Section outline
-
Course Rationale
An introduction to data mining; Data preparation, model building, and data mining techniques such as clustering, decisions trees and neural networks; Induction of predictive models from data: classification, regression, and probability estimation; Application case studies; Data-mining software tools review and comparison.Course Objectives
- To appreciate the necessity of data mining in everyday life
- To apply the concept of data mining in solving problems
- To demonstrate applications of data mining using tools
- To apply knowledge of data mining in project work
Course Outcomes (CO’s)
- CO1 Able to grasp the basic Data Mining Principles
- CO2 Able to identify appropriate data mining algorithms to solve real world problems
- CO3 Able to compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining
- CO4 Able to apply data mining knowledge in problem solving