Data mining techniques

Data mining techniques

by Al Amin Dolon 15-2039 -
Number of replies: 0


Data mining works by using various algorithms and techniques to turn large volumes of data into useful information. Here are some of the most common ones:

Association rules: An association rule is a rule-based method for finding relationships between variables in a given dataset. These methods are frequently used for market basket analysis, allowing companies to better understand relationships between different products. Understanding consumption habits of customers enables businesses to develop better cross-selling strategies and recommendation engines.

Neural networks: Primarily leveraged for deep learning algorithms, neural networks process training data by mimicking the interconnectivity of the human brain through layers of nodes. Each node is made up of inputs, weights, a bias (or threshold), and an output. If that output value exceeds a given threshold, it “fires” or activates the node, passing data to the next layer in the network. Neural networks learn this mapping function through supervised learning, adjusting based on the loss function through the process of gradient descent. When the cost function is at or near zero, we can be confident in the model’s accuracy to yield the correct answer.

Decision tree: This data mining technique uses classification or regression methods to classify or predict potential outcomes based on a set of decisions. As the name suggests, it uses a tree-like visualization to represent the potential outcomes of these decisions.

K- nearest neighbor (KNN): K-nearest neighbor, also known as the KNN algorithm, is a non-parametric algorithm that classifies data points based on their proximity and association to other available data. This algorithm assumes that similar data points can be found near each other. As a result, it seeks to calculate the distance between data points, usually through Euclidean distance, and then it assigns a category based on the most frequent category or average.