable time dependence except at such high rates that inertia effects
are also significant.

When the applied force becomes larger, some of the most highly strained crosslinks
in the amorphous region will break because they cannot support the force applied to
them. This permits a much greater straightening of the molecules and, in turn, puts
an increased load on other crosslinks. Consequently, extension becomes much easier.
This is the region B. When the force is removed, recovery is incomplete, since many
of the crosslinks are now missing and cannot spring back to their original positions
or, more probably, hydrogen bonds have re-formed in new positions and are thus
tending to stabilise the deformed state. Mechanical conditioning is explained, since
the small elastic recovery from the deformed state will be reversible. When the
specimen is extended again, no more crosslinks need to break until the original
stress–strain curve is reached.

The observed time dependence of this yield region is explained by the fact that the
rupture of a crosslink is a statistical phenomenon. The random thermal vibrations of
the system give a certain probability that a given crosslink will break in a given time.
In the absence of an applied stress, or with a low stress, the probability is almost
infinitesimal, and, even when a link does break, the neighbouring links hold the
structure in place and prevent any extension or recovery of the fibre. But, as the stress
is increased, the most strained crosslinks become less stable and thus are more easily
broken by thermal vibrations. The chances of achieving sufficient loosening of the
structure to get appreciable localised deformations become significant. The interaction
of these two effects, the increasing instability of bonds under stress and the chance
fluctuations of thermal vibrations, causes the yield stress to be rate-dependent. At
higher rates of extension, the crosslinks have to be raised to a higher level of instability
before sufficient chance breaks occur within the timescale of the test; at low rates, the
stress does not need to be so great for there to be a sufficient number of random
breakages to cause yield.
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When put in other ways, the same argument explains secondary creep and stress
relaxation. Under constant stress, continued rupture of crosslinks will occur owing to
chance fluctuations as time goes on and thus lead to continued deformation or creep.
It will be secondary creep without recovery because, when the stress is returned to
zero, the structure is so firmly held by the many hydrogen bonds in cellulose that the
influence of thermal vibrations is negligible. The rate of creep will slow down with
increasing time because the continued rearrangement of the structure tends to remove
the most highly strained and unstable crosslinks and leads progressively towards a
more uniform sharing of the load among all the chains and hydrogen bonds, with a
reducing probability of breakage of crosslinks.

When the fibre is held extended at fixed length, the continued spontaneous breakage
of crosslinks relieves the internal stresses in the molecular assembly and thus leads
to the lowering of tension, which is termed stress relaxation. An oversimplified, but
instructive, model of stress relaxation is a set of links that are put under tension by
the imposed strain. It is assumed that there is a certain probability that a link will
break in a given time and cease to contribute to the stress. The number of crosslinks
breaking in a time interval dt will be proportional to the number remaining n. Thus:

d
d

 = –
n
t

kn (20.7)

where k = constant. But the stress will be proportional to n, the number of effective
crosslinks (per unit area), so that:

d
d

 = –
f
t

k f (20.8)

Integrating and putting f = f0 at t = 0, we get:

f
f0

 = exp (–kt) = exp (–t/τ) (20.9)

where τ = 1/k = relaxation time for the type of bond concerned.
This indicates that an exponential decay of stress is likely, though the situation is

more complicated in real fibres for several reasons. There may be various sorts of
bond with different relaxation times; there is a complicated distribution of stress over
the links; and the effects of breaking a link in the network will not be as simple as in
the model. Each break will lead to structural rearrangement.

The small positive slope of the stress–strain curve in the region B can be explained
by local variations in molecular packing. The most unfavourable arrangements are
disturbed first, and higher stresses are needed to cause further breakage of crosslinks,
allowing the molecular chain to straighten and give more fibre extension. However,
eventually a point is reached at which some of the molecules are fully straightened.
Further extension then becomes more difficult, and the slope increases as at C.
During this period, an increasing strain is put on the crosslinks and molecules. Finally,
breakage occurs at locally highly stressed or weak points to give a granular break.

Because the yield phenomena are affected by thermal vibrations, they will be
influenced by temperature. Creep and stress relaxation will occur more rapidly at the
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higher temperatures. Moisture absorption will have a much greater effect. The stress–
strain curve in Fig. 20.4 is typical of the behaviour of ordinary rayon at low and
medium humidities. In the perfectly dry state, there will be a maximum crosslinking
of the cellulose molecules by hydrogen bonds, and the yield stress will be high. As
moisture is absorbed, some of these crosslinks are replaced by absorbed water molecules.
This loosens the structure and makes yield easier. Consequently, as relative humidity
increases, the yield stress falls.

In wet rayon fibres, there is so much moisture absorbed that the non-crystalline
regions are virtually free of restrictions on relative movement. The plasticising effect
is such that the molecules can be regarded as swimming in a sea of water molecules,
held together only by the crystalline micelles. This is why the modulus of standard
viscose rayon is so low when wet. In effect, the yield stress can be regarded as having
moved down to the origin, the yield slope being left to determine the fibre stiffness.

The loosening effect of absorbed water is such that, at zero stress, spontaneous
structural arrangements can occur and the structure will recover to an equilibrium
state. This explains swelling recovery (see Section 15.6). A structure that has been
left with a ‘permanent’ extension as a result of being strained while dry will recover
when it is loosened up by absorbed water or steam.

20.2.2 A comparison of regenerated cellulose fibres

There is a great diversity of regenerated cellulose fibres with different mechanical
properties due to differences in manufacturing sequences (Section 1.5.2). The influence
of large-scale structural features is shown by fibres with an asymmetric skin, giving
rise to a crimp that has a major influence on the initial part of the stress–strain curve.
The all-skin fibres have a finer texture, which leads to lower localised stress
concentrations, a more uniform sharing of load among the molecular chains, and thus
to higher strengths. These are the high-tenacity rayons. Although not a rayon, cellulose
acetate shows behaviour that is qualitatively similar to that of ordinary rayon, except
that the weaker attractions between molecules lead to easier yield; the drop in stress
that is often observed at the start of yield must be due to the development of an
unstable situation once large-scale molecular movement begins.

Finally, there are the very interesting differences between ordinary and high-
tenacity rayons in one group and high-wet-modulus or polynosic rayons in another.
If orientation effects are ignored, the structure of the high-wet-modulus rayons may
be represented by the fibrillar model of Fig. 20.5(a), whereas the ordinary rayons are
micellar as in Fig. 20.5(b). If, with some exaggeration, we consider these models as
made of glass embedded in rubber, the difference is obvious: the fibrillar model will
have almost the stiffness of glass, but the micellar model will have almost the
extensibility of rubber.

The fibrillar model (Fig. 20.5(a)), is easily analysed for any combination of material
properties because the stress will be the mean stress contributed by the two components
at the same strain, weighted to allow for one-third crystalline to two-thirds amorphous.
The micellar model is difficult to analyse; but the more extreme lamellar structure of
Figure 20.5(c) is again easy to analyse. The behaviour of the composite system is
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given by taking the weighted mean strain with the same stress on each component.
The micellar structure will give a result between the two extremes and was arbitrarily
placed at the mid-point between the fibrillar (F) line and lamellar (L) lines at a given
stress [4].

Figure 20.6 shows idealised stress–strain curves for the components: a stiff, linear,
elastic stress–strain curve, unaffected by water, for the crystalline material, using
expected values of the modulus of cellulose crystals; a less stiff, initial linear portion
followed by yield for the dry disordered material; and a single region of low slope for
the wet disordered material. The arguments for the form of these relations were given
in the last section. These combine to give predicted curves, which are then compared
with experimental results in Fig. 20.7. The form of the relation for the disordered
material was given by fitting to the results for dry standard rayon. There is then good
agreement for the other three curves. It is the stiffening effect of the fibrils that causes
the high-wet-modulus of polynosic fibres. Lyocell fibres follow the same pattern.

20.5 Structural models – one-third crystalline (C), two-thirds amorphous
disorder (D): (a) fibrillar; (b) micellar; (c) lamellar.
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20.6 Idealised stress–strain relations of rayon: C, crystal line; D, disordered; F,
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20.2.3 The effect of orientation

The stress–strain curves shown in Fig. 20.8 demonstrate the influence of molecular
orientation in raising the stress–strain curve. Intuitively, this is to be expected, since
a poorly oriented structure has an opportunity to extend by becoming more highly
oriented, but this is not possible in a structure that is oriented to start with. The
behaviour is illustrated schematically by the three pairs of diagrams in Fig. 20.9,
where the structures in the left-hand pictures have low orientations and can deform
to give those in the right-hand pictures. The right-hand pictures can alternatively be
regarded as illustrations of the initial states of stiffer structures.

If we consider a simple network of linear elements, as in Fig. 20.9(a), those that
lie in the direction of extension will resist deformation more strongly than those lying
across it. This is the basis of the influence of fibre orientation on the properties of
non-woven fabrics; and the same argument will explain the influence of orientation
in the non-crystalline regions of a cellulose fibre. The preferred orientation is produced
by stretching during fibre production and stabilised by the pattern of interconnections
between crystalline regions. A fibre that has been stretched and permanently set in
the dry state will show a further preferred orientation, stabilised by hydrogen bonding.

Crystalline orientation also plays a part. In the micellar structures, the crystalline
regions may reasonably be regarded as rigid filler particles with all the deformation
occurring in the non-crystalline regions. However, the deformation is easier if the
micelles are initially poorly oriented and so are able to swing into alignment and give
an added extension with less strain in the non-crystalline matrix, as indicated in Fig.
20.9(b).

In fibrillar structures, with less than perfect orientation as in Fig. 20.9(c), a
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20.7 Comparison of theoretical predictions from 20.6 with experimental
results: S, standard rayon; H, high-wet modulus rayon; D, dry; W, wet.
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contribution to extension can come from straightening of fibrils, as well as the fibril
extension considered in the last section. The less the degree of orientation, the greater
is the contribution, and thus the stress–strain curve is at a lower level. A detailed
theory of a particular model of this situation has been worked out by Hearle [6] and
agrees reasonably with experimental results. It turns out that the major resistance to
extension by straightening of fibrils comes not from the bending resistance of the
fibrils themselves, but from the resistance to deformation of the disordered material
between the curved fibrils.

20.2.4 Ultimate failure

Rupture is, in general, more difficult to explain in detail than earlier deformation
behaviour because it is determined by extremes, by the concurrence of abnormal
stress concentrations with abnormal structural weaknesses. There has been no special
study of stress concentrations in fibres beyond the general recognition that high
stresses will occur near cracks, voids and foreign particles. Places of particular weakness,
which can be a nuisance in processing even when they occur only at intervals of
thousands of kilometres, can probably be attributed to major defects of this sort. But

20.8 Stress–strain curves of filaments of varying degrees of orientation. The
dotted curves are secondary cellulose acetate and the full curves are cellulose
fibres regenerated from acetate. The lowest curve in each set is for
unoriented material. From Work [5].
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the occurrence of tensile fracture of rayon in a laboratory test, with a test length of
a few centimetres, appears to involve multiple initiation and development of fracture
at many places within the fibre. Thus, while there will be an influence of the statistical
coincidence of points of weakness and of fibre irregularity, the fibre strength will be
related to the general ultimate strength of the material structure.

It is simplest to consider first wet rayon, with a structure composed of crystalline
regions, linked together by tie-molecules (strictly, better called tie-segments of
molecules) passing through non-crystalline regions, as illustrated in Fig. 20.10. The
structure will fail and part when all the links along some line such as AB, which
represents a surface in the real three-dimensional structure, are broken.

Free ends emerging from a micelle will contribute nothing to the strength. The
influence of total chain length (degree of polymerisation or molecular weight) is
therefore apparent, since the shorter the chains the more free ends there will be. In

(a)

(b)

(c)

20.9 Schematic representation of effects of orientation: (a) network; (b)
micelles; (c) fibrils.
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typical rayon fibres, about one-third of the chains emerging from a micelle will be
free ends4.

The other factor that is important is the distribution of segment lengths between
micelles as illustrated in Fig. 20.11. As the structure is extended, the shortest segments
will break first, but there will still be enough others to take up an increased load.
Eventually, however, as the peak of the distribution of segment lengths is approached,
there will be insufficient segments left to support the load, and catastrophic failure
will occur. The situation is similar to that of a fibre bundle discussed in Section 14.4.

A detailed theory along these lines has been worked out by Cumberbirch and
Mack [7, 8], using rubber chain conformation theory to obtain the distribution of
chain lengths. There is good agreement with experimental results, and Fig. 20.12
shows the variation of wet strength with degree of polymerisation and orientation.

Both the experimental and the theoretical results demonstrate that, up to a certain
level, care in maintaining a high degree of polymerisation (DP) of the cellulose is
valuable in improving strength. But there is little advantage to be gained by having
a DP greater than about 500, since the number of free ends has then become negligible.
Other work shows that it is important to pay attention to the distribution of chain
lengths, as well as to the mean value. Any appreciable number of short chains is
undesirable.

A

B

20.10 Schematic representation of chain molecules emerging from micelles,
showing chain ends, tie-molecules between the two micelles, and links to
other micelles. The line AB continues between other micelles.

20.11 Tie-molecules of varying length between micelles.

4Owing to the stiffness of cellulose molecules, it is reasonable to assume that there is no chain
folding at the ends of crystallites. This is not true for more flexible polymers.
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In dry rayon, including rayon at medium humidities, the tie segments will be
linked together by hydrogen bonds. One consequence of this is that the free ends
contribute to holding the structure together, so that the strength is increased. The
shorter the chains, the greater will be the increase; or, conversely, the decrease in
strength on wetting will be greater in ordinary rayon than it will be in better quality
rayon with a higher degree of polymerisation. It is also possible that some of the
weakening effect due to the range of tie-segment lengths may be mitigated in the
crosslinked network.

20.2.5 Torsion

In torsion, shear forces are between the molecules. Deformation in this way is much
easier than in tension, just as it is easier to twist a bundle of rods than to stretch it.
Consequently, the shear modulus should be less than the tensile modulus. This is
found in practice (see Section 17.3.3), the difference being greatest for the most
highly oriented fibres.

Water has a great effect on the intermolecular forces, so it is not surprising that it
has a great influence on fibre torsional rigidity, as shown in Fig. 20.13.

20.2.6 Creasing

Creasing and crease resistance may be explained on a molecular theory. If a structure,
such as the one in Fig. 20.14(a), is bent into a crease, there are two possibilities. The
crosslinks may break, and re-form in new positions, as in Fig. 20.14(b). On removal
of the load, there will be no recovery, and a crease will be left. Alternatively, the
crosslinks may be strained without breaking, as in Fig. 20.14(c). Under these conditions,
there will be a recovery on removing the load, and no crease will result.
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20.12 Theoretical prediction of variation of strength of wet rayon with degree
of polymerisation, compared with experimental results, at varying degrees of
orientation given by birefringence (n|| – n⊥). From Cumberbirch and Mack [8].
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20.3 Nylon, polyester and similar fibres

20.3.1 Molecular responses and fine structure

Polyamide and polyester molecules have important differences from cellulose molecules,
which contribute to their superior properties in manufactured fibres. In nylon 6, there
is an alternation between five —CH2— groups and —CO·NH— groups. Nylon 66 is
similar, except that the repeat is twice as long with alternately four and six —CH2—
groups. Polyester (PET) has an aliphatic sequence —CO·O·CH2·CH2·O·CO—, which
with six main chain bonds matches the —CH2— sequences in polyamides, alternating
with benzene rings. These similar structures, or near versions of them, are ideal for
synthetic fibres for general textile uses. At room temperature, the aliphatic sequences
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20.13 Modulus of rigidity (relative to value when dry) plotted against moisture
regain.
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20.14 Creasing and crease-resistance: (a) schematic representation of
structure with crosslinks; (b) formation of new crosslinks, giving a crease; (c)
straining of crosslinks, leading to crease recovery.
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in amorphous regions provide a freedom that gives extensibility and the interactions
of the —CO·NH— groups or benzene rings in amorphous and crystalline regions
give stability, strength and suitable stiffness to the structure.

Figure 20.15 illustrates how the fibres respond to change in temperature. In the
unimportant range below about –100 °C, energy barriers prevent freedom of rotation
around main chain bonds in the aliphatic sequences. The —CO·NH— groups are
strongly hydrogen bonded. The material is fully glassy with high stiffness. Above
–100 °C, the thermal vibrations are large enough to overcome the barriers and allow
free rotation, as shown in Fig. 20.2. The aliphatic sequences thus act as short rubbery
links. The change at around –100 °C is the first half of a glass-to-rubber transition, as
suggested in Fig. 20.16. At around 100 °C5, the thermal vibrations become large
enough for hydrogen bonds in nylons and phenolic interactions in polyesters to
become mobile. The glass-to-rubber transition is completed. There is some softening
of nylon 66 and PET at temperatures near 200 °C with a mechanism that is not well
understood but allows for permanent heat setting. Finally, somewhere above about
250 °C, the crystals melt and the material becomes a spinnable liquid, which can be
extruded to form fibres. Softening melting temperatures are lower in nylon 6.

Amorphous regions
Nylon 6 Polyester (PET)

—CH2·CH2·CH2·CH2·CH2—CO·NH— —CO·O·CH2·CH2·O·CO—

Rigid H bond Rigid Interacts

Flexible H bond Flexible Interacts

Flexible Free Flexible Free

+ Crystalline regions

Rigid lattices

Liquid

Structure softens

< – 100 °C

– 100°C
↓
100°C±

100 °C±
↓
200 °C

< 200 °C

200 °C
↓
250 °C

> 250 °C

20.15 Polyamide and polyester molecular structures and their thermal
transitions. Note that temperatures are approximates within ± 25 °C, and are
less in nylon 6 than in polyester (PET).

5As discussed in Chapter 18, the transition temperature is lower in wet nylon, is a bit higher in
polyesters, and is time dependent.
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A version of a common working model, by Prevorsek et al. [10], for the fine
structure of polyester (PET) fibres is shown in Fig. 20.17. They have a similar model
for nylon 6, except that they place the crystallites in register and not staggered as in
Fig. 20.17. Although such views are probably a reasonable representation of the real
structure, they suffer from being 2D pictures of a 3D network and there remains
much uncertainty about the details of the structure. A simplified model, which will be
used in a theoretical derivation, is shown in Fig. 20.18. Other views of roughly
cuboid crystals, with a mixture of chain folding and emerging tie-molecules at the
ends of crystallites, are shown in Figs 20.19(a,b). Typically, there will be about 100
molecules in the cross-section of a crystallite and the width will be 5–10 nm. There
is some indirect evidence suggesting that the ratio of length to width in polyester
crystallites is greater than in nylon. In some circumstances the distinction between
crystalline and amorphous regions may be less sharp, as indicated in Fig. 20.19(c).
The crystallinity is typically about 50% when the fibre has had some exposure to heat
or drawing.

20.3.2 A network model

The modelling of a fringed micelle structure in Section 20.2.2 is based on mixture
laws applied to a composite of crystalline and amorphous regions. However, it is
clear that the model is arbitrary. If the micellar line in Fig. 20.6 had been placed

20.16 Transitions in an ‘ideal’ fibre. From Hearle [9].
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20.17 A model of the fine structure of a polyester fibre, as proposed by
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between the lines for fibrillar and lamellar forms at the same strain, it would have
been much higher. Hearle et al. [14] showed that the predictions of a combined series
and parallel model could be several orders of magnitude apart depending on whether
modulus weighting or compliance weighting was used in combining the series and
parallel parts. A simplistic approach is not quantitatively viable. It is possible that a
more detailed calculation of stress distributions, e.g. by finite element computing,
might give better results.

A network model is a more promising way forward and is particularly applicable
above the glass transition temperature when the tie-molecules can be regarded as

20.18 Simplified model for theoretical analysis, showing a regular array of
crystallites linked by tie-molecules, of which only a few are shown.

(a) (b) (c)

20.19 Views of fine structure of nylon fibres. (a) A common working model
proposed by Hearle and Greer [11]. Angled ends are based on small angle X-
ray diffraction pattern of nylon 66. (b) From Murthy et al. [12], based on X-ray
diffraction studies of nylon 6. (c) An alternative form, from Hearle [13].
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flexible chains linking crystallites, which would be large-scale crosslinks in an
elastomeric polymer network. A theory [15] of this type has been developed and is
outlined by Hearle [16]. The quantitative predictions of stress are too low, but both
the methodology and the results are instructive.

The basic premise is that the state of the material is determined by the energy per
unit volume U, which is the sum of two terms: the energy of extension of tie-
molecules between crystallites and the energy of volume change. The first term is the
sum over all tie-molecules of the integral of equation (20.4) and the second depends
on the bulk modulus k and the volume strain ev;
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The assumed fine structure is the regular array of orthogonal crystallites linked by
tie-molecules, as indicated in Fig. 20.18. The crystallinity determines the division of
polymer material between crystalline and amorphous regions. Hence the total length
of tie-molecules in the set can be calculated. The length and width of the crystallites
and the ratio of axial to transverse separation are geometrical parameters. The summation
is over the tie-molecules in unit volume. A representative set is given by all the tie-
molecules that emerge from the end of a crystallite, which equals the number of
molecules in a cross-section of the crystallite minus twice the number of chain folds.
This length must then be divided among the locations of the other ends of the tie-
molecules, with a correction for chain ends and loops back to the same crystallite. In
the absence of more structural information, arbitrary choices were made with links as
far apart as next nearest neighbours. It was assumed that the ratio of actual chain
length to the shortest path was constant for all tie-molecules. This gives values of l,
which is the end-to-end length along the shortest path, and the fully extended chain
length L for all the tie-molecules. The integral is from the initial end-to-end length l0

of tie-molecules in the stress-free state to the extended length l in a deformed fibre.
Affine deformation of the positions of the crystallites changes the spacing between
crystallites and enables l to be calculated.

For uniaxial extension, the applied strain determines the change in axial spacing
of crystallites, but the transverse spacing is left as a dependent variable to be determined
by energy minimisation. This gives a value of the Poisson ratio. The procedure is
then repeated with a small change of axial strain. The change in energy per unit
volume equals the stress times the change in strain. Hence the stress–strain curve can
be computed.

There is a difficulty. There is no guarantee that the parameters used to define the
initial geometry relate to the stress-free state. Indeed it would be exceptional if they
did. The first step in the computation is therefore to allow both axial and transverse
spacing to be dependent variables and use energy minimisation to determine the
actual spacings in the stress-free state. This illustrates an important insight. In drawing
or looking at models of fine structure, such as those shown in Figs 20.17 and 20.19,
it is natural to assume that they are static models in which, if there is no external
applied stress, there are no internal stresses. In reality, the thermal vibrations mean
that the tie-molecules are under tension, pulling the crystallites closer together against
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the resistance of volume reduction. The structure can be likened to an array of bricks
linked by stretched rubber strings.

The parameters needed to define the model for computation are listed in Table
20.1. Although some, such as molar mass of repeat unit, are known exactly, others,
such as the connectivity, are almost unknown quantities. Indeed the first estimate of
connectivity gave an impossible structure. The shortest paths were longer than the
total chain length. More structural studies using modern techniques would give more
information to test the theory, but the real advance would come from modelling the
structure formation from the more-or-less random arrangement in the melt through
crystallisation and drawing.

The predicted stress–strain curves are of the right form for nylon above the glass
transition temperature but, unless unrealistic values of parameters are used, give too
low values of stress. Although there are obvious ways of making the theory more
rigorous, by eliminating approximations, major changes seem to be necessary to
make valid predictions. If the fundamental approach is valid, there are various
possibilities. Constant values are assumed for many features that will have statistical
distributions. In particular, low values of the ratio of chain length to shortest path
would have a disproportionate effect in generating high stresses. It is also likely that
interactions and entanglements within the amorphous regions cause the energy of

Table 20.1 Input quantities for computation of the
network model

Features of the polymer
# Molar mass of the repeat unit
# Length of repeat unit in crystal
# Crystal density
# Amorphous density, stress-free
# Number of equivalent free links per repeat
� Degree of polymerisation

Features of fine structure
# Fractional mass crystallinity
# Number of repeats in crystallite length
# Number of repeats across crystallite
# Series fraction of amorphite
� Fraction of sites with crystallographic folds
� Fraction of sites with loose folds
� Length factor for free ends
� Length factor for loose folds
� Relative probability of connector types

Other parameters
* Bulk modulus of amorphous material
* Stress at which chains break
* Temperature
* Mass of proton
* Boltzmann’s constant

# = required to characterise two-phase structure; �
� = required to characterise connectivity;
* = required to analyse mechanics.
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chain extension to be greater than given by equation (20.4). Other neglected features,
such as extension and rotation of misoriented crystallites, would lead to lower stresses.

For predictions of the stress–strain curve at room temperature, it would be necessary
to model a network linked by hydrogen bonds or phenolic interactions. Long and
Ward [17] have applied theories of crosslinked rubbers and show that this explains
shrinkage forces, which increase with temperature, as expected for an entropic
mechanism. In another paper, Ward [18] considers the change from gauche to trans
conformations of the molecules in the drawing of polyester (PET). In PBT (3GT) the
behaviour is complicated by a crystal lattice transition and in PEN by crystallisation
effects.

20.3.3 A theory for dynamic mechanical properties

A purely series model, which is a simpler variant of the above theory, has been
presented by Davis [19]. The crystallites are in series with tie-molecules that follow
the inverse Langevin [4] for force on a flexible chain. He recognises that this only
applies at higher temperatures when the chains act as freely orienting links and then
uses Rouse’s theory [20] to introduce viscous drag on chain segments in the transition
temperature region. The predicted value of the loss factor is given by:

tan  = δ ηωN Z
E

(20.11)

where N = number of load-bearing chains per unit area, η = a temperature-dependent
viscosity, ω = frequency, Z = a temperature-dependent structural parameter and E =
modulus of the amorphous material. Although the model gives useful guidance, it
suffers from quantitative limitations similar to those for the network theory.

20.4 High-performance fibres

20.4.1 Simplistic theory of tensile deformation of HM–HT fibres

At a first level of approximation, theoretical understanding of the deformation of
HM–HT fibres is easier than for the general textile fibres. The dominant mechanism
is elastic deformation of covalent bonds. In the ceramic fibres, the network is three
dimensional, so that similar effects occur in all directions. In the highly oriented
linear polymer fibres, axial elongation is resisted by the covalent bond deformation,
which therefore exerts the major control on tensile properties of the fibre. Transverse
and shear deformations are resisted only by weaker inter molecular forces. In HM–
HT carbon fibres, the orientation of the graphite planes parallel to the fibre axis
causes covalent bond deformation to be the dominant effect in fibre extension; but
perpendicular to the fibre axis there is a mixture of covalent bonding in the planes
and weak bonding between the planes.

The simplest case to consider is the behaviour of a fibre made of infinitely long
polymer molecules, with a simple —C—C— backbone like that of polyethylene,
oriented parallel to one another, but not necessarily in crystalline register, as indicated
in Fig. 20.20(a). Because of the perfect uniformity of the structure, a tensile strain e
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imposed on the fibre must also occur uniformly along the polymer molecules, as
indicated in Fig. 20.20(b), and so to the individual repeat unit in Fig. 20.20(c).

If m is the mass and l is the length of the repeat unit, and U is the change in internal
energy associated with an elongation x, then U must be proportional to x2, in order to
give a minimum value at the equilibrium zero-force state with x = 0. This leads to the
relations, given in terms of a spring constant K as:

U = 1/2Kx2 (20.12)

force =  = d
d

 = F U
x

Kkx (20.13)

If we normalise in terms of specific energy u = U/m, strain e = x/l and specific stress
f = F/(m/l), we can express the relation in terms of a specific modulus E:

u = 1/2 K(l2/m)e2 = 1/2 Ee2      f = Ee (20.14)

The simplicity of the structure and the small-strain assumption cause the extension to
follow Hooke’s Law, with a modulus E that is the same for the fibre as for the
molecule and is given in terms of basic features of the atomic bonding by K(l2/m).

The repeat-unit mass m is known from the chemistry, and the repeat length l is
given by standard atomic dimensions, or, more exactly, on allowing for some distortion
due to neighbouring interactions, by theoretical calculation or measurement on the
crystal lattice. The force constant K can be estimated from spectroscopic measurements,
which give natural vibration frequencies, or by calculation from interatomic potentials.

In a molecule such as polyethylene, illustrated in Fig. 20.20(c), most of the elongation
will come from a change in bond angle θ, with a smaller contribution from change in
bond length s. If the energy changes U(θ) and U(s) due to changes in θ and s are
known, including any corrections due to changing interactions with other neighbouring

e

e

x

s

L

θ

(a)

(b)

(c)

20.20 (a) Perfectly oriented fibre of infinitely long molecules subject to tensile
strain e; (b) application of strain e to molecule; (c) application of strain e to
repeat unit of molecule.
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atoms, then K can be determined. Details of such analyses go beyond the scope of
this book, but the following outline indicates the basis of the method.

The geometry is defined by:

l = s sin (θ/2) (20.15)

x = dl = sin (θ/2)ds + 1/2scos(θ/2)dθ (20.16)

The energy relations are defined by:

U = U(s) + U(θ) = 1/2Ks(ds)2 + 1/2Kθ(dθ)2 (20.17)

where Ks and Kθ are the force constants for bond length and bond angle changes,
respectively.

Equilibrium will occur at a minimum-energy state given by:

δ
δθ

δ
δ θ

U U
s

s













= 0      = 0 (20.18)

Hence the equations can be solved, and the division of the deformation between ds
and dθ determined, together with the value of K in the expression U = Kx2.

There is some uncertainty in the parameters used in the determination of the axial
modulus in a perfect polyethylene crystal, and estimates range from 220 to 380 GPa
[21], 300 GPa being a commonly accepted value.

Generally, in linear polymers, the modulus of the perfect structure will depend on
the molecular geometry, and the calculations are more complicated when there are
many atoms in the repeat unit. The most efficient system would consist of a chain of
atoms in line, so that the only mode of extension was change in bond length. There
is no complete occurrence of this geometry, but, where it occurs in parts of the chain,
it will tend to increase the modulus. Zigzag geometry, as typified by the extended
polyethylene chain, allows bond angle change to contribute to extension. Nevertheless,
the polyethylene molecule is efficient, because most of the mass is in the main chain,
with only light hydrogen atoms pendant to it. The modulus will be lower if there are
large side groups, which contribute mass but do not help to resist elongation. Modulus
will also tend to be lower if some bonds carry a higher than average load, for
example, when single-bond connections carry the whole load between rings of atoms,
where the load is shared. A major decrease in modulus occurs when bond rotation can
contribute to elongation. This occurs in helical chains and is the reason why
polypropylene has an inherently low modulus, even in a perfect structure.

On the above basis, the para-aramid molecules have the slight disadvantage from
the —CO·NH— links between the benzene rings, possibly offset by the more axial
orientation of some groups. The axial modulus has been estimated to be 200 GPa
[22]. The influence of molecular geometry is shown by the fact that the corresponding
figure for the meta-aramid is 127 GPa.

For a perfectly oriented graphitic fibre, the theoretical treatment would be similar,
except that the geometrical deformation occurs in aligned planes. Values close to
1000 GPa are given for the theoretical modulus [23].

Similarly, in three-dimensional crystal structures, extension can be linked to change
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in bond lengths and bond angles and the modulus calculated. But many of these
materials can also be obtained as large single crystals, so that the modulus is easily
measured.

Commercial fibres, of course, do not have the degree of perfection of these simplistic
models. Nevertheless, in summary, we can say that, to a first approximation, all the
HM–HT fibres are linear elastic, with a tensile modulus E related to the modulus Ec

of an appropriately (axially) oriented single crystal by the relation:

E = pEc (20.19)

The parameter p is a measure of the efficiency of the structure in utilising the crystal
properties and would be the product of a number of factors dependent on deviations
from the ideal model. In special cases, such as polydiacetylene, single crystal fibres
made by solid-state polymerisation, the value of p will be 1. But, in all cases, it will
not be so much less than 1 that it becomes a meaningless quantity, because the
deformation mechanisms are completely different, as they are, for example, in a
general textile fibre such as nylon.

Some values of Ec together with typical values of E and p, are given in Table 20.2.
However, in interpreting this table, it must be remembered that there is some uncertainty
in the estimates of Ec and that the experimental values are for typical current fibres,
selected as high-modulus variants.

20.4.2 Deviations from the simplistic theory

Table 20.2 shows that real fibres do not achieve the theoretical maximum modulus,
so it is necessary to consider the factors that lead to a reduction in efficiency. In
addition, the non-linearities of response of the para-aramid and HMPE fibres need
explaining. There are several reasons for deviations from the ideal behaviour.

The first is disorientation. The forces between linear polymer molecules or between
separate graphitic planes are much weaker than those along the covalent bonding of
the chains or planes. This results in a dependence of modulus on direction. Figure

Table 20.2 Approximate tensile moduli of crystals Ec and fibres E

Material Modulus Specific modulus
(GPa) (N/tex)

Ec E Ec E p

Polyethylene 300 310
Spectra 1000 175 180 0.50
Para-aramid PPTA 200 140
Kevlar 149 145 100 0.73
Graphite 1000 550
Grafil HM-S/12K 400 220 0.39
Silicon carbide 700 250
Nicalon 200 80 0.29
Alumina 530 130
FP 380 100 0.72
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20.21 illustrates this for the variation of Young’s modulus with direction in a graphite
crystal: at 8° inclination, the modulus has fallen to about one-tenth of the 0° modulus,
and at 45° to almost one-hundredth. Consequently, any disorientation within carbon
fibres will lead to a reduction of stiffness, the modulus being an appropriate average
of the moduli at the orientations present in the fibre. In the para-aramid poly pheny-
lene terephthalamide (PPTA), the transverse modulus of the crystal is reported to be
4.08 GPa [24], which is one-fiftieth of the axial modulus. In polyethylene, the crystal
moduli have been calculated [25] to have values, given in the terminology of Fig.
20.22 as: YL = 325 GPa; YT = 12–14 GPa; nTT = 6 GPa; nLT = 2–3 GPa. The range of
values for YT and nT depend on the particular transverse direction in the crystal. A
general theory of the effect of orientation is given in the next section.

A second reason for a reduction in stiffness is what might be termed crumpled
disorder of the molecules, or, on a larger scale, defects within the structure. In either
case, the initial application of tension leads to a tightening-up of the structure as the
buckling of the molecules is pulled out and the structure becomes more compact.
This effect will be most pronounced at lower stresses and so will lead to the increasing
slope of the stress–strain curve found in para-aramid fibres. The crumpling may be
irregular but in the para-aramid fibres is believed to be due to the regular pleated
structure shown in Fig. 20.23. As stress is increased, there is progressively less pleat
to pull out. The processing that gives the higher-modulus versions changes the structure
and reduces the effect. If the compacting of the structure involves the breaking of
hydrogen bonds in order that molecules may slip and rearrange, then the extension
will be time dependent. This explains the creep.
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20.21 Variation of modulus of perfect graphite crystal with direction [6].
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A third reason for the reduction in fibre modulus is slip near the ends of the
molecules. At a chain end, the tensile stress must be zero, but it can build up owing
to shear forces from neighbouring molecules. A simple analysis [3] shows that this
would lead to a factor equal to 1 – 1/2 [(f/fb)/AN] in the expression for p in equation
(20.19), where f is the applied tensile stress, fb is the bonding shear stress, A is the
aspect ratio of a repeat unit, and N is the degree of polymerisation, giving AN as the
aspect ratio of the molecule. The important features of this result are (1) that the
reduction in modulus is less for a high molecular weight polymer and (2) that the
reduction increases with stress and causes the stress–strain curve to soften at high
stresses. This explains the behaviour of HMPE. The associated creep would be due
to the fact that, even at room temperature, but to a greater extent at higher temperatures,
a certain equilibrium concentration of defects, namely kinks of various sorts in the
molecules, will be present. Under the influence of thermal vibrations, these will
move through the system and allow the slow movement of chains past one another.

Computational molecular modelling is the way forward for more exact predictions
of the stress–strain behaviour of HM–HT polymer fibres. Dynamic molecular modelling
of thermotropic polyesters has been carried out by Johnson et al. [26].

The effects so far described apply to the one- and two-dimensional molecular

nTT

YL

σLT

nLT

σTL σTT

YT

20.22 Elastic constants of a transversely isotropic system.

20.23 Radial pleated structure of a para-aramid fibre (Kevlar).
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materials. The situation is somewhat different in the three-dimensionally bonded
ceramic fibres. Here the modulus will be reduced because there are easier modes of
deformation in an irregularly bonded material such as amorphous silicon carbide
(Fig. 20.24(b)) or glass (Fig. 20.25) than there are in the regular crystal of Fig.
20.24(a). Detailed analysis would require a proper description of the disordered
packing of the atoms. In a polycrystalline material, deformation will be somewhat
easier at grain boundaries.

20.4.3 Strength

Theoretical analysis of fibre strength and detailed understanding of how and why
strengths fall below maximum possible values are not easy. The basic theory of the
tensile strength of a perfect crystal was described in Section 20.1.2 and suggests that
the maximum strength should be about 0.1 times its modulus. Among the factors that
lower modulus, disorientation and slip at the ends of molecules will also lower
strength, but the removal of crumpled disorder at low strains will not. Any non-
uniformity in the distribution of stress between different parts of the structure will
lower strength.

Failure is a competitive phenomenon, determined by extreme-value and not central-

(a) (b)

20.24 Schematic two-dimensional representation of the structure of a material
such as silicon carbide: (a) crystalline; (b) amorphous. In the actual material,
the atoms are distributed over three dimensions, to give a more complicated
network.

20.25 Schematic representation of the structure of glass, composed of silica,
SiO2, and metal oxides.
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value statistics, and will always occur in whichever way is easiest. Even at the
theoretical level of a perfect crystal, this means that rupture may occur not under
tensile stress across the plane AB in Fig. 20.26(a) but under some other stress, such
as the resolved shear stress across CD. At the practical level, there are all the
complications of local variations in stress due to gross structural differences, of stress
concentrations at microscopic defects, and of uneven sharing of load at the molecular
level in an imperfect structure.

The simple argument also ignores the time dependence associated with thermal
vibrations, which allows jumps over the point of inflection as discussed in Section
20.7.2. Some detailed modelling by Termonia and Smith [24] predicts the results
shown in Fig. 20.27 for the variation of strength of PPTA with temperature, compared
with experimental values for Kevlar, and of the variation with time at room temperature
predicted for PPTA and polyethylene. The predictions are, of course, very dependent
on the choice of input parameter used in the computational modelling: there is a
major effect of activation energies for bond breakage and a less effect for activation
volume. The authors’ conclusion that fracture in both PPTA and polyethylene is
initiated through primary-bond breakage is not immediately compatible with the
explanation of breakage that comes from the morphology.

20.26 Simple theory of tensile strength: (a) perfect crystal under tensile force
F; (b) variation of internal energy U with spacing x; (c) variation of force F
with elongation (x–x0).
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20.4.4 Elastomeric fibres

At the other end of the performance limits from HM–HT fibres, we have elastomeric
fibres, which show good elastic recovery up to high extension. Natural rubber follows
the standard network theory described in Section 20.1.2. Spandex fibres, with Lycra
as one example, are composed of segmented polyurethanes in the form of block
copolymers. The hard segments crystallise, and the soft segments provide rubbery
linkages between the crystallites. The structure is thus an unoriented fringed-micelle
form with the crystallites widely separated by amorphous regions, as suggested in
Fig. 20.28. A development of the network theory in Section 20.3.2, which included
crystallite rotation, may be applicable.

20.5 A general theory of orientation

Northolt (27) presented a theory of the effect of orientation, which was first applied
to predict the modulus of highly crystalline, highly oriented polymer fibres, such as
the para-aramid PPTA (Kevlar, Twaron). The theory has since been developed to be
more rigorous (28), to include yield, hysteresis and creep and to be applicable to
semicrystalline fibres of cellulose, nylon and polyester (29–32). The full tensor analysis
is too long to be given here, but the essential principles can be explained.

The model is assumed to be made up of structural units at angles given by an
orientation distribution. In the original version for PPTA, the units were long crystalline
blocks, referred to as fibrils, which were variously oriented in the fibre. A particular
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20.27 Theoretical model predictions by Termonia and Smith [24], (a) change
of strength of PPTA (Kevlar) with temperature (full lines show experimental
results); (b) variation of time to break at different stress levels at room
temperature for PPTA (Kevlar) and polyethylene (full lines indicate range of
experimental results).
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form would be the zigzag pleated structure shown in Fig. 20.23, where all the molecules
are locally oriented in the same direction but switch from one direction to another. In
other cases, it is necessary to take account of the distribution of orientation and use
an appropriate mean value. For the semicrystalline fibres, the units are better viewed
as blocks of material with locally parallel crystallite orientation, but different orientations
in different blocks. There is evidence that nylon and polyester fibres consist of local
domains varying in crystalline orientation, but with a constant orientation in each
domain (see Section 1.7.2). The blocks contain quasi-fibrils with an alternation of
crystalline and amorphous material. The fibrils are separated by amorphous regions
in parallel with the fibrils.

For a fibre subject to uniaxial stress f giving an axial extension and a lateral
contraction, Fig. 20.29 shows the deformation of a unit that is at an angle θ to the
fibre axis. In addition to its axial strain and lateral strain, the rotation of the unit
direction causes a shear strain of the unit. The magnitudes of the strains are expressed
by the strain tensor, which depends on the geometry of the deformation. An analysis

20.28 An unoriented fringed micelle structure with crystallites separated by
coiled chains.

20.29 Deformation of a structural unit, based on a diagram by Northolt and
van der Hout [28].
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shows that the modulus E of the fibre at any strain is given in terms of the axial
modulus Eu of the unit, the shear modulus Gu and what is described as an unusual
(sic) parameter of the orientation distribution [28] by an additive expression for
compliances:

1  = 1  + 
<sin >

2u

2

uE E G
θ

(20.20)
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(20.21)

where P(θ0)dθ0 is the initial fraction of units with an orientation angle between θ0

and (θ0 + dθ0) and P(θ)dθ and P(θ) dθ0 gives the fractions after extension.
For highly crystalline fibres, such as the para-aramids, Eu and Gu would equal the

crystal moduli Ec and Gc. This would give a contribution to p in equation (20.19) of
a factor equal to (1 + Ec< sin2θ>/2Gc)

–1. As stress increases, the elongation of the
specimen causes <sin2θ> to increase and thus to give an increased slope of the stress–
strain curve. Fig. 20.30 shows a comparison of the predictions of the theory with
experimental data for high- and low-modulus PPTA fibres (Twaron) with Ec = 240 GPa,
Gc = 2 GPa and <sin2θ> derived form sonic moduli measured before the second
extension. The increasing stiffness is particularly obvious for the more extensible fibre.

In considering the application of the theory to less highly oriented fibres, it should
be noted that, owing to the presence of cos θ in equation (20.21), <sin2θ> does not
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20.30 Comparison of predictions of equation (20.20) for high- and low-
modulus PPTA fibres: A, first extension; B, second extension; C, theoretical
prediction. The curves all start from zero extension, but are displaced for
clarity. From Northolt and Hout [28].
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show a simple increase with θ. Some other approximations applicable to highly
oriented fibres may not be valid and the full theoretical derivation should be
followed.

Figure 20.31 is a schematic representation of the yield process in polyester, cellulose
and similar fibres, showing the sequence from zero to increasing stress f. The initial
distribution of orientations first shows small changes in angle, but then progressively
yields to an angle θ4. The yield theory [31] uses an affine deformation of an isotropic
material dependent on draw-ratio λ to give values for <sin2θ0>. If the analysis is
simplified to a bundle of parallel units at a constant orientation angle θa, given by the
average of the distribution, the yield strain ey is given in terms of the shear yield
stress fg by:
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For fibres with low and medium orientation:

ey ≈ 1/2 fg tan θa (20.23)

For well-oriented fibres uch as PPTA, the viscoelastic theory [32] gives the following
expression for the strain e(t) as a function of time t under a stress f:
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20.31 Schematic representation of yield. After Northolt et al. [31].
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20.6 Structural effects in natural fibres

20.6.1 Cotton and other plant fibres

Vegetable fibres have a specialised structure of crystalline fibrils spiralling around a
central axis. Analysis of the mechanics of such a system has many similarities to that
of twisted-yarn mechanics [33]. In such systems, the resistance to extension decreases
as the helix angle increases. There are two reasons. For a given axial strain in the
system as a whole, the tensile strain in the elements is less at higher angles, and at
higher angles, there is a reduced contribution to the total tension. An analysis by
Hearle [4], which considers both the extension of the crystalline fibrils and the
possible reduction in volume, by means of a minimum energy method, gives the
following results for an assembly with a constant helix angle at all radii throughout
the fibre:

E = Ec (cos2θ – σ sin2θ)2 + K(1 – 2σ)2 (20.25)

σ θ θ
θ

 = 
cos sin  + 2

sin  + 4
c

2 2

f
4

E K
E K

(20.26)

where E = fibre tensile modulus, σ = fibre Poisson ratio, θ = helix angle, Ec = tensile
modulus of cellulose crystal and K = bulk modulus.

Figure 20.32 shows an application of this equation to experimental results for the
dynamic modulus of dry stretch mercerised cotton fibres, due to Meredith [34]. The
mercerisation has caused the fibre to be a circular cylinder with a helical internal
geometry in contrast to the more complicated form of natural cotton fibres discussed
below. The assumed value of the moduli, 70 GPa, is of the same order as that

20.32 Comparison of experimental values of dynamic modulus of stretched
mercerised cotton fibres at 0% r.h., 20 °C, with theoretical prediction from
equation (21.25) From Meredith [34].
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calculated theoretically for a crystal lattice of cellulose. Hearle [4] showed that the
equation also fitted results for other plant fibres.

The complications that occur with natural cotton fibres are illustrated in Fig.
20.33, which shows how the structural features progressively modify the predicted
tensile stress–strain curve. The starting point is the modulus of the crystal lattice of
cellulose (A), which gives the properties of the crystalline fibrils. The helical structure
in the circular hollow fibre as formed (B) leads to a lowering of modulus as described
above. Although there are small changes of helix angle through the fibre, it is reasonable
to take a constant value of 21°. However, in cotton, there are reversals of the helices
from left-handed to right-handed helices (C). Under tension, a twisted structure will
untwist, unless prevented from doing so, and lead to increased length. Free untwisting
can occur at the reversals and add to the fibre extension. Finally, there are the
convolutions (D), which, as shown in Section 13.5.2, are pulled out under tension.
The convolutions provide another mode of extension, which leads to the curvature of
the stress–strain curve of cotton. In the dry state, deformation is inhibited by hydrogen
bonding between fibrils, but when wet this resistance to deformation due to shear
stiffness is reduced leading to lower stresses.

A quantitative theory of the above effects, with some simplifying assumptions has
been given by Hearle and Sparrow [35]6. The simple theory of twisted yarn mechanics

Cellulose
molecule

Hollow
tube Collapse

A; crystal lattice

Fibril
(a) B: helical

C: reversing
assembly

D: convoluted
ribbon

(b)
Strain

Wet

S
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s

A B B′ C
D

C′ D′

20.33 (a) Structural features of cotton fibres. (b) Development of tensile
stress–strain curves. From Hearle [16].

6The full analysis includes a volume energy term, but surprisingly energy minimisation shows that
extension is at constant volume.
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[36] which is the basis for equation (20.25), neglects any resistance to shear, but this
is taken into account in a more advanced treatment [37]. For a tensile strain e of the
helical structure (B), the crystalline fibrils have a tensile strain ec and a shear strain
sc, due to change of helix angle, given by:

ec = e (cos2 θ – σ sin2 θ)      sc = – e (1 + σ) sin θ cos θ (20.27)

A fractional rotation (–γ e) adds additional terms to the tensile and shear strains, so
that the total strain energy per unit volume (or unit mass for specific quantities) is
given by:

U = 1/2 e
2 {Ec [cos2θ – (σ + γ) sin2θ]2 + Gc [(1 + σ + γ) sin θ cos θ]2

(20.28)

where Gc = relevant shear modulus of cellulose crystal.
The value of γ, which is found by energy minimisation (dU/d γ = 0), is given by:

γ θ
θ θ

 = 
–  cos

sin  + cos
 –  /c c

2

c
2

c
2

1
2

E G
E G

(20.29)

Substitution and differentiation of equation (20.28) gives;

f Ee
E G

E G
 =  = 

–  cos
sin  + cos

c c
2

c
2

c
2

θ
θ θ

(20.30)

This is the line C in Fig. 20.33(b). In the wet state, the shear modulus will be lower
because fibrils can slip past one another, thus reducing the fibre modulus E. The
simple expression would not apply when there is large untwisting. In the limiting
state with Gc = 0, there would be complete untwisting, which would be determined
by geometry.

As convolutions have a major influence on the stress–strain curve of cotton.
Hearle and Sparrow [35] modelled the effect by using the converse of a relation given
by Timoshenko [38] for the contraction of a ribbon due to twisting:

e
b f

E
 = –

2 12
 + 

2 2φ










(20.31)

where e = strain, φ = twist in radians per unit length, b = ribbon width, f = tensile
stress and E = Young’s modulus of the material.

It is necessary to take account of the resistance to the untwisting. An approximate
analysis of the mechanics gives the following relation between tensile stress f and the
strain econ due to untwisting of convolutions, which have an angle of ω:

f k
e X

 = tan 
(tan  –  / ) –  12

con
1/2

ω
ω







(20.32)

where k =(η A Gc/π b2 X) and η is a shape factor, A is area of cross-section and X is
a factor taking account of differences in the shape of a cotton fibre.

Data on cross-sections by House [39] and torsion by Meredith [40] suggest that η
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= 0.56, A/b2 = 0.27 and G = 250 GPa. A plot of breaking strain against convolution
angle indicates that X is about 0.67, which gives k = 18 GPa. Owing to differences in
cotton types, there will be a wide range of values of k. With k =100 there is little
curvature in the stress–strain curve; with k = 5, the curve changes from a low slope
to a high slope at around 3% extension. Figure 20.34 shows that the strain due to
pulling out of convolutions for different values of ω with k = 20. These can be
compared with the curvature in Fig. 20.35. The mechanisms for A, B and C in Fig.
20.33 all give linear plots at the small strains involved; the curvature comes from the
convolutions and, as shown in Fig. 20.36 is lost when the convolutions have been
removed.

For cotton fibres clamped at short lengths, untwisting at reversals would be prevented
and the modulus would be higher.

In considering the tensile failure of cotton fibres, there are three separate modes
that can occur. When the fibrils are firmly bonded together, as in completely dry or
resin crosslinked cotton, fracture occurs by cracks running across the fibre, which are
presumably due to tensile failure of the crystalline fibrils. At medium humidities,
splits develop between fibrils and the material between successive turns of the split
tears. The fracture extends over a long length, influenced by the geometry of the
collapsed fibre. In wet cotton, the fibrils are so separate that they break individually.
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20.34 Strain due to pulling out of convolutions for different convolution
angles ω. From Hearle and Sparrow [35].
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20.35 Stress–strain curves for various cottons. From Sparrow [41].
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20.36 Load–extension curves of Acala cotton: A Normal fibre, B after
stretching wet and drying to remove convolutions.
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The reason why wet cotton is stronger than dry is probably mainly the relief of
shear stresses that can occur by the untwisting and unbending of the fibre. When the
fibrils are bonded together, the complex stresses lead to early breakdown, but when
they are free to move and relieve stresses, the fibre is stronger.

Another way of regarding the situation is by considering the sharing of load
between molecular chains or fibrils. An analogous system of two elements is shown
in Fig. 20.37. With a crosslink present, each element breaks separately, and the
strength will be half the value that it would be without the crosslink when both
elements have to be broken together. Because the molecules in native cellulose are
very long (DP > 10 000), the effect of easier slip at chain ends will be negligible, and
thus the main reason why rayon is weaker when wet will not be operative.

20.6.2 Wool and hair fibres

As shown in Fig. 20.38, there are many structural levels from the protein molecules
to whole wool and hair fibres7. All of these have some influence on mechanical
properties. Figure 20.39 shows a scheme for a total mechanical model of a wool
fibre. Ideally, the starting point would be computational dynamic modelling of the
properties of the protein molecules, but the technology is not yet sufficiently advanced
to do this for the complexity of keratin and keratin-associated proteins, though small
segments might be modelled. However, there is enough understanding and practical
information to model all higher levels, at least to a first approximation, but the
programming has not been done [42, 43].

Since the various units of the structure are in parallel, a simple mixture law can be
applied in parts of the analysis. The macrofibril assembly and the cell assembly
probably have only a small influence on mechanical properties, though slip between
cells may be one cause of low strength in some wools [44] and is one likely cause of
transverse yielding at low stress, which has been observed in rhinoceros horn and
porcupine quill. Prediction of bending and twisting resistance would follow the usual

(a) (b)

20.37 Rupture of two chains: (a) without link; (b) with a crosslink.

7In the remainder of this section the use of the word wool also covers in a general way hair fibres,
including goat, camel and other hairs used in textiles and human hair.
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IF–stress/strain–Matrix

Fibril/matrix composite

(Para/meso)
(macrofibrils)

Ortho-
macrofibrils

Cortical cells

(Variability)

(Wet/dry, setting, time, etc.)

(Other directions)

(Macrofibril assembly)
(Cell assembly cell
membrane complex)

Cuticle Medulla

Whole fibre: tensile; bending + Twisting

Wool and hair crimp

treatment for a multicomponent fibre with an increasing influence of outer layers. A
three component model of cuticle surrounding the ortho- and para-cortex has been
modelled by Liu and Bryson [45]. Unfortunately, knowledge of the properties of the
cuticle is limited.

The two parts of the model that are best understood are the tensile stress–strain
curve based on the behaviour of the fibril/matrix composite and the explanation of
crimp in terms of the difference between the macrofibrils in the ortho- and the para-
cortex.

A simple parallel two-phase model (Fig. 20.40) was first proposed by Feughelman

1 2 7 200 2000 20000nm

Right-
handed
α-helix

Left-
handed
coiled-

coil rope
Microfibril

Matrix

Macrofibril

Cell
membrane
complex

Para cell Ortho cell

Cortex

Low-S
proteins

High-S
proteins

High-tyr
proteins

Nuclear
remnant

Epicuticle

Exocuticle
Endocuticle

Cuticle

20.38 Structure of wool fibre, as drawn by Robert C. Marshall, CSIRO,
Melbourne.

20.39 Scheme for modelling the total mechanics of a wool fibre. Entries in
italics in parentheses are supplementary to the main scheme.
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[46]. It explains the low strain behaviour, including shear having a lower modulus
than extension, and the onset of yield. A model for the whole stress–strain curve in
extension and recovery was derived by Chapman [47] and has been shown to be valid
in a comparison with two alternative models [48, 49].

The Chapman model represents the two-phase model by crystalline fibrils in the
α-helical form linked at intervals to an amorphous matrix8 (Fig. 20.41(a)). This zonal
model was originally used to simplify the analysis, but later research showing that
the heads and tails of the keratin molecules protrude into the matrix makes it a better
model than one with continuous coupling. The fibrils follow the mechanics shown in
Fig. 20.1 for an α↔β transition from a helical to an extended chain form, characterised
by an initial modulus, and critical and equilibrium stresses for the transition (Fig.
20.42(a)). In wet wool, the matrix is assumed to be a moderately highly crosslinked
rubber. Chapman [49] showed that the matrix stress–strain curve could be derived
from the stress–strain curves of supercontracted wool in Fig. 20.42. In the first stage,
the crystalline fibrils are disrupted, so that the stress–strain curve is dominated by the
matrix. There is some residual stress from the fibrils, which remains after second
stage, when it is assumed that the matrix contribution is lost. Subtracting the second
stage curve from the first stage curve gives the matrix stress–strain curve, as shown
in Fig. 20.43. Up to 35% extension, the curve follows the theoretical rubber elasticity
curve given by equation (20.6). At larger extensions, the curves diverge due to
breakage of cystine crosslinks, which allows greater extension and eventual break of
the network. The matrix stress–strain curve is included in Fig. 20.42(a).

Initial extension is controlled by the elastic modulus of the helical crystals with a
small contribution from the matrix (Fig. 20.41(a)). At 2% extension, the critical
stress is reached and an α↔β transition starts in one of the zones (Fig. 20.41(b)). The
stress in the fibril falls to the equilibrium value and the difference is taken up by an

20.40 Simple two-phase fibril–matrix model of fine structure of wool.

8In the biological literature, the fibrils are referred to as keratin intermediate filaments and the
matrix is composed of a collection of keratin-associated proteins.
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additional 28% extension of the matrix. The process continues in successive zones
until all have been opened at 30% extension (Fig. 20.41(c)). Further extension then
follows the line of the matrix curve plus the equilibrium stress in the fibrils (Fig.
20.41(d)). At 40–50% extension, the stress is high enough to cause rupture of the
amorphous network and trigger fibre breakage. In recovery, the stress follows the
matrix curve down to 2% extension, since the α and β forms remain in equilibrium
(Fig. 20.41(e)). Below 2%, the initial curve is rejoined, Fig. 20.41(a). With the
controlling parameters listed in Table 20.3, the predicted stress–strain relations, which

20.41 Sequence of changes in the Chapman model. From Hearle [48].

From 0% to 2%: uniform extension: at 2%
intermediate filaments reach critical stress

From 2 to 30%: zones open in succession: in
open zone intermediate filament at
equilibrium stress, matrix at 30%

At 30% extension, all zones open

Beyond 30%, intermediate filament at
equilibrium, matrix stress rises

In recovery, intermediate filaments at
equilibrium stress; all zones contract

until they disappear

(a)

(b)

(c)

(d)

(e)
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are shown in Fig. 20.42(b), have good agreement with the experimental results for
wet wool in Fig. 20.44. The differences are in some rounding of the sharp changes
and a small positive slope in the yield region. Both effects can be explained by
variability in wool fibres. The simple Chapman model considers only the fibril/
matrix composite and assumes that it is parallel to the fibres axis. In reality, there is
a helical orientation in the macrofibrils of the ortho-cortex, which must be taken into
account together with other features of the total model for wool.

Developments of the Chapman model explain other features of wool. Hearle and
Susitoglu [50] showed that the addition of viscous dashpots would model time
dependence. The influence of water and the setting of wool were explained by Hearle
et al. [51]. As moisture content is reduced, the hydrogen bonds form between peptide
and other groups in the matrix. By subtraction of the fibril contribution, the matrix
stress–strain curves can be calculated for the initial and post-yield regions and then
interpolated for the intermediate regions (Fig. 20.45). The initial stiffening up to a
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20.42 (a) Stress–strain relations: at a critical stress (c), fibril changes from
helical α-crystal to extended chain β-crystal with equilibrium stress (eq);
matrix (M), follows a rubber elasticity curve.

0 10 20 30 40
Extension (%)

Theoretical
rubber

elasticity Experimental
matrix
curve

1.0

N
o

m
in

al
is

ed
 s

tr
es

s

20.43 Matrix stress–strain curve derived from supercontraction experiments
compared with rubber elasticity curve. Stress is normalised by stress in wet
wool at 15% extension. From Chapman [49].
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Table 20.3 Controlling parameters for the Chapman model

Parameter Value Determines Notes

Microfibrils
α modulus 1.75 GPa Initial fibre modulus (plus Similar to theoretical

small matrix contribution) calculation

Critical stress 35 MPa Fibre yield stress (plus Reasonable at 2% strain
α → β transition small matrix contribution)

Equilibrium stress 7 MPa Junction of extension Reasonable on basis of
α → β transition and recover curves Fig. 13.43

β modulus 1.75 GPa Additional microfibril Actually higher; negligible
extension in post-yield effect
region

α → β strain 80% Extension in opened From X-ray diffraction
zones experiments; less than

ideal α-helix

Matrix
# Non-linear See Post-yield and recovery From supercontraction
stress/strain Fig. 20.43 curves (plus microfibril experiments & rubber

contribution) elasticity theory

Internal modulus 0.35 GPa Addition to microfibril Follows from #
tension

Extension at 30% End of yield region Follows from #
critical stress

Ideal maximum 40% Limiting extension if Follows from #
extension no crosslink failure

Actual maximum 50% Fibre break extension and Greater than ideal
extension strength maximum due to cystine

bond break

yield point and then following parallel to the curve in the wet state is typical of
bonding of an amorphous polymer, as shown in Fig. 20.6 for rayon. Setting of wool
depends on rupture of cystine crosslinks in the matrix and their re-formation in new
places. It can be assumed to drop the matrix curve to zero stress at the setting strain.
Calculated curves for set fibres then show good agreement with the positions of the
beginning and end of the yield region in set fibres.

Arai et al. [53] presented a theoretical analysis of the rubber-like elasticity of
swollen wool and hair fibres based on the inverse Langevin function. They related
this to a two-phase structure and make a comparison with experimental results.

Crimp in wool results from the bi-component structure. In the para-cortex (and
meso-cortex, if present) the fibril/matrix composite is oriented parallel to the fibre
axis, but in the macrofibrils of the ortho-cortex, as discussed in Section 1.6.3, the
fibril/matrix composite follows helical paths similar to a twisted yarn. In the wet
state, the matrix is swollen by absorbed water. On drying, the fibril/matrix composite
shrinks, with the fibrils coming closer together. In the para-cortex, there is no change
of length, but in the ortho-cortex the macrofibrils increase in length, owing to their
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reduced radius reducing the helix angles. This means that the fibre behaves like a
bimetallic strip and develops a crimp with one side increasing in length and the other
staying constant. An analysis of the mechanics has been given by Munro and Carnaby
[54, 55].
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20.44 Stress–strain behavior of wool in extension and recovery. The stress is
in arbitrary units.
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20.45 Matrix stress–strain curves at different humidities calculated by
application of Chapman model to experimental data [52].
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20.7 Theories of time dependence

20.7.1 Ideal springs and dashpots

The mechanical behaviour of polymer fibres is viscoelastic, combining features of
both elasticity and viscosity. The use of a parallel spring and dashpot model (or, less
conveniently, a series model) in the definition of parameters to characterise experimental
results has been described in Section 16.5.2. However, the numerical values obtained
relate only to the particular experimental conditions and do not reflect the full complexity
of the viscoelastic responses. Analysis can be carried further by the by more complicated
combinations of springs and and dashpots and introducing non-linearity.

Ideal springs will follow Hooke’s Law, so that stress f = (Eε), where E = constant
and ε = strain, and will show perfect recovery. Ideal dashpots will follow Newton’s
Law, with stress f = (η dε/dt), where η = constant and dε/dt = rate of strain, and will
show no recovery. If the spring and dashpot are arranged in series, as in Fig. 20.46,
the model will show instantaneous extension of the spring on the application of load,
followed by secondary (irrecoverable) creep of the dashpot at a constant rate; it will
also show stress relaxation at constant length as the tension in the spring causes
continuing elongation of the dashpot. If the units are arranged in parallel, as in Fig.
20.47, they will show primary (recoverable) creep as the extension of the spring is
hindered by the dashpot; if held at constant length, there will be an instantaneous
drop in tension as the viscous term ceases to contribute but the spring remains
extended. The simplest model that shows qualitatively all the features of instantaneous
extension, primary and secondary creep, and stress relaxation is the four-element
model shown in Fig. 20.48.

It would, however, require a very complicated arrangement of elements to give a
complete representation of the behaviour of fibres, exhibiting not only the four effects
mentioned, but also dynamic properties, which vary with frequency, and non-linear
relations between extension, load and time. This multiplication of the number of
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20.46 Spring and dashpot in series.
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elements involved is no simplification of the problem and has led Peirce [56] to say
that ‘the mechanical analogy in general is an unsatisfactory substitute for direct
knowledge of molecular force … there is every reason to allow that imperfect elasticity
is a proper characteristic of molecular behaviour, of more physical reality than the
end-cases of ideal elasticity and viscosity’.

The use of a combination of springs and dashpots is one way of developing the
theory of viscoelasticity, which can be expressed in various other forms. By combining
a spectrum of elements, the theory can represent any form of variation with time.
Ferry [57] describes the mathematics and its application to eight types of polymer. A
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20.47 Spring and dashpot in parallel.

20.48 Four-element model.
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combination of ideal springs and dashpots is necessarily limited to a linear dependence
on stress. If all the stress values of a given sequence are doubled, all the strain values
will also be doubled. This limitation severely restricts the application of the theory to
fibres.

20.7.2 Eyring’s three element model: reaction-rate theory

Instead of adding to the number and complexity of arrangement of ideal elastic and
viscous elements, one may approach the problem by modifying the properties of the
elements themselves. In the three element model put forward by Eyring and his
colleagues [58, 59], Fig. 20.49, the springs follow Hooke’s Law, but the dashpot
shows non-Newtonian viscosity, its behaviour being represented by a hyperbolic sine
law of viscous flow:

d
d

 =  sinh e
t

K fα (20.33)

where dε/dt = rate of strain, f = stress, and K and α are constants.
This means that the rate of strain increases more rapidly with increase of stress

than it would do if it were proportional to stress, as in Newton’s Law.
There is a justification for the use of an expression of this form in the theory of

reaction rates [60]. In its application to the deformation of fibres, we assume that the
strain occurs because flow units (which may be chain molecules, segments of chain
molecules, or groups of segments of chain molecules) slip over one another from one
equilibrium position to another when stress is applied. In order to do this, the flow
unit will have to overcome a potential energy barrier, illustrated in Fig. 20.50. This
barrier is called the free energy of activation for the flow process. In the absence of
stress, let its value be ∆F. The frequency with which a flow-unit will surmount the
barrier and move to a new equilibrium position is given by statistical thermodynamics
as:

E1
E2

K, α

f1 f2

fT

20.49 Eyring’s three-clement model.
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number of moves per second = v e–∆F/kT (20.34)

where v is a thermal vibration frequency (≈1013Hz), k is Boltzmann’s constant and T
is the absolute temperature.

Since the two positions are in the same state, in contrast to the different states in
Fig. 20.1, their potential energies are at the same level. In the absence of stress, there
will be equal numbers of moves in opposite directions in unit time.

However, if a stress f is acting, and is distributed over N flow-units per unit area
of cross-section so that the mean force applied to each unit is f/N, then it will
contribute to the surmounting of the barrier an amount of work (f/N)(λ/2), where λ
is the mean distance between equilibrium positions. Conversely, for moves in the
opposite direction, this amount of work must be done in addition to ∆F. Consequently,
the application of stress may be regarded as equivalent to modifying the potential
barrier as shown by the dotted line in Fig. 20.50. Thus we have:

net number of forward moves per second

= number of forward moves – number of backward moves

= v e–(∆F–f λ /2kT) – e–(∆F + f λ /2kT)

= v e–∆F/kT (ef λ/2kT – e–f λ /2kT)

= 2 e sinh 
2

– /v f
NkT

F kT∆ λ (20.35)

If we multiply the net number of moves forward per second by the distance moved
λ, we get the velocity of flow. In order to convert this to a rate of strain, we must
divide by λ1, the mean distance between neighbouring flow units, measured along the
direction of flow. This gives:

rate of strain = dε/dt

= 2   e sinh 
21

– /λ
λ

λv f
NkT

F kT∆ (20.36)

20.50 Potential-energy barrier for flow.
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This is the full form of equation (20.33), and we see from it that:

K v F kT = 2 e
1

– /λ
λ

∆ (20.37)

α λ = 
2NkT

(20.38)

In addition to the movement of flow units over one another, there will be an initial
extension owing to the elastic deformation of the structure. If this is relieved by the
flow, then it can be represented by a spring in series with the dashpot. There may also
be an elastic deformation that is not relieved by the flow, which must be represented
by a spring in parallel. Thus we arrive at the three element model. Various detailed
structural interpretations of it are possible. One is that the dashpot represents the flow
of segments of chain molecules over one another; the spring in the left-hand arm
represents the elastic extension of the molecules; and the spring in the right-hand arm
represents an elastic deformation of the molecular network unrelated to the viscous
flow.

In the three element model, the springs will follow Hooke’s Law with modulus E,
so that

strain =  = ε f
E

(20.39)

d
d

 = 
1 d

d
ε
t E

f
t





 (20.40)

If E1 is the modulus of the left-hand spring and f1 is the stress in the left-hand arm of
the model, then we have:

d
d

 = 
1 d

d
 +  sinh 1

1
ε α
t E

f
t

K f (20.41)

For the right-hand arm, with a spring of modulus E2, and a stress f2, we have

ε = 2

2

f
E

(20.42)
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2ε
t E
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(20.43)

The total stress, fT, is given by:

fT = f1 + f2 (20.44)

d
d

 = 
d

 + 
d
d

T 1 2f
t

d f
t

f
t

(20.45)

Eliminating f1 and f2 from these equations, we get:

d
d

[( + )  –  )] =  sinh  (  –  )1 2 T 1 T 2t
E E f E K f Eε α ε (20.46)

© Woodhead Publishing Limited, 2008



Theories of mechanical properties 609

This is the differential equation that gives the relation between stress, strain, and time
for Eyring’s three element model (incorporating a non-Newtonian dashpot) in terms
of the constants E1, E2, K, and α. It may be applied to fibre deformation under any
loading history. The most straightforward examples are stress relaxation, when ε =
constant; creep, when fT = constant; and the stress–strain behaviour under constant
rate of elongation, when dε/dt is constant.

20.7.3 Stress relaxation on Eyring’s model

For stress relaxation, with ε = εc = constant and dε/dt = 0, equation (20.42) becomes:

d
d

 = –  sinh  (  –  )T
1 T 2 c

f
t

E K f Eα ε (20.47)

On integration, this gives:

tanh { (  –  )/2}
tanh { (  –  )/2}

 = eT

0

– 1
α
α

αf f
f f

E Kt∞

∞
(20.48)

where f0 = (E1 + E2) εc = initial stress at t = 0, and f∞ = E2 εc = final stress at t = ∞.
It is convenient to plot this expression in terms of universal variables. The stress

is expressed by (fT – f∞)/(f0 – f∞); in other words, the final stress is subtracted from
it, and the result is divided by the difference between the initial and final stresses.
The time is given in terms of αKE1t. Curves showing the relation between these two
quantities for various values of α(f0 – f∞)/2 are given in Fig. 20.51 and are generally
similar to those found experimentally. A graph from which numerical values of the
constants needed to fit particular experimental curves may be calculated is given by
Meredith [62].

If f0 >> fT >> f∞, equation (18.44) reduces approximately to:

f f
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20.51 Graphs of equations (20.44) and (20.47) for stress relaxation and creep
[61].
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This means that, in the middle stages of the relaxation process, the stress decreases
linearly with the logarithm of the time. This is in agreement with experimental results.

By fitting the experimental data to the theoretical equations, values of the constants
α and K can be obtained, and then, if one assigns values to λ and λ/λ1, one can
calculate N and ∆F from equations (20.37) and (20.38). Burleigh and Wakeham [63]
assumed that in cellulose λ1 was equal to the length of two glucose units, that is, 1.03
nm; they then found that, for cotton and rayon cords under an initial stress of 78 MPa,
N remained fairly constant with values of 3.6 × 1011 and 4.9 × 1011 per mm2, respectively,
over a range of temperatures and humidities. These values correspond to approximately
one-eighth and one-sixth, respectively, of the total number of chain molecules per
unit area of cross-section.

As the stress is increased, the values of N increase and approach the total number
of cellulose chains at a stress approximating to that at which rupture occurs. Burleigh
and Wakeham also found that in the wet state there was evidence of the simultaneous
occurrence of a second relaxation process. This process was rapid, being completed
in 30 s, and gave a value of N equal to the total number of cellulose chains. In other
words, all the molecules were moving as individuals.

The values of λ/λ1 used by different workers [59, 63, 64] range from 2 to 10,
according to the assumptions made. However, even this wide range of values has
only a small effect (about 6%) on the values obtained for ∆F. Andersen [64] has
calculated values of activation energy, ∆F, for cotton and viscose rayon over a range
of humidities and initial stresses. He obtained values of about 100 kJ/mol, which
varied little with the conditions. However, as Meredith [62] has pointed out, similar
values of activation energy will always be found for relaxation processes assumed to
be completed in a given time range at a given temperature. To observe other activation
energies, experiments must be made at a different temperature or on another timescale.

20.7.4 Creep on Eyring’s model

For creep, we have stress = fT = constant = fc, and dfT/dt = 0, so that equation (20.46)
becomes:

(E1 + E2) dε/dt = E1 K sinh α(fc – E2ε) (20.50)

On integration this gives:

tanh [ ( –  )/2]
tanh [ ( –  )/2]

 = e2

2 0

– /( + )1 1 2
α ε ε
α ε ε

αE
E

E Kt E E∞

∞
(20.51)

This is similar in form to equation (20.48) for stress relaxation, so that the curves in
Fig. 20.51 will also apply to creep. The abscissa will give values of (ε∞ – ε)/(ε∞ – ε0).
It should be noted that this quantity decreases from 1 to 0 as ε increases from ε0 to
ε∞. More directly applicable to creep is the quantity (ε – ε0)/(ε∞ – ε0) = 1 – (ε∞ – ε)/
(ε∞ – ε0) shown on the right-hand scale. The ordinate will give values of αE1Kt/(E1

+ E2), and the figures on the curves will be values of αE2(ε8 – ε0)/2. As a consequence
of the similarity of form, the same numerical methods may be employed to find the
constants to fit the experimental data.
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If the stresses involved are small, and the times concerned are less than 105 s, it
can be shown that equation (20.51) reduces to:

ε ε ε
α =  +  log (1 + )0

c
e

∞
f

At (20.52)

where A
K f

f
 = 

(1 –  / )
log {coth[ (1 –  / )/2]}

c 0

e c 0

α ε ε
ε α ε ε

∞

∞ ∞

Halsey et al. [59] applied this equation to Leaderman’s creep and creep-recovery data
[65] for viscose rayon, acetate and silk and found a good fit over a 104-fold range of
times. A similar attempt to fit a three element model with a Newtonian viscous
element gave a good fit only over a 50-fold range of times. Assuming that λ = 1/2,
they calculated activation energies of the order of 100 kJ/mol.

The alternative three element model shown in Fig. 20.52 has been used by Reichardt
et al. [66] to analyse Steinberger’s data [67] on the creep of acetate. This model is
simpler to apply to creep, since the upper spring has a constant extension under
constant stress, and only the lower elements vary in extension with time, but it is less
directly related to the structural picture. It is mathematically equivalent to the model
of Fig. 20.49, though the values of ′ ′ ′E E K1 2, ,  and α′ will be different from those of
E1, E2, K, and α.

The three element model applies only to primary creep. There is no provision for
a non-recoverable extension. Holland et al. [68] have tried to allow for this by putting
a viscous element in series with the three element model, as in Fig. 20.48. This gives
a secondary creep continuing indefinitely at a constant rate, which is not in accord
with the usual experimental results. The fourth element must have a more complex
response.

20.7.5 Stress–strain curve on Eyring’s model

For constant rate of extension, we have dε/dt = constant, so that equation (20.46)
becomes:

K ′, a″

    ′E1

    ′E2

20.52 Alternative three-element model.
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d
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On integration, this gives:
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(20.54)

where β = (dε/dt)/K and S2 = 1 + β2.
Methods of fitting this equation to the experimental data and determining the

parameter β have been described by Eyring and Halsey [69], Geyer et al. [70] and
Meredith [62]. The theoretical relations are found to give good agreement with some
experimental results for viscose rayon and acetate. A typical example of the application
of the theory is shown in Fig. 20.53.

20.7.6 A generalisation of Eyring’s model

There are many simplifications in Eyring’s application of reaction-rate theory to
deformation. One difficulty, about which little can be done, is that there are complicated
interactions within a fibre, which cannot really be represented as an assembly of
separate flow units.

It is also an approximation to assume that an applied stress merely changes the
position of the troughs in the energy barrier, although this is valid provided that the
stresses are not too large. A more realistic view of the effect of large stresses is shown
in Fig. 20.54. The work done by the applied force changes the whole curve and, if it
is large enough, removes the barrier; this would lead to spontaneous deformation or
yield. Even before this happens, a thermal fluctuation may cause the barrier to be
surmounted. Yield stresses will thus be time-dependent. Chapman [52] has shown
that, with parabolic barriers, the effective yield stress fc,t with a time t available is
given by:
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20.53 Application of Eyring’s three clement model to the stress–strain
relations of acetate at 57% r.h. and 27 °C. The full curve gives the
experimental results, and the crosses are calculated from Eyring’s theory with
parameters derived from the first loading curve. After Reichardt and Eyring
[71].
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(20.55)

A similar equation should apply to fracture stress, since fracture is merely a special
case whereby the second trough in the curves is at infinity.

It may be noted that, depending on the absolute height of the energy barriers present
(which will be determined by the nature of the interaction and the number of units
acting cooperatively together), the following different modes of response may occur:

• very low barrier – an immediate achievement of the equilibrium state;
• low barriers – a sluggish approach to equilibrium;
• medium barriers – a rate-dependent yield, but no spontaneous recovery;
• high barriers – yield at a stress independent of rate.

An increase of temperature will increase the magnitude of thermal fluctuations, so
that the barriers are easier to cross and seem less high.

20.7.7 The superposition principle in primary creep

Another form of analytical approach is found in Leaderman’s study [65] of the
primary creep of fibres. He found that this could be represented by the relation:
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20.54 Generalised effect of stress on an energy barrier. The dotted lines show
the work contribution of successively higher applied force (a–d), causing a
progressive change in the energy barrier. It should be noted that the points of
inflection remain in the same position, but that the maxima and minima
change in position as well as height.
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xt = x0 + φ(F) ψ(t) (20.56)

where xt = extension after time t, x0 = instantaneous extension, φ(F) is a function of
force and ψ(t) is a function of time.

As a special case of this relation, we can put φ(F) = x(90) and ψ(t) = Ψ(t), as
defined earlier in Section 16.2.2. The important feature of the relation is that, although
creep is not a linear function of force, the effects of force and time can be separated
into two functions. This gives a much simpler relation than a single function involving
force and time.

In order to test equation (20.56), Leaderman made use of the relative delayed
deformation, x(t), defined as the difference between the deformation at the time t and
the deformation at 1 min. This removes uncertainty about the value of the instantaneous
deformation. Thus we have:

x(t) = x0 + φ(F) ψ(t) – x0 – φ(F) φ(1) = φ(F) [ψ(t) – ψ(1)] (20.57)

log x(t) = log[φ(F)] + log[ψ(t) – ψ(1)] (20.58)

Graphs of log x(t) against t or log t should therefore be parallel to one another and
displaced only by the differences in log φ(F). Leaderman found this to be so. An
example is given in Fig. 20.55.

A reduced deformation can also be obtained by making use of x(90), the deformation
between 1 and 90 min, for we have:

x(t) = x(90)[Ψ(t) – Ψ(1)] (20.59)

reduced deformation = x(t)/x(90) = Ψ(t) – Ψ(1) (20.60)

The reduced deformation should be independent of load and a function only of time.
This was found to be so.

Boltzmann [72] in 1874 put forward his superposition principle, and this has since
been found to apply to many materials. Leaderman decided to test it for fibres. The
principle states that the deformation of a body is a function of its entire loading
history and is given by a summation of the effects of every previous change of load.

20.55 Plots of relative delayed deformations of viscose rayon for different
loads [65]: A 31.0 mN/tex; B 25.2 mN/tex; C, 15.5 nM/tex; D 10.2 mN/tex.
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This is illustrated in Fig. 20.56. The extension curve for each increment of load is put
down, and the algebraic sum gives the resultant deformation. It is interesting to note
that as a result of the superposition principle, the final creep recovery under zero load
may, after a complex loading history, go past the zero position and then reverse
direction before reaching equilibrium. An example of the reversal is included in Fig.
20.56, and some actual curves obtained for rubber by Kohlrausch [73] are given in
Fig. 20.57. This is a remarkable phenomenon, since it means that under no load the
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20.57 Creep-recovery of rubber after complex loading histories [73].
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material is moving away from its equilibrium position. Inverse stress relaxation can
also occur.

One way of testing the superposition principle is by long-duration creep and
recovery tests. Suppose a load is left on for a time t1 and then removed. The creep is
given by:

xt = x0 + φ(F) ψ(t) (20.61)

and, by applying the superposition principle, the recovery by:

xt = x0 + φ(F) ψ(t) – [x0 + φ(F) ψ(t – t1)] = φ(F)[ψ(t) – ψ(t – t1)] (20.62)

Let us call the recovery time t′ = (t – t1) and the change of length during recovery ′′tt ,
then:

t′ = x0 + φ(F)ψ(t1) – φ(F)[ψ(t) – ψ(t – t1)]

= x0 + φ(F)ψ(t′) – φ(F)[ψ(t + t′) – ψ(t1)] (20.63)

But if t′ << (t1 + t′) the last term is very small, since the initial creep has almost
ceased and may be neglected in comparison with the second term. This is illustrated
in Fig. 20.58. We thus get:

′ ′′x x F tt  = + ( ) ( )0 φ ψ (20.64)

This equation is identical in form with Equation (20.61), which means that the
changes in length during creep and recovery must follow the same curve. Leaderman
showed that this was so, as mentioned earlier (Section 16.2.2).

Another way of testing the superposition principle is by obtaining experimentally
the deformation under repeated application and removal of load, as shown in Fig.
20.59. Suppose the first reversal occurs at a time t1, then at a time t, greater than t1,
we have, writng χ(t) for xt:

χ(t) = φ(F)[ψ(t) – φ(F)] (20.65)

But, if we add this to the creep for a time (t – t1), we get:

xt

x0

0

–x0

φ(F) x (t)

φ(F) x (t ′)

t1

t′
t

φ(F)[x(t1 + t′ ) – x (t1)]

20.58 Long duration creep and recovery.
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χ(t) + χ(t I t1) = φ(F)[ψ(t) – ψ(t – t1)] + x0 + φ(F)ψ(t – t1)

= x0 + φ(F)ψ(t) (20.66)

This equals the creep at a time t if there had been no reversal of load. Similar relations
apply to the other reversals. From these tests, we can therefore calculate a complete
creep curve and compare it with the one obtained directly. Leaderman found good
agreement.

There is thus evidence that the superposition principle applies to primary creep in
fibres, with the exceptions already noted (see Section 16.2.2), namely, the incomplete
recovery of the instantaneous extension of silk and the behaviour of nylon at high
loads. The value of the superposition principle lies in the fact that the behaviour
under complex loading histories can be calculated from simple creep tests. It is
another form of representation of linear viscoelasticity.

20.7.8. An integral theory

An example of an integral theory is the equation put forward by Nutting [74]:

x = ψ–1f β tK (20.67)

where x = strain, f = stress, t = time and ψ, β and K are constants. The constants β and
K determine the type of deformation and ψ determines its magnitude. An example of
its use is in the relaxation of torsional stress. The strain is constant, so that, taking
logarithms, we get:

log  = –  log  + constantf K tβ (20.68)

Experimentally, Permanyer [75] found linear relations between log(stress) and
log(time), as shown in Fig. 17.23, but at low twists the slope changed abruptly at one
point. It may be noted that the equation is a special case of the creep part of Leaderman’s
expression [65], φ(F) ψ(t). However, Leaderman has pointed out that a power law
does not always fit the experimental results well. In general, although it may be

Time

Time
Long duration creep

D
ef

o
rm

at
io

n
Lo

ad

20.59 Creep under repeated applications and removal of load.
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useful in special cases, the equation is too limited to explain the complicated behaviour
of fibres.

20.8 Thermodynamic effects

20.8.1 Thermodynamic equation of deformation

When a net amount of work ∑dW is done on a system, it causes a change in the
internal energy U and the entropy S of the system. The combined statement of the
First and Second Laws of Thermodynamics for a reversibly isothermal change gives
the relations between these quantities

∑dW = dU – TdS (20.69)

where T = absolute temperature.
If a fibre is extended by an amount dl through the application of a force F, then the

work done on the system is F dl. We may therefore put:

F dl + ∑′dW = dU – TdS (20.70)

In this equation, ∑′dW is the sum of any other work or heat. Among other possible
sources are an increase in volume dV against a pressure P, doing work (–PdV), and
the absorption of water liberating the heat of absorption. It is usual in experimental
investigations to maintain conditions (e.g. constant volume and constant water
absorption) so that the other sources of work may be neglected, and we then have:

Fdl = dU – TdS (20.71)

F
U
l

T
S
l

 = –  
T T

∂
∂







∂
∂







(20.72)

This means that the stress caused by a given elastic extension may be divided into
two parts, one depending on the changes in internal energy and the other on changes
in the entropy. Increases in internal energy on extension come from the bonds between
atoms being stretched, bent or rotated as described for crystals and glasses in Section
20.1.2. Changes in entropy come from changes in the degree of order of the system.
All systems have a general tendency to take up the most random, least ordered
condition, that is, the condition of highest entropy. Consequently, if the extension of
a system means that it is increasing in its degree of order, a force must be applied to
overcome the fall in entropy. This effect is predominant in the extension of rubbers
(as it is for the volume changes of gases) as described in 20.1.2. There are thus two
distinct mechanisms involved in determining the equilibrium position of a system
and the forces needed to deform it. They are the tendencies, which are often opposed
to one another, to achieve positions of minimum internal energy and maximum
entropy (maximum randomness). On deformation of the system, there are three
possibilities: (a) both the internal energy and the entropy effects may give positive
contributions to the force; (b) the internal-energy contribution may be positive and
numerically greater than a negative entropy contribution; or (c) the entropy contribution
may be positive and numerically greater than a negative internal energy contribution.

© Woodhead Publishing Limited, 2008



Theories of mechanical properties 619

For further mathematical development, it is convenient to introduce a quantity A
= (U – TS), which is known as the Helmholtz free energy. For a general change and
substituting from equation (20.71):

dA = dU – TdS – SdT = Fdl – SdT (20.73)

Thus

∂
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l
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= (20.74)
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= – (20.75)

However, it follows from a general property of partial differentials that:
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Consequently, substituting from equations (20.74) and (20.75) we have:
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S
l
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T

T l

= – (20.77)

This means that the entropy contribution may be worked out from the change of force
with temperature for a specimen extended by a constant amount. Equation (20.72)
then gives internal energy contribution by subtraction from the force.

It has been shown experimentally that, for rubbers, F ≈ T(δF/δT)l, which indicates
that the internal-energy contribution is negligible and that the rubber-like extension
depends on entropy effects. Rubber-like elasticity is also characterised by a negative
coefficient of linear expansion (see Section 6.2.3).

20.8.2 Application to fibres

There have been several investigations aimed at determining the extent of the energy
and entropy effects in fibre extension. To do this, it is necessary, as we have seen, to
measure the change of stress on a fibre held at constant extension. However, the
stress on such a fibre will change owing to relaxation, apart from the change of
temperature. This is an important experimental difficulty. It is one aspect of the
general proposition that the thermodynamic equations are not applicable to irreversible
effects, such as occur in the deformation of fibres. Experiments can therefore be
made only on fibres in which the stress has relaxed to a fairly constant value, and
even then the results must be viewed with caution.

Experiments have been made on both dry and wet fibres. In the latter case, corrections
should be applied for the change of absorption on extension as described by Bryant
and Wakeham [76].

The results of experiments on cellulose fibres given in Table 20.4 show that for
dry fibres the positive contribution to the force is derived from the internal energy
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effect, but this is reduced by a fairly large negative entropy term. The energy term
derives from the stretching or angular deformation of the inter-atomic bonds and
becomes greater the more highly oriented the fibre. The negative entropy term means
that the structure is moving towards a less ordered state on deformation. For wet
fibres, both the energy and the entropy terms are numerically less, and the latter
becomes positive at higher temperatures.

An application to wool is shown in Figure 20.60. This indicates that the energy
term predominates, which was interesting at the time, because it was thought that the
large extension shown by wool was due to a rubber-like type of elasticity depending
on an alignment of disordered chains. The subsequent observation of the α↔β transition
confirmed the energy change, though there is an entropic contribution from the
matrix.

By contrast, Fig. 20.61 shows that in casein at low extensions the entropy effect
predominates and is combined with a negative internal-energy effect. This suggests
that, in this almost completely non-crystalline material, the chains are bent at random
and the order increases on extension. The decrease in internal energy would derive
from a more favourable interaction between the molecules.

It is well known that if stretched rubber is cooled to a low temperature, its oriented
structure is ‘frozen in’, and it exhibits a stress–strain curve similar to that of a textile

Table 20.4 Internal energy and entropy contributions in cellulose fibres

Fibre Elongation Temp. Total stress Energy Entropy
 (%) (°C) (mN/tex) contribution contribution

  

∂
∂







U
l

T     
–T

S
l

T

∂
∂







Dry fibres
Isotropic rayon 1 25 12.4 41.9 – 29.5
Textile rayon 1 25 29.1 60.3 – 31.2
Tyre-cord rayon 1 25 36.2 66.6 – 30.4
Stretched rayon 1 25 50.4 81.1 – 30.7
(fibre G)

Wet fibres
Cotton yarn 1 25 1.06 2.90 – 1.84
Trye-cord rayon 1 25 1.06 3.16 – 2.10
Stretched rayon 1 25 7.68 23.4 – 15.8
(fibre G)
Saponified acetate 1 25 14.2 36.4 – 22.2
(highly oriented)

Textile rayon 1 25 1.15 1.84 – 0.70
10 25 24.8 25.5 – 7.36

1 75 1.17 0.33 + 0.83
10 75 24.8 24.0 + 0.77

Acetate 1 25 0.31 0.70 – 0.38
28 25 1.96 3.40 – 1.44

1 75 0.11 2.05 – 1.94
28 75 1.97 1.15 – 0.82

Calculations from original data [76, 77] by Wakeham [61].
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fibre. Clark and Preston [79] have observed the reverse effect with nylon and Vinyon.
When heated above a certain temperature, these fibres contract and then show rubber-
like properties, namely, a large extension and a large entropy effect as shown in Fig.
20.62. There is, however, a divergence from ideal rubber-like elasticity because the
internal-energy effect is not negligible.

Rather different results were obtained by Dart [80], who found that, in nylon and
polyester and acrylic fibres, the internal energy term was dominant and the entropy
effects were small.
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20.60 Extension and recovery curves of wool fibre in water [78]. Full line; total
load. Dotted line: entropy contribution.
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20.61 Extension and recovery curves of casein fibre in water [78]. Full line:
total load. Dotted line: entropy contribution.
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21.1 General introduction

The electrical properties of fibres are of less obvious technical importance than, for
example, the mechanical properties. Apart from their intrinsic interest, the first stimulus
for their investigation came from the use of fibres as insulating materials, and much
important work was done in the Bell Telephone Laboratories. Later, the use of resistance
and capacity methods for measuring the moisture condition of textile materials, and
of capacity methods for measuring irregularity, increased the interest in electrical
properties. With the introduction of synthetic fibres, the troubles due to static charges,
both in processing and in use, became more frequent and more severe. The electrical
properties are interrelated. The liability of materials to static charges is determined
by their electrical resistance. The electrical resistance is, on what seems to be the
most likely theory, mainly determined by the permittivity of the material. It is,
therefore, most appropriate to consider first the dielectric properties, then the electrical
resistance, and finally static.

21.2 Definitions of dielectric properties

The permittivity, ε, of a material may be defined either in terms of the capacitance,
C, of a condenser with the material between parallel plates of area A and separation
d, or in terms of the force F between two charges Q1 and Q2 at a distance r in the
material. Expressed in SI units as kg–1 m–3 s4 A2 (A = ampere) or F/m (F = farad), the
relations contain no arbitrary numerical factors and are:

C
A

d
 = 

ε
(21.1)

F
Q Q

r
 = 

4
1 2

2π ε
(21.2)

This does, however, mean that in vacuo the equations become:

C
A

d
 = 0ε

(21.3)

F
Q Q

r
 = 

4
1 2

0
2π ε

(21.4)
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where ε0 is the permittivity of a vacuum, which is a fundamental physical quantity
with the value 8·854 × 10–12 F/m. For many purposes, it is more convenient to use the
relative permittivity, εr = ε/ε0; which is also called the dielectric constant.

Physically, dielectric effects are due to polarisation in the medium (Fig. 21.1).
This gives rise to a reverse field, which reduces the force between two charges and
reduces the potential difference between the charged plates of a condenser, which
thus increases its capacitance (given by charge/potential difference). The polarisation
may be due either to the alignment of permanent dipoles, such as the water molecule
(Fig. 21.2), or to the separation of charge, which forms induced dipoles (Fig. 21.3).
Because of its influence on capacitance, the relative permittivity is important in
alternating current electricity. For a pure capacitance, current is proportional to rate
of change of voltage and is therefore, with a sinusoidal applied voltage, 90° out of
phase with voltage. By contrast, in a pure resistance, current is in phase with voltage.
In actual practice, dielectrics are imperfect, and a real condenser (Fig. 21.4(a)) acts
as a combination of capacitance and resistance. The current through the condenser
due to an applied voltage of frequency f Hz is made up of a current proportional to
1/Rp in phase with the applied voltage and a current proportional to 2πfCp at 90° to
the applied voltage, where Rp and Cp are the equivalent parallel resistance and
capacitance, respectively (Fig. 21.4(b)). The current vector diagram is shown in Fig.
21.4(c).

The relative permittivity is then given by:

ε r
p

0
 = 

C
C

(21.5)

Applied field

Reverse field

21.1 Polarisation of a medium.

H

H

21.2 A permanent dipole – the water molecule.
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where C0 = capacitance of the condenser with a vacuum (or, in practice, air) as
dielectric.

The imperfection of the dielectric may be expressed as:

dissipation factor, or loss tangent = D
f C Rp

 = tan  = 1
2 p

δ π (21.6)

where δ = loss angle, or as power factor = cos φ = [mean power dissipated in
condenser/voltage × current (r.m.s. values)] = D/√(1 + D2), where φ = (π/2) – δ =
phase angle. Table 21.1 shows the values of these quantities for pure capacitance and
resistance; with real materials, the values lie between these limits.

An alternative method of expressing the properties of the material is in terms of a
complex permittivity, �, with the vector diagram of Fig. 21.4(d). We have:

Electrons
– ve

Nucleus
 + ve

No field Applied field

21.3 An induced dipole-distortion of the distribution of electrons round the
nucleus of an atom.
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δ
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21.4 Representation of a real dielectric: (a) condenser with dielectric; (b)
equivalent parallel circuit; (c) current vector diagram for circuit; (d) vector
diagram – complex dielectric constant.
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� = ε′ – jε″ (21.7)

It can be shown that real part of permittivity = ε′ = ε, as defined above, and imaginary
part of permittivity = loss factor = ε″ = 1/2π f Cp Rp and dissipation factor = tan δ =
ε″/ε′.

21.3 Measurement

21.3.1 Experimental methods

To measure the dielectric properties, the material must be placed between the plates
of a condenser and the impedance measured. For measurements on material in the
form of film, a simple parallel plate condenser, with the plates fitting closely to the
film, can be used. Fibres are less easy to handle. Balls [1] used parallel plates and
carefully packed cotton fibres either perpendicular or parallel to the plates. Hearle [2]
used conical electrodes. A layer of yarn, about 2 mm thick, was wound on the inner
cone, and the outer cone was then pressed on it. With this arrangement, densities of
packing of about 80% by volume were obtained with continuous-filament yarns, and
of about 50% with staple-fibre yarns.

The method of measurement of impedance depends on the frequency being used
for the test1. At audio-frequencies (from about 50 Hz to 100 kHz), a bridge method is
suitable. Resonance methods can be used up to about 100 MHz. The condenser is
connected in series with an inductance L in a resonant circuit, with the current
measured by a high-impedance voltmeter across the condenser. At the resonant frequency
f0, the current has a maximum value. The capacitance C = L /(2 π f0)

1/2 and tan δ
= ∆f/f0, where ∆f = difference in frequency between the two values for which the
current is 1/√2 times the maximum value. Circuit-magnification meters, or Q-meters,
can be used for this method. At very high frequencies (10 GHz), Shaw and Windle [3]
used a cavity resonator. If a small dielectric specimen is placed along the axis of the
cavity parallel to the electric field, the resonant frequency of the cavity is given by:

f f
v
v

 = 1 –  1.86 ( – 1) e r
s

e
ε





(21.8)

where fe = resonant frequency of empty resonator, vs = volume of specimen and ve =
volume of cavity.

Table 21.1 Dielectric properties

Vector Power Dissipation Loss Phase
diagram factor factor angle angle

Pure capacitance ↑ j · 2πfCp 0 0 0 π/2
Pure resistance → 1/Rp 1 ∞ π/2 0

1The methods noted here are those used for the data in this chapter.  Subsequent advances in
electronics have changed the details of the technology, but not the principles.
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At optical frequencies, the dielectric properties can be obtained from a study of
refraction and absorption in the fibres by using the equations:

εr = n2(1 – k2) (21.9)

tan  = 2
(1 –  )2δ k

k
(21.10)

where n = refractive index and k = absorption index, defined by: 2πk = λ/x0, where
λ = wavelength, and x0 = distance in which amplitude decreases to 1/exp (x) times its
original value.

21.3.2 Evaluation of results for an air-fibre mixture

The main difficulty in dealing with fibres is the interpretation of results found with
a mixture of air and fibre in order to obtain the properties of the fibrous material
itself. Depending on the particular assumptions used, different formulae can be obtained,
and it is not easy to see how closely they should fit particular experimental conditions.
Some of these relations are described below and shown in Fig. 21.5. We define εr as
the relative permittivity of the fibre material (taken as 10 for the curves in Fig. 21.5),
εm as the effective relative permittivity of the mixture, and P as the‘ volume fraction
of fibre between the plates of the condenser.

• If the material is assumed to occupy only a fraction of the total area, but to be
continuous between the plates, Fig. 21.5(a), and it is assumed that there is no
distortion of the field, we have the parallel mixture law, Fig. 21.5A:

εm = 1 + (εr – 1) P (21.11)

Balls [1] used this formula for fibres lined up perpendicular to the plates, but it
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21.5 Theoretical curves for the variation of relative permittivity with density of
packing.
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seems unlikely that, under these conditions, one can neglect the distortion of the
electric field. Owing to the high surface/volume ratio in fibres, there will be a
large edge effect. The lines of force will concentrate on the region of high
relative permittivity and increase the capacity above its expected value. Some
curve such as Fig. 21.5B will be obtained.

• If the material is assumed to occupy the whole area, but only a fraction of the
distance between the plates, Fig. 21.5(c), we have the series mixture law, Fig.
21.5C:

1  = (1 –  ) + 
m rε εP P (21.12)

• A combination of the above two cases, with α as the fraction of area occupied
and β as the fraction of the distance between the plates (Fig. 21.5(d)), presents
the problems of averaging referred to in Section 20.3.2 in relation to a mixture
of mechanical properties. One model gives the following equation:

ε α
β β ε α α

α ε αm
r

2

r
= 

[(1 –  ) + / ]
 + (1 –  ) = 

[(  –  ) + / ]
 + (1 –  )

p P
(21.13)

With α = 0.5, this gives Fig. 21.5 D.
• If molar polarisations are additive, the following equation holds [4]:

ε
ε

ε
ε

m

m

r

r

– 1
+ 2

 = 
– 1
+ 2

P (21.14)

This system is indicated in Fig. 21.5(e) and gives the curve Fig. 21.5E. It is not
valid for large particles owing to the failure of the assumption on which it is
based that the Lorentz internal field holds at all places. It has been shown to be
a good approximation for small values of P [5]. Various improvements on this
formula for particular conditions have been suggested [6–8], and Polder and van
Santen [9] have discussed the problem more generally.

If εr is very nearly equal to 1, so that the difference between εm + 2 and εr +
2 is negligible. Equation (21.14) reduces to:

εm – 1 = P(εr – 1) (21.15)

which is the same as equation (21.11) leading to Fig. 21.5A.
This is valid for a mixture of gases but would not be expected to be so for

fibres, though it was used by Balls [1] for fibres arranged with their axes parallel
to the plates.

• A combination of (C) and (E), illustrated in Fig. 21.5(f), would give the curve
Fig. 21.5F.

• Licktenecker [10] proposed a logarithmic relation, which, for a mixture with one
component having unit relative permittivity, reduces to Fig. 21.5G:

log εm = P log Er (21.16)

This has been applied, with experimental support, by Shaw and Windle [3] to the
transverse relative permittivity of fibres wound solenoidally.
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• A combination of (C) and (G) gives Fig. 21.5H. Hearle [2] obtained curves
similar to, but not in quantitative agreement with, this when the density of packing
between cones was varied by altering the pressure applied to the outer cone.
Different curves, corresponding to different densities in the bulk of the material,
can be obtained by using staple-fibre and continuous-filament yarns and by
varying the winding tension. An example is given in Fig. 21.6.

Where the experimental arrangement approximates closely to one of the above
models, it may be possible to obtain an accurate extrapolation formula, but, in general,
the problem has not been solved.

For dry fibres having a comparatively low permittivity, Errera and Sack [11]
overcame the problem by immersing the fibres in a mixture of liquids and adjusting
the mixture until the introduction of the fibres made no difference. The permittivities
of fibre and liquid were then equal.

21.4 The effect of frequency

21.4.1 General

Frequency has a most important influence on dielectric properties, in a way similar
to its influence on dynamic mechanical properties. Owing to their inertia, and to
restraints in the structure, the dipoles take a certain time to reverse direction. This is
characterised as their relaxation time. At low frequency, the dipoles line up in the

ε m

8

4 Staple

Continuous
filament

0 20 40 60 80 100
100 P%

21.6 Practical variation of relative permittivity of viscose rayon with density of
packing [2].
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field, reverse direction when the field reverses, and so contribute to a high permittivity.
At high frequencies, the dipoles will not follow the changes at all, and there will be
no contribution to the permittivity. At intermediate, transitional frequencies the reversals
of field take place at intervals comparable to the relaxation time, the response of the
dipoles is sluggish, which gives a phase difference between voltage and current, and
energy is dissipated due to internal friction. Different types of dipole will have
different relaxation times, so that, as the frequency is raised, the permittivity drops in
steps and the dielectric loss peaks. When the theory is worked out exactly, it is found
that the maximum in ε″ occurs at the same frequency as the maximum rate of
decrease of ε′; the maximum of cos φ is displaced to a slightly higher frequency.

The general behaviour is illustrated by the results for water and ice. At low
frequencies, the dipolar water molecules line up in the field, to give a relative permittivity
of about 80. At higher frequencies, the permittivity drops in a step, and there is a
maximum in the power factor. For ice, (Fig. 21.7), in which the considerable restraints
in the structure limit the movement of the dipoles, this occurs at about 10 kHz; but,
for liquid water, in which the molecules are less restrained, the permittivity remains
constant up to about 1 GHz, and then drops rapidly and passes half its low-frequency
value at about 20 GHz. Above these frequencies, there will still be electronic polarisation,
but at high enough frequencies this will cease, and there will be a further decrease in
permittivity.

21.4.2 Fibres

Figures 21.8 and 21.9 show results obtained by Hearle [2, 12] for cotton, viscose
rayon, acetate, wool and nylon over the range of frequencies between 50 Hz and
10 MHz. Other values are included in the summary given later in Table 21.4. These
results show the great influence of frequency on the dielectric properties, an influence

21.7 Dielectric properties of ice.
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that becomes more marked the damper the specimen. The changes occur gradually
and not in steps, which indicates that a range of relaxation times is involved.

Above 5 kHz, the permittivity decreases in a manner similar to that in ice, but,
below 5 kHz, the permittivity curve does not flatten out, as does that of ice, but
continues to increase as the frequency decreases. This must correspond to a
comparatively large-scale polarisation phenomenon with a long relaxation time. The
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21.8 Dielectric properties of cotton yarn in cone condenser [2]. Cotton 44%;
air 56%.
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maximum in the power factor for damp cotton at 50–100 Hz indicates that there must
be a dominant relaxation time of the order of 1/100 second. These effects are probably
due to a polarisation of the ion distribution in microscopic or sub-microscopic regions
of the fibre structure, or possibly even across the whole fibre. This is the same as the
Maxwell–Wagner effect, or interfacial polarisation, which occurs when there are
heterogeneities in the conductivity and permittivity of a material between the plates
of a condenser.

In several types of fibre (viscose rayon, acetate, fairly dry cotton), the power
factor begins to increase with an increase in frequency in the region of 1 MHz. These
results suggest that, at some frequency greater than 10 MHz, there will be a maximum
in the power factor and a corresponding drop in the permittivity. The way in which
the curves for viscose rayon and acetate at various humidities come together suggests
that this effect is independent of the presence of water. It is probably associated with
the lining-up of polar groups within the fibre.

In wool, Windle and Shaw [13, 14] found a decreasing power factor as the frequency
increased from 3  to 26 GHz. This indicated the presence of a maximum in the power
factor at some frequency below this. This is probably essentially the same effect as
that which is suggested for viscose rayon, acetate and cotton by tests at lower frequencies.

It is interesting to notice that relaxation effects occur in the mechanical behaviour
of fibres at similar frequencies to those found in the dielectric properties (see Section
16.5).

21.5 The effect of moisture

As would be expected, moisture has a marked effect on the dielectric properties; this
is illustrated for cotton, acetate, wool and nylon in Figs 21.10 and 21.11. At the
higher frequencies, the dielectric properties of the cellulosic fibres are consistent
with the assumption that the water molecules are restrained in a manner similar to
that in ice. For wool, the permittivity is lower, which indicates that the absorbed
water molecules are more tightly held and cannot line up in the field. This behaviour
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21.10 Variation with moisture content M of dielectric properties of cotton [2].
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is particularly marked at low moisture contents and is consistent with Speakman’s
suggestion (see Section 12.2.1) that the water first absorbed by wool is firmly bound
to hydrophilic groups in the side chains of the keratin molecule. At the lower frequencies,
in some materials (notably cotton, in which the permittivity reaches very high values),
the effect of water becomes greater than it would be even if it were acting with a
relative permittivity of 80, which indicates its importance in freeing other units in the
structure so that they can polarise.

Windle and Shaw [14] have explained their results for wool at very high frequencies
in terms of a three-phase theory of moisture absorption. The components of the
system were regarded as dry wool, with experimentally determined properties; localised
absorbed water, in which the molecules cannot rotate; intermediate absorbed water,
in which the molecules are very little restricted; and mobile absorbed water, in which
the molecules are as free as in liquid water. Using expressions for the dielectric
properties of a mixture of dielectrics, assigning values for the dielectric properties of
each component, and dividing up the absorbed water in proportions found theoretically,
they obtained a good agreement between experiment and theory.

Of the non-absorbing fibres, polyester (PET) and polyvinylidene chloride (Saran)
showed no variation in dielectric constant, and only a small change in power factor
between 0 and 65% r.h. Polyvinyl chloride (Vinyon) and glass (Fiberglas) showed a
marked change at low frequencies, which was presumably due to surface effects. In
general, the effect of additives will have a major effect when the dielectric properties
are not dominated by moisture absorption.

21.6 The effect of temperature

A rise in temperature, reducing the restraints on the dipoles, causes an increase in
permittivity in solid materials. (In liquids and gases, where the intermolecular restraints
are small, an increase of temperature causes a greater disorganisation, a less regular
alignment of the dipoles, and thus a lower permittivity.) As for dynamic mechanical
properties, the effects of temperature and frequency are often similar. This is shown
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by Reddish’s results [15] for polyethylene terephthalate (Terylene) film (Fig. 21.12).
To include the effect of both variables, contour maps and solid models are used. It
will be seen that there is a maximum in tan δ, occurring at about 1 MHz at room
temperature and moving to lower frequencies at lower temperatures; this would
correspond to the maximum suggested earlier Section (21.4.2) as being likely in the
high-frequency region. At higher temperatures, there is another sharper maximum.
These two ridges in tan δ in the 3D models correspond to the peaks in mechanical
loss shown in Fig. 21.13. Corresponding to the maxima in tan δ, there are rapid dips
in the values of the permittivity. Note that the permittivity plots are the inverse of
dynamic modulus plots and would correspond to compliance plots. There is another
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21.12 (Continued)
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interesting feature: an increase in tan δ at low frequency at 160 °C. Although there is
no observable maximum, this may indicate another transition at a higher temperature
but below the melting point. This may be associated with permanent setting of
polyester fibres. Figure 21.14 shows the results obtained by Stoops [17] for dry
cellulose film (Cellophane). These also include a low-temperature maximum and, at
60 Hz, indications of a high-temperature maximum. Baker and Yager [18] obtained
somewhat similar results with dry nylon 6.10. Table 21.2 shows values of the relative
permittivity of nylon and keratin film at 25 and 40 °C at various moisture regains.

21.7 The effect of other factors

The permittivity of an anisotropic material, such as a fibre, would be expected to vary
with the direction in which the electric field is applied. The results obtained by Balls
[1] for cotton fibres indicate that the axial permittivity is about twice the transverse
permittivity, but, as is indicated above Section (21.3.2), the extrapolation on which
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21.14 Variation of dielectric properties of cellophane. After Stoops [17].
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these results are based is of doubtful validity. At 3 GHz, Shaw and Windle [3] found
that the relative permittivity of dry wool fibres was 3.88 ± 0.15 with the electric field
parallel to the fibre axis and 4.41 ± 0.11 with the electric field perpendicular to the
fibre axis.

The presence of impurities would be expected to alter the dielectric properties; in
particular, ionic impurities would probably have a considerable effect at low frequencies.
Table 21.3 shows the effect of the removal of surface dressings from some synthetic
fibres by extraction in methanol and benzene. Only with the polyester fibre was there
a large change, which was probably due to the removal of an anti-static finish, in the
values obtained.

21.8 Summary of results for various materials

Tables 21.4, 21.5 and 21.6 summarise results for various materials at frequencies
ranging from supply frequencies (50 Hz) to optical frequencies (1015 Hz). The figures
given by Hearle [2] are extrapolated linearly through εr = 1 at P = 0, and the experimental
point is found with maximum density of packing of the yarns, P%: this will give
values that are too low, but they are useful for comparative purposes. The cellulosic
fibres have the highest permittivity, these being followed by the protein fibres, with
the synthetic non-hygroscopic fibres having the lowest values. The power factors
follow a similar order.

Table 21.2 Effect of temperature on permittivity of nylon and
keratin films [19]

Moisture Relative permittivity
regain Nylon film Keratin film
(%)

25 °C 40 °C 25 °C 40 °C

0 4.2 4.5 4.7 4.8
1.8 5.0 6.0
3.6 7.1 10.2 5.0 5.3
7.2 5.7 6.5

10.8 7.0 8.6

Table 21.3 Effect of extraction on dielectric properties at 65% r.h. and 1 kHz [2]

Material Density Unextracted Extracted
of packing Relative Power Relative Power
(%) permittivity factor permittivity factor

εm cos φ εm cos φ

Nylon 50 2.34 0.054 2.43 0.063
Acrylic fibre Orlon 40 2.28 0.123 1.73 0.0044
Acrylic fibre Acrilan 50 2.00 0.076 1.94 0.043
Polyester fibre Dacron 50 39.4 0.773 1.66 0.007
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Table 21.4 Permittivities obtained by Hearle [2]

Material Extrapolated Relative permittivity
from P% 0% r.h. 65% r.h.

1 kHz 100 kHz 1 kHz 100 kHz

Cotton 44 3.2 3.0 18 6.0
Viscose rayon staple fibre 44 3.6 3.5 8.4 5.3
Viscose rayon c.f. 73 15 7.1
Acetate staple fibre 45 2.6 2.5 3.5 3.3
Acetate c.f. 79 4.0 3.7
Wool 53 2.7 2.6 5.5 4.6
Nylon staple fibre 53 2.5 2.4 3.7 2.9
Nylon c.f. 87 4.0 3.2
Acrylic staple fibre Orlon 42 2.8 2.3 4.2 2.8
Acrylic staple fibre 38 2.8 2.5
Orlon (extracted)
PVC staple fibre Vinyon 46 2.7 2.5 3.0 2.6
PCVD Saran c.f. 70 2.9 2.4 2.9 2.4
Polyester staple fibre 48 2.3 2.3 2.3 2.3
Dacron (extracted)
Glass fiberglass c.f. 63 3.7 3.4 4.4 3.6

c.f. = Continuous-filament yarn

Table 21.5 Other values of dielectric properties

Material Frequency Moisture Relative Power Reference
regain (%) permittivity factor

Cellophane 60 Hz 0 7.7 0.009 15
film 10 kHz 0 7.3 0.016 15

1 MHz 0 6.7 0.062 15
3000 MHz 0 4.04 3

Wool 8 kHz 0 5.4 11
60 kHz 0 4.4 11
120 kHz-13 MHz 0 4.2 11
3000 MHz 0 3.70 0.030 13
9300 MHz 0 3.54 0.019 13
26 000 MHz 0 3.4 0.0.15 14
3000 MHz 12 4.99 0.146 13
9300 MHz 12 4.44 0.076 13
26 000 MHz 12 4.1 0.068 14

Keratin film 500 Hz 0 5 20
11 kHz 0 4.5 20
1 MHz 0 4 20
500 Hz 12 9 20
11 kHz 12 7.5 20
1 MHz 12 5.5 20

Nylon 10 kHz 0 4.2 11
500 kHz 0 3.26 11
10 MHz 0 3.15 11
3000 MHz 2 3.13 3

Nylon film 11 kHz 0 4 21
11 kHz 4 8 21
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Table 21.6 Relative permittivity at optical frequencies

Fibre εr = 2 with light vibration:

Parallel to fibre axis Perpendicular to fibre axis

Cotton 2.50 2.34
Viscose rayon 2.37 2.31
Acetate 2.19 2.16
Wool 2.40 2.37
Casein 2.37 2.37
Nylon 2.50 2.31
Polyester fibre Terylene 2.96 2.37
Acrylic fibre Orlon 2.25 2.25
Polyethylene 2.43 2.28
Glass 2.40 2.40

* From refractive indices in Table 24.3
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22.1 Introduction

When electricity was first intentionally conducted from one place to another (from an
electrified tube to an ivory ball) by Stephen Gray in 1729, the material used as the
conductor was hempen pack-thread. Gray eventually covered distances of up to
233 m along the corridors of his house. In order to do this, he had to support the pack-
thread and, after an abortive attempt in which fine copper wires were used, he
suspended the thread by silk filaments. Thus both the conductor and the insulator
were textile fibres. Soon afterwards, Du Fay found that pack-thread was a better
conductor when it was wet. Then, in 1734, Gray discovered metallic conductors, and,
apart from some use for insulating purposes, interest in the electrical resistance of
fibres did not revive for nearly 200 years [1].

22.2 Definitions

The electrical resistance of a specimen, i.e. the voltage across the specimen divided
by the current through it, is determined both by the properties of the material and the
dimensions of the specimen. For most substances, the property of the material is best
given by the specific resistance ρ (in Ω m), which is defined as the resistance between
opposite faces of a 1 m cube, but, as with mechanical properties (see Section 13.3.1),
it is more convenient with fibres to base a definition on linear density (mass per unit
length) than on area of cross-section. A mass-specific resistance Rs is therefore defined
as the resistance in ohms between the ends of a specimen 1 m long and of mass 1 kg,
giving units of Ω kg/m2. The two quantities are related as follows:

Rs = ρd (22.1)

where d = density of material in kg/m3.
In practice, it is more convenient to express Rs in Ω g/cm2, when the numerical

values for most fibres will differ by less than 50% from the values of ρ expressed in
Ω cm. With these units, the resistance R of an arbitrary specimen is given by the
relation

R R l
NT

 =   10s
5× (22.2)

22
Electrical resistance
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where l = distance between the ends of the specimen in cm, N = number of ends of
yarn or fibre and T = linear density of yarn or fibre in tex.

Because of the wide range of resistance values, results are frequently expressed in
terms of the logarithm of resistance.

22.3 Methods of measurement

22.3.1 Measurement of resistance

Ideally, the resistance should be measured accurately, instantaneously and at a constant
voltage. The difficulties of doing this are increased by the high values of resistance
that have to be measured and the wide range that is covered. A variety of methods has
been used [1].

The simplest method of measurement is the use of an ammeter in series and a
voltmeter across the resistance. This can be done when the resistance of the material
is low. With a sensitive galvanometer, the method has been used for resistances up to
109 Ω, but the time taken for the galvanometer to come to rest may be a disadvantage.
Wheatstone bridge methods may also be used for fairly low resistances. The charging
or discharging of a capacitor through the resistance is a method of measurement of
high resistance. The general relation for the charge Q on a capacity C to which a
voltage V0 has been applied through a resistance R for a time t is:

Q = V0C (1 – e–t/CR) (22.3)

For the capacity discharging, Q = V0C e–t/CR. Various arrangements may be used to
apply these relations, but they all suffer from the defects that the test must last for a
measurable time and that the voltage varies during the test.

With high-resistance stable resistors, comparison methods can be used. Fig. 21.1
shows the circuit used by Hearle [2]. The voltage V1 can be measured by a low-
resistance voltmeter. The voltage V2 must be measured by a voltmeter whose resistance
is much greater than that of the unknown resistance R. The resistance to be measured
is given in terms of the standard resistance R′ by the relation

R″
R ′

V1

V2R

22.1 Circuit for measurement of high resistances.
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R R
V

V V
 = 

 –  
2

1 2
′ 



 (22.4)

By this method, high resistances can be measured quickly with a known voltage V2

adjustable by the potentiometer R″ across the specimen. Hersh and Montgomery [3]
used a slightly more complicated circuit in a null method, which does not require
such a high-resistance detector.

In measuring high resistances, great care must be taken to avoid the pick-up of
stray voltages, which necessarily take a long time to discharge.

22.3.2 Arrangement of specimens

Many different arrangements of the material to be tested have been used [1]. The
resistance has been measured along single fibres, along many fibres in parallel, along
single ends of yarn, along many ends in parallel, parallel to the weft and parallel to
the warp in cloth, across yarn and across cloth, and with special electrodes, such as
those of the Shirley Moisture Meter (see Section 7.3.5).

In most of his experiments, Hearle [2, 4] used yarn wound on a polythene former
and then held between bulldog clips, lined with tinfoil, 1 cm apart. Hersh and
Montgomery [3] stuck fibres or pieces of yarn onto brass tabs with silver conducting
paint.

The specimens must be conditioned by being placed in a suitable atmosphere. A
simple conditioning chamber is satisfactory for work at constant temperature. Hearle
[2] used a glass jar containing saturated salt solutions to control humidity. Leads
were brought out through a tight-fitting stopper. A sample of the fibre was suspended
in the jar and removed to measure moisture content. Alternatively, the resistance may
be measured immediately after removal of the specimen from the conditioning
atmosphere.

Securing constant moisture conditions at different temperatures is more difficult.
The most satisfactory method is to enclose the specimen in a space so small that no
appreciable evaporation can take place, which thus keeps the moisture content constant.
Hearle [5] sealed specimens between sheets of rubber, brought out fine copper leads,
and immersed the whole in a bath of paraffin.

22.4 Results of experiments

22.4.1 The influence of moisture

Moisture is the most important factor in determining the resistance of most textile
materials and causes a variation over a range of at least 1010 times. Even the difference
between 10 and 90% r.h. will cause a million-fold difference of resistance, namely,
a tenfold decrease in resistance for every 13% increase in relative humidity.

For most hygroscopic textile fibres between 30 and 90% r.h., relations of the
following form hold:

log Rs = –n log M + log K (22.5)
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Rs · M
n = K (22.6)

where M = moisture content (%), and n and K are constants.
When plotted over a wider range of moisture conditions, a sigmoidal relation

between log Rs and log M is obtained (Fig. 22.2). At low moisture contents (below
3.5% for cotton, 7% for viscose rayon and 4% for wool and silk), the following form
fits the results:

log Rs = –n′ M + log K′ (22.7)

where n′ and K′ are constants. A relation of this form was also found to fit the results
for acetate and some specimens of nylon [6].

The resistance of a specimen at constant temperature has been found to be a
single-valued function of moisture content, no hysteresis being detectable. It follows
that there must be hysteresis between resistance and humidity. Nevertheless, for a
given part of the hysteresis loop, relations of the following form are found to fit the
experimental data fairly well:

log Rs = –aH + b (22.8)

where H = relative humidity, and a and b are constants.

22.4.2 Comparison of different materials

Figure 22.2 shows results for various materials plotted in terms of moisture content;
Fig. 22.3 shows them in terms of relative humidity. Table 22.1 gives values of log Rs

at 65% r.h., and of n and (log K – n). The latter quantity, which is equal to the value
of log Rs at M = 10%, is more useful for comparative purposes than the value of log
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22.2 Variation of resistance of fibres with moisture content [2, 6].
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K, which has to be obtained by extrapolation and is greatly affected by any error in
the value chosen for n. Table 22.2 gives values of n′ and log K′ obtained at low
moisture contents.

The values of n for the different cellulosic fibres are very nearly the same. Hearle
[2] found that they can all be fitted with reasonable accuracy by the relation:

log Rs = –11.2 log M + log K (22.9)

where the value of log K can be found by measuring the resistance at one moisture
content.
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22.3 Variation of resistance of fibres with relative humidity [2, 7].

Table 22.1 Electrical resistance results, along yarn [2, 6, 7]

Material n (log K – n) = log Rs log Rs at r.h. % for
at M = 10% 65% r.h. Rs = 1010

 Ω g/m2

Cotton 11.4 5.3 6.8 30
Washed cotton 10.7 6.0 7.2 30
Mercerised cotton 10.5 6.8 7.2 30
Flax 10.6 6.8 6.9 30
Viscose rayon 11.6 8.0 7.0 30
Washed viscose rayon 12.0 9.0 7.5 30
Acetate 9.0 11.7 85
Silk 17.6 9.0 9.8 65
Wool 15.8 10.4 8.4 55
Washed wool 14.7 11.9 9.9 60
Nylon 9–12 85
Orlon acrylic fibre 8.7 85

(as received)
Purified Orlon acrylic fibre 14 95
Terylene polyester fibre 8.0 85

(as received)
Purified Terylene polyester 14 95

fibre
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Within the limits of experimental error, Hearle found no difference between 12
different cottons (two American, five Pakistani, two Egyptian, Brazilian, Tanguis and
Uganda). A comparison of the results for cotton and viscose rayon shows that they
are in reasonable agreement with the assumption that the conduction is in the non-
crystalline region of the fibre, which will have a resistance determined by its own
moisture content. Cellulose acetate shows a rather high resistance when considered
in terms of either moisture content or relative humidity.

The protein fibres have larger values of n (between 16 and 18 in most cases), and,
except at very low moisture contents, they have a much higher resistance than the
cellulosic fibres. The change in resistance with moisture content at low moisture
contents becomes very small, and in wool it is almost non-existent.

There is a wide variation, depending on their history and the presence of additives,
in the resistance of different specimens of nylon. Nylon has a high resistance at a
given humidity, but, when plotted against moisture content, the resistance values fall
below those of viscose rayon. The curves of log Rs against log M show no linear
portion. It has been shown by Sharman et al. [9] that the resistance of nylon increases
as the draw-ratio increases; they consider that the change is greater than would be
explained by a change of regain.

The acrylic fibres show a low resistance at a given moisture content, and at a given
relative humidity they may even have a resistance as low as that of wool.

Fibres such as polyester or vinyl fibres, which absorb little water, all have very
high resistances. Their resistances decrease at a rate of about ten times for every 10%
increase in relative humidity up to about 80% r.h.; above this humidity, the resistance
decreases more rapidly. However, for these fibres, anti-static finishes are commonly
applied to lower the resistance, as indicated by the million-fold increase in the resistance
on removing finish from the polyester fibre in Table 22.1.

The high-modulus, high-tenacity (HM–HT) polymer fibres are inherently good
insulators, though there is some effect of moisture in aramid fibres. Glass and ceramic
fibres are also good insulators. Surface finishes can, of course, cause a modification
of properties. Carbon fibres are fairly good conductors of electricity, with a resistivity
of about 15 Ω m.

22.4.3 Effect of impurities

The resistance of the hygroscopic fibres depends on their electrolyte content, as is
illustrated by the results for cotton and wool in Fig. 22.4. The addition of a salt such

Table 22.2 Electrical resistance results: low moisture contents [8]

Material n′ log K′ Upper limit of Lower limit of
relation, M% tests, M%

Cotton 1.90 16.0 3.5 1.3
Viscose rayon 0.47 13.6 7 2.2
Wool 0 12.7 4 0
Silk 0.15 13.9 4 1.4
Acetate [6] 0.72 16.5 > 12 4
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as potassium chloride lowers the resistance. At low salt contents, the evidence indicates
that conductivity is approximately proportional to electrolyte content, but, at high
salt contents (greater than 1%), O’Sullivan [10] found that the resistance of cellulose
film at a given moisture content was independent of the nature or amount of salt present.

Washing in distilled water increases the resistance, and a further increase may be
obtained by washing in calcium sulphate solution. Walker and Quell’s results [11]
show the increase in resistance between raw cotton (0.4% of sodium and potassium
salts) and washed cotton:

Rs, MΩ g/cm2

raw cotton 0.5
after washing 200 g in 5 litres distilled water 14
after washing 200 g in 40 litres distilled water 12–25
after washing in CaSO4 solution followed by distilled water 18–37

The action of the calcium sulphate solution is to replace the monovalent ions left
behind after washing in distilled water by less conducting bivalent ions (see Section
22.5.3). The residual ions are probably associated with ionic groups in the fibre
molecule, for example, carboxyl (—COO—) groups present as impurities in cellulose
molecules. Church [12] found that, when hydrogen ions were replaced by calcium
ions in paper, the resistance increased six times.

22.4 Resistance of wool and cotton as received, purified, and with added
electrolyte [2].
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Any wet processing, such as bleaching or dyeing, that alters the electrolyte content
will alter the electrical resistance. The resistance of the synthetic fibres is much
affected by the presence of surface finishes. For example, Hayek and Chromey [13]
found a reduction of 10 000 times by a suitable anti-static agent.

Boyd and Bulgin [14] have shown that, when about 30% of carbon black is
included in viscose rayon fibres, their specific resistance at 0% r.h. falls from between
1014 and 1015 Ω cm to less than 106 Ω cm. This must be due to the presence of a
continuous conducting path of carbon black. With increase of humidity, the resistance
increases slightly, presumably owing to a greater dispersion of the carbon black.
There is also a change with humidity in the critical concentration of carbon black at
which the resistance begins to drop markedly: this rises from 26% carbon black in the
dry state to 30% at saturation.

22.4.4 Effect of temperature

The resistance of fibres decreases as the temperature increases, a rise of 10 °C causing
a fall of the order of five times. A typical set of results is shown for cotton in Fig.
22.5.

For cotton, viscose rayon and wool, Hearle [5] found that the rate of change of log
R with temperature varied separately with moisture content M and temperature θ C.

– d (log )
d

 =  –  –  
R

a b M cθ θ (22.10)

where a, b and c are constants for a given material. Values of a, b and c are given in
Table 22.3. The value of a gives the rate of change of log R with temperature under
dry conditions at 0 °C, and the values of b and c give the change of d(log R)/dθ with
moisture content and temperature, respectively.

Clark and Preston [15] have found that the same equation fits the results for
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22.5 Variation of resistance of cotton with temperature [5].
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viscose rayon at 24.5% regain down to – 60 °C. For silk, a relation of the above form
is not strictly accurate. For nylon at 20 °C and 6% moisture content, it was found that
d(log R)/dθ = 0.05 per °C. Sharman et al. [9] found that curves of log (conductivity)
against the reciprocal of temperature were approximately parallel at different regains,
as is shown in Fig. 22.6.

22.4.5 Arrangement of specimen

One would expect the specific resistance of fibres to vary with the direction of
measurement, but, owing to the experimental difficulties, no values for the transverse
specific resistance of fibres are available. O’Sullivan [10] found that the resistance of
cellulose film parallel to the direction of extrusion was 0.8 times that perpendicular
to the direction of extrusion. Hearle and Jones [16] found that the ratios of resistances
with three different electrode systems varied with the material and the moisture

Table 22.3 Values of a, b and c [5]

Material a b c
(per deg C) (per deg C per unit (per deg C per

moisture content) deg C)

Cotton 0.0863 0.005 35 0.000 35
Viscose rayon 0.0707 0.001 86 0.000 37
Wool 0.0960 0.002 12 0.000 57
Acetate* 0.0528 0.000 80 0.000 25
Silk† 0.0934 0.002 87 0.000 82

*Only tested over small range.
†Near 20 °C and 10% moisture content.
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22.6 Variation of conductivity of drawn nylon with temperature [9].
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content, which indicated that the ratios of specific resistances in different directions
varied with these factors.

All the results in the literature, except for those in one paper [17], indicate that the
experimentally obtained specific resistance of fibres is independent of the dimensions
and form of the specimen. In other words, there is no composite specimen effect, and
the resistance of a specimen is proportional to its length and inversely proportional
to its area of cross-section (or mass per unit length). This relation will break down if
the contact resistance between electrode and specimen becomes comparable with the
resistance of the specimen.

Hersh and Montgomery [3] tested nylon specimens ranging in linear density from
3 to 340 den (from 0.33 to 38 tex) and showed that they all gave the same specific
resistance. Hearle [4] found only a very small change in resistance when cotton and
viscose rayon were subjected to tensions up to near their breaking point.

22.4.6 Polarisation and related effects

If polarisation, whether electrolytic or electrostatic, causes a back electromotive
force (e.m.f.) to occur, it will be detectable in three ways: the resistance will increase
with time as the back e.m.f. develops; the resistance will decrease with voltage; and
the back e.m.f. will be present, dying away, after the applied voltage has been removed.

Several workers have found that the variation of resistance with time is undetectable
or very slight, except at low and high humidities. For raw cotton with tin electrodes,
Hearle [4] obtained a significant variation of resistance with time only above 90%
r.h. At 17.4% moisture content, the resistance doubled in 30 s. With cotton containing
added potassium chloride, the resistance increased with time down to below 50% r.h.
With one specimen of wool, the resistance remained constant even at 27% moisture
content, but, with another specimen, there was an increase of 7% per minute at 17%
moisture content. The nature of the electrodes is an important factor in polarisation
effects. The curves in Fig. 22.7 show that, at 9.3% moisture content, the resistance of
cotton between copper and zinc electrodes increases rapidly with time, but that, with
tin, aluminium, or platinum electrodes, it changes only very slowly. Jones [18] found
that a large stainless-steel anode was most effective in eliminating polarisation. On
ashing polarised cotton fibres, Williams and Murphy [19] found most of the ash near
the electrodes.

The above effects are typical of polarisation as it occurs in electrolytic solutions,
when it is most marked if there is a rapid discharge of ions at the electrodes. It is due
to the prevention of the rapid attainment of equilibrium by a slow process at the
electrode and is much affected by the nature of the electrodes.

Other effects, such as heating, which will change the temperature and may cause
drying, and the transport of water or ions in the specimen, have been suggested as a
cause of variation of resistance with time. Although it is likely that these effects may
be appreciable in some conditions, they have never been definitely observed.

Back e.m.f. of the order of 2 V has been found by Hearle [4] and others. A set of
results for cotton is shown in Fig. 22.8. At low moisture contents, there is only a
small back e.m.f. As the moisture content increases, the back e.m.f. also increases
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and reaches a value of about 2 V at 7% moisture content. At higher moisture contents,
the back e.m.f. remains the same, but above 9% moisture content it dies away more
rapidly after the removal of the applied voltage. The value of the back e.m.f. was
found to be different with electrodes of different metals.
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22.7 Variation of resistance of cotton with time for various electrodes [4].
Moisture content = 9.3%.
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Polarisation effects have also been reported below 25% r.h. for cotton and wool.
Murphy [20], working with cotton, found that, under these conditions, the back e.m.f.
varied with the applied voltage, and he obtained values of over 100 V. This behaviour
indicates electrostatic polarisation.

The variation of resistance with voltage in fibres was observed by Evershed [21]
in 1913. Fig. 22.9 shows a typical result for cotton. The decrease of resistance with
voltage up to 50 V is adequately explained by the presence of a back e.m.f. of the
order of 2 V (Fig. 22.10). Similar effects are observed with other fibres, though with
wool the resistance does not vary with voltage below 80% r.h.

The continuing decrease at higher voltages found by Evershed and others is greater
than that due to a small back e.m.f. By testing specimens of various lengths, Hearle
[4] showed (Fig. 22.11) that the specific resistance depended on the average field
strength (or what comes to the same thing, the current density) rather than on the
actual applied voltage.

Hersh and Montgomery [3] have found the resistance of cotton yarns to be ohmic
in the range 50–2000 V. However, Cusick and Hearle [22] have suggested that this is
because they allowed some time to elapse before measuring the resistance, and
consequently an increase of resistance with time fortuitously masked the decrease
with voltage. In a later comment, Hersh and Montgomery [23] have suggested that
the change in resistance is due to a heating of the specimen. This would be influenced
by the air velocity in the neighbourhood of the specimen.

Cusick and Hearle [22] also found that the rate of change of resistance of cotton
with time increased as the voltage increased, as shown in Fig. 22.12. When the
specimen is left with no voltage applied, the resistance recovers at a similar rate to
its previous increase.
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22.9 Variation of resistance of cotton with applied voltage. After Evershed
[21].

© Woodhead Publishing Limited, 2008



Electrical resistance 655

22.4.7 Electrolytic effects

During conduction in cellulose film impregnated with salts, O’Sullivan [24] observed
phenomena similar to those occurring in the electrolysis of salt solutions. When the
film is soaked in sodium chloride, an acid region develops at the anode and an
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22.10 Variation of resistance of cotton (moisture content = 6.4%) with applied
voltage up to 50 V. The dotted line is the theoretical curve for a back e.m.f. of
2 V [4].
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alkaline region at the cathode. Figure 22.13(a). With silver nitrate in the film, ‘treeing’
occurs (Fig. 22.13(b)) as the silver is deposited at the cathode. The conditions are just
those which would cause ‘treeing’ in electroplating (high potential gradient, unstirred
bath and low conductivity) and, as in electroplating, it may be avoided by using
potassium silver cyanide instead of silver nitrate.
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22.12 Effect of voltage on change of resistance of cotton with time [22].
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22.13 Electrolytic effects during conduction in cellulose film. (a) Film
impregnated with sodium chloride and an indicator, showing acid and
alkaline regions at electrodes. (b) Film impregnated with silver nitrate,
showing deposition of silver at cathode and entry of copper at anode.
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King and Medley [25] measured the amount of hydrogen liberated during conduction
in keratin film and found that it was about 90% of that expected from the quantity of
electricity passed. There were also small quantities of oxygen and carbon dioxide
from the anode reactions.

O’Sullivan [26, 27] measured the bulk mobilities of ions in cellulose film. Typical
results are given in Table 22.4.

22.4.8 Resistance noise

Owing to the arrival of current in discrete charges, there is a variable component in
direct current. This gives rise to resistance noise, which is one of the factors limiting
the amplification of small signals. The magnitude of these random fluctuations has
been worked out by Schottky [28] for current carried by electronic charges.

Boyer [29], working with films of various polymers, including cellulose and nylon,
has found that the noise level is much higher than that given by Schottky’s formula
and that the noise has a frequency distribution characteristic of the particular polymer.
He concludes that this is due to the arrival of ions at the electrodes in ‘avalanches’,
owing to their being held up at places in the polymer until some movement of the
structure allows them to continue to flow.

22.5 Theoretical

22.5.1 Nature of the conduction

In a consideration of the mechanism of conduction of electricity, the first questions
to be answered are: ‘Where is the current flowing’? and ‘What is carrying the current?’
Both of these problems have to be solved mainly by circumstantial evidence.

Hersh and Montgomery [3] have shown that for nylon filaments the resistance is
inversely proportional to the area of cross-section. This indicates that conduction is
predominantly a volume effect, with the current flowing through the bulk of the
material. If conduction had been a surface effect, the resistance would have been
inversely proportional to the circumference (i.e. the square root of the area or cross-

Table 22.4 Bulk mobility of ions in cellulose film [26, 27]

Ion Mobility in cm2
 s–1

 V–1 at moisture content of:

10% 20% 30% 40%

H+ 3 × 10–8 4 × 10–6 2.5 × 10–5 8 × 10–5

OH– 1.6 × 10–8 1.6 × 10–6 8 × 10–6 2.5 × 10–5

K+ 3 × 10–6 6 × 10–7 3 × 10–6 6 × 10–6

Ag+ 1.6 × 10–7 4 × 10–6 1.3 × 10–5 2.5 × 10–5

Cl– 3 × 10–9 8 × 10–7 8 × 10–6 2 × 10–5

Fe2+ 2.5 × 10–7 1.3 × 10–6 1 × 10–5

Cu2++ 2.5 × 10–8 1 × 10–6 5 × 10–6

  SO 4
2– – ,   CrO 4

2– – 2 × 10–7 2.5 × 10–6 1 × 10–5

Ca2++ 5 × 10–7
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section). Different types of cotton also have the same specific resistance, though here
the range of fineness covered is smaller; different qualities of wool differ to an
appreciable extent only at low moisture contents, when the influence of impurities is
great. Indirect evidence that conduction is a volume effect is provided by the lack of
hysteresis between resistance and moisture content (which is a volume, not a surface,
quantity), despite the hysteresis between moisture content and relative humidity.
Thus, in the hygroscopic fibres, it appears that volume conduction is the dominant
effect, surface conduction being negligible in comparison.

Both the close association between resistance and moisture content and the relation
between the resistances of cotton and viscose rayon indicate that the current will be
flowing in the non-crystalline regions of the fibre. Indeed, the ordered arrangements
of cellulose molecules in a crystalline region would be expected to be highly insulating.

In the synthetic fibres, with higher resistance and negligible moisture absorption,
surface conduction is likely to be more important and may be the dominant mechanism.
Certainly when conducting surface finishes are applied, the current will be almost
entirely on the surface.

Current may be carried either by electrons or by ions. Baxter [30], in 1943, put
forward a theory that conduction in wool was by electrons, the water molecules
acting as impurity centres in an electronic semiconductor, but most workers have
assumed that conduction is by ions. Where the products of electrolysis have been
directly observed by O’Sullivan [24], using cellulose film, and by King and Medley
[25], using keratin film, the current must be ionic. The variation of resistance with
electrolyte content and the polarisation effects also support this view. Thus, where
there is evidence, it indicates that conduction is ionic, but, where there is no special
evidence (for example, at low moisture contents), it cannot be definitely stated that
conduction is not electronic. A specialised mechanism that Baker and Yager [31]
have suggested for the polyamides is the mobility of hydrogen atoms (protons) from
hydrogen bonds. This can, however, be regarded as equivalent to other forms of ionic
conduction, since it is essentially an ionisation at the hydrogen bond:

CH2

NH
C O H N

CO

CH2 CH2

NH
C

CH2

CO
HON

With the possible exceptions noted above, the general picture is of ionic conduction
taking place through the bulk of the material. The next step is to consider theories
that will explain the enormous variation of resistance with moisture content, the large
variation with temperature, and other effects, such as the higher resistance of protein
fibres and the low conductivity of bivalent ions. There are two possible causes of
variation of resistance: there may be changes in the number of ions available for
conduction or there may be changes in the rate at which the ions move through the
material under a given applied voltage.

For a specimen having v ions per unit length available for conduction, with z as the
valency of the ions and e as the electronic charge, and on the assumption that the ions
move with an average velocity u under a potential difference V between the ends of
the specimen, the current I and resistance R are given by:
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I = vzeu (22.11)

R V
I

V
vzeu

 =  = (22.12)

For further study, it is convenient to separate the factors by taking logarithms:

log R = log V – log v – log ze – log u (22.13)

22.5.2 Influence of permittivity on dissociation of ion pairs

There has been no success in attempting to explain the enormous changes of resistance
with moisture content on the basis of changes in rate of ion movement. The most
likely theory, proposed by O’Sullivan [32] and based on breaks in conducting water
paths, was shown by Hearle [33] to be impossible because of the polarisation that
would occur. For a successful theory, we must look to changes in the number of
available ions.

Strong electrolytes are completely ionised, and the ions can be held together in
molecules only by electrostatic forces. In solutions in liquids of high permittivity,
such as water, these forces are so weak that there is no close association of ions, but
even weak inter-ionic forces prevent the ions from acting as completely free particles.

If the permittivity of the solvent is lower, the electrostatic forces will be stronger,
and we may consider an equilibrium between ion pairs and free ions

A+ B– s A+ + B–

The variation in this equilibrium offers a possible explanation of variations in resistance.
A rise in permittivity would cause more dissociation, making more free ions available
for conduction and consequently lowering the resistance. This is illustrated
diagrammatically in Fig. 22.14.

A simplistic theory, which applies macroscopic ideas to molecular phenomena and
does not take account of the interaction of all the ions present, has been put forward
by Hearle [33]. Let α be the degree of dissociation of the ion-pairs:

  
A + B   A  + B–

(1– )
+ –

α α α
s
U

It can be shown that, as a consequence of the Law of Mass Action:

Low permittivity Medium permittivity High permittivity

Strong forces, Medium forces, Weak forces,
few free ions many free ions nearly all free ions

22.14 Effect of permittivity on association of ions.
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α
α

2
– /

1 –  
 = eA U kT (22.14)

where U = the energy of dissociation, k = Boltzmann’s constant, T = absolute temperature
and A = a constant, of the order of the ratio of the total volume to the volume
occupied by ions.

The energy needed to separate two electrostatic charges in a medium of relative
permittivity εr is given by:

U
U

 = 0

rε (22.15)

where U0 = the energy needed to separate the ions in a medium of unit relative
permittivity and is thus a constant. Hence:

α
α

ε
2

– /

1 –  
 = e 0 rA U kT (22.16)

If α << l, that is when most of the ions are associated in pairs:

α
α α

2
2

1 –  
  ≈ (22.17)

Hence:

α ε = e1/2 – /20 rA U kT (22.18)

But, if v0 is the total number of electrolyte molecules per unit length of specimen,
then the number of ions available for conduction is given by:

v = 2 α v0 (22.19)

and, substituting in equation (22.13), we get:

log  = log  –  log  –  2 log 0R V
uze

vα

= log 
2

 + 
log

2
 1

1/2
0

0

r

V
A uze v

U e
k T ε (22.20)

This may be written:

log  = 
 + r

R Ψ
ε χ (22.21)

where Ψ = (U0 log e)/(2 k T) and χ = log (V/2 A1/2 u z e v0).
After suitable values for Ψ and χ have been chosen, equation (22.21) can be tested

with experimental results. Figure 22.15 shows a comparison of Hearle’s values of
resistance with theoretical predictions in which Balls’s values [34] of the permittivity
of cotton and King’s values [35] of the permittivity of keratin film have been used.
For cotton, there is a good fit with Ψ = 76.8 and χ = 1.1 and for wool with Ψ = 42.2
and χ = 3.6. The coincidence of the bending-over of the curve for wool is particularly
striking.

From the value chosen for Ψ, the values of U0 can be calculated. With Ψ = 76.8
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and at room temperature, T ≈ 300 K, this gives U0 ≈ 1.5 × 10–18 J. This may be compared
with the energy required to separate two electronic charges, initially at a distance
apart equal to the ionic diameter, i.e. of the order of 5 × 10–10 m, which gives U0 ≈ 5
× 10–18 J. Thus the chosen value of Ψ proves to be of the right order of magnitude.

This theory will explain the high resistance of multivalent ions. If the ions have
valencies z1 and z2, then, considering isolated charges separated by a distance X, we
have

U
z z U z z e

X
 = 

 
  1 2 0

r

1 2
2

rε ε≈ (22.22)

where U0 is assumed to be the value for monovalent ions.
Equation (22.21) therefore becomes:

log  = 
+ 

1 2

r
R

z z Ψ
ε χ (22.23)

The value of log R is thus increased by an amount (z1z2 – 1) Ψ/εr compared with the
value with the same number of monovalent ions present. Some values of this quantity
are given in Table 22.5. These figures, being differences in log R, give the number of
powers of 10 by which the resistance with multivalent ions would be greater than the
resistance with monovalent ions. It will be seen that, in almost all cases, conduction
by multivalent ions would be negligible.

Although the constants Ψ and χ would not be expected to be exactly the same for
different materials, Hearle [36, 37] has shown that, when values of log Rs are plotted
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against values of 1/εr (all determined under the same conditions), the straight lines do
group closely together. In particular, the differences in their permittivities explain the
differences in resistance between cellulosic and protein fibres under similar moisture
conditions.

22.5.3 Conduction at high moisture contents

At high moisture contents, when the permittivity becomes high, the condition α <<
1 will break down, and dissociation will become almost complete. Equation (22.21)
will then cease to apply, and the effect of the permittivity will be small. Theoretical
estimates, based on the value of A, and experimental results for the dissociation of
electrolytes in liquids both indicate that α becomes near to unity for permittivities
greater than 20. Under these conditions, an alternative mechanism will be limiting
the conduction. The theory of breaks in conduction paths would also break down at
high moisture contents, when breaks become negligible.

At high moisture contents, the ions will be moving along water paths and their
speed will be limited by viscous hindrance to their flow. If the paths are narrow and
the water is moving with the ions, Poiseuille’s equation for the flow of liquids along
tubes should apply to the velocity u of the ions, to give:

u ∝ (radius of tube)4 ∝ (volume of water)2 ∝ (regain)2

Note that it is regain r (mass of water per mass of fibre), which tends to infinity as
a maximum, and not moisture content M (mass of water per mass of water + fibre),
which tends to 1, that is the relevant quantity.

Thus, from equation (22.13):

log R = log(constant) – 2 log r = log(constant) – 2 logM + log (1 – M)

(22.24)

As shown in Fig. 22.16, an equation of this form does have approximately the right
slope for a plot of log R against log M over a range of about 15–30% moisture content
for cotton, when the experimental plot starts to level off. Equation (22.24) then has
a rapid fall as log(1 – M) tends to minus infinity. However, at high moisture contents,
the tubes become much wider, the ions would effectively be moving through an
infinite medium, and the velocity would tend to a constant value, determined by
Stokes’ equation and giving a constant resistance.

Table 22.5 Values of (z1z2–1) Ψ/r [33]

εr Ψ = 76.8 Ψ = 42.2

z1z2 = 2 z1z2 = 4 z1z2 = 2 z1z2 = 4

1 76.8 229 42.9 126
5 15.4 46 8.4 25
10 7.7 23 4.2 13
15 5.1 15 2.8 8
20 3.8 11 1.1 3
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22.5.4 An alternative theory

Baxter’s [30] theory for wool was that conductance C was due to electrons jumping
between absorbed water molecules, so that the decrease in resistance as moisture
regain r increased was due to the reduction in distance between absorbed water
molecules. His result given below can be transformed into an expression for resistance
R:

C A
B

r
 =  exp

–
1/3





 (22.25)

log  = 
–  1/3R b

r a
(22.26)

where r = regain and A, B, a and b are constants.
Christie and coworkers [38, 39] argue that conduction is by mobile protons. Since

Baxter’s model is independent of the charge carrier, they adapt his equation. For
cellulose fibres [38], they find that it is necessary to offset the regain by an amount
r0, for which they offer possible explanations. The equations become:

C A
B

r r
 =  exp

–
(  –  )0

1/3







(22.27)

log  = 
(  –  ) –  0

1/3R b
r r a

(22.28)

This equation gives good agreement with the experimental results for cotton over the
measured range to 20% regain. For viscose rayon there is agreement up to 40%
regain, but then the conductance levels off.

In order to fit data for wool and silk [39], it was necessary to introduce extra terms
to allow for conductivity at zero regain C0 and for strongly and weakly bonded water:

22.16 Comparison of variation of log Rs and (–2 log r) with moisture content
[33].
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C = C0 + As exp[– Bs/(rs )
1/3] + Aw exp[–Bw/(rw )1/3] (22.29)

This accords with two-phase theories of moisture absorption (see Chapter 12). Although
the model could be interpreted as defining the rate at which protons move through the
material, it can also be related to the numbers available to jump in a given time,
which fits the dissociation model. Introduction of the dependence of dielectric constant
on regain might show that there was less difference between the theories than is first
apparent.

22.6 References

1. J. W. S. Hearle. J. Text. Inst., 1952, 43, P194 (review of literature).
2. J. W. S. Hearle. J. Text. Inst., 1953, 44, T117.
3. S. P. Hersh and D. J. Montgomery. Text. Res. J., 1952, 22, 805.
4. J. W. S. Hearle. J. Text. Inst., 1953, 44, T155.
5. J. W. S. Hearle. J. Text. Inst., 1953, 44, T144.
6. G. E. Cusick and J. W. S. Hearle. J. Text. Inst., 1955, 46, T699.
7. G. E. Cusick and J. W. S. Hearle. J. Text. Inst., 1955, 46, T369.
8. E. J. Murphy and A. C. Walker. J. Phys. Chem., 1928, 32, 1761.
9. E. P. Sharman, S. P. Hersh and D. J. Montgomery. Text. Res. J., 1953, 23, 793.

10. J. B. O’Sullivan. J. Text. Inst., 1947, 38, T271.
11. A. C. Walker and M. H. Quell. J. Text. Inst., 1933, 24, T123.
12. H. F. Church. J. Soc. Chem. Industr., 1947, 66, 221.
13. M. Hayek and F. C. Chromey. Amer. Dyest. Rep., 1951, 40, 164.
14. J. Boyd and D. Bulgin. J. Text. Inst., 1957, 48, P66.
15. J. F. Clark and J. M. Preston. Text. Res. J., 1955, 25, 797.
16. J. W. S. Hearle and E. H. Jones. J. Text. Inst., 1949, 40, T311.
17. F. Weidmann. Kunstoffe, 1939, 29, 133.
18. E. H. Jones. J. Sci. Instrum., 1940, 17, 55.
19. R. R. Williams and E. J. Murphy. Bell Syst. Tech. J., 1929, 8, 225.
20. E. J. Murphy. J. Phys. Chem., 1929, 33, 200.
21. S. Evershed. J. Instn Elect. Engrs, 1913, 52, 51.
22. G. E. Cusick and J. W. S. Hearle. Text. Res. J., 1955, 25, 563.
23. S. P. Hersh and D. J. Montgomery. Text. Res. J., 1955, 25, 566.
24. J. B. O’Sullivan. J. Text. Inst., 1947, 38, T285.
25. G. King and J. A. Medley. J. Colloid Sci., 1949, 4, 1.
26. J. B. O’Sullivan. J. Text. Inst., 1947, 38, T291.
27. J. B. O’Sullivan. J. Text. Inst., 1947, 38, T298.
28. S. Schottky. Ann. der. Phys., 1918, 57, 541.
29. R. F. Boyer. J. Appl. Phys., 1950, 21, 469.
30. S. Baxter. Trans. Faraday Soc., 1943, 39, 207.
31. W. O. Baker and W. A. Yager. J. Amer. Chem. Soc., 1942, 64, 2171.
32. J. B. O’Sullivan. J. Text. Inst., 1948, 39, T268.
33. J. W. S. Hearle. J. Text. Inst., 1953, 44, T177.
34. W. L. Balls. Nature, 1946, 158, 9.
35. G. King. Trans. Faraday Soc., 1947, 43, 601.
36. J. W. S. Hearle. Text. Res. J., 1954, 24, 307.
37. J. W. S. Hearle. J. Text. Inst., 1957, 48, P40.
38. J. H. Christie and I. M. Woodhead. Textile Res. J., 2002, 72, 273.
39. J. H. Christie, I. M. Woodhead, S, Krenek and J. R. Sedcole. Textile Res. J., 2002, 72, 303.

© Woodhead Publishing Limited, 2008



665

23.1 Introduction

Some of the effects of static electricity were described by Thales in about 600 BC, and
the first understanding of the nature of electricity came from the study of the phenomenon
of static electricity in the 18th century. After the discovery of current electricity,
however, the study of static electricity, with all its experimental difficulties, was
neglected, but the increasing amount of trouble in industry that is due to static,
resulting from the introduction of new materials, particularly synthetic fibres, led to
a revived interest in it [1–3]. Holme et al. [4] have published a more recent review.
Through its effects, static causes a variety of troubles in textile materials and processing.

Similar charges repel one another. This causes difficulty in handling materials.
The filaments in a charged warp will bow out away from one another. There will be
‘ballooning’ of a bundle of slivers. Cloth will not fold down neatly upon itself when
it comes off a finishing machine and so on. Unlike charges attract one another. This
has caused difficulty in the opening of parachutes. It will also cause two garments,
oppositely charged, to stick to one another, and in movement one garment may ride
up on the other and cause embarrassment to the wearer. Another consequence is the
attraction to a charged material of oppositely charged particles of dirt and dust from
the atmosphere (Fig. 23.1). After 15 days, the soiling of a cotton fabric held at
+1.2 kV was over twice as severe as at 0 kV. At –12 kV it was 13 times worse, but at
+12 kV it was 19 times worse owing to the preponderance of negatively charged dirt
particles in the atmosphere [5]. This fine dirt adheres so firmly that it is difficult to
remove and causes serious soiling. When this occurs on the portion of cloth in a loom
that is left exposed overnight, it is known as ‘fog-marking’. The effects of attraction
and repulsion were described by Robert Symmer in 1759, who used to wear two pairs
of stockings, white worsted for comfort and black silk for appearance: on separating
the stockings: ‘the repulsion of those of the same colour, and the attraction of those
of different colour, throws them into an agitation that is not unentertaining’.

Charged bodies are attracted to uncharged bodies. Consequently, fibres will stick
to earthed parts of machines; this happens particularly in carding. When a charged
yarn is passing through a guide, the extra-normal force due to this attraction may
notably increase the friction. Another consequence is that uncharged particles in the
atmosphere will be attracted to a charged material.

23
Static electricity
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Physical properties of textile fibres666

When high enough fields occur, discharge in air will take place with accompanying
sparks. This is easily noticeable on taking off charged clothing. The noise of the
discharge may be a nuisance in some special cases, for example in the fur hoods worn
in arctic conditions. There is also a risk of fire or explosion owing to the sparks. This
is a danger in the textile industry only in exceptional circumstances, but sparks from
clothing are a source of danger where inflammable vapours are present, as in the
operating theatres of hospitals. Shocks will be given to people coming into contact
with static charges. These are only serious where a large insulated conductor (for
example, a machine on an insulating floor) has become charged up. The remedy is to
earth the machine. More commonly, individuals act as condensers with a large capacity.
Walking on a carpet or sliding off a car seat can lead to accumulation of a large
charge. On touching metal, a door handle or whatever, the discharge gives a nasty
shock.

As discussed below, the limiting condition for high static charges, and hence the
susceptibility to troubles in use, has been shown to depend on the resistance of the
material. Low-resistance materials such as cotton and viscose rayon will rarely give
static troubles; higher-resistance materials such as wool, silk and acetate will give
trouble more often; and the very high-resistance synthetic fibres will give most
trouble. The speed of the process is also important: thus, to avoid fog-marking in
weaving, dissipation in 10 minutes, needing a total current of 0.003 µA, is adequate,
but, to avoid trouble in carding, dissipation must take place in 0.1 s, which needs
0.07 µA; to avoid trouble in warping, it must take place in 0.01 s, which needs 5 µA.

Methods of getting rid of static charges depend upon increasing the leakage by
lowering the resistance of either the material or the air, or by providing a conducting
liquid at the separation. The resistance of the material may be lowered by raising the
humidity or by moistening it. The resistance of the air may be lowered by ionising it,
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23.1 Effect of potential on soiling of cotton fabric. After Rees [5].
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Static electricity 667

either by using a high-voltage static eliminator or by the presence of a radioactive
material. Safe concentrations of the latter are only sufficient to cause a slow discharge.
The use of electrostatic eliminators in the textile industry has been described by
Henry [6]. The use of anti-static agents is discussed by Sagar [7], Götze et al. [8] and
Holme et al. [4]. Unfortunately, the hygroscopic salts that are the most effective anti-
static agents are usually unsuitable for other reasons.

23.2 Measurement of static

The methodology can be illustrated by methods used in the earlier studies of textile
charging. The principles remain the same, but advances in electronics have changed
the devices used in electrical measurements [9]. The amount of static present should
be expressed by the magnitude of the charge on the material. This may be measured
by the use of a Faraday cylinder. Figure 23.2 shows the apparatus used by Keggin et
al. [10] to measure the charge on card sliver after carding. The charged material in
the cylinder induces an equal opposite charge on the inside of the cylinder (since
there can be no net charge inside a closed conductor), and this leaves an equal
charge, of the same sign as that on the material, to be shared between the outside of
the cylinder and a condenser, which give a total capacitance C. The potential V is
measured by a voltmeter and the charge Q can be calculated from the usual expression
Q = CV.

When the specimen cannot be surrounded, even approximately, by a conductor,
the potential to which a neighbouring conductor, the ‘probe’ electrode, comes may be
used as a measure of the charge on the specimen. Unless the geometry is simple
enough for the induction coefficients to be calculated, this can give only an arbitrary
value. However, when the position, size, shape and charge distribution of the specimen
remain constant, it is a useful method for obtaining relative values under different
conditions. Some authors have replaced the specimen by a conductor of the same size
and shape and, by raising this to known potentials, have obtained a calibration for
what they refer to as ‘the potential of the specimen’. It is, however, meaningless to

Paraffin wax

Condenser Valve
voltmeter

Faraday
cylinder

Sliver

Calender
rollsDoffer

23.2 Measurement of charge by means of a Faraday cylinder. After Keggin
et al. [10].
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talk about the potential of an insulator, since only conductors come to an equal
potential at all points.

The potential of the probe electrode may be measured either with a d.c. electrometer
or by converting it into an alternating potential. Hayek and Chromey’s method [11]
(Fig. 23.3(a)), illustrates the latter technique. When the specimen, which has been
charged by contact with the paddle, passes the probe electrode, an impulse is transmitted
to the measuring circuit. The reading of the detector gives an arbitrary measure of the
charge on the specimen. Since the input acts as a resistance/capacity differentiating
circuit (Fig. 23.3(b)), it is important that the speed of the drum should be constant.

Another method of obtaining the charge on a specimen, which has been used by
Medley [12] and by Gonsalves and van Dongeren [13], is to measure the charge
remaining on the conductor from which the specimen is separated. This is illustrated
in Fig. 23.4. The potential difference between the rod and earth is indicated on the
electrometer, V. From a knowledge of the total capacity to earth, the charge left on the
rod and the condenser can be calculated. It will be equal and opposite to the charge on
the material, provided that no leakage has occurred to other points. If the capacity to
earth is large, the rod will remain close to earth-potential but measurable during a test.

The use of electrostatic field meters and voltmeters to measure surface charge
distributions is discussed by Seaver [14] and Durkin [15]. Ellison [16] describes a
robotic method.

Rubbing
board Material

Detector

Measuring
circuit

(a) (b)

23.3 (a) Intermittent detection by probe electrode. After Hayek and Chromey
[11]. (b) Effective input circuit.

c v

23.4 Measurement of charge remaining on conductor.
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23.3 Results

23.3.1 Formation of charge

It was once thought that the conditions necessary for charges to appear were a
difference between the nature of the surfaces and rubbing between them. It is now
clear that either of these conditions by itself is sufficient. The mere separation of two
unlike surfaces has been shown to result in a separation of charge, and Henry [17]
and others have shown that the asymmetric rubbing of two identical surfaces results
in a transfer of charge.

A familiar idea is that of an electrostatic series, in which materials can be arranged
in an order such that, on the separation of any two materials, the higher on the list will
be positively charged and the lower negatively charged. However, many workers
have produced series that are inconsistent with one another, or have found it impossible
to produce self-consistent lists. Henry [17] has shown that, provided that care is
taken to minimise non-equilibrium effects due to friction, a series of ten materials
could be placed in order with no significant inconsistencies. If the equilibrium charge
separations at contact could be measured, not only should they be self-consistent in
sign, but the magnitude of the charges should also be additively related to one
another. Leakage usually prevents the testing of such a relation, but Harper [18] has
shown that it holds for a number of metals. Hersh and Montgomery [19] also found
a correlation of the magnitude of the charge generated when metals were rubbed on
insulators with the work function1 of the material and the position of the insulator in
the series. Arridge [20] confirmed the correlation with the work function of the metal
in experiments on nylon.

Table 23.1 gives the series found in three investigations. Polyamides and wool,
which both contain —CO·NH— groups, are at the positive end; cellulose, acrylics
and similar materials are in the middle; and the more inert polymers are at the
negative end. Cohen [23] suggested that, on the separation of two materials, the one
with the high permittivity would become positive; this rule is not of universal validity
but may apply to a limited class of materials.

Reversals of the signs of charges owing to very slight (and sometimes undetected)
changes of conditions have often been reported. These reversals must be associated
with a change in the mechanism of charge transfer. Gonsalves and van Dongeren [13]
frequently found a change from positive to negative, as shown later in Fig. 23.9(B)),
on an insulator rubbed against a metal as the pressure increased, but they did not find
the reverse change.

Martin [24] found that, when a wool fibre was pulled out by the root end from a
bundle of wool fibres, all lying in the same direction, it became positively charged,
whereas when it was pulled out by the tip end, it became negatively charged.

Owing to slight differences in the surface or the asymmetry in the rubbing, charges
may easily be generated by inter fibre contact between apparently identical fibres.

1The work function of a metal is the energy needed by an electron in order to free itself from the
metal.
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23.3.2 Magnitude of charge

Figure 23.5 shows the charges remaining on the sliver emerging from a card as
measured by Keggin et al. [10]. It will be seen that at low regains all the materials
acquire approximately the same charge. This charge remains constant as the regain

Table 23.1 Electrostatic series

Smith et al. [21] Tsuji and Hersh and
Okada [22] Montgomery [19]

Positive (+) Wool Glass Wooll
Hercosett wool Nylon 6.6 Nylon
Nylon 6.6 Nylon 6 Viscose
Nylon 6 Wool Cotton
Silk Silk Silk
Regenerated cellulose Viscose Acetate
Cotton Vinylon (PVAlc) Lucite (PMMA)
Poly(vinyl alcohol) (PVA) Acrilan (acrylic) PVAlc
Chlorinated wool Steel Dacron (polyester)
Cellulose triacetate Cotton Orlon (acrylic)
Calcium alginate Orlon (acrylic) PVC
Acrylic Acetate Dynel (VC/AN)
Cellulose acetate Dynel (VC/AN) Velon (VDC/VC)
Polytetrafluoroethylene (PTFE) Saran (PVDC) Polyethylene
Polyethylene Rhovyl (PVC) Teflon (PTFE)
Polypropylene Rubber
Poly(ethyleneterephthalate)
Poly(1,4-butylene terephthalate)
Modacrylic

Negative (–) Chlorofibre
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23.5 Charge left on sliver after carding, marking 65% at r.h. level. After Keggin
et al. [10].
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increases until a certain value is reached, and it then drops rapidly for further increases
of regain. The points corresponding to 65% r.h. have been marked on the graph, and
they illustrate the susceptibility of different fibres to static under the same atmospheric
conditions. The amount of static necessary to cause processing difficulties varies
from one material to another and is affected by the amount of crimp in the fibre.

Results similar to these have been obtained by Gonsalves and van Dongeren [13]
and Medley [12, 25, 26]. The most convenient way of expressing the results is as
surface-charge density in microcoulombs per square metre (µC/m2). Figure 23.6
shows the charge on nylon film and Fig. 23.7 the charge on single fibres, drawn over
platinum rods. It appears that, when the conductance is above a certain value, the
charge observed falls rapidly as the conductance increases. A similar result (Fig.
23.8) is obtained when a wool roving that has been coated with a surface-conducting
agent emerges from between rollers. The conductance necessary for the rapid drop in
charge to start is affected by the speed with which the material is passing through the
rollers; the higher the speed, the greater is the conductance necessary. This is shown
by the results in Table 23.2. In practice, it is found that the cellulosic fibres are least
troubled by static charges; wool and silk are intermediate; and acetate, nylon, polyester,
acrylic and other synthetic fibres are most affected. This accords with their electrical
resistances as given in Chapter 22.

Medley [26] found that the charge increased with the pressure applied to the
rollers, probably owing to an increase in the true area of contact. Gonsalves and van
Dongeren [13] found similar results (Fig. 23.9) when the contact pressure for rayon
and nylon threads wrapped round a cylinder was increased by increasing either the
pre-tension or the angle of wrap. The unfinished rayon thread is an example of the
sign change with pressure mentioned earlier (Section 23.3.1). In his experiments
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23.6 Charge developed on nylon film pulled over platinum cylinder [12].
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with material emerging from rollers, Medley [26] also measured the charge lost to
neighbouring conductors. When charged roving was passed through a small metal
loop, its charge was reduced to less than 0.67 µC/m2: a metal wire held 5 mm below
the roving and a metal sheet held 5 cm below it were less effective in discharging the
roving.

Lowering the atmospheric pressure reduces the charges that are obtained, as is
shown in Fig. 23.10, except at low pressures. In a high vacuum large charges are

23.7 Charge developed on single fibres pulled over 0.1 cm diameter platinum
cylinder [12].
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23.8 Electrification of wool roving coated with surface-conducting agent, on
pulling through rollers at 10 cm/s [26].
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obtained. Medley [25] found that, when the air was saturated with carbon tetrachloride,
the charge on nylon film increased by 50%. On the other hand, ionising the air
reduces the charges that can be obtained.

The maximum charge densities obtained by Medley were about 30 µC/m2 on
films, cloth, and roving and about 160 µC/m2 on single fibres. Other workers have
also found limiting values of about this amount. However, by an ingenious technique,

Table 23.2 Critical conditions for electrostatic charges (after Medley [25])

(a) Without surface-conducting agents

Material Rollers Speed Charge halved at:
    

kt
ε 0υ

 or 
    

ka
2 0ε υ(cm/s) r.h. (%) conductance (see Section 23.5.2)

(Ω–1
 m–1

 s)

Woollen taffeta Steel 5.0 40 1.2 × 10–12*‡ 2.8
2.0 75 0.4 × 10–12* 2.1
11.0 75 1.6 × 10–12* 1.6

Filter paper Steel 11.0 40 1.7 × 10–12* 1.8
15.0 40 3.4 × 10–12†‡ 2.0

Wool roving Cork 11.0 70 3.6 × 10–12† 2.9
a = 0.2 cm 1.25 70 0.6 × 10–12† 4.0

* Ω–1 for 1 cm length and breadth equals kt.
† Ω–1 for 1 cm length, equals 2πa (ka).
‡ KC1-treated.

(b) For wool roving with surface-conducting agent. Cork rollers

Aerosol OT in combing Bulk conductivity of agent Speed at which charge reduced
oil (%) (Ω–1

 cm–1) to 12 µC/m2 (cm/s)

0 2 × 10–12 Unobtainable
1 1 × 10–10 3
3 2.5 × 10–10 10

23.9 Effect of wrap on charge on yarn rubbed over steel rod [13]: A, finished
rayon; B unfinished rayon; C nylon (approximately 20% r.h.).
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designed to reduce leakage, Medley [27] was able to obtain much higher values. He
separated mercury from a thin layer of polymer, which had another layer of mercury
on its opposite side. The whole experiment was carried out in a vacuum. After
separation, the charge distribution and electric field will be as shown in Fig. 23.11.
The almost equal charge induced on the adjacent layer of mercury after separation
can be measured by the usual arrangement of an electrometer and condenser. As soon
as the separation has become large compared with the thickness of the polymer, the
field in the vacuum will be very small, so that leakage will be negligible. Leakage is
possible when the separation is still small, but, under these conditions, the dielectric
strength is greater and the insulation is very good. The larger the capacity of the
polymer film, the smaller is the chance of leakage. Figure 23.12 shows the results of
the experiments. Values of up to 1500 µC/m2 were obtained, and it appears that
higher values still are possible. If an external electric field is applied, there will be a
charge transfer due to the field superimposed on the charge transfer due to the
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23.10 Effect of atmospheric pressure on charge left on films pulled over
platinum wire [12].
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23.11 Charge distribution after separation of mercury from lower surface of
polymer.
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difference in the two surfaces. According to the direction of the field, this may
increase or reduce the charge transfer, and, if large enough, it can even reverse it (Fig.
23.13).

23.3.3 Anti-static treatments

The presence of oil on the surface will influence the charge obtained, as is shown in
Table 23.3. Insulating oils may increase the charge, but conducting oils will decrease
it. Table 23.4 gives some practical results for various types of anti-static agent.
Values for the best and worst material of each type are included. For continued
efficacy, finishes must not be lost by washing or wear.

Permanent anti-static behaviour is achieved by the use of conducting fibres. Fibres
with moderate conductivity can be used instead of regular fibres in a product, but it
is more common to use more highly conducting fibres in small quantities in a blend
with other fibres. The inclusion of carbon black to give a conducting path, provided
the particles are close enough together, was referred to in Section 22.4.3. However,
this has the disadvantage of making the material black. Conductivity can be increased
by incorporating hydrophilic groups by copolymerisation or by co-extrusion with a
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23.12 Charge left after separating polymer film from zinc amalgam [27].
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23.13 Effect of applied field on electrification of a nylon film [27].
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conducting polymer. For example DuPont incorporated streams of colourless polymer
in their anti-static nylon carpet fibres. Metal fibres, e.g Bekinox stainless steel fibres,
which are made with diameters from 2 to 22 µm, have high conductivity.

A more extensive discussion of the chemistry, effectiveness and durability of the
many ways of reducing static is given by Holme et al. [4].

23.4 Generation of charge

Henry [28–30] has summarised the chief hypotheses that have been put forward to
explain the separation of charge on materials in contact. None of them has been
convincingly proved to be the sole mechanism, and he suggests that probably all the
mechanisms operate to varying degrees in different cases. Whenever two surfaces are
brought into contact, it is likely that some charge transfer across the surface will
occur, but the conditions that affect it need to be worked out. Some of the charge
transfer will result from the equilibrium distribution of charged particles between the
surfaces and some from kinetic effects due to such transient influences as temperature
differences. It may be noted that the highest observed charges (1500 µC/m2) would
be explained by the transfer of relatively few charges: one electronic charge for every

Table 23.3 Effect of insulating and conducting oil [12]

Insulating oil – liquid paraffin Conducting oil
Cowtail fibre – 140 µm diameter (180 µm fibre)
Platinum cylinder – 0.123 cm diameter

Load on Rubbing Charge (µC/m2) on: Conductivity Rubbing Charge
fibre (MPa) clean oiled of oil speed (arbitrary

fibre fibre (Ω–1
 
cm–1) (cm/s) units)

0 Single 0 0 7.5 × 10–13 5 28
1 Single 13 17 3 × 10–11 5 8.4
5 Single 25 47 6 × 10–11 5 1.8
0 Continued 0 0 7.5 × 10–13 10 30
1 Continued 32 72 3 × 10–11 10 15
5 Continued 47 94 6 × 10–11 10 6.8

Table 23.4 Effect of various classes of anti-static agent [8]

Material treated with Static charge (arbitrary units)
50% r.h.; winding at 180 m/min

Viscose rayon Acetate Nylon

(Untreated) 47 60 128
Hygroscopic salts 17–38 0–29 3–19
Polyalcohols 45–46 22–33 92–98
Soaps 35–48 21–32 64–88
Sulphonated fatty compounds 34–52 16–32 32–85
Non-ionogenic products 31–42 18–43 22–78
Cation-active products 32–54 15–38 31–62
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100 nm2 (10 nm × 10 nm) would be sufficient. This area would cover many hundreds
of atoms.

It is therefore a general rule that, unless the electrical states of two materials are
extremely well balanced, there will be a large transfer of charge when their surfaces
are brought in contact. The theories discussed below as a justification for this
generalisation suggest that charge densities of 105 µC/m2 would be commonplace.
These values are far in excess of what is observed in practice, where the charge levels
are reduced by leakage after separation of the surfaces. It is very difficult to get two
surfaces in perfect electrical balance, and, even if it were achieved, the balance
would be very easily disturbed by the slightest change of conditions. Charge generation
is therefore very difficult to avoid.

There is one possible exception to this rule. Charge separation does require the
movement of some free charges (electrons or ions). If, in an extremely good insulator,
there are no mobile ions or electrons at all, then the charge separation will not occur,
although charges may be deposited on the material. This may explain why polypropylene
fibres appear to cause fewer static problems than some other synthetic fibres, despite
their very high resistance.

The various possible mechanisms of charge transfer, which were discussed in
more detail in previous editions of this book, are as follows:

1. Difference in contact potential between two metals in contact, due to difference
in energy levels of electrons.

2. Difference in energy levels involving insulators, complicated by the presence of
forbidden bands and extra levels on the surface [31, 32].

3. Activation by pressure making lower energy levels accessible and leading to
charge reversal from positive to negative [32], as in Fig. 23.9. The reverse is not
observed.

4. Presence of mobile cations on an acidic surface or mobile anions on a basic
surface. Medley [33] observed this effect due to salt linkages, R—COO–+H3N, in
keratin. On treatment with HCl, this changes to R—COOH Cl––+H3N, giving a
mobile Cl– ion. Treatment with NaOH gives R—COO–+Na H2N + H2O, with a
mobile Na+ ion. On separating keratin from filter paper, the charge reversed
depending on the treatment.

5. Asymmetric rubbing leads to thermal gradient, due to action being distributed
along a length of one surface and at one place on the other. Charged mobile
particles will move from hot to cold.

6. Symmetrical rubbing may give local asymmetry due to high spots on the surfaces.
This is illustrated by a distribution of opposite charges over the surface of a
polyethylene sheet when it is rubbed against another sheet [17]. In another example,
different charges are found when a fibre is drawn from a lock of wool with or
against the scales [24].

7. A double layer on a surface may be rubbed off on to another surface.
8. Piezo-electric polarisation due to pressure may lead to charge separation. In

wool, pressure leads to the root end becoming negative and the tip end positive,
which Martin [24] suggests may be the cause of the charging of wool withdrawn
from a lock.
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9. A pyro-electric effect at hot spots. Martin [24] found that wool became negatively
charged at the root end on immersion in liquid air.

Henry [28–30] combines the first three mechanisms in an instructive example,
which is simplified in that it considers the transfer of only one type of particle and
uses classical mechanics, which will not be valid if electrons are involved. For
electrons, quantum mechanics should be used. A charged particle between two surfaces
is repelled by short-range forces when it is very near one of the surfaces, but it is
attracted to the surface by the induced ‘image’ electrostatic forces when it is at a
greater distance away. The combination of these forces results in the potential energy
diagram shown in Fig. 23.14(a).

We consider unit area with n1 ions on the first surface, which is at a temperature
T1, and n2 ions on the second surface at a temperature T2. The number of ions
crossing the barrier (Vm – V1) per unit area per unit time will be proportional to n T1 1

λ

exp[– (Vm – V1)/k T1]. The index λ varies according to the particular theory in
statistical mechanics employed and need not be specified here. Quantum mechanics
would give a less simple energy term, owing to the possibility of the passage of
particles through the barrier by means of the tunnel effect. There will be a similar loss
of ions from the second surface over the barrier (Vm – V2). The difference in transfer
rates will cause a separation of charge and will give rise to an electrostatic field,
which will change the potential energy diagram. This will continue until the electrostatic
field is such as to equalise the rates of transfer from each side. If E1 and E2 are then
the electrostatic potentials at the surfaces, and Em that at the position of maximum
total energy, and if Vm is also now taken at this position (Fig. 23.14(b)) the rate
changes to n T1 1

λ  exp{[– (Vm – V1) + e (Em – E1)]/k T1}, where e is the charge on the
ion. There is an analogous expression for the reverse direction. Equilibrium will
occur when the two rates are equal. An external electric field F, which also changes
the height of the barrier, can be added to the model.

The analysis continues so as to predict the charge densities ±Q on surfaces separated
by a distance D. We write (V1 – V2) = (W2 – W1) = ∆W, where W1 and W2 are the
amounts of work needed to remove the type of ion concerned from the surfaces into
a vacuum and V + eE = U. The value of Q is given by:

23.14 Potential energy of charged particles between two surfaces: (a) in
absence of electrostatic field; (b) at equilibrium, with electrostatic field.

(a) (b)

n1

T1
V1

Vm

n2

T2

n1

T1

V2

Vm + eEm

V1 + eE1

V2 + eE2

D D

n2

T2

© Woodhead Publishing Limited, 2008



Static electricity 679

4  = –  +  log  + /  + –
+ 
2

 –  e
2

1
m

1 2π λeDQ W kT
n
n

T T kT U
U U

e D F∆ ∆











(23.1)

In this expression, –∆W represents the difference in energy levels, that is, the contact
potential of mechanisms 1 and 2. The second term represents the effect of the different
concentrations, n1 and n2, on the two surfaces, that is, mechanism 3. The third term
gives the effect of the difference in temperature, ∆T, between the two surfaces, that
is, mechanisms 4 and 5. Of this term, the first part within the brackets is an effect
similar to thermal diffusion, while the other terms derive from the potential energy
‘hump’ that has to be overcome. The final term in the expression represents the effect
of an external field, which gives rise to an additional charge density sufficient to
produce an equal and opposite field. This example illustrates how the various effects
combine together. The other mechanisms listed may also come in as additional effects.

Charges as great as those which would be predicted on these theories, amounting
to more than 105 µC/m2, are rarely observed in practice. Leakage, through either the
air or the material, usually occurs and limits the observable charge. This fact makes
experimental investigation of charge generation difficult. Leakage also explains the
absence of a difference in magnitude of the charge obtained from the distance apart
in the electrostatic series and the apparent abruptness with which reversals of charge
occur. Whereas the original charge separation may vary continuously from a high
positive to a high negative value as conditions change, the observed charge will drop
in a step from a constant positive value to a constant negative value, as is illustrated
in Fig. 23.15.

23.5 Leakage of charge

23.5.1 Leakage in air

As discussed above, the inherent magnitude of charge separation is much greater
than observed charges, unless the two surfaces are almost perfectly balanced. The

Leakage

Observed
charge Condition

Original
charge
separation

C
h

ar
g

e

23.15 Original and observed charge separation.
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observed charges depend primarily on the extent to which the charge can leak away
and this can happen in a variety of ways.

When the material is completely non-conducting, leakage through the air is the
only factor that limits the static charge and it is an important factor in materials with
low conductivity. The breakdown potential of air at atmospheric pressure is 30 kV/
cm, and this means that the maximum charge which can exist on a plane surface is
about 30 µC/m2. For a sheet with two surfaces, 60 µC/m2 should be possible, but, in
fact, uneven charging and irregularity of the surface usually prevent more than half
this amount from being observed. If the material is passing over a rod, the leakage
will occur through the air back to the rod, as shown in Fig. 23.16. The presence of
other neighbouring conductors may cause a concentration of lines of force, as shown
in Fig. 23.17, resulting in a discharge to the conductor and leaving a smaller charge
density on the material. This has been found by Medley [26], who has discussed the
conditions necessary to cause the greatest discharge. The field strength will also be
influenced by the shape of the specimen and by the presence of neighbouring charges.
For example, single fibres can support high surface charges (about 150 µC/m2) owing
to the rapid decrease of field strength as the lines of force diverge from the fibre.
Where fibres are grouped together, as in a roving, however, such high fibre-surface
charges are not possible, since the combined field at the outside of the roving would
then exceed the dielectric strength of the air.

It is the limitation of charge by conduction in air that results in the constant portion
of the curves of charge versus relative humidity or conductance of the material. There
may even be a slight increase (as in Fig. 23.6) since, under some conditions, the
dielectric strength of air is greater at a higher humidity. Near atmospheric pressure,

23.16 Electrostatic field causing leakage through air back to rod.

23.17 Concentration of lines of force due to neighbouring conductor.
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the dielectric strength of air decreases as the pressure drops, which results in a
decrease in the observed charge (Fig. 23.10), but in a good vacuum the dielectric
strength is high and the observed charges are high. The particular advantage of
Medley’s technique [27] of backing a thin film of polymer with mercury (see Section
23.3.2) is that the field due to the charge decreases rapidly as the separation of the
surfaces increases. In a sufficiently narrow gap, the ions present cannot accelerate
enough for ion multiplication by collision to occur; consequently, the breakdown
strength increases. At atmospheric pressure, this increase in dielectric strength occurs
when the gap is reduced to a few microns, but at low pressures it occurs at greater
thicknesses. Thus in the initial stages of the separation, while the field is high, the
dielectric strength is also high.

Anything that increases the dielectric strength of the atmosphere, such as saturation
with carbon tetrachloride, results in an increase of the limiting charge that can be
obtained. Conversely, lowering the resistance of the air by ionising it reduces the
limiting charge. Static eliminators, which apply a high voltage to metal points, work
on this principle. Alternatively, radioactive material will ionise the air.

To make a complete quantitative analysis of the charge left on the separated
material after leakage has occurred, one would need to work out the distribution of
electric field in the system and the currents that would flow as a result of the electric
field. Working out the field is a complex problem owing to the disturbing influence
of dielectrics and conductors in the system. The mathematical difficulty is further
increased when current flows, since this alters the charge distribution and consequently
alters the electric field producing the current.

The electric fields are determined not only by the charge on the insulator but by
image charges in the neighbouring conductor. Medley [12], neglecting the effect of
the dielectric constant of the material and using an approximate image system, worked
out the field due to an approximately uniform charge distribution on a thin sheet of
material separated from a conducting cylinder and parallel to a conducting plane. It
can then be seen where the dielectric strength of the air is exceeded. By analysis or
successive approximation, a modified charge distribution, taking account of the leakage
in air, can be worked out.

In practice, an approximate value can be obtained by assuming that just beyond
the point of separation, or just beyond a conductor whose influence is being considered,
the charge density is reduced to a uniform value, σa, giving a field equal to the
dielectric strength of air, Ecrit. For a plane surface, by the application of Gauss’s
theorem, this gives:

σ ε θ
αa

crit = 
2 cosE

(23.2)

where ε = permittivity of air ≈ permittivity of vacuum, α = ratio of the normal flux
density to the average normal flux density on both sides of the surface, and θ = angle
between lines of force and the normal to the surface.

High values of θ will be dominant, giving cos = 1 at 90°. The ratio α will be
limited to values between 0 and 2, and, unless there are marked disturbing effects due
to dielectrics or conductors near the charged surface, it will be approximately equal
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to 1. Thus (cosθ/α) ~ 1. With ε0 = 8.85 pF and Ecrit ~ 4 MV/m, this indicates a
maximum charge density of the order of 10 µC/m2 in accord with the usual observations.
It will be lower when the electric field is concentrated and higher when special
precautions are taken to limit the discharge.

23.5.2 Leakage in the material

As soon as the resistance of the material becomes low enough for appreciable current
to flow through it, the observed charge starts to decrease. Since a small increase in
humidity causes a large increase in conductance, the curve of charge against relative
humidity then drops rapidly, as is shown in Figs 23.6–23.8.

Once again, exact analysis is difficult, but the influence of the material may be
illustrated diagrammatically. In a perfect insulator (Fig. 23.18(a)), no current flows
through the material and a charge, limited by air leakage, remains on the surface. In
a moderate insulator (Fig. 23.18(b) ), the charge left after leakage through the air can
spread out from the surfaces where it first appears. This gives an electric field acting
back along the material, since at a distance the effect of the double layer is negligible.

23.18 Leakage of charge in (a) perfect insulator, (b) moderate insulator and (c)
conductor.
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Some charge will flow back behind the point of separation and become a source of
charge for the double layer at the surfaces in contact. In a good conductor (Fig.
23.18(c)), there will be a large backward current and the charge will never get far
beyond the point of separation but will, in effect, be circulating near the surfaces in
contact, and never penetrating deeply into the material.

The currents will flow in the reverse direction to the movement of the material that
is carrying charge forward. Consequently, the greater the speed of the material, the
smaller will be the reduction of charge for a given conductance. This means that the
higher the speed of a process, the more likely is the occurrence of static charges.

If we consider unit width of material (Fig. 23.19), of thickness t and conductivity
k, moving with a velocity v, and having a charge per unit area σ (not necessarily all
on the surface), then the rate of transport of charge past a given point owing to the
movement of the material is σv. If there is an electric field E, with a component (E
sinφ) in the opposite direction to the motion, the current flowing will be (E sinφ·kt).
The net rate of transfer of charge is therefore (σv – E sin φ·kt).

In the steady state, this must be equal at all points along the material, and a relation
between σ and E sin φ is thus established. If σ′ is the limiting charge per unit area left
on the material at a long distance from the point of separation, we must have:

σ′v = σv – E sin φ·kt (23.3)

′σ σ φ =  –   sin E kt
v

(23.4)

Using this relation, and deriving values of E from the approximate image system,
Medley [12] worked out, by successive approximations, the charge distribution in the
steady state for material coming off a cylinder of unit diameter. This shows that,
owing to the influence of the induced charge on the cylinder, a maximum in the
charge on the material occurs some distance beyond the point of separation and thus
most of the current will finally reach the cylinder by discharge across the gap, rather
than by conduction behind the point of separation. This effect is less marked when
the ratio of thickness of material to diameter of cylinder is greater.

We may obtain an approximate expression for σ′ in the following way. For surface
charge on a dielectric material remote from conductors, the field in the dielectric is
(σ/2 εr ε0). We may therefore put E sin φ = Φσ/2ε0, where it follows from the
geometry of Fig. 23.20 that Φ = (2 – α) tan φ/εr and is a dimensionless function

23.19 Field in specimen.

t

E φ
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depending on the relative permittivity and the field distribution in the particular
system.

Substituting in equation (23.3), we get:

′ 



σ σ ε =  1 –  

2 0

Φ k t
v

(23.5)

Near the point of separation, σ will drop to the value σa, limited by air discharge
given by equation (23.2), and we have2:

′ 









σ σ ε

ε θ
α ε = 1 –  

2
 = 

2 cos
1 – 

2a
0

0 crit

0

Φ Φk t
v

E k t
v

(23.6)

It follows from this equation that the charge remaining on the material is a fraction
of the maximum value determined for different systems by the value of (kt/v). It can
be noted that kt is the conductance (reciprocal of resistance) per unit width per unit
length. The charge will drop to half the maximum value when (kt/ε0v) equals 1/Φ.
Considering that values of (kt/v) cover a range of at least a million to one, the results
given in Tables 23.2 and 23.5 support this view and indicate that 1/Φ lies between 1
and 7.

2The various expressions quoted here will only be correct in a consistent set of units. In SI units,
this means that the conductivity k should be in Ω–1

 m–1, the thickness t in m, and the velocity v in
m/s. The permittivity ε0 is in the usual units (F/m or kg–1

 m–3
 s4

 A2) and has the value 8.85 × 10–12

F/m. The product (kt/v) will have the units Ω–1
 m–1

 s, which also, as should be the case, are equal
to kg–1

 m–3
 s4

 A2. We may note that kt/2v will have the same units if k is expressed in Ω–1
 cm–1 and

t in cm, with v in m/s.

θ

φ

E2

ε2

ε1

E1

23.20 Effect of surface charge. If σ is the surface density of charge and E1 and
E2 are electric fields making angles θ and φ with the surfaces of two media of
permittivity ε1 and ε2, then by Gauss’s theorem: ε1 E1 cos φ + ε2 E2 cos φ = σ.
Hence:

    

φ
ε θ

ε θ ε φ

ε θ
φ

 = 
cos 

1
2

( cos  + cos )
 = 

2 cos1 1

1 1 2 2

1 1E

E E

E

= 2 εr ε0 E1 cos θ/σ,

where εr is the relative permittivity of medium 1 and ε0 is the permittivity of a
vacuum.
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Equation (23.6) will cease to hold when kt/v becomes large, and the expression
approaches zero and then becomes negative. The derivation is only valid when the
current flow is relatively small.

As εr increases, the line of force would tend to concentrate in the dielectric material,
which would increase φ. So, as a rough approximation, tan φ = εr tan θ, which
indicates that Φ ≈ (2 – α) tan θ. For θ = 20° and α = 1, this would make
1/Φ equal to 2.8, in agreement with the experimental results.

For a cylindrical specimen of radius a, equation (23.5) changes to:

′ 



σ σ ε = 1 –  

4 0

Φ ka
v

(23.7)

23.5.3 An alternative leakage equation

The expression E sin φ = Φσ/2ε0 above (21.11) is an approximation because the
charge causing the electric field E will be not the unreduced value σ but some
average of values between σ, near to the point of separation, and σ′, at a remote
position. This is the source of error in the derivation, which makes the equation
invalid for large values of kt/v. If we adopt the other extreme possibility, we put E sin
φ = 2πσ′Φ. This leads to:

Table 23.5 Critical conditions for reduction of charge [12]

  
kt
υ

 or 
    

ka
2υ

Values of fraction of maximum charge for systems below

(Ω–1
 m–1

 s) A B C D E F G

1.3 0.71 0.56 0.67
1.6 0.91 0.80 0.96 0.91
6.3 0.45 0.52 0.67 0.65

12.6 0.30 0.30 0.24 0.25 0.19

System 25 µm Nylon strip on platinum cylinder

Width Load Cylinder diameter Speed
(cm) (mN) (cm) (cm/s)

A 1 150 0.12 0.5
B 1 150 0.12 10
C 2 50 1.25 0.5
D 2 50 1.25 10

Single fibres, 0.1 cm platinum cylinder

Material Diameter Speed
(µm) (cm/s)

E Nylon 20 0.5
F Nylon 20 10
G Wool 45 10
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′ 



σ σ ε = 1 + 

2 0

–1Φ k t
v

(23.8)

A comparison of the predictions of the two equations (23.5) and (23.8) is shown in
Fig. 23.21. The actual behaviour should lie between the predictions of the two equations,
as indicated by the dotted lines.

23.5.4 The action of a surface coating

It has already been mentioned that, when the material is a good conductor, the
leakage does not penetrate deeply into the material. Consequently, a thin permanent
conducting layer on the surface of a fibre would reduce static charges, but Medley
[12] has pointed out that the action of a surface dressing may be slightly different
from this.

A liquid dressing may not separate the two materials but may instead form a
wedge-shaped film at the point at which they diverge from one another, as shown in
Fig. 23.22. This liquid will act as a leaky dielectric, and dissipation of charge will occur
owing to current flow across it. The time constant of a condenser is independent of
its size and shape, and the decay of charge is given by the relation σ = σ0exp(–tk/ε)
where σ0 is the initial charge density, σ is the charge density at time t, ε is the
permittivity of the liquid, and k is its conductivity. If v is the speed of the material and
δ the length of the wedge, the time for a given portion of material to pass the liquid
is δ/v, and therefore:

0 1 2 3

  

Φ
ε
kt
v2 o

σ
/σ

′

1

0

–1

–2

23.21 Comparison of prediction of equations (23.5) and (23.8), with indication
(dotted) of likely real relation.
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σ = σ0e
–kδ/εv (23.9)

log  = –e
0

σ
σ

δ
ε
k
v

(23.10)

Figure 23.23 shows an experimental check of this relation for varying rubbing speeds
and three different mixtures of liquid paraffin and Lubrol MO.

It will be seen from equation (23.9) that the condition for marked reduction of
electrification is εv < kδ. It may be noted that the quantity kδ/εv, equal to kδ/εrε0v, is
a dimensionless parameter.

It follows from this view of the action of an anti-static agent that it need not be
present on the fibres but can be present on the guide or roller in order to give the
wedge-shaped film. Medley [12] found that a porous cast-iron roller, impregnated
with Empilan A (conductivity of 10–7

 Ω–1
 cm–1), produced negligible static in worsted

drawing, in contrast to the behaviour of an ordinary roller. This procedure does not,
of course, meet the need for a permanent anti-static dressing to prevent the troubles
due to static in use.

If the liquid is not a conductor, leakage will not occur, and the observed charges
may even increase (as in Table 23.3), owing to the greater dielectric strength of the

y

ε,K

23.22 Wedge-shaped film at point of separation.
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23.23 Reduction of charge on wool fibre due to conducting oils [12]. The line
represents equation (23.10). Charge is in arbitrary units.
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liquid than that of air. This will reduce discharge in the region near the point of
separation where the field is greatest.

Graham [34] has taken a rather different view of the action of anti-static agents.
Figures 23.24 and 23.25 show the effect of five liquids on the charge given when
nylon is rubbed over brass. He suggests that if it is thick enough, the liquid film
prevents the contact potential between the two surfaces from becoming effective and
that, if separation then occurs within the film, no charge will result. He associates the
more effective action of the liquids with the higher dielectric constants to their
greater degree of shielding. For this mechanism to be effective, the liquid film must
be reasonably isotropic. With the surface-active agents, Fig. 23.25, the molecules are
regularly oriented, and reversals in their effect occur as increasing amounts are
applied. The reversals correspond to successive monomolecular layers and will be
associated with the surfaces changing from polar to inert groups and vice versa. With
triethanolammonium oleate, the regularity breaks down with larger amounts, but it
persists to thick layers with potassium oleate.

23.24 Effect of relative permittivity εr of surface dressing on charge. After
Graham [34].

23.25 Effect of surface activity on charge: � potassium oleate; � Dotted line:
triethanolammonium oleate. After Graham [34].
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24.1 Introduction

When light falls on a fibre, it may be partly transmitted, absorbed or reflected. Its
behaviour in each of these three respects determines the visual appearance of the
fibre, although the appearance of fibres in the mass may be considerably modified by
the way in which particular arrangements influence the combination of effects in
each fibre. The optical properties of fibres are also a useful source of information
about their structure. In particular, the orientation of the polymer molecules can be
estimated from differences in the refractive indices and in the absorption of light
polarised in different directions relative to the fibre axis.

Rigorous analysis of the optical properties of fibres is a very complex subject and,
whereas it is of great importance in studies of fibre structure, it does not justify a
detailed discussion in a book primarily concerned with practical properties of fibres.
The present chapter will be limited to a general account of the subject, particularly in
its practical aspects.

24.2 Refraction

24.2.1 Refractive index and birefringence

The velocity with which light is transmitted varies with the medium through which
it is passing. In isotropic materials, this property may be used to give the most
fundamental definition of refractive index n namely, the ratio of the velocity of light
in a vacuum to the velocity of light in the material. The study of this subject, and its
consequence, is a well-known branch of physics. One particular result is that the
direction of travel of light is refracted or bent on passing from one medium to
another. This leads to an alternative definition: refractive index n = sine of angle of
incidence/sine of angle of refraction.

The lower velocity of the waves means that the light waves are retarded on passing
through a medium of high refractive index. If they are then combined with a beam
that has passed through a different medium, various interference phenomena occur,
and these may be utilised in the measurement of refractive index. In general, the
refractive index of a material varies with the temperature and with the wavelength of

24
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the light being transmitted. The usual standard conditions of measurement involve
the use of monochromatic sodium light, with a wavelength of 589 nm, at 20 °C.

Light is composed of electromagnetic waves, and the change in velocity is associated
with the electric polarisation that occurs under the influence of the electric field. The
frequency of the waves is very high, so that only the polarisation of the electron
distribution round the nuclei of atoms (i.e. the relative displacement of positive and
negative charge) is important. Larger-scale effects, such as the rotation of permanent
dipoles, cannot take place rapidly enough. The outer electrons, which are taking part
in covalent bonds, are those affected, since electrons in the inner complete shells are
not easily displaced: this is illustrated in Fig. 24.1. It is therefore possible to assign
a polarisability to each chemical bond, although this is influenced to some extent by
other atoms nearby. For example, there will be a small difference between the behaviour
of a C—H bond in a —CH2— group in a chain and that of a C—H bond in a terminal
—CH3 group. The polarisability will also vary with the direction of the electric field,
as illustrated in Fig. 24.1(b) and (c): it is usually greatest when the field is directed
along the line joining the atoms. However, in many simple materials, the molecules
are arranged in all directions at random, so that the refractive index is the same in all
directions and can be calculated from an appropriate summation of the polarisabilities
of each bond in the molecule.

In anisotropic materials, such as textile fibres, the molecules are lined up in certain
preferred directions, and the refractive index will therefore vary with the direction of
the electric field, being usually greatest when the field is parallel to the axis of the
molecules.

The direction of the electric field in an electromagnetic wave is known as the
vibration direction. In ordinary light, there are vibrations in all directions at right

Nucleus
Inner
electrons

Valency
electrons

(a)

Electric field
(b)

(c)

Electric
field

24.1 (a) Schematic representation of electron distribution around a pair of
atoms linked by a covalent bond. (b) Distortion of distribution by an
electronic field, acting along line between atoms, showing centres of positive
and negative charge. (c) Effect of electric field perpendicular to line of atoms.
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angles to the direction of transmission. When light is passed through an anisotropic
material with uniaxial symmetry, the light splits up into two rays moving with different
speeds corresponding to the components of the electric field parallel and perpendicular
to the line of atoms: these are called the ordinary and extraordinary rays. They will
be refracted differently and so may give rise to two separate images of an object
viewed through the material. In appropriate circumstances, they may also interfere
with one another because of the difference in retardation and cause the appearance of
interference colours [1]. It is possible, by passing light through a Nicol prism or a
sheet of polaroid, to polarise1 the light so that it is vibrating in one direction only, the
components in the perpendicular direction being completely eliminated. This enables
one to study the variation in refractive index with the direction of vibration.

In general, an anisotropic material will have three principal refractive indices, but
fibres are usually axially symmetrical so that the refractive indices perpendicular to
the fibre axis are all the same. The principal refractive indices, shown in Fig. 24.2,
are thus n|| for light polarised parallel to the fibre axis, and n⊥ for light polarised
perpendicular to it. In general, calculation of the refractive indices in other directions
is complicated [2].

The refractive index of an isotropic fibre, niso, is given by the mean of the refractive
indices of an oriented fibre in the three principal directions. That is:

niso = 1/3(n|| + 2n⊥) (24.1)

The difference (n|| – n⊥) between the principal refractive indices is known as the
birefringence of the fibre.

The above discussion refers to the intrinsic birefringence of a fibre due to the
orientation of the crystal axes in the crystalline regions and of the individual molecules
in the non-crystalline regions. However, Wiener [3] has shown that, if non-spherical
particles which are smaller than the wavelength of light are embedded with a preferred
orientation in a medium of different refractive index, then birefringence results. This
happens even if each material is itself isotropic, and it is called form birefringence.

1The word ‘polarise’ has more than one meaning. Polarisation of light is the limitation of the
electric vibrations to one direction (the magnetic field is at right angles to this). Polarisation of
atoms (or of a dielectric) implies the orientation or induction of dipoles (permanent or induced).

24.2 Principal refractive indices of a fibre.

n||

n⊥

�

n⊥
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This type of birefringence may occur in fibres in which crystalline regions may be
regarded as embedded in non-crystalline regions of different refractive index.

24.2.2 Measurement of refractive indices

If a fibre is immersed in a liquid of the same refractive index as itself, then its
boundary ceases to be visible. By trial and error with a series of liquid mixtures of
varying composition, the observation of this effect may be used as a means of measuring
the refractive index of the fibre. It is, of course, necessary to use polarised light so
that only one refractive index is concerned.

There are certain optical manifestations that may be used as aids in experiments of
this sort. If the refractive indices of the fibre and the liquid are different, a bright line
(the Becke line) can be seen at the boundary between them [4]. When the objective
of the microscope is raised, this line moves towards the medium of higher refractive
index. Another technique, which is simpler but less sensitive, is described by Heyn
[5]. This makes use of the fact that a circular (or roughly lenticular) fibre acts rather
like a convex lens and will focus a beam of light (Fig. 24.3). If parallel light comes
from below, and the fibre has a higher refractive index than the immersion liquid, an
image will form above the fibre. This may be observed as a bright band in the centre
of the fibre when the microscope is focused above it. Conversely, if the refractive
index of the fibre is less than that of the liquid, a virtual image will be formed below
the fibre. The bright band will then be observed on lowering the microscope below
the position where the fibre itself is in focus.

The above methods demand the rather tedious process of mounting the fibre in a
large number of liquids. Frey-Wyssling [6] has adopted the technique of varying the
wavelength of the light with which the fibre is observed in the liquid until the fibre
outline disappears. On repetition of the process with a number of liquids, the dispersion
curve (refractive index plotted against wavelength) can be found for the fibre. It is
necessary to use a monochromator giving a high intensity of light.

Preston and Freeman [7] have used the same principle in a self-contained instrument.
Rapid measurements can be made with this fibre refractometer. A prism and an
associated optical system cast a spectrum onto a calibrated screen at one end of the

A B

F2

F1

24.3 Formation of bright line in Heyn’s method: (a) below the fibre at F2 when
the fibre refractive index is lower and (b) above the fibre at F1 when it is
higher.
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apparatus. A glass cell, containing the appropriate liquid immersing a glass plate
carrying the fibres, is placed in the path of the light dispersed by the prism. At the
wavelength for which the refractive indices of liquid and fibres are equal, the light
passes straight through and appears brightly on the screen. For other wavelengths it
is scattered, and these parts of the spectrum do not appear focused on the calibrated
screen. The wavelength of equal refractive indices can thus be read off directly on the
scale. By variation of the temperature, equality of refractive indices can be achieved
at various wavelengths, and, if suitable corrections are applied, the dispersion curve
of the fibre may be found.

A somewhat similar modification has been introduced by de Vries [8]. If several
ends of yarn, wound parallel to one another on a frame, are immersed in a liquid, they
will act as a phase-grating and give a diffraction pattern if the refractive indices of
fibre and liquid are different. If the refractive indices are the same, diffraction will
not occur. In order to make use of this, de Vries observed the first-order diffraction
spectrum through a spectrometer. Where the diffraction was absent, a dark band
occurred on the spectrum observed in the spectrometer. Thus the wavelength at
which the refractive indices were coincident could be found.

It should be noted that the various methods so far described may give different
results because they measure the refractive indices of different parts of the fibre. It
has been suggested that the Becke line gives the refractive index of the surface layers
of the fibre, whereas Heyn’s method of central illumination, Frey-Wyssling’s method
and Preston’s refractometer give the refractive index of the bulk of the fibre. However,
the problem is more complex than this, and detailed analysis is necessary before
changes in refractive index across a fibre can be estimated. A full account of the
subject has been given by Faust [9].

Variations in refractive index across a fibre are better investigated by interference
techniques. In the interference microscope, differences in refractive index are
transformed into colour changes if white light is used, or into dark and light fringes
with monochromatic light. Heyn [10] has described how to use the method in the
examination of fibre cross-sections.

Both double-beam and multiple-beam interference techniques have been used by
Faust [11–14]. In the first method, Fig. 24.4(a), the light is split into two beams, one
of which passes through the specimen, while the other bypasses it. The two are then
combined and give an interference pattern. In the second method, Fig. 24.4(b), the
specimen is placed between two partly silvered mirrors. A series of beams, which
have passed through the specimen for a differing number of times, depending on the
number of reflections, are transmitted by the system and combine to give the interference
pattern.

There are various ways in which these techniques may be applied. For example,
white light, with the interfering wavefronts parallel to one another, may be used. If
this falls on a uniform specimen, such as a liquid in a cell, the condition for reinforcement
of the interfering beams will be satisfied only at certain wavelengths. Consequently,
if it is dispersed by a spectrometer, a series of bright and dark fringes at varying
wavelengths will be observed. If a uniform fibre is immersed in the liquid, it will
distort the fringes, as illustrated in Fig. 24.5(a). Where the fringe is in one straight
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line, the refractive indices of fibre and liquid must be equal. For other wavelengths,
the fringe is curved owing to the varying thickness of fibre through which the light
passes. An example of this is shown in Fig. 24.6(a), where the fringe for 519.2 nm is
straight, which indicates that the indices are equal at this wavelength. However, if the
fibre is not uniform in refractive index, the fringes will have a more complicated
form, such as that shown in Fig. 24.5(b), and none will be straight. The mean refractive
index at any position in the fibre can be found by observing the point at which the
curved fringe in the fibre crosses the line of the fringes in the liquid. An example of
this is illustrated in Fig. 24.6(b). If the dispersion of fibre and liquid is known, the
variation in mean refractive index across the fibre, for a constant wavelength, can be
calculated.

In two other methods, monochromatic light is used. With parallel light, the field
in the liquid is uniform, and it is necessary to match the intensity in part of the fibre
with that in the liquid. Alternatively, with the interfering wavefronts inclined to one
another, wedge fringes are observed. Where these are in line with fibre and liquid, the
indices are equal.

(a) (b)

24.4 Schematic representation of (a) double-beam interferometry and (b)
multiple-beam interferometry (the beam is inclined for the sake of clarity: it
would actually be normal to the specimen, and the reflections would be back
and forth along the same line).

Liquid

Fibre

Liquid

Fibre

λ1 λ2 λ3 λ4 λ5 λ1 λ2 λ3 λ4

X

X

Y

Y

(a) (b)

24.5 (a) Distortion of fringes with a uniform fibre. At wavelength λ3, the
indices are equal. (b) Distortion of fringes with a non-uniform fibre. The mean
fibre indices are equal to the liquid indices at points X and Y for wavelengths
λ2 and λ3, respectively.
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24.2.3 Measurements of birefringence

The birefringence of a fibre is often determined by measuring the two principal
refractive indices and subtracting one from the other. It can also be measured directly,
however, by determining the retardation, or difference in optical path length, of the
one principal ray relative to the other. Since the optical path length equals the product
of the refractive index and the thickness of the specimen through which the light
passes, it follows that retardation = (N + δN)λ = (n|| –n⊥)t, where N + δN is the
number of wavelengths λ for which the light is retarded, and t is the thickness.

In order to find the retardation, it is necessary to measure both the whole number
of wavelengths N and the fraction δN: the latter is usually easier to determine than the
former.

When a fibre is viewed between crossed Nicol prisms, interference phenomena are
observed. In the absence of a specimen, the field of view with crossed Nicols is dark
because the polariser will pass only light polarised in one direction, and the analyser
will pass only light polarised in a perpendicular direction. If a specimen is present
with a principal direction parallel to the axis of either of the prisms, the field is still
dark because the component of the light passed by the polariser will be transmitted
without change by the specimen and stopped by the analyser. The four perpendicular
directions for which this occurs are the extinction positions. If the specimen is at
some other angle, however, for example with its principal direction at 45° to the axis
of the prisms, the light passed by the polariser will be split by the specimen into two
components X and Y, corresponding to the vibration directions of the light, and these
will be transmitted at different speeds. When this light reaches the analyser, the

519.2 nm

510.5 nm 528.1 nm

506.5 nm 523.6 nm100 µm
(a)

(b)

24.6 Interference fringes of varying wavelength, observed with an unstretched
viscose rayon model filament immersed in a liquid of similar refractive index.
Light vibration (a) parallel and (b) perpendicular to fibre axis. Wavelengths
indicated in nm. After Faust [13].
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components of X and Y in the vibration direction passed by the analyser will be
transmitted, so that the field will not, in general, appear dark, but, because of the
differing velocity of transmission through the specimen, one component will be
retarded relative to the other, and interference can occur. If there is a retardation of
half a wavelength (or an odd multiple of half-wavelengths) the dark field between the
crossed Nicols is changed into a bright one. Consequently, for a uniform circular
fibre, viewed in monochromatic light, a series of light and dark bands will be seen
parallel to the fibre axis, at thicknesses corresponding to retardations of odd and even
numbers of half-wavelengths, respectively. In this way, the retardation, and hence the
birefringence at various positions across the fibre, can be determined [15, 16].

When viewed in white light, only certain wavelengths satisfy the conditions for
interference at a given place in the fibre, and thus interference colours are observed.
By comparison with a standard colour chart, the retardation and birefringence can be
deduced from these colours [4].

These two methods do not give results that are completely unambiguous. With the
colours, the order of interference has to be estimated, and with monochromatic
fringes it is not always easy to count close fringes, nor is it always certain that the
retardation in a heterogeneous fibre is continuously increasing from fringe to fringe
towards the centre. There are experimental dodges that can be used to overcome
these difficulties, but a more accurate method of measuring birefringence is to use a
compensator.

Compensators superimpose a known, but variable, retardation on that produced by
the specimen. The simplest form is a calibrated quartz wedge, but there are other
types, such as the Babinet and Berek compensators. If the retardation introduced by
the compensator is equal and opposite to that introduced by the specimen, conditions
are the same as if neither compensator nor specimen was present and so the field
appears dark. The compensator can be adjusted until this condition is satisfied in
order to determine the retardation at any point in the fibre, either by the use of white
light or, if a more accurate setting is needed, by the use of monochromatic light. A
full discussion of the difficulties involved in determining the retardation without
ambiguity has been given by Faust and Marrinan [17].

Mortimer and Peguy [18] describe on-line measurement of birefringence.

24.2.4 Refractive index, density and swelling

Since the refractive index of a material is determined by an appropriate summation
of the polarisabilities of the bonds present in each of its molecules, it is to be expected
that the refractive index will increase as the number of molecules present increases,
i.e. as the density increases. In many materials, the relation between the two is given
by Gladstone and Dale’s law, (n – 1)/ρ = constant, where ρ = density.

This relation is an approximate form of the theoretical Lorentz–Lorenz expression.
Hermans [19] has shown experimentally that the law applies to each of the refractive
indices of cellulose fibres, although it does not necessarily apply to all anisotropic
materials. If the average refractive index is used, the value of the constant is 0.3570.

A similar relation applies to mixtures. If vm and nm are the volume and refractive
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indices, respectively, of a mixture, and v1, v2, v3 … and n1, n2, n3 … are the corresponding
quantities for the individual components, the relation is:

vm(nm – 1) = v1(n1 – 1) + v2(n2 – 1) + v3(n3 – 1) + … (24.2)

For the two components cellulose and water, with the refractive index of water taken
as 1.333, this expression reduces to:

vr(nr – 1) = v0(n0 – 1) + 0.333r (24.3)

where v0 is the volume of 1 gram of dry cellulose, vr is the volume of the same
specimen at a fractional regain r, and n0 and nr are the refractive indices of the dry
and swollen cellulose, respectively.

Hermans [19] found that this relation, which is illustrated in Fig. 24.7, fitted the
experimental results for cellulose. The rise in the curve at low regains corresponds to
the increase in density that occurs as empty space is filled up (see Section 12.1.6).

Equation (24.3) applies to both the refractive indices n|| and n⊥. If we substitute
these in turn and subtract one equation from the other, we find how the birefringence
varies with the swelling of the fibres:

vr(n|| – n⊥)r = v0(n|| – n⊥) (24.4)

This equation fits in with the experimental results up to regains of about 15%, and
this is thought to indicate that the absorbed water is not preferentially oriented. If it
were, it might be expected to add to the birefringence. Above 15% regain, the
birefringence gradually becomes greater than the value given by equation (24.3). A
possible explanation is that this is due to an increasing amount of form birefringence,
arising from the arrangement of the crystalline regions within the non-crystalline
regions. At low moisture contents, the differences in the refractive indices of the two
regions are so small that the form birefringence would be negligible. At high moisture
contents, however, since the moisture absorption takes place almost entirely in the
non-crystalline regions, the differences are greater and may have an appreciable
effect.

n||

n⊥

0 5 10 15 20
Regain (%)

n

1.58

1.56

1.54

1.52

1.50

24.7 Variation of refractive indices of cellulose with regain. After Hermans
[19].
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24.2.5 Birefringence and orientation

We have seen that the difference in the refractive indices depends on the relation
between the direction of polarisation of the light and the direction of alignment of the
molecular chain. It is therefore to be expected that the birefringence will be greatest
when the molecules are all lined up parallel to the fibre axis and that it will be zero
when they are randomly directed.

Hermans [19] has defined an optical orientation factor f as the ratio of the
birefringence of the fibre to that of an ideal fibre in which the molecules are perfectly
oriented parallel to the fibre axis. Strictly, the expression should be corrected for
differences in density by dividing each birefringence by the corresponding value of
the density.

It is desirable to relate this factor to some geometrical measure of orientation, and
Hermans has used the average angle of inclination of the molecules φ. This is defined
as the angle of inclination in an imaginary fibre in which all the molecules are
arranged at the same angle and which has the same birefringence as the actual fibre.
He has shown that:

f
n n
n n

 = 
–  
–  

||

||

⊥

⊥′ ′ (24.5)

where ′n||  and ′⊥n  refer to the ideally oriented fibre.
In a perfectly oriented fibre, f = 1 and φ = 0. In an isotropic fibre, in which there

is no birefringence, f = 0, so that sin2 φ = 2/3 and φ is approximately 55°. It follows
from equation (24.1) that:

n n n n niso || ||= 1
3

( + 2 ) = 1
3

( + 2 )⊥ ⊥′ ′ (24.6)

Consequently, the refractive indices vary with orientation in the way shown in Fig.
24.8. As an example, Table 24.1 gives some comparative values for cellulose fibres
of varying degrees of orientation. As expected, the values of niso calculated from
equation (24.6) are the same for differently oriented fibres, except for small differences
in the third decimal place.

In cotton and other natural cellulose fibres, the birefringence is reduced, not because
of random departure from a parallel orientation in the fibre, but because the molecules
form a helix around the fibre axis. The index ellipsoid is thus placed at an angle to
the fibre axis, as is shown in Fig. 24.9.

From measurements on highly oriented flax and ramie fibres, Meredith [20] deduced
values of ′n||  = 1.595 and ′⊥n  = 1.531; then, from measurements of n||, he calculated
values of the spiral angle θ in 36 different cottons. Since the Becke-line method was
used, he assumed that the values of refractive index and spiral angle were those of the
outside of the fibre. Examples of his results are given in Table 24.2. The longer
cottons have higher values of n|| and birefringence and a smaller helix angle.

In the above discussion, it has been tacitly assumed that there is no preferred
orientation in the directions perpendicular to the fibre axis. This is not necessarily so.
Even in a cylindrical fibre with axial symmetry, there may be a preferred orientation
of crystallites in either of the two ways shown in Fig. 24.10. This will show up as
birefringence when fibre cross-sections are observed, and between crossed polarisers
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interference colours will appear, except in the extinction directions of the polarisers.
The resulting pattern will be a black cross on an illuminated ground. This is characteristic
of radial orientation. In some fibres, it is apparent in the whole fibre; in others, such
as some forms of regenerated cellulose, it appears only in the skin. In many viscose
rayon fibres, the situation is somewhat more complex, as an original circular skin
collapses to give a serrated outline. The type of orientation occurring is discussed in
Section 1.5.2, and the polarisation effects observed are illustrated in Fig. 1.39.

24.2.6 Comparative values

Table 24.3 gives some values for the refractive indices of various textile fibres. All
the values lie within the range 1.5 to 1.6, with the exception of the values for acetate,
which fall below it, and the value of n|| for Terylene polyester fibre, which is 1.725.

24.8 Variation of n and ϕ with f.

Table 24.1 Refractive indices, and related quantities, of cellulose fibres of varying degrees of
orientation (reduced to a density of 1.52) (after Hermans [19])

Fibre n|| n⊥ (n|| – n⊥) f φ niso

Ramie 1.588 1.519 0.069 0.97 8° 1.542

Viscose rayon
10% stretch 1.560 1.533 0.027 0.53 34° 1.542
80% stretch 1.568 1.531 0.037 0.74 25° 1.543
120% stretch 1.573 1.528 0.045 0.88 16° 1.542

Model filaments
oriented 1.572 1.531 0.041 0.82 20° 1.544
isotropic – – 0 0 55° 1.544

0 0.2 0.4 0.6 0.8 1.0
f

n||

n⊥

niso

n
φ

60°

40°

20°

0°
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It is necessary to appreciate that the values given in Table 24.3 are only typical
examples. Fibres are variable materials and their properties differ somewhat among
the fibres in a sample, and to a greater extent between different varieties of the same
type of fibre. The refractive index may also vary through a fibre cross-section. For
example, Fig. 24.11 shows the variation across the fibre in the mean refractive
indices of an unstretched viscose rayon model filament. The value of n|| is almost
constant, but n⊥ is a minimum at the centre. These values were calculated by Faust
[13] from the interference fringes shown in Fig. 24.6.

θ

24.9 Index ellipsoid, and principal refractive indices, in a fibre with spiral
orientation of chain molecules.

Table 24.2 Refractive indices, birefringence and spiral angle of cotton [20]

Cotton Refractive indices Birefringence Spiral
—————————————— of fibre angle
n|| n⊥ niso (n|| – n⊥) θ

St Vincent 1.581 1.530 1.556 0.052 27°
Montserrat 1.578 1.529 1.553 0.049 30°
Sakel 1.580 1.532 1.556 0.048 29°
Giza 1.579 1.530 1.554 0.049 29°
Tanguis 1.575 1.530 1.554 0.044 34°
Uganda 1.576 1.532 1.554 0.044 32°
Uppers 1.576 1.530 1.555 0.046 32°
Punjab-American 289F 1.577 1.530 1.553 0.047 31°
Brazilian 1.574 1.531 1.552 0.044 34°
Memphis 1.575 1.532 1.554 0.044 33°
Texas 1.575 1.532 1.554 0.044 33°
Oomras 1.574 1.532 1.552 0.043 34°
Bengals 1.574 1.531 1.551 0.043 34°
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24.10 Two forms of orientation in the cross-section of a fibre with axial
symmetry.

Table 24.3 Refractive indices of fibres

Fibre n|| n⊥ (n|| – n⊥) Ref.

Cotton 1.578 1.532 0.046 [21]
Ramie and flax 1.596 1.528 0.068 [21]
Viscose rayon 1.539 1.519 0.020 [21]
Secondary acetate 1.476 1.470 0.006 [22]
Triacetate 1.474 1.479 –0.005 [22]
Wool 1.553 1.542 0.010 [22]
Silk 1.591 1.538 0.053 [22]
Casein 1.542 1.542 0.000 [23]
Vicara (zein) 1.536 1.536 0.000 [4]
Nylon 1.582 1.519 0.063 [4]
Terylene polyester fibre 1.725 1.537 0.188 [24]
Orlon acrylic fibre 1.500 1.500 0.000 [4]
Acrilan acrylic fibre 1.520 1.524 –0.004 [4]
Polyethylene 1.556 1.512 0.044 [24]
Glass 1.547 1.547 0.000 [4]

n||

n⊥

Edge Axis Edge

R
ef

ra
ct

iv
e 

in
d

ex

1.5375

1.5370

1.5365

1.5360

24.11 Variation in the mean refractive of an unstretched viscose rayon model
filament [13].
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The magnitude of the birefringence, which ranges from –0.005 for triacetate
to 0.188 for polyester, depends on two factors: the degree of orientation of the
molecules, as discussed in the last section, and the degree of asymmetry of the
molecules themselves.

If all the atoms in a molecule are arranged in a straight chain (Fig. 24.12(a)), and
if, as usually happens, the bond polarisabilities are greatest along the line joining the
atoms, then, for the reasons discussed earlier, a high birefringence will be expected.
However, the actual molecules in fibres do not have this form and their birefringence
will be reduced for two reasons. Firstly, most main chains have a zigzag form (Fig.
24.12(b) but, provided that the bonds diverge from the main axis by less than about
55°, this still gives a positive birefringence. The coiling of the keratin molecule will
have a similar effect in wool. Secondly, there will be side groups attached to the main
chain, as in Fig. 24.12(c), and these will have the effect of providing atomic bonds
at right angles to the main axis. This will increase the value of n⊥ and reduce the
birefringence. In triacetate and acrylic fibres, the side groups have a greater effect
than the main chain, and the birefringence is negative.

A detailed study of the chemical structure of the molecules will account for the
differences in the birefringence of perfectly oriented fibres. In polyester, the presence
of a benzene ring in the main chain causes a great increase in the birefringence. If the
orientation is not perfect, the birefringence will be reduced. This is shown up by the
low values of birefringence of the regenerated protein fibres and by a comparison of
the values for viscose rayon, cotton and ramie. Experiments on model viscose rayon
filaments with varying degrees of orientation confirm this.

If the individual crystallites of a fibre could all be aligned in exactly the same
orientation, with all their faces parallel, it would be possible to measure the three
principal refractive indices of the polymer crystals. This cannot be done exactly, but
Bunn and Garner [25] examined flattened nylon fibres, in which the crystallites are
roughly parallel, and found the following refractive indices: 1.580 along axis of
chain molecule, 1.565 normal to the flat sheets of the nylon crystal and 1.475 in the
plane of the sheets and perpendicular to the fibre axis.

Gupta and Rao [26] report measurements of the birefringence of wool, which
decreases with moisture regain and increases with stretching.

(a) (b) (c)

24.12 (a) Straight chain. (b) Zigzag chain. (c) Chain with side groups.
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24.3 Absorption and dichroism

In addition to changing the velocity of light that is being transmitted, the interaction
of electromagnetic waves and matter may also result in the absorption of the radiation.
When this happens selectively in the visual region of the spectrum, it results in the
materials appearing coloured when viewed in white light. Most textile fibres are
either colourless or only slightly coloured in neutral shades. The absorption in the
fibre itself is comparatively unimportant. In order to produce colours, the fibre must
be dyed, but this subject is chiefly outside the range of this book. There is, however,
one feature that is of physical interest. This is the variation in the absorption by the
dye with the direction of polarisation of the light, the phenomenon known as dichroism,
which may result in differences in the depth of shade or even in the actual colour. For
this to happen, there are three requirements that must be satisfied. Firstly, the dye
molecule must be asymmetrical, so that its absorption varies with the direction of the
electric field exciting the characteristic vibrations. Secondly, the dye molecule must
be absorbed into the fibre molecule in a particular direction, so that all the dye
molecules make the same angle (or a limited range of angles) with the axis of the
chain molecules. Thirdly, the chain molecules must be preferentially oriented.

When the first two conditions are satisfied, the magnitude of the dichroism may be
used as a measure of the orientation of the molecules in the fibre.

The absorption of light in a material is given by Lambert’s Law: I = I0exp(–kd),
where I is the intensity of light after passing for a distance d through a material with
an absorption coefficient k, and I0 is the intensity of the incident light. This may also
be written:

log  = – (log e)
0

I
I

kd (24.7)

For a material exhibiting dichroism, it is necessary to separate the light polarised
parallel and perpendicular to the fibre axis, and we can substitute in equation (24.7)
intensities I||, and I⊥ and absorption coefficients k|| and k⊥. Dividing one equation so
obtained by the other, we get:

log /
log /

 =  = || 0

0

||I I
I I

k
k⊥ ⊥

φ (24.8)

The quantity φ has been called the dichroic or dichroitic ratio or constant [27]. It has
been found to be independent of the concentration of dye and may be used as a
measure of orientation in the fibre. Values of the dichroic constant vary from unity in
an isotropic material to infinity in a perfectly oriented fibre. Some typical values are
given in Table 24.4.

Figure 24.13 illustrates one consequence of dichroism, namely that, when light
passes through two dichroic fibres, there is a greater total absorption if they are
crossed than there is if they are parallel. The reason is fairly obvious. If the fibres are
crossed, the first fibre absorbs a large part of one component and the second fibre
absorbs a large part of the perpendicular component, but if the fibres are parallel, the
same component is absorbed by both fibres, and the perpendicular component is
transmitted through both with little absorption.
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24.4 Reflection and lustre

Lustre is an important aesthetic property of textile fabrics. If a beam of light falls on
a surface, it may be reflected specularly, along the angle of reflection as in Fig.
24.14(a); diffusely, in varying intensity over a hemisphere as in Fig. 24.14(b); or in
a combination of both as in Fig. 24.14(c). The reflection may vary with the angle of
incidence and with the colour and polarisation of the light. The total visual appearance
resulting from these reflections determines the lustre of the material. Lustre is thus
easily observed subjectively but is extremely complex to characterise objectively.

This fact, together with the great importance of fibre arrangement in yarns or
fabrics, has limited investigations of reflection and lustre from single fibres. Some
general comments can, however, be made.

If a fibre behaved as a perfectly reflecting circular cylinder, it would reflect light
as shown in Fig. 24.15. It is clear from this diagram that, if the light falls across the
fibre, it is reflected at various angles, whereas if it falls along the fibre it is predominantly

Table 24.4 Dichroic constants for direct
dyes on cellulose [27]

Material Dichroic constant

Ramie 9
Viscose rayon 1.4–3.3
Cellophane 1.5

24.13 Exhibition of dichroism by cuprammonium rayon filaments dyed with
chlorazol pink Y. The perpendicular crossed filaments appear darker than the
nearly parallel ones. After Preston and Tsien [28].

24.14 (a) Specular reflection. (b) Diffuse reflection. (c) Combination of
specular and diffuse reflections After Buck and McCord [29].

(a) (b) (c)

i r
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reflected at a constant angle. This is a basic feature of textile lustre and shows the
importance of causing the fibres to lie parallel to one another in a lustrous yarn or
fabric.

Textile fibres depart from this ideal model in various ways. As was discussed in
Section 3.3.3, finer fibres have a lustre which differs from that shown by coarse
fibres. Irregularities on the surface of the fibre and in its cross-sectional shape will
cause light to be reflected in various directions and will reduce the lustre. To secure
the type of reflection shown in Fig. 24.15(b), it is essential that the fibre should be
uniform along its length. For this reason, lustre is greatest in regular filaments, such
as those of silk and the manufactured fibres.

Fibre shape is itself an important factor. The particular types of lustre associated
with nylon, rayon and silk must be due partly to the influence on the pattern of light
reflection of their respective circular, serrated and triangular shapes. In melt-spinning,
shaped spinnerets can be used to make fibres with multilobal or other shapes, which
become somewhat rounded as the molten material tends to a circular shape. This
gives fibres with various lustre behaviour.

In cotton, Adderley [30] found a high degree of correlation between lustre and
fibre ellipticity, as given by the ratio a/b between two axes taken, respectively, along

(a) (b)

24.15 Reflection of light from a circular cylinder [29]: (a) axis normal to
incident plane; (b) axis in incident plane.

Table 24.5 Lustre of a range of cottons

Type of cotton Ratio of axes or Lustre Convolutions
cross-section, a/b (arbitrary units) per cm, c

American FGM 3.07 5.7 31.3
Peruvian 2.62 6.7 30.0
Sakel S 2.37 7.1 29.8
St Kitts Sea Island 2.23 7.7 30.6
Surat 2.37 7.8 21.1
US 12, Sea Island 2.15 7.9 32.6
Abassi 2.21 8.0 30.9
Texas 2.22 8.1 29.3
Barbados Sea Island 2.17 8.2 31.4
Sakel CR 2.07 8.8 29.8
Egyptian, grown in Peru 2.11 9.0 30.5
Antigua Sea Island 1.91 10.7 29.9
Mercerised A 1.60 12.2

B 1.64 12.9
C 1.47 13.9
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the longest possible line through the fibre cross-section and perpendicular to this line
at the mid-way position. Values for various types of cotton fibre are reported in Table
24.5, arranged in order of increasing lustre. Mercerisation, which swells the fibres
and makes them rounder, increases the lustre of the fibres. Adderley found no connection
between lustre and fibre length, linear density, diameter or the number of convolutions.
However, in a theoretical investigation, Foster [31] found that for fibres with an
elliptic cross-section, the lustre should be proportional to [(a2/b2 + 1)/(a2/b2 –1)]/ac,
where c is the number of convolutions per unit length. This relation gave reasonable
agreement with the experimental results. The lustre of cotton is thus essentially due
to a flat cross-section, of which the direction changes along the length of the fibre. If
there were no convolutions, the light would be more regularly reflected, and the
lustre would be different. The failure to observe any correlation between the number
of convolutions and the lustre is due to the fact that the variations in c are not great,
and their influence is marked by the much greater effect of the differences in a/b. It
may, however, be noted that the Surat and US 12 cottons in Table 24.5, which show
particularly high and low values of lustre for their values of a/b, are, respectively, the
fibres with the lowest and highest values of c.

Not all the light falling on a fibre is reflected at its surface: much of it is transmitted
through the fibre. Some of this transmitted light will be reflected from the internal
surfaces, and will reinforce the light reflected from the first surface, as is shown in
Fig. 24.16(a). If the fibre contains small particles (e.g. of titanium dioxide) or cavities,
as in Fig. 24.16(b), these will scatter the transmitted light at varying angles and cause
it to emerge as apparently diffuse reflection. This masks the specular reflection and
may be used to delustre manufactured fibres.

It is a consequence of the effects of transmission and internal reflection that lustre
will be influenced by variations in refractive index with the direction of polarisation
of the light and with the position in the fibre. Once again, irregularities diminish
lustre.

24.5 References

1. C. W. Bunn. Chemical Crystallography, Oxford University Press, London, 1946, Chapter III,
p. 67 et seq.

2. N. H. Hartshorne and A. Stuart. Crystals and the Polarizing Microscope, Arnold, London, 2nd
edition, 1950.

24.16 (a) Reflection, transmission and internal reflections in a fibre. (b)
Scattering of transmitted light in delustred fibre [29].

(a) (b)
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25.1 Introduction

25.1.1 Historical development

The study of the friction of materials is based on the two classical ‘laws’ of friction,
probably understood by Leonardo da Vinci, but rediscovered by Amontons in 1699.
These laws state that the frictional force is independent of the area of contact between
the two surfaces and is proportional to the normal force between them. They were
verified by Coulomb in 1781. He also pointed out the distinction between static
friction, the force that must be overcome in order to start sliding, and kinetic friction,
the force resisting continued sliding. He observed that kinetic friction was independent
of the speed of sliding; this is sometimes called the third law of friction. Mathematically,
Amontons’ law is expressed as:

F = µ N (25.1)

where F = frictional force acting parallel to the surface in a direction opposing
relative movement. µ = coefficient of friction and N = force normal to the surfaces
in contact.

When a yarn passes round a guide, as shown in Fig. 25.1, its tension must be
increased by an amount necessary to overcome the frictional resistance. It follows
from Amontons’ law1 that:

T2 = T1 exp (µθ) (25.2)

25
Fibre friction

1Note devations from equation (25.2) due to bending, discussed in Section 25.2.2.

25.1 Values of T2/T1 = eµθ.

T1 T2

θ r
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where T2 = leaving tension, T1 = incoming tension and θ = angle of contact.
In reality, these are not universal laws. The study of fibre friction has largely been

the experimental observation of departures from the laws, the reasons for such departures,
and their consequences. One of the earliest records is of the discovery by Monge in
1790 that the friction of wool depended on the direction in which the fibres were
sliding.

25.1.2 Technological effects

The dualistic nature of the influence of friction on textile processing is illustrated by
W. L. Balls’s paradox: ‘up to the front mule roller, cotton must be slippery; afterwards
it must be sticky’ [1]. Friction is the force that holds together the fibres in a spun yarn
and the interlacing threads in a fabric. If the friction is too low, the yarn strength will
fall, and the dimensional stability of cloth will be reduced. Here high friction is an
advantage, enabling a greater proportion of the strength of the individual fibres to be
utilised.

In many other places, however, fibre friction is a nuisance. If a yarn passes over
a number of guides, the angle θ in equation (25.2) becomes the sum of the individual
angles of contact. The figures in Table 25.1 show how rapidly the tension may
increase in these circumstances. If excessive breaks are to be avoided, and the yarn
is not to be permanently damaged by overstraining, it is essential to maintain the
frictional resistance at as low a value as possible.

In the stitching of fabrics, high friction causes trouble for two reasons: the needle
may become red-hot, and the threads will not slide over one another in order to allow
the needle to pass between them. This causes many more threads to be broken; for
example, in a particular unlubricated mineral khaki dyed cloth, there were nearly 20
cut threads per 100 needle punctures, but after lubrication the number of cut threads
was insignificant [2].

Apart from these examples, where friction is clearly an advantage or a disadvantage,
there are many other aspects of textile technology that are influenced by the frictional
characteristics of the fibres: the handle and wear resistance of fabrics; the behaviour
of fibres during drafting; and, especially in wool, the process of felting.

25.2 Measurement of fibre friction

25.2.1 Methods for fundamental studies

The apparatus developed by Bowden and Leben [3] is the best general method for the
fundamental study of friction. Figure 25.2(a) illustrates its mode of operation. A

Table 25.1 Values of T2/T1 = eµθ

θ = π/2 θ = π θ = 2π θ = 4π

µ = 0.2 1.4 1.9 3.5 12.3
µ = 0.5 2.2 6.0 22.9 525
µ = 1.0 6.0 22.9 525 270 000
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slider, under a load N, presses on a lower plate, which is moving past it at a constant
velocity. The force of friction drags the slider along with the lower plate until the
force S exerted by a spring fixed to the slider just balances the frictional force F. The
extension of the spring is thus a measure of F. In practice, static friction Fs, the force
opposing the start of slippage, is usually greater than kinetic friction Fk. Hence, once
the slider has started to slip, it will be accelerated back until the tension in the spring
has been reduced from a value equal to the force of static friction to that of the force
of kinetic friction. The slider will continue to slip back for a further distance before
it has decelerated and come to rest. It then moves forward again with the lower plate
under the force of static friction. A record of the extension of the spring will give the
‘stick–slip’ trace shown in Fig. 25.2(b). If the damping is small, it can be shown that
the force of kinetic friction is equal to the mean force exerted by the spring during the
slip. Consequently, values of both Fs and Fk can be calculated when the characteristics
of the spring are known.

In one practical form of this instrument [4, 5], suitable for loads between 5 mg and
100 g, the spring is a stiff wire beam, deflected horizontally by the movement of the
slider, and deflected vertically to apply the load. The slider is carried on a turntable.
For heavier loads [4, 5] of up to several kilograms, another form of the apparatus is
used, with spring loading of the specimen and with the force opposing the drag of the
specimen being applied by means of the rotation of a loaded bifilar suspension.

With these forms of apparatus, measurements of the friction of pads of fibres
rubbing against solid surfaces may be made, and polymeric materials, of which fibres
are made, may also be investigated, but for work on single fibres modifications are
needed. The fibres may be mounted on frames under light tension and then pressed
against one another, as is shown in Fig. 25.3. One fibre with its frame is then
traversed along, and, in one form of the apparatus, the movement of the other is
restrained by a leaf spring. The deflection of the spring may be recorded graphically
with a stylus, or photographically by reflection from a mirror mounted on the spring,
and gives a stick–slip trace from which the static and kinetic friction can be calculated.
This method has been used by Mercer and Makinson [7]. In the similar instrument
illustrated in Fig. 25.3 and used by Guthrie and Oliver [6], the ‘stationary’ fibre is
suspended in a frame on a torsion wire, which rotates until the force is sufficient to
cause slippage.

An ingenious development of this method for use with very light loads has been
described by Pascoe and Tabor [8]. In their apparatus, shown in Fig. 25.4, the sliding
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25.2 (a) Basic principle of Bowden and Leben’s apparatus [3]. (b) Record of
trace.
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fibre is mounted at one end only. The other end rests on the second fibre, which can
be traversed along in a frame. The upper fibre acts as a cantilever. Its displacement
in the vertical plane gives the load, and its displacement in the horizontal plane gives
the force opposing the frictional drag. The displacements are determined by
microscopical observation of the free end of the fibre.

The principles of these methods are still applicable for fundamental studies of
fibre friction, but advances in transducers and detectors will lead to differences in
detail.

25.2.2 Rapid methods

Whereas the above methods are the most suitable for fundamental investigations,
they are less convenient for the rapid technical evaluation of frictional resistance. For

25.3 Essential features of Guthrie and Oliver’s apparatus [6].

Loading

Traverse

25.4 Measurement of fibre friction under very low loads [8].

Beam of
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this purpose, there are advantages in the capstan method, which involves measurement
of the excess tension needed to pull yarn over a guide. The basic feature of the
apparatus is that shown in Fig. 25.1, and the coefficient of friction, assumed to be
constant, can be calculated from the relation: T2/T1 = exp(µθ). A static form of the
method is illustrated in Fig. 25.5(a). A loop of fibre is placed over the guide and a
small load placed on one side. The load on the other side is then decreased until
slippage commences. Alternatively, a dynamic method may be used, with the yarn
running continuously over the guide. Abbott and Grosberg [9] have described a
version of the method suitable for use with an Instron Tensile Tester. Buckle and
Pollitt [10] invented a mechanical tester in which the tensions operate in such a way
that the coefficient of friction can be directly indicated by a pointer on a scale.
However, this has been displaced by advances in electronic tension meters.

A typical modern instrument will have a means of pulling yarn over a guide, with
tension meters on either side, as indicated schematically in Fig. 25.5(b). The springs
are, in reality, stiff force transducers connected to a computer.

The simple derivation of equation (25.2) assumes that the yarn is perfectly flexible
and does not take account of bending stiffness. As discussed in Section 19.5.4 in
relation to flex fatigue testing, the form shown in Fig. 25.1 would have a discontinuity
in bending moment at the point where it leaves the pin. In reality there will be a zone
of changing curvature. An analysis by Jung et al. [11] also shows that the forces in
the contact region are influenced by fibre stiffness. Equation (25.2) is a good
approximation when the yarn or fibre radius is small compared with the pin radius,
but Jung et al. [11] show that there are appreciable differences when a yarn passes
over a guide at an angle. In a typical example, the value of T2/T1 increased by 20%
in going from zero deviation to a 45° inclination. Another error in equation (25.2)
results from bending hysteresis. Energy is dissipated not only in overcoming friction
but also in the cycle of bending and unbending, which is undergone by each portion
of material. The work done to provide this energy will appear to be a frictional loss
and will cause the measured friction to be too large. Grosberg and Plate [12] have
discussed the problem and shown that the error may be as high as 2.5%. The contribution

(a) (b)

T1

T1

T1 T2

T2

T2

25.5 (a) Static capstan method. (b) Dynamic capstan method.
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to the frictional force is found to equal ∆M/r, where ∆M is the difference in bending
moment in bending and recovery and r is the radius of curvature of the capstan. The
error may therefore be made negligible by using large cylinders.

For the measurement of inter-fibre friction, Lindberg and Gralén [13] introduced
a method in which the two fibres are twisted together as shown in Fig. 25.6. If the
difference between the tensions applied to the opposite ends of each fibre is increased,
the fibres will eventually slip over one another. It is shown that:

µ π β = log
/

e
2 1T T
n

(25.3)

where T2 and T1 are the tensions in the fibres, n is the number of turns of twist and
β is the angle between the fibre axes and the axis of the twisted element.

The yarn-on-yarn abrasion tester shown in Fig. 25.7 can be adapted to measure
friction in this way by adding tension meters or, as shown in Fig. 25.8, measurements
can be made on a running yarn. Another variant of the method was used by Gupta and
coworkers [14] to measure friction of sutures and hair [15]. This was adapted by
Moghazy and Gupta [16] for testing in liquid.

Another technique that has been used to investigate fibre friction is the measurement
of the force necessary to remove a single fibre from a mass of fibres under pressure
[17], or to pull apart two interlocking fringes of fibres [18]. A convenient version of
the latter method in which one fringe of fibres is pulled over another on an apparatus
fitted to an Instron Tensile Tester is described by Hearle and Husain [19]. These
measurements will be related to the practical behaviour of fibres in drafting and in
yarns. Moghazy and Broughton [20] describe a method of using an Instron tester to
pull a beard of cotton fibres from between metal plates.

T2 T1

T2
T1

β

25.6 Measurement of inter-fibre friction [13].
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A very simple means of measuring friction is the inclined plane method [21].
Several turns of yarn are wound as a bow over a bridge and rested on a horizontal
plate of the other material. This plate is gradually inclined. The coefficient of friction
is equal to the tangent of the angle of inclination at which slippage starts. Howell and

Crank and yarn
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Gear motor
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70 mm 70 mm Pulley
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25.7 Yarn-on-yarn abrasion tester.
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Tension measuring
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25.8 Measurement of yarn-on-yarn friction on a running yarn.
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Mazur [22] have used a similar method for studying the friction between single
fibres. A lightly loaded loop of fibre is allowed to rest on another stretched fibre,
which is mounted in a frame. The frame is initially horizontal and is then rotated until
the loop of fibre just begins to slide down.

25.3 Empirical results

25.3.1 Friction, load and area of contact

The ratio of frictional force F to normal load N for fibres is found to decrease as the
load is increased. In other words, Amontons’ law is not obeyed. Some typical examples
are given in Fig. 25.9. Among the various mathematical relations that have been used
to fit the experimental data are the following:

F = µ0N + αS (25.4)

F
N

A B N =  –  log (25.5)

F = aN + bNc (25.6)

where S = area of contact, and µ0, α, A, B, a, b and c are constants. The most
successful relation has, however, been:

F = aNn (25.7)

where a and n are constants. This is a form of equation previously found by Bowden
and Young [23] to apply to some non-metals: it was first applied to fibres by Lincoln
[24] and by Howell and Mazur [22]. The value of the index n generally lies between
2/3 and 1, some typical values being given in Table 25.2.

If this relation holds, we can work out the effect of the areas of surfaces in

25.9 Variation of coefficient of friction of fibres with load (D = fibre diameter)
[8].
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contact2. For a load N on an area A1, the frictional force is F1 = aNn. For the same load
on an area A2, equal to xA1, we may consider the total frictional force F2 to be made
up of the sum of the individual frictional forces f on x portions, each of area A1, under
loads N/x. But, from equation (25.7), it follows that:

f = a(N/X)n (25.8)

Therefore:

F2 = ∑f = xa(N/x)n (25.9)

F
F

xa N x
aN

x
A
A

n

n
n

n
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1

(1– ) 2
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(1– )

 = 
( / )

 = = 

 (25.10)

The two classical laws of friction are thus replaced by the relations: F = aNn, for
constant apparent surface area in contact and F = bA(1–n), for constant load, where a

2The more detailed understanding of the nature of frictional force (discussed in Section 25.4.2)
shows that the real determining factor is the number of points of true contact between the surfaces.
For extensive apparent areas of contact, this number will be proportional to the overall geometric
area of contact. This will not hold, however, for crossed fibres making a single-point contact, or for
parallel fibres making contact along a line. It also follows that the friction is influenced by the
roughness of the surface.

Table 25.2 Values of n

(a) Results by Mazur [25] for single fibres crossed at right angles (fibre in vertical column
sliding on fibre in horizontal column)

Acetate Nylon Viscose Terylene Wool*
rayon polyester fibre

Acetate 0.94 0.89 0.90 0.86 0.92
Nylon 0.86 0.81
Viscose rayon 0.89 0.88 0.91 0.88 0.87
Polyester fibre Terylene 0.88
Wool* 0.88 0.86 0.92 0.86 0.90

*Mean values, ‘with’ and ‘against’ scales.

(b) Other results

n

Nylon monofil pulled over glass cylinder [26] 0.91
Acetate yarn pulled over chromium-plated cylinder [27] 0.8
Wool pulled over serge cylinder [28, 29] 0.75
Viscose rayon fibres crossed at right angles [30]

static friction – normal finish 0.80–1.02†
– extracted 0.75–0.98

kinetic friction – normal finish 0.77–0.94
– extracted 0.64–0.99

† Value varying with filament linear density.
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and b are constants, dependent on the area and load, respectively. It should be noted
that a and b are not dimensionless and will thus vary with the units used. The
parameter n should be a fundamental property of the materials, independent of geometry,
although Guthrie and Oliver [30] have found an indication that it increases with
filament linear density in staple-fibre rayon. The classical laws of friction will occur
as the special case: n = 1.

Viswanathan [31] found experimentally that the parameter a is correlated with n
to a fairly high degree over a wide range of fibres, and even better within a given
fibre type. The values of a decrease approximately linearly from about 3 for n = 0.6
to 0.5 at n = 0.9. However, it must be remembered that a has the dimensions of
(force)(1–n), so that the results would look different in other units. There are theories
that suggest reasons, and even equations, for the correlation.

Howell [29] has shown that, if equation (25.7) holds, then equation (25.2), relating
the tensions in a yarn or fibre passing round a guide, is modified and becomes:

T T n a rn n n
2
(1– )

1
(1– ) (1– )= + (1 –  ) θ (25.11)

where r is the radius of the cylinder. In the limit, as n approaches 1, this equation
reduces to:

T T a r T n

2 1
( / ) = e 1

(1– )θ (25.12)

This form obviously reduces to the classical form when n = 1. Figure 25.10 shows a
check of equation (25.11) for varying initial tensions and cylinder radii.

25.3.2 Static and kinetic friction: speed of sliding

The kinetic friction µk is usually less than the static friction µs. Some typical examples
are given in Table 25.3. The difference affects the feel of the material. If it is large,
the material is ‘scroopy’, that is, it will have a coarse, crunchy feel and will give a
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25.10 Check of equation (25.11) for (a) varying initial tension and (b) varying
cylinder radius. The lines are the theoretical curves, and the points are
experimental values for acetate yarn. For curve (a), n = 0.8, a = 1.18; for curve
(b) n = 0.8, a = 1.15 [27].
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fabric that rustles like silk, owing to the marked ‘stick–slip’ motion. This tendency
will be reduced by any finish or lubricant that reduces the differences between µs and
µk. The handle will then be softer.

At low speeds, going from 2 to 90 cm/min, Röder [33] noted a decrease in the
friction, but at much higher speeds other workers have found that the friction increases
as the speed increases. A typical result is shown in Fig. 25.11. It therefore seems
likely that the frictional force passes through a minimum at around 1 m/min, due to
mechanisms shown later in Fig. 25.25. The variation of friction with speed will have
a considerable influence on the behaviour of fibres in drafting.

Cotton is exceptional in that even at low speeds the coefficient of friction increases
with the speed of sliding. For example, Merkel [34] found that the coefficient of
friction of single cotton fibres against cotton-covered cylinders increased steadily

Table 25.3 Static and kinetic friction [32]

Static Kinetic
µs µk

Rayon on rayon 0.35 0.26

Nylon on nylon 0.47 0.40

Wool on wool
with scales 0.13 0.11
against scales 0.61 0.38
fibres in same direction 0.21 0.15

Wool on rayon
with scales 0.11 0.09
against scales 0.39 0.35

Wool on nylon
with scales 0.26 0.21
against scales 0.43 0.35

Rayon on rayon [30] 0.22 0.14
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25.11 Variation of final tension after acetate yarn has passed over a guide at
varying speeds [27] (50 g wt = 0.49 N).
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with speed. Under medium-load conditions, the coefficient of friction was 0.23 at
3.6 cm/min, but it increased to 0.25 at 200 cm/min and to 0.39 at 4500 cm/min. One
consequence of this is that the slippage of cotton, for example, in the deformation of
needled fabrics, occurs more smoothly without the stick–slip effect characteristic of
other fibres.

25.3.3 The state of the surface

The frictional force is changed if the surface is lubricated, either naturally, e.g. by
waxes in cotton, or artificially, or by contamination with dirt or impurities. Figure
25.12 shows that, for acetate yarn with more than 1% of oil applied, the frictional
force increases both as the oil content is increased and as the viscosity of the oil
increases. However, fibres from which all traces of lubricant have been removed
show high values of friction; thus, in one experiment [2], raw cotton on steel gave µ
= 0.25, whereas scoured cotton on steel gave µ = 0.7, and lubricated scoured cotton
on steel gave values of µ ranging from 0.14 to 0.35.

Bradbury and Reicher [35] have found that extremely high values of friction are
obtained between flat continuous-filament yarns and glass if excessive precautions
are taken to ensure the cleanliness of both surfaces. With nylon, the value of µ was
at least 8, and a 50 gram weight could be supported on a short length of yarn looped
over a glass rod, as shown in Fig. 25.13. This high value of friction was not found if
the yarns were twisted, or if the glass surface was roughened by grinding: this
suggests that the effect is associated with a high true area of contact (see Section
25.4.2). A similar effect was observed by King [36], who found a reduction in the
friction of wool fibres on various materials when the surface was roughened. Values
obtained are given in Table 25.4. The dependence on the physical state of the surface
is also shown by the results in Table 25.5 for moulded and machined nylon. The
newly moulded surface shows the highest coefficient of friction. Taylor and Pollet
[38] have investigated the low force friction of several fabrics against engineering
surfaces.
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25.12 Variation of final tension after passage of acetate yarn over guide, for
(a) varying amounts of oil on yarn and (b) varying viscosity of oil [25].
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25.13 Demonstration of very high friction with clean nylon and glass [35].

Table 25.4 Effect of surface roughness: Values of µ for wool rubbed on various
materials [36]

Material Polished surface Rough surface

With Against With Against
scales scales scales scales

Casein 0.58 0.59 0.47 0.57
Ebonite 0.60 0.62 0.50 0.61
Sheep’s horn 0.62 0.63 0.52 0.63
Cow’s horn 0.49 0.54 0.42 0.53

Table 25.5 Values of µ for moulded nylon [37]

As received Aged 30 min Aged 5 months
at 170 °C at 20 °C

Cold-moulded 0.70 0.45 0.55
Hot-moulded 0.65 0.45 0.55
Machined 0.45 0.40 0.45
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25.3.4 Effect of water

The frictional force usually increases as the regain of the fibres is raised. Typical
results are given in Fig. 25.14. Moghazy and Gupta [16] found that friction was
higher in wet polypropylene and acrylic yarns than in dry ones.

25.3.5 Typical values of µ = F/N

Although fibres do not have a true, constant coefficient of friction, it is useful to
quote values of µ = F/N to express the magnitude of the friction under particular
conditions. However, because this value of µ varies with so many of the experimental
conditions (load, speed, area and geometry of contact, humidity, etc.) and because it
is so dependent on the exact state of the surface, only typical values found in particular
experiments can be quoted. Some examples are given in Table 25.6. They cannot be
expected to have validity in other circumstances.

In general, values of µ for fibres and plastics range between 0.1 and 0.8, although,
under extremely clean conditions, as described in Section 25.3.3, much higher values
of fibre friction are found. Another exception is PTFE (known as Teflon in fibre
form), which has an extremely low coefficient of friction, often less than 0.05, except
at the very low loads shown in Fig. 25.9.

Table 25.7 gives values of coefficient of friction of yarns used in high-performance
ropes [40]. High-modulus polyethylene (HMPE) fibres have an inherently low
coefficient of friction, but the others will have special marine finishes, which reduce
inter-fibre abrasion.

Behary et al. [41] studied the tribology of sized glass fibres and found wide
variations in friction. One fibre had a unimodal distribution for µ ranging from 0.1 to
10 with scattered values up to 15, a peak at 3.5, a mean of 5 and a standard deviation

µ
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25.14 Change of coefficient of friction with regain for nylon on nylon, wool on
horn [36] and cotton on steel [39].
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Table 25.6 Typical values of µ (a) between fibres; (b) for yarns passing over guides [10]

(a)

Crossed fibres [6] Parallel fibres [32]

Nylon 0.14–0.6 0.47
Silk 0.26 0.52
Viscose rayon 0.19 0.43
Acetate 0.29 0.56
Cotton 0.29, 0.57 0.22
Glass 0.13 –
Jute – 0.46
Casein – 0.46
Saran – 0.55
Terylene polyester fibre – 0.58
Wool, with scales 0.20–0.25 0.11
Wool, against scale 0.38–0.49 0.14

(b)

Hard steel Porcelain Fibre pulley Ceramic

Viscose rayon 0.39 0.43 0.36 0.30
Acetate, bright 0.38 0.38 0.19 0.20
Acetate, dull 0.30 0.29 0.20 0.22
Grey cotton 0.29 0.32 0.23 0.24
Nylon 0.32 0.43 0.20 0.19
Linen 0.27 0.29 0.19 –

Table 25.7 Yarn-on-yarn friction results. From Noble Denton and National Engineering
Laboratory (40]

Load range (g) Coefficient of friction µ

Mean sliding Mean static Maximum

Aramid
Kevlar 29 (961) 100–1600 0.157 0.167
Kevlar 29 (960) 100–1500 0.137 0.150
Twaron 1000 100–1200 0.165 0.180
Twaron 1020 100–2500 0.131 0.138
Technora 100–2200 0.117

LCP
Vectran 100–2700 0.144 0.151

HMPE
Spectra 1000 200–4500 0.058 0063
Dyneema SK60 2000–6000 0.061 0.064

Polyester
Diolen 855TN 100–1500 0.092 0.099
Trevira 785 100–2500 0.060 0.064
Seagard IW81 100–1900 0.02 0.096
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of 1.7. Another fibre with a different finish had a biomodal distribution with peaks at
1.25 and 6.25 and values from 0.25 to 9. They used atomic force microscopy to
observe the fibre surfaces and related the frictional behaviour to the nature of the
contacts between fibres. In another paper [42], they report on stick–slip behaviour.

Moghazy and Gupta [16] found that triangular and trilobal polypropylene
monofilament shad lower friction that circular monofilaments.

25.3.6 Surface damage on rubbed fibres

The nature of the damage to the surface of fibres when they are subject to friction is
of intrinsic interest and also leads to an understanding of the nature of the frictional
force. Figure 25.15 shows a nylon filament that has been rubbed with a platinum

25.15 Effect of friction by platinum slider on nylon monofilament [43]: (a) low
load, 0.39 N; (b) high load, 2.8 N.

(a)

(b)
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25.16 Acetate fibre abraded by passing over a ceramic guide at 300 m/min.
Damage is due to fibre sticking to a guide and then breaking away [4].

25.17 Particles of acetate left on glass rod, after rubbing with acetate fibre
[35].

slider under various loads, viewed by reflection electron microscopy. At low loads,
there is a narrow track in which the fibre is slightly flattened, but at higher loads there
is a marked deformation, and severe tearing of the surface occurs at the centre of the
track. The concave shape of the track is probably due to reduced elastic recovery in
the centre, where the deformation is greatest. Other examples of surface damage are
shown in the electron micrographs of the surface of acetate fibres that have passed
over guides (Fig. 25.16).

There is other evidence that material may be plucked out of the fibre surface
during rubbing. Figure 25.17 shows particles of acetate (after dyeing) that were left
on a glass rod rubbed with an acetate fibre, under the excessively clean conditions
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described in Section 25.3.3. Similar deposits were observed with nylon and polyester
fibres, but not with viscose rayon or silk fibres. The reverse effect is shown in Fig.
25.18, which is an autoradiograph of radioactive silver that has been transferred to a
PVC surface after a silver slider has passed over it.

25.4 The nature of friction

25.4.1 General theory

Over the centuries, many explanations of friction have been proposed. Amontons
suggested that it was due to the force needed to lift one surface over the irregularities
in the other; others have suggested that it is due to attractive forces between the
atoms on the two surfaces, or to electrostatic forces. These theories all assume that
the surfaces remain separate and, although they may sometimes play some part, the
work of Bowden and Tabor [5, 44] showed that the predominant effects are usually
an actual union, or welding, of the two surfaces at points of real contact, and the
breaking of these junctions when sliding starts.

The surfaces of most materials are irregular if studied on a small enough scale:
only in exceptional cases (for example, the cleavage planes of a crystal of mica) will
they be smooth on the molecular scale. Bringing two surfaces into contact is therefore

25.18 Radioactive silver left on polyvinyl chloride surface after rubbing [43].
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like ‘turning Switzerland upside down and putting it on top of Austria. Contact only
occurs at the tips of the peaks’ [44]. If a load is applied, the pressure at the few points
of real contact is very great, and they squash down until the area in contact is
adequate to support the load.

The nature and extent of the deformation will depend on the mechanical properties
of the materials. Metals flow plastically under high loads, and the flow will continue
until the pressure at the points of contact is reduced to the yield pressure, when it will
support the load without further deformation. The condition for equilibrium is shown
graphically in Fig. 25.19. If A is the total area of real contact, we have:

py = N/A (25.13)

A = N/py (25.14)

where N = applied load and py = yield pressure.
Thus the area of real contact is proportional to the applied load. Under the intense

pressure, and an accompanying temperature rise, the junctions weld together, as
illustrated in Fig. 25.20. In order to allow sliding, these junctions must be broken by
shearing. The resistance to this, which is the frictional force F, will be given by:

F = SA (25.15)

where S = shear strength of the weaker material. But, on substituting from equation
(25.13), this gives:

F S
p

N N =   = 
y

µ (25.16)

Since S and py are both constants, being mechanical properties of the materials,
this is Amontons’ law with µ = S/py. As the relation between load and contact area is
linear, the total area in real contact will be independent of the number of points of
contact. This explains the classical law that friction is independent of the overall area
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25.19 Deformation of metal contacts. The full line represents the load-
deformation curve of the metal, with a elastic region, OA, and a region of
plastic flow, AF. The dotted lines are pressure–area curves for constant loads.
Equilibrium occurs at the intersections, B, C, D, E, of the full and dotted lines.
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of contact. Bowden and his colleagues have produced a great deal of evidence in
support of this theory in its application to metals: the values of µ agree with the above
expression; the damage to the surface, the portions of metal plucked up, the metal
transferred from one surface to the other, the evidence of strains below the surface,
and the form of the track left after sliding show that welding and shearing must have
occurred. They have found that, if one surface is much harder than the other, an
additional force is needed to plough out a track in the soft metal for the asperities on
the hard surface. This force will also contribute to the friction.

They have applied similar theories to non-metals. For brittle solids, such as rock
salt, Amontons’ law is obeyed, and the behaviour is similar to that in metals, but, in
solids that are either very hard, such as diamond, or have a very large elastic deformation,
such as rubber, the behaviour is different. With these materials, the deformation
within the elastic range is sufficient to give support to the load. This is illustrated in
Fig. 25.21. In neither case is the yield pressure reached. The relation between load

W

Plastic
flow

Elastic Elastic Deformation

Plastic
flow

25.20 Deformation at points of real contact, showing welded junctions. After
Bowden and Tabor [44].

P
re

ss
u

re
 p

O
Area in contact A

B

A

F
G

H
I

E
D

C

25.21 Deformation of elastic and viscoelastic materials. OB is the line for a
hard elastic material, such as diamond; OE is the line for a soft elastic
material, rubber; and OI is the curve for a viscoelastic material. Equilibrium
occurs at the points of intersection with the pressure–area curves (dotted).
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and area of real contact under conditions of elastic deformation depends on the
geometry of the contacts and has been studied by Hertz [45].

For spheres in contact, A ∝ N2/3. Since we should still have F = SA, this would give
F ∝ N2/3, a result that agrees with experimental results for diamond and rubber. This
condition would be expected to apply approximately to the contact between asperities
on an extended surface. However, the number of points of contact will affect the
proportion of the load borne by each contact, and, since the relation between load and
area is non-linear, this will affect the total area of contact. Thus the magnitude of the
frictional force will depend on the roughness of the surface and on the overall area
of contact.

For two cylinders at right angles, the Hertz formulae give A ∝ N2/3, and for two
cylinders in contact along a line they give A ∝ N1/2.

25.4.2 Application to fibres

The damage to the surfaces of fibres and plastics during sliding shows that there has
been a marked deformation of the surface and welding together at points of contact.
The essential mechanism of friction is thus the same as that for the other materials
discussed in the last section. The friction will depend on the force needed to shear the
junctions, and, in general, calculations of shear strength of plastics from friction
measurements, by means of equation (25.15), have shown reasonable agreement with
bulk measurements of shear strength.

Experimentally, the frictional force is given by F ∝ Nn, where the index n is less
than 1 but is usually greater than that to be expected from a purely elastic deformation.
The index will depend on the viscoelastic properties of the material, which determine
the shape of the curve relating deformation to pressure. Figure 25.21 includes an
example of a curve, not unlike typical fibre stress–strain curves, that would give
values intermediate between the elastic deformation, also shown in Fig. 25.21, and
the plastic flow of Fig. 25.19.

The relations will also depend on the geometry of the system. Pascoe and Tabor
[8] have investigated the effect of the diameter of crossed fibres that make contact at
a single point and deform as shown in Fig. 25.22. Working on a large scale with
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Plan

25.22 Deformation of crossed fibres under load.
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Perspex cylinders 1 cm in diameter, they found that the diameter d of the circle of
contact fitted the following relation over a wide load range:

N ∝ d2.7 (25.17)

Similar results were obtained with steel spheres pressed on various polymers.
The only parameter defining the shape of the deformation is the ratio d/D, where

D is the diameter of the cylinder. This parameter will determine the distribution of
strains, and hence of stresses, in the cylinders. Consequently, the mean pressure must
be a function of d/D, that is:

N
d

f
d
Dπ 2 /4

 = 



 (25.18)

If the function is assumed to be a power function, we can put:

N
d

K
d
D

x

2  = 



 (25.19)

N K
d
D

x

x = 
2+

(25.20)

Comparison with the experimental results given by the relation (25.17) shows that x
= 0.7, so that we have:

ND0.7 = Kd2.7 (25.21)

This equation fits the experimental results on cylinders of different diameters.
The frictional force is given by:

F = S A = S (πd2/4) (25.22)

But from the general relation, equation (25.20), we see that:

d
N D

K

x x
2

2/(2+ )

 = 






(25.23)

Therefore, in general:

F = kN2/(2+x)D2x/(2+x) (25.24)

In the special case, with x = 0 7, this gives:

F = kN0.74 D0.52 (25.25)

µ =  = –0.26 0.52F
N

kN D (25.26)

Figure 25.23 shows that this relation fits the experimental results for nylon.
The dependence of friction on the force needed to shear the material in the region

of welded junctions does not apply when the strength of the weld is itself very low.
This happens with the inert material PTFE, which shows very poor adhesion to other
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surfaces, and is the cause of its low coefficient of friction.
Gupta and Moghazy [46] have made a detailed study of the interaction of asperities

on fibre surfaces. They derive the following expression for the empirical equation
(25.7) with specific shear strength appearing as in equation (25.16):

F = S [CM K–n m1–n] Nn (25.27)

where CM depends on the distribution of normal load in the contact area, K is related
to the hardness of the areas in contact, given by the relation between pressure P and
area A, P = K A(1–n)/n and m = number of asperities in contact. The index n depends
on the deformation behaviour of the material as discussed above. This model has
been applied to the frictional behaviour of polypropylene, acrylic and cotton fibres
[16, 20].

25.4.3 Lubricated conditions

Compared with its effect on metals, where it may reduce the value of µ from 1 to
0.05, lubrication has comparatively little effect on the friction of fibres and will not
usually reduce the value of µ below about 0.2. The behaviour is usually thought of
as boundary lubrication in which the layer of lubricant is not sufficiently thick to
mask the asperities on the surface. Under these conditions, a good lubricant acts by
forming monolayers on the surface and preventing the adhesion of the two surfaces
at points of contact. There are then very few contacts between the materials, and most
of the friction results from the force needed to shear the lubricant film itself.

If greater quantities of lubricant are present, then we may have conditions of
hydrodynamic lubrication, in which there is a comparatively thick film of fluid
between the surfaces and the friction results from the viscous resistance to flow. In
conventional bearing lubrication under hydrodynamic conditions, the coefficient of
friction is found to be a single-valued function of ZN/P, where Z is the viscosity of
the oil, N is the angular velocity of the journal and P is the nominal pressure on the
bearing. The analogous quantity for a yarn passing over a guide is ZV/W, where V is
the yarn velocity and W is the load on the guide. Hansen and Tabor [47] have
analysed Lyne’s data [27], and more of their own, and found, as shown in Fig. 25.24,
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25.23 Check of equation (25.25) for nylon in the form of fibre, bristles and
spheres [8], µ/D 0.52 being plotted against N on logarithmic coordinates. The
straight line has a slope of –0.26 (1 g wt = 9.81 m N).
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that the coefficient of friction is a single-valued function of ZV/W. They conclude
that, for moderately high values of ZV/W (high speed, low loads), hydrodynamic
lubrication is the dominant factor.

At low speeds (or high loads), an oil film would not be maintained between the
surfaces, and rubbing friction would be dominant. This decreases with increased
speed. Consequently, a combination of rubbing friction at low speeds and hydrodynamic
friction at high speeds would give a minimum in the friction, as is shown in Fig.
25.25. This is in agreement with the experimental results.

25.5 The friction of wool

25.5.1 Experimental

The friction of the wool fibre depends on the direction in which it is pulled: the
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25.24 Effective coefficient of friction plotted against ZV/W for acetate yarn and
nylon yarn on steel, lubricated with white mineral oils. The point cover
variations in speed, pin radius, pre-tension and oil viscosity.
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25.25 Combination of rubbing friction and hydrodynamic friction.
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resistance is greater when it is pulled against the scales than when it is pulled with
them. This is known as the directional frictional effect (DFE), and the various
combinations that can occur are illustrated in Fig. 25.26. This effect has important
technical consequences, since it means that, in a mass of wool, individual fibres will
show preferential movement in one direction and will continually entangle themselves
with the remaining fibres: this is the process of felting.

Some experimental values for the directional frictional effects of wool are given
in Table 25.8. It has been shown that the effect persists, though to a reduced extent,
when the fibres are lubricated or coated with thin films of gold or silver [48]. In

Tip
Root

(a)

(b) (d)

(c) (e)

Table 25.8 Directional friction in wool

Value of µ

With Against
scales scales

Dry wool (twisted fibres) 13 0.11 0.14
Wool in water (twisted fibres) 13 0.15 0.32
Wool unswollen on ebonite swollen in benzene [36] 0.58 0.79
Wool swollen in water on ebonite unswollen [36] 0.62 0.72
Wool swollen in water on ebonite swollen in benzene [36] 0.65 0.88
Wool on horn, dry [41] 0.3 0.5
Wool on horn, wet pH 4.0 [49]

untreated 0.3 0.6
chlorine-treated 0.1 0.1
alcoholic-caustic-potash-treated 0.4 0.6
sulphuryl-chloride-treated 0.6 0.7

Other values are included in Tables 25.3, 25.4 and 25.6.

25.26 Directional friction in wool: (a) between fibres placed in same direction;
(b) between fibres against scales; (c) between fibres with scales; (d) on plane
surface, against scales; (e) on plane surface, with scales.
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water, or other swelling agents, the difference in the coefficients of friction is greater
than it is in air. On the other hand, the difference is less after mechanical abrasion or
chemical treatments, designed to reduce shrinkage, which attack the outer layer of
the wool fibre.

25.5.2 Theory of the directional frictional effect

The occurrence of directional friction has almost invariably been ascribed to the
geometric form of the scales. Other explanations, such as Martin’s view [50] that
there was an asymmetrical molecular field at the surface of the fibre, appear far-
fetched and are not supported by the experimental evidence. The various theories
have been reviewed by Makinson [51].

The simplest geometrical theory is that the wool fibre acts as a ratchet, with the
scales interlocking with one another or catching against asperities on another surface.
Motion against the scales would be strongly resisted, since it would involve rupture
or deformation of the scales. Makinson [51] regards this as an effective explanation,
and indicates that a ploughing mechanism would also be effective. Lincoln [52] has
given a more sophisticated geometrical theory, which applies the general idea that
friction is due to the shearing of real areas of contact.

Figure 25.27 shows the contact between an idealised wool scale structure and
asperities on another surface. The scale surfaces are assumed to be inclined at an
angle α, so that a tangent through the point of contact between an asperity and the
scale surface makes an angle α with a line parallel to the axis of the wool fibre.
Contact may also occur between an asperity and the scale edge, with the tangent at
the contact making an angle β with the fibre axis. For slippage to occur, there must
be shearing parallel to the tangents at each point of contact. We must therefore
consider the relations between the forces when contact occurs at an angle, as shown
in Fig. 25.28.

The resultant force R acting at the contact may be resolved either into components
W and F acting perpendicular and parallel to the direction of motion, or into components
N and P acting perpendicular and parallel to the tangent at the contact. If the angle
between these directions is θ, we must have:

N = W cos θ + F sin θ (25.28)

P = F cos θ – W sin θ (25.29)

W W

α
β

β α

25.27 Contact between scale structure and asperities on a surface.
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For slippage to occur, the junction must be sheared. The force necessary to do this
will be given by the general frictional relation P = aNn.

Substituting from equations (25.28 and 25.29), we have

F cos θ – W sin θ = a(W cos θ + F sin θ)n (25.30)

Lincoln gives a graphical solution of this equation, showing values of F for various
values of a and θ, when n = 2/3. This value of n is applicable to elastic deformation
at the junction. Figure 25.29 is taken from this graph and shows the variation of F
with θ. The resistance to motion decreases as the value of θ decreases. When θ is
positive, there will be resistance to motion even if a = 0, that is, if the friction is zero.
It should be noted that negative values of θ correspond to motion in the reverse
direction to that shown in Fig. 25.28.

We can now consider the application of this result to the contact between two
surfaces. If the asperities on the surfaces are completely random, then large and
small, positive and negative, values of θ will be equally likely for motion in any
direction and there will be no directional effect.

In wool, however, there is a regular arrangement of asperities, the scale structure.
Figure 25.27 shows that, for motion against the scales, the two types of contact will

Motion

θ

W
N

R

FP

25.28 Geometry of contact.

–40° –20° 0° 20° 40°
θ

F  
(µ

N
)

12

8

4

0

a = 1
a = 0.5

a = 0

25.29 Variation of F with θ, with n = 2/3 (after Lincoln [52]).
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have values of θ equal to +β and –α, whereas for motion with the scales the values
will be –β and +α. From the combination of these values, shown in Fig. 25.30, it
would appear obvious that the frictional force would be greater against the scales.

There are, however, complications, which have the effect that the frictional force
is not a simple mean of the two values of F. Firstly, there are more α contacts than
β contacts, since there is a greater length of scale surface than of scale edge. Secondly,
the geometry of the contacts will be different and will influence the value of α and
the distribution of the load. Thirdly, the values of α depend on the range of values of
the scale angle, and the values of β may range up to π/2, depending on the position
of the contact round the scale edge, though the effective negative values of β will be
limited by the condition: F ≥ 0. These factors will reduce the difference in the friction
by causing the net force to be nearer that given by the β contacts than that given by
the α contacts. In principle, it may even cause a reversal of the directional effect, but
the detailed analysis given by Lincoln, considering the three-dimensional view of
fibre contacts, shows that this would not happen.
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AI.1 Introduction

In most of physics and engineering, size and shape are specified by linear measures
as three-dimensional solids, with mass (weight) added when necessary. Textiles are
a mixture of solid fibres and space between and are mostly one-dimensional yarns
and cords or two-dimensional fabrics. Thickness and volume depend on the methods
of measurement and are ill-defined. Mass-based measures, linear or areal density, are
more useful. Even for fibres, although area of cross-section and, for simple shapes,
thickness, are well defined, linear density is much easier to measure.

AI.2 Fineness

The preferred unit of linear density is tex = g/km, which was introduced in the 1950s.
The strict SI unit is kg/m = megatex, Mtex, but this is too large a unit, except for
ropes. Historically, microgram/inch has been used for cotton. The silk industry used
denier = gram per 9000 m and this was adopted in the early days of manufactured
fibres. Because the numbers are close to those in denier, decitex, dtex = gram per
10 000 m is now widely used.

AI.3 Stress and specific stress

Unfortunately tensions and other applied forces can be normalised in a great many
ways. Many different units are found in the older literature and several appear in
current publications.

There is a primary distinction:

• Conventional stress, force per unit area, is normal in physics and engineering and
is commonly used by researchers from an engineering or materials science
background. The strict SI unit is Pa = N/m2. GPa and MPa are convenient sizes.

• Specific stress, force per unit linear density, is more useful for fibres and is the
usual mode in the textile community. The strict SI unit is N/(kg/m). N/tex and
m N/tex are convenient sizes.

Numerical values of the two quantities are related by a relation, specific stress =

Appendix I
Units
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stress/density, which is valid without numerical factors in strict SI units, N m/kg, Pa,
kg/m3, or in the combination of N/tex, GPa, g/cm3.

However, in both categories, many other units are found for the following reasons:

• Equivalence of quantities. Specific stress = energy per unit mass, e.g. kJ/g. Specific
modulus = (wave velocity)2, e.g. (km/s)2. Tenacity is equivalent to breaking
length (length failing under its own weight), e.g. km or strictly kmf (kilometer-
force).

• Unit system. The SI system is based on metre-kilogram-second (MKS). The
older CGS (centimetre-gram-second) includes dyne for force. There are former
British Imperial units, which are still widely used in the United States.

• Inertial (unit mass × unit acceleration), e.g. newton, or gravitational. (unit mass
× acceleration due to gravity), e.g. gram-force, gf, also called gram-weight, g wt.

• Unit of fineness, e.g. tex or denier.
• Heat units for energy, e.g. cal/g.
• Multiples and sub-multiples.
• Modes of expression, e.g. N/mm2

 or MPa.
• Abbreviations.

Table A1.1 lists units with conversion factors. It is convenient to note that nylon and
polyester fibres can have strengths up to near 1 N/tex. Polymer fibres have densities
between 1 and 1.5 g/cm3, so that values in GPa are up to 33% lower than in N/tex.

Table AI.1 Unit conversions for stress and specific stress

Specific stress Stress: density in g/cm3 times

1 – N/tex, kJ/g, GPa/g cm–3, (km/s)2 1 – GPa, J/mm3

– 10 c N/dtex, 10.2 gf/dtex, 11.3 gf/den –
– 102 gf/tex, kmf, kg mm–2/g cm–3 – 102 kg/mm2 145 ksi

239 cal/g, 430 BTU/lb
103 – mN/tex, J/g, MPa/g cm–3 103 – MPa, N/mm2

– – 104 bar, 9869 atm
– 145 000 psi/g cm–3 – 145 000 psi

(psi = lbf/in2)
*106 – N/kg m–1, J/kg, Pa/kg m–3 106 – 7.5 × 106 mm Hg

– 3.94 × 106 inchf, psi/(lb/cu in) *109 – Pa, N/m2, J/m3,
109 – kg m–1 s–1

– 1010 dyn/g cm–1, erg/g – 1010 dyn/cm2

*Strict SI units.
Other multiples are also used.
Gravitational units, written above as gf etc. are also found in forms such as: g, e.g. g/den, gm,
or g wt; lb or lb wt; km, km wt or Rkm.
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Apart from the oddity that flax becomes linen when made into yarns and fabrics,
there is no uncertainty in assigning names to natural fibres. With manufactured fibres
there are problems. Much of the early literature on the first generation of regenerated
and synthetic fibres identifies them by trade names that may no longer be current. For
the newer fibres, trade names are more easily recognised by many people. The
alternatives are various chemical names, generic fibre names, abbreviations, etc. In
this book, all the above forms are used, depending on what is most likely to be
informative.

The account below, which includes names mentioned in the text, is simplified. For
formal definitions, see Denton and Daniels [1]. Types that are no longer made are
included in braces { }. ISO generic names and codes are underlined. The term
‘manufactured fibres’ is now preferred to ‘man-made fibres’.

AII.2 Regenerated fibres

• Rayon   The US generic definition covers manufactured fibres of regenerated
cellulose or with less than 15% of substitutions for —OH groups. Viscose CV
(cellulose xanthate route), modal CMD (high-wet-modulus viscose), cupro CUP
(cuprammonium route), lyocell CLY (organic solvent route). At one time and in
some countries, rayon included all manufactured cellulosic fibres, including acetate
fibres. Polynosic was another name for a modal fibre. Trade names include Fibro
(Courtaulds staple viscose fibre), Tenasco (Courtaulds high-tenacity viscose),
{Durafil} (high-tenacity staple fibre), {Fortisan} (high strength, regenerated
from acetste), Tencel (lyocell).

• Acetate   Acetate fibre CA, cellulose ethanoate (acetate), <92% and >74% of —
OH groups acetylated. Also known as secondary acetate; Dicel was a trade
name. If >92%, triacetate CTA; Tricel was a trade name; in the United States
included in acetate.

• Alginate   Alginate ALG, fibres of metallic salts of alginic acid.
• Regenerated proteins   {Lanital, Fibrolane} (milk casein), {Ardil} (groundnut

protein), {Vicara} (corn zein protein).

Appendix II
Fibre names
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AII.3 Synthetic fibres of linear macromolecules

• Nylon (introduced by Du Pont, but not a trade name)   Polyamide PA, nylon,
>85% amide groups attached to aliphatic groups. Nylon is generic in the United
States. Different nylons are named by numbers of carbon atoms in repeat units.
e.g, nylon 6 for [—(CH2)5·CO·NH—]n and nylon 66 for [—
CO·NH·(CH2)6·NH·CO·(CH2)4—]n. Also see Aramid.

• Polyester   Polyester PES, with >85% of an ester of a diol and benzene-1,4-
dicarboxylic acid (terephthalic acid). The trade names Terylene (ICI) and Dacron
(Du Pont) were often used in the earlier scientific literature. Common usage is
polyethylene terephthalate, PET or 2GT. In the United States, and in this book,
polyester is more widely used and includes: polybutylene terephthalate, poly-
trimethylene-terephthalate, PBT or 3GT; polyethylene naphthalate, PEN. Note
that the chemical definition of polyester is much broader. Polyester resins are
cross linked polymers used in reinforced plastics.

• Polyolefin   Polypropylene PP, isotactic [—CH2·CH(CH3)—]n· Polyethylene PE,
[—CH2—]n, see also HMPE.

• Acrylic   Acrylic PAN, with >85% of cyanethene (acrylonitrile) groups.
Polacryonitrile PAN is also used. Modacrylic MAC, with >35%, <85% acrylonitrile.

• Vinyl and vinylidene   Includes: chlorofibre CLF, with >50% of chloroethene
(vinyl chloride) PVC or 1,1-dichloroethene (vinylidene chloride) PVDC, >65%
if rest of chain is acrylonitrile, Vinyon is US generic for PVC fibre; vinylal
PVAL, polyethenol (polyvinyl alcohol) with differing levels of acetylation, vinal
is US generic.

• Fluoro   Fluorofibre PTFE, usually polytetrafluorethylene, but also other aliphatic
fluorocarbons.

• Elastomeric fibres   Elastane EL, with >85% segmented polyurethane. US
generic is spandex. Lycra is a trade name. Elastodiene ED, natural (rubber) or
synthetic polyisoprene and other diene–vinyl copolymers.

• Thermally, chemically resistant   A number of thermally and/or chemically
resitant fibres are referred to in the text.

AII.4 High-modulus, high-tenacity (HM–HT) linear

polymer fibres

• Aramid   Aramid AR with >85% amide groups attached to two aromatic groups
(50% imide groups may be substituted). Para-aramids have benzene rings joined
in opposite 1,4 positions; trade names include Kevlar and Twaron. Technora is an
aramid copolymer. Meta-aramids have benzene rings joined in next nearest 1,3
positions; Nomex is a trade name.

• Aromatic polyesters  Vectran (trade name) is a fully aromatic co-polyester fibre
produced by a melt-spinning route. This type may be referred to as liquid crystal
polymer (LCP) fibres though many other types are made by a liquid crystal
route), thermotropic liquid crystal polymer (TLCP) fibres or liquid crystal aromatic
polyester (LCAP) fibres.
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• PBO   Polybenzoxazole, poly(p-phenylene benzibisoxazole, fibres are commonly
referred to as PBO. Zylon is a trade name.

• M5   M5 is the development name for a poly(2,6-dimidazo[4,5-b:4′,5′-
e]pyridinylene-1,4-(2,5-dihydroxy)phenylene} PIPD fibre.

• HMPE   High-modulus polyethylene, HMPE or HPPE, gel-spun, highly oriented,
high molecular weight polyethylene. Spectra and Dyneema are trade names.

AII.5 Carbon fibres

• Carbon   Carbon CF, >90% carbon by controlled pyrolysis. Fully carbonised and
processed at high temperature are often referred to as graphite fibres. Also thermally
resistant, partially carbonised fibres.

AII.6 Inorganic fibres

• Glass   Glass GF.
• Ceramic   Various ceramic fibres are referred to in the text.

AII.7 Reference

1. M. J. Denton and P. N. Daniels. Textile Terms and Definitions, 11th edition, Textile Institute,
Manchester, 2002.
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Appendix III
Standard test methods

The following is a selection of some relevant test methods for the study of the physical properties of fibres, particularly the
dimensional and other properties that determine the assessment of fibre quality.

ISO and British Standard ASTM IWTO Standard (Italics for drafts)

COTTON HVI TESTING
ASTM D5867-05 Standard test methods
for measurement of physical properties of
cotton fibers by high volume instruments

Sampling procedures
ISO 1130:1975 Textile fibres – Some IWTO 7 Sub-sampling staples from grab
methods of sampling for testing Samples
BS EN 12751:1999 Textiles. Sampling IWTO 38 Method of grab sampling greasy
of fibres, yarns and fabrics for testing wool from bales

Fibre fineness
ISO 2403:1972 Textiles – Cotton fibres ASTM D1448-05 Standard test IWTO 6 Method of test for the determination
– Determination of micronaire value method for Micronaire reading of of the mean fibre diameter of wool fibres in

cotton fibers combed sliver using the airflow apparatus
ISO 1136:1976 Wool – Determination ASTM D1282-05 Standard test IWTO 8 Method of determining fibre
of mean diameter of fibres – Air method for resistance to airflow as diameter distribution parameters and
permeability method an indication of average fiber percentage medullated fibres in wool and

diameter of wool top, card sliver, other animal fibres by the projection
and scoured wool microscope

ISO 137:1975 Wool – Determination ASTM D5867-05 Standard test IWTO 12 Measurement of mean & distribution
of fibre diameter – Projection methods for measurement of of fibre diameter using the Sirolan-Laserscan
microscope method physical properties of cotton fibers fibre diameter analyser

by high volume instruments

743
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BS EN ISO 10306:1995 Textiles. ASTM D1282-05 Standard test IWTO 28 Determination by the airflow
Cotton fibres. Evaluation of method for resistance to airflow as method of the mean fibre diameter of core
maturity by the  air flow method an indication of average fiber samples of raw wool

diameter of wool top, card sliver,
and scoured wool

BS 3085:1981, ISO 4912:1981 Method ASTM D7025-04ae1 Standard test IWTO 47 Measurement of the mean &
for evaluation of the maturity of method for assessing clean flax fiber distribution of fibre diameter of wool using
cotton fibres (microscopic method) fineness an Optical Fibre Diameter Analyser (OFDA)
BS 3181:1968 Method for the ASTM D1577-07 Standard test IWTO DTM 62 Determination of fibre length,
determination of cotton fibre methods for linear density of length distribution, mean fibre diameter and
fineness by the airflow method textile fibers fibre diameter distribution of wool top and

slivers by OFDA4000
BS 2016:1973 Methods for the ASTM D1442-06 Standard test
determination of the linear density method for maturity of cotton fibers
of textile fibres: gravimetric methods (sodium hydroxide swelling and

polarized light procedures)
Fibre length
ISO 4913:1981 Textiles – Cotton fibres ASTM D5867-05 Standard test IWTO DTM 1 Method of determining barbe &
– Determination of length (span methods for measurement of physical hauteur of wool fibres using a comb sorter
length) and uniformity index properties of cotton fibers by high

volume instruments
BS ISO 6989:1981 Textiles fibres. ASTM D1234-85(2001) Standard test IWTO DTM 5 Method of determining wool
Determination of length and length method of sampling and testing fibre length distribution of fibres from yarn
distribution of staple fibres staple length of grease wool or fabric using a single length measuring
(by measurement of single fibres) machine
BS 6176:1981, ISO 6989-1981 Method ASTM D1440-07 Standard test IWTO DTM 16 Method of test for wool fibre
for determination of length and method for length and length length using a WIRA fibre diagram machine
length distribution of staple fibres distribution of cotton fibers (array
by measurement of single fibres method)
BS 5182:1975, ISO 2646-1974 Method ASTM D1575-90 (2001) Standard test IWTO 17 Determination of fibre length
for the measurement of the length of method for fiber length of wool in and  distribution parameters
wool fibres processed on the scoured wool and in card sliver
worsted system, using a fibre
diagram machine.

ISO and British Standard ASTM IWTO Standard (Italics for drafts)
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BS 4044:1989 Methods for ASTM D5103-07 Standard test IWTO 30 Determination of staple length
determination of fibre length method for length and length and staple strength
by comb sorter diagram distribution of manufactured staple

fibers (single-fiber test)
ASTM D519-04 Standard test method IWTO DTM 62 Determination of fibre length,
for length of fiber in wool top length distribution, mean fibre diameter

and fibre diameter distribution of wool top
and slivers by OFDA4000

Moisture absorption
BS 4784-1:1988, ISO 6741-1:1987 ASTM D1576-90 (2001) Standard test IWTO 33 Method for the determination
Methods for determination of method for moisture in wool by of oven-dry mass, calculated invoice mass
commercial mass of consignments oven-drying & calculated merchandisable mass of
of textiles. Mass determination and scoured or carbonised wool
calculations
BS 1051:1992, ISO 6348:1980 ASTM D2495-07 Standard test IWTO 34 Determination of the oven-dry
Glossary of terms relating to the method for moisture in cotton by mass, calculated invoice mass & calculated
mass determination of textiles oven-drying merchandisable mass of wool tops

IWTO 41 Determination of the invoice mass
of scoured or carbonised wool tops or noils
by the capacitance method

Tensile testing
ISO 3060:1974 Textiles – Cotton ASTM D5867-05 Standard test IWTO 30 Determination of staple length
fibres – Determination of breaking methods for measurement of and staple strength
tenacity of flat bundles physical properties of cotton

fibers by high volume instruments
BS EN ISO 5079:1996 Textiles. Fibres. ASTM D2524-95 (2003) Standard test IWTO 32 Determination of the bundle
Determination of breaking force and method for breaking tenacity of wool strength of wool fibres
elongation at break of individual fibers, flat bundle method – 1/8-in.
fibres (3.2-mm) Gage Length
BS 4029:1978 Method of test for the ASTM D2653-07 Standard test
determination of tensile elastic method for tensile properties of
recovery of single fibres and elastomeric yarns (CRE type tensile
filaments (constant-rate-of- testing machines)
extension machines)
BS 3411:1971 Method for the ASTM D3217-07 Standard test
determination of the tensile methods for breaking tenacity of
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properties of individual textile fibres manufactured textile fibers in loop
or knot configurations

BS 5116:1974 Method of test for ASTM D3822-07 Standard test
determination of breaking tenacity method for tensile properties of single
of flat bundles of cotton fibres textile fibers

ASTM D1294-05 Standard test
method for tensile strength and
breaking tenacity of wool fiber
bundles 1-in. (25.4-mm) gage length
ASTM D1445-05 Standard test
method for breaking strength and
elongation of cotton fibers
(flat bundle method)

ISO and British Standard ASTM IWTO Standard (Italics for drafts)
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