
CHAPTER 8 

Visualization Techniques for 
Trees, Graphs, and Networks 

While most of the visualization techniques discussed thus far focus on the 
display of data values and their attributes, another important application of 
visualization is the conveying of relational information, e.g., how data items 
or records are related to each other. These interrelationships can take many 
forms: 

part/subpart, parent/child, or other hierarchical relation; 

coimectedness, such as cities connected by roads or computers con- 
nected by networks; 

derived from, as in a sequence of steps or stages; 

shared classification; 

similarities in values; 

similarities in attributes (e.g., spatial, temporal). 

Relationships can be simple or complex: unidirectional or bi-directional, 
nonweighted or weighted, certain or uncertain. Indeed, the relationships may 
provide inore and richer information than that contained in the data records. 
Applications for visualizing relational information are equally diverse, from 
categorizing biological species, to exploriilg document archives, to studying 
a terrorist network. 
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In this chapter we will exainine a number of techniques that have been 
developed for visualizing relational information. This presentation, how- 
ever, will just be the tip of the iceberg, as tree and graph visualization is 
a well-established field, with its own books, journals, conferences, software 
packages, and algorithms. 

8.1 Displaying Hierarchical Structures 

Trees or hierarchies (we'll use the terms interchangeably) are one of the most 
comnloll structures to hold relational information. For this reason, inany vi- 
sualization techi~iques have been developed for display of such information. 
We can divide these techniques into two classes of algorithms: space-filling 
and non-space-filling. The rest of this section will provide details on imple- 
menting algorithins for visualizing this type of data. 

8.1.1 Space-Filling Methods 

As the name implies, space-filling techniques make maxiinal use of the dis- 
play space. This is accomplisl~ed by using juxtapositioning to imply rela- 
tions, as opposed to, for example, conveying relations with edges joining 
data objects. The two most coininon approaches to generating space-filling 
hierarchies are rectangular and radial layouts. 

Treemaps [l761 and their many variants are the most popular form of 
rectangular space-filling layout. In the basic treemap, a rectangle is recur- 
sively divided into slices, alternating horizontal and vertical slicing, based on 
the populations of the subtrees at  a given level. Pseudocode for this process 
is given in Figure 8.1, and an exainple is shown in Figure 8.2. 

As mentioned, inany variants on treeinaps have been proposed and de- 
veloped since they were introduced, including squarified treemaps [40] (to 
reduce the occurrence of long, thin rectangles) and nested treemaps [l761 
(to emphasize the hierarchical structure). 

Tlle inethods described above are structured using horizontal and vertical 
divisions to convey the hierarcl~y. A number of other approaches are pos- 
sible, however, such as those that divide space radially. Radial space-filling 
hierarchy visualiza,tions, sometimes referred to as sunburst displays [336], 
have the root of the hierarchy in the center of the display and use nested 
rings to convey the layers of the l~ierarcl~y. Each ring is divided based on the 
nuinber of nodes at that level. These techniques follow a similar strategy 
to treen~aps, in that the i l~~mber  of terminal nodes in a subtree determines 
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Start : Main Program 
Width = width of rectangle 
Height = height of rectangle 
Node = root node of the tree 
Origin = position of rectangle, e.g. , CO, 01 
Orientation = direction of cuts, alternating between horizontal and vertical 
Treemap(Node, Orientation, Origin, Width, Height) 

End: Main Program 

Treemap(node n, orientation o, position orig, hsize W, vsize h) 
if n is a terminal node (i.e., it has no children) 

draw-rectangle (orig, W, h) 
return 

for each child of n (child-i), get number of terminal nodes in subtree 
sum up number of terminal nodes 
compute percentage of terminal nodes in n from each subtree (percent-i) 
if orientation is horizontal 

for each subtree 
compute offset of origin based on origin and width (offset-i) 
treemap(chi1d-i, vertical, orig + offset-i, W 9 percent-i, h) 

else 
for each subtree 

compute offset of origin based on origin and height (offset-i) 
treemap(chi1d-i, horizontal, orig + off set-i, W, h * percent-i) 

End: Treemap 

Figure 8. l. Pseudocode for drawing a hierarchy using a treemap. 

A sample hierarchy and the corresponding treemap display. 



8. Visualization Techniques for Trees, Graphs, and Networks 

Start : Main Program 
Start = start angle for a node (initially 0) 
End = end angle for a node (initially 360) 
Origin = position of center of sunburst, e.g., [0,0] 
Level = current level of hierarchy (initially 0) 
Width = thickness of each radial band - based on max depth and display size 
Sunburst (Node, Start, End, Level) 

End: Main Program 

Sunburst (node n, angle st, angle en, level 1) 
if n is a terminal node (i.e., it has no children) 

draw-radial-section(Origin, st, en, l * Width, (1+i) * Width) 
return 

for each child of n (child-i), get number of terminal nodes in subtree 
sum up number of terminal nodes 
compute percentage of terminal nodes in n from each subtree (percent31 
for each subtree 

compute start/end angle based on size of subtrees, order, and angle range 
Sunburst (child-i, st-i, en-i, 1+i) 

End: Sunburst 

Figure 8.3. Pseudocode for drawing a hierarchy using a sunburst display. 

Figure 8.4. A sample hierarchy and the corresponding sunburst display. 
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the amount of screen space that will be allocated for it. However, unlike 
treemaps, which assign most screen space to coilveying the terminal nodes, 
radial techniques also show the intermediate nodes. The process is described 
in pseudocode in Figure 8.3, and an example is shown in Figure 8.4. 

For these and other space-filling techniques, color can be used to convey 
inany attributes, such as a value associated with the node (e.g., classification) 
or it inay reinforce the hierarchical relationships, e.g., siblings and parents 
may have similarities in color, a s  seen in Figure 8.4. Symbols and other 
markings may also be embedded in the rectangular or circular segments to 
communicate other data features. 

8.1.2 Non-Space-Filling Methods 

The most common representation used to visualize tree or hierarchical re- 
lationships is a node-link diagram. Organizational charts, family trees, and 
tournament pairings are just some of the common applications for such dia- 
grams. The drawing of such trees is influenced the most by two factors: the 
fan-out degree (e.g., the number of siblings a parent node can have) and the 
depth (e.g., the furthest node from the root). Trees that are significantly 
coilstraiiled in one or both of these aspects, such as a binary tree or a tree 
with only three or four levels, tend to be much easier to draw than those 
with fewer constraints. 

When designing an algorithm for drawing any node-link diagram (not just 
trees), one must consider three categories of often-contradictory guidelines: 
drawing conventions, constraints, and aesthetics. Conventioils may include 
restricting edges to be either a single straight line, a series of rectilinear lines, 
polygonal lines, or curves. Other conventions might be to place nodes on 
a fixed grid, or to have all sibling nodes share the same vertical position. 
Constraints may include requiring a particular node to be at the center of 
the display, or that a group of nodes be located close to each other, or that 
certain links must either go from top to bottom or left to right. Each of the 
above guidelines can be used to drive the algorithm design. 

Aesthetics, however, often have significant impact on the interpretability 
of a tree or graph drawing, yet often result in conflicting guidelines. Some 
typical aesthetic rules include: 

minimize line crossings 

maintain a pleasing aspect ratio 

minimize the total area of the drawing 
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Figure 8.5. An example of visualizing hierarchies with a simple node-link diagram, using equal 
spacing per level. 

W minimize the total length of the edges 

W minimize the number of bends in the edges 

minimize the number of distinct angles or curvatures used 

W strive for a symmetric structure 

For trees, especially balanced ones, it is relatively easy to design algo- 
rithms that adhere to many, if not most, of these guidelines. For example, 
a simple tree drawing procedure is given below (sample output is shown in 
Figure 8.5): 

1. Slice the drawing area into equal-height slabs, based on the depth of 
the tree. 

2. For each level of the tree, determine how many nodes need to be drawn. 

3. Divide each slice into equal-sized rectangles based on the number of 
nodes at  that level. 

4. Draw each node in the center of its corresponding rectangle. 

5. Draw a link between the center-bottom of each node to the center-top 
of its child node(s). 

Many enhancements can be made to this rather basic algorithm in order 
to improve space utilization and move child nodes closer to their parents. 
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Some of these include: 

a Rather than using even spacing and centering, divide each level based 
on the iluinber of terminal nodes beloilging to each subtree. 

a Spread terininal nodes evenly across the drawing area and center par- 
ent nodes above them. 

a Add some buffer space between adjacent noilsibling nodes to einphasize 
relationships. 

If possible, reorder the subtrees of a node to achieve more symmetry 
and balance. 

a Position the root node in the center of the display and lay out child 
nodes radially, rather than vertically. 

For large trees, a popular approach is to use the third dimension, supple- 
mented with tools for rotation, translation, and zooming. Perhaps the most 
well-known of such techniclues is called a cone tree [293]. In this layout, the 
children of a node are arranged radially at  evenly spaced angles and the11 
offset perpendicular to the plane. The two parameters critical to this process 
are the radius and offset distance; varying these influences the density of the 
display and the level of occlusion. Minimally they should be set so that 

Figure 8.6. A11 example of a hierarclly displayed with a cone tree [293]. (Image @ 1991 Associ- 
ation of Coinputing Machinery. Reprinted by permission, courtesy of PARC, Inc.) 
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separate branches of the tree do not fall into the same section of 3D space. 
One method to ensure this is to have the radius inversely proportional to 
the depth of a node in the tree. In this manner, nodes close to the root 
are significantly separated, and those near the bottom of the tree are closer 
together. An example is shown in Figure 8.6. 

8.2 Displaying Arbitrary GraphsINetworks 

Trees are just one type of a more general representation of relations called 
a graph. Technically speaking, a tree is a connected, unweighted, acyclic 
graph. Clearly, there are many other possibilities, including graphs with 
weighted edges, undirected graphs, graphs with cycles, disconnected graphs, 
and so on. Rather than give more algorithms specific to other classes of 
graphs, which could certainly fill more than a textbook, we will describe 
some general approaches for visualizing graphs in which the class or struc- 
ture is not known, which we term an arbitrary graph. For our purposes, 
we will assume that the graph is undirected, though some of the techniques 
presented are easily extended to directed graphs. We will look at two dis- 
tinct graph drawing approaches: node-link dzagrams (building on the ma- 
terial from the previous section) and matrix displays. Readers interested 
in a broader or deeper exposure to graph drawing are directed to the vast 
amount of literature on this topic, some of which is listed at the end of 
the chapter. 

8.2.1 Node-Link Graphs 

Force-directed graph drawing methods use a spring analogy to represent 
the links, with node positions iteratively refined until the overall energy or 
stress of the system is minimized (see Figure 8.7). For each pair of connected 
nodes, there are two forces: f,, , the force caused by the spring between them, 
and g,], an electrical repulsion force to keep nodes from getting too close. 
A simple model is to use Hooke's law to represent the spring force and an 
inverse square law to  represent the repulsion force. If d(i, j )  is the Euclidean 
distance between nodes i and j, S,,, is the natural spring length (at rest), 
and k,, is the spring tension, the X-component of the spring force between 
two nodes can be computed as 
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Figure 8.7. An example of a force-directed graph. The graph, showing relationships between 
countries of Europe, was generated with aiSee: http://www.aisee.com. 

If rij is the strength of the repulsion between nodes i and j, the x- 
component of the repulsion force can be computed as 

Thus, one step of the position refinement process would calculate the 
sum of all the forces on each node (X-, y-, and z-components, as appropriate) 
and move its position proportional to that force. Clearly, once points have 
moved, all the forces need to be recalculated and another shift of positions 
made. To avoid oscillation, it is common to start with movements that are a 
significant percentage of the force and then use smaller and smaller step sizes 
to converge on the point where the forces are minimized. Initial positions 
can be assigned randomly. As it is quite possible to end up in a local, rather 
than a global, energy minimum, it is common to run the layout algorithm 
multiple times with different initial configurations to find the best of several 
computed configurations. The goodness of the layout can be computed based 
on the sum of the magnitude of forces on a given configuration. 
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Planar graph drawing techiliques start with the assumption that the 
underlyiilg graph is planar, e.g., it l ~ a s  no edge crossings. These algorithms 
have gottell a lot of attention, for several reasons. First, as the theory 
of planar graphs has a long history, there are many concepts that can be 
exploited from the literature. Secoad, as edge-crossings tend to make graphs 
difficult to read, it is a good strategy to minimize or eliminate such crossings. 
Finally, planar graphs tend to be sparse; Euler's formula indicates that a 
planar graph with n vertices has at  most 3n - 6 edges. Conceiltrating on 
planar graphs is not overly restrictive, as one can eliminate crossings by 
iilsertiilg duininy nodes at the crossings, perform the layout using a planar 
graph algorithm, and then remove the dummy nodes. 

We will, in addition, assume that the graph is conmected, e.g., there is a 
path from every node to every other node. Graphs that are not conilected can 
be separated illto subgraphs that can be drawn separately. A subgraph that 
is maxiinally coililected (all nodes are connected) is a connected component 
of the graph. Other useful definitions include: 

m A face is a partition of the plane isolated by a set of coilnected vertices. 

m A neighbor set is a counter-clockwise listing of the vertices incident to 
a particular vertex. 

m A planar embedding is a class of planar graph drawings with the same 
neighbor sets for each vertex. A planar graph call have an exponential 
number of such einbeddings. 

m A cutvertex is any node that causes the graph to be discoilnected if it 
is removed. 

m A biconnected graph is one without a cutvertex. 

m A block is a maximally biconnected subgraph of a graph. 

m A separating pair means two vertices whose removal causes a bicon- 
nected graph to become disconnected. 

m A triconnected graph is one without a separating pair. A planar tri- 
conilected graph has a uiliclue embedding. 

We first need a strategy for determining if a graph is planar. Several such 
algorithms exist, though efficient ones have a very high degree of complexity 
and simple ones tend to be computationally expensive. We call start by 
simplifying the problem a bit. We do this by noting that a graph is planar 
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only if all of its connected components are also planar. Similarly, we can 
state that a connected graph is planar only if all its biconnected components 
are planar. Thus, we just need an algorithm that determines if a biconnected 
graph is planar or not. 

The general reasoning of the algorithm is as follows. We will perform 
a divide-and-conquer approach by noting that if our graph contains a cycle 
such that no other cycle is present that doesn't contain an edge of the original 
cycle (e.g., there aren't cycles left when the edges involved in the original 
cycle are removed), what remain are paths that start and stop on one of the 
vertices of the cycle (called attachments). These pieces of the graph can be 
drawn either within the cycle or outside the cycle. Two such pieces interlace 
if they both start and end on nodes of the cycle, and the two ends of one piece 
are separated by one end of the other piece. To be drawn in a planar fashion, 
one of these interlaced pieces would need to be drawn inside the cycle, and 
the other on the outside. If we now create a graph of all the pieces, with an 
edge between two pieces if they interlace, as long as this graph is bzpartite 
(separable into two sets of vertices such that no edge exists between members 
of the same set), the original graph is planar. Figure 8.8 shows examples of 
these components. Note that there are a couple of instances of interlacing 
among the parts. 

If the graph contaiils more cycles after removing the edges of the original 
cycle, this means that one or more of the pieces contains a cycle (see the 
purple piece in Figure 8.8). In this case, we create a subgraph containing 
this piece and a section of the original cycle connecting the end points of 
the part, and recursively call the planarity test algorithm. The pseudocode 

Figure 8.8. An example of a biconnected graph, a cycle (in black), and the five pieces (in 
different colors). 
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for this algorithm is as follows [20]. Note that a separating cycle is one that 
generates at least two pieces. 

Given a biconnected graph G and a separating cycle C: 

1. Compute all the pieces of G with respect to C. 

2. For each piece P that is not a simple path (e.g., that coiltains a cycle). 

(a) Create graph G' consisting of P plus C. 

(b) Create cycle C' consisting of a path through P plus the section of 
C joining the ends. 

(c) Apply the algorithm to (G', C'). If the result is nonplanar, G is 
nonplanar . 

3. Compute the interlaceinent graph I of the pieces of G. 

4. If I is not bipartite, G is noaplanar; else G is planar. 

If a graph is nonplanar, we call make it planar using the followiilg 
strategy: 

1. Determine the largest planar subgraph of the graph. 

2. For the remaining vertices, place each within a face that minimizes the 
number of edge crossings. 

3. For each edge crossing, break the edges into two parts each, and con- 
nect the broken ends to a new dummy vertex. 

Once a graph has been either determined to be planar or has been aug- 
mented to achieve planarity, there are many possible strategies for generating 
a drawing. One such technique, called the uisib~;lity approach [20], consists 
of a two-step process. In the first step, called the visibility step, a visibility 
representation of the graph is formed. In such a representation, each vertex 
is depicted as a horizoiltal line segment, and each edge is depicted as a ver- 
tical line connecting the corresponding vertex segments. It should be clear 
that for a planar graph, it is always possible to draw such a representatioil 
without crossing edges other than where they meet the vertex segments. 
Obviously, many possible orderings of the vertex segments are possible; one 
strategy would be to arrange them to minimize the total length of the vertical 
connectors. 

In the second step, called the replacement step, each vertex segment 
is collapsed to a single point, and each vertical conilector is replaced by a 
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Figure 8.9. The stages of drawing a planar graph. From left to right: original graph, visibility 
representation, and replacement step. 

polyline that follows the original edge as much as possible, with a segment 
at  each end conilecting the edge to its corresponding vertex. Many options 
exist for the replacement step, including the location of the nodes and the 
strategy used to form the connections (e.g., straight versus curved lines, 
single segment versus multiple segments). An example of the process is 
shown in Figure 8.9. 

8.2.2 Matrix Representations for Graphs 

An alternate visual representation of a graph is via an adjacency ma,trix, 
which is an N by N grid (where N is the number of nodes), where posi- 
tion (i, j) represents the existence (or not) of a link between nodes i and j. 
This inay be a binary matrix, or the value might represent the strength or 
weight of the link between the two nodes. This method overcomes one of the 
biggest problems with node-link diagrams, namely that of crossing edges, 
though it doesn't scale well to graphs with large numbers (thousands) of 
nodes. Bertin [26] was one of the first researchers to investigate the power 
of this representation, using different reordering strategies to organize the 
rows and coluini~s to reveal structures within the graph. The importance of 
the reordering is apparent in Figure 8.10, where each matrix represents the 
same eight-node graph. The two four-node cliques are clearly apparent in 
the second display. 

There have been numerous algorithms proposed for reordering the rows 
and columns of the matrix to expose the most structure. Some are primarily 
user-driven, which would support ordering based on the values in one of the 
rows or columns as a starting point. Others are purely automatic, which 
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Figure 8.10. Two matrix displays of the same graph, using different orderings of nodes. Struc- 
ture is more clearly present in the matrix on the right. 

rely on some metric for evaluating a particular ordering and a strategy for 
generating orders to test. As in any optimization process, there is a good 
chance that finding the optimal ordering is NP-complete (namely, that no 
algorithm of polynomial or less complexity can be found). Thus, a number 
of heuristics have been proposed over the years that generally result in good 
orderings, especially for certain classes of graphs. 

As an example, we can use a simplistic order evaluation strategy, namely 
to count the number of occurrences of matching elements in adjacent rows 
or columns. This tends to group nodes that link or don't link to a common 
node. In Figure 8.10, the left-most matrix has a score of 9 when counting 
only vertical neighbors, while the right-most matrix has a score of 20. By 
enumerating all possible orders, we can find the orderings that give the high- 
est match score. For modest numbers of nodes, this would be an acceptable 
strategy, but since the number of possible orderings is on the order of N!, this 
approach does not scale well. Ordering of nodes is similar to the traveling 
salesman problem (TSP), where one tries to find a path that passes through 
a collection of cities without visiting any city more than once, while at  the 
same time minimizing the total distance traveled. As this is basically the 
same problem as finding the ordering of the rows or columns of a matrix to 
minimize some metric, heuristic solutions that have been used for the TSP 
can also be employed here. 

8.3 Other Issues 

Once a basic visualization of a tree or graph has been developed, there 
are a number of additional considerations, primarily addressing the issue of 
interpretability. Two such importailt considerations will be elaborated upon 
in this section: labeling and interaction. 
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8.3.1 Labeling 

Proper labeliilg of a visualization is crucial to allow a viewer to uilderstaild 
what is being shown. A map would be of little value without some form 
of labeling; similarly, a color-coded plot would be difficult to understand 
w i t h o ~ ~ t  some indication of the meaning associated with the colors. I11 tree 
and graph drawing, the problem of labelii~g is compounded, not only because 
of the potential for many nocles, but also because labels miglzt also be iweded 
for the links between nodes. 

If there are only a small number of distinct labels, such as showing the 
type of link or a class associated with a node, it is best to use nontextual 
labels, such as the color, size, or shape of a node or the color, thickness, or 
line style of a link. This does not require much screen space and can usually 
be interpreted uilainbiguously even in the presence of illodest amount of 
line crossing and node occlusion. However, if the number of distinct labels 
exceeds five or six, the likelihood of inisinterpretation can become large. A 
key for interpreting the graphical attribute mapping is essential. 

For sinall graphs, a cornmoll strategy for node labeling is to put the labels 
within the nodes, using rectangular or oval node shapes to accommodate the 
text. To avoid distorting the perception of the nodes, the size of the ilodes 
should be dictated by the length of the loilgest label. For situations where 
the labels can be very long, one option is to use abbreviations or numeric 
labels, along with a key for interpretation. Viewers will eventually learn the 
correspondences between the shortened labels and their actual meaning. A 
similar strategy can be used for edge labeling, placing the labels near tlle 
center of the edge. For edges that are predominantly vkrtical, these should 
be to the left or right of the edge, while for predominantly horizontal edges, 
they should be above or below. Using a consistent strategy will reduce the 
potential for erroneously associating a label with the wrong edge. 

At the other extreme, if there are a large number of distinct labels that 
need to  be shown, or the labels themselves are quite long, it becomes readily 
apparent that siinultaneous display of all labels will be ineffective. Several 
strategies have been developed to cope with this problem. A cornmoll so- 
lution is to only show labels in a small region of the graph, for example, 
within a certain radius of the cursor positioa. If the density of the display 
is too high, a distortioil of the visualizatioil may be required (see the next 
subsection) to provide more screen space for that section of the graph. A11 
alternate to distortion that sometimes works is to rotate the graph to reduce 
the overlap between labels (see Figure 8.11). Ailother interesting solutioi1 
proposed in [37] is to only show a random subset of the labels for a short 
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Figure 8.1 l. Improving the readability of labels via rotation. (Image from [412], @ 2003 Pal- 
grave Macmillan.) 

period of time, and then switch to showing the labels for a different subset. 
The idea behind this approach is that the viewer's short-term memory will 
enable recall of a larger number of labels as compared to a static display, 
especially if this memory is refreshed on a regular basis. 

8.3.2 lnteractions 

Even though Chapters 10 and l1 of this text are dedicated to interactions 
within visualization environments, there are a few interaction techniques 
that are most relevant to tree and graph visualization that will be described 
in this chapter. Some types of interaction, such as panning and zooming, are 
common to all types of visualization, and thus will only be briefly mentioned 
here for completeness. Others, such as focus+ context, while applicable to a 
wide range of visualizations, have been primarily developed in the area of 
tree and graph visualization and will thus be described in more detail here. 

lnteractions with the virtual camera. Interactions such as panning, zooming, 
and rotation can be viewed as simple changes to the virtual camera being 
used to capture a segment of a scene. These allow the viewer to incremen- 
tally build up a mental model of the objects of the scene and their interre- 
lationships. Operations of this type are often manually controlled, though 
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automated techniques such as data-driven fly-throughs and spinning of 3D 
objects can be automatically derived and presented. 

Interactions with the graph elements. Most interactions of this type start with 
a selection operation, where one or more of the components of the graph are 
isolated for some action, such as highlighting, deleting, masking, moving, 
or obtaining details. For example, t o  declutter a graph one might select 
some nodes and drag them to a less-occupied section of the screen, while 
maintaining their links. Similarly, one might select and move or change the 
shape of a link to eliminate a crossing or improve the aesthetics of a graph. 
Selection may involve a single object, all objects within a specified region or 
distance, or a set of objects that satisfy a user-specified set of constraints 
(e.g., all nodes directly connected to a given node). One of the biggest 
problems with selecting elements in a graph occurs in dense regions of the 
drawing, where elements are so close together that unambiguous selection is 
difficult or impossible. This exposes the need for other types of interaction, 
such as zooming or the distortion techniques described later. 

lnteractions with the graph structure. There are two classes of interactions that 
are directed at the graph structure. The first class result in changes to the 
structure itself. For example, reordering the branches of a tree may expose 
relationships that were not apparent in the original ordering. Redrawing 
a graph with different weights on the constraints can generate graphs that 
make certain tasks easier to perform. Reordering the columns or rows in a 
matrix visualization can expose new features or relations within the data. 
Techniques within this class are often very specific to the type of graph being 
shown. 

A second class of interactions associated with the graph structure com- 
prises the so-called focus+context techniques, where a selected subset of the 
structure (focus) is presented in detail, while the rest of the structure is 
shown in low detail to  help the viewer maintain context. These techniques 
are related to panning and zooming, without the loss of context. The most 
popular of these distortion techniques are the many variants on a fisheye 
lens, where the parts of the visualization falling within a focal region are 
enlarged using a nonlinear scaling, while the parts outside the focal region 
are proportionally shrunk to maintain their presence in the display. This dis- 
tortion can be performed either in screen space (i.e., based on pixels) or in 
structure space (i.e., based on the components of the graph). It is the latter 
case that is more interesting in graph visualization, as we might, for example, 
enlarge one branch of a tree while reducing the size of other branches, or en- 
large all links within three connections of a particular node in order to view 
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Some interaction operations on sunburst displays: (a) the blue subtree has been 
expanded, while the rest of the tree has been compressed; (b) several subtrees 
have been rolled up to simplify the display. (Image from [412], @ 2003 Palgrave 
Macmillan.) 

its neigl~borhood in more detail. An example of structure space distortion 
can be seen in Figure 8.12, where the blue subtree of Figure 8.11 has been 
angularly enlarged to enable easier exploration and interactive selection. 

A technique that can be considered related to both of these classes is 
that of selective hiding or removal of sections of the graph. For example, 
once a branch of a tree has been thoroughly investigated, the user might 
want to remove it from the display to provide more space for the uilexplored 
regions. In a sense, this can be seen as changing the structure (deleting a 
component), or as reducing the level of detail for the branch to its root. The 
terms roll-up and drill-down are often used to describe the process of hiding 
and exposing details in a visualization. Figure 8.12 shows several subtrees 
that have been rolled up, with the double white band informing the user 
that details exist under those nodes. 

8.4 Related Readings 

Robertson et al. [293] and Brian Johnson and Ben Schneiderinan [l761 in- 
troduce the concepts of cone trees and treemaps, respectively. John Stasko 
and Eugene Zhang [336] describe one of several variants on radial space- 
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filling techniques for tree visualization. The book, Graph Drawing: Algo- 
rithms for the Visualization oaf Graphs [20] is an excellent introduction to 
the field of graph drawing. The Semiology of Graphs [26] by J .  Bertin is 
the seminal work on reorderable matrix representations for graphs. Herman 
et al. [l591 presents a survey of graph visualization and interactions with 
graphs. The paper by Leung and Apperley [232] contains a comprehensive 
survey of distortion techniques, many of which are applicable to tree and 
graph visualizations. 

8.5 Exercises 

1. Give some examples of how r~lles for graph drawing can conflict with 
each other. 

2. Compare rectilinear and radial space-filling tree visualization tech- 
niques. Under what conditions, or for what taslts, is one better or 
worse than the other? 

3. Compare node-link and matrix graph visualization techniques. Under 
what conditions, or for what tasks, is one better or worse than the 
other? 

4. What is the smallest node-link graph (e.g., smallest number of nodes 
and links) that you can devise that is nonplanar? 

8.6 Projects 

1. Write a program that reads in a graph in the following format: 

number-of-vertices number-of-edges 

edgel-start edgel-end 

edge2-start edge2-end 

Add a very simple drawing function that places the vertices in random 
positions and connects the vertices based on the edge list. Run the 
program several tiines with a data set of your design (it should have 
inore than 10 nodes and 20 edges). What conclusions can you draw 
from observing the o ~ ~ t p u t ?  
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2. Modify the above program to place the vertices at  equal angles around 
a circle. Again, run the program several times and describe your obser- 
vations. From these observations, can you propose a vertex-ordering 
algorithm that will generally result in less cluttered displays? 

3. Write a program that will determine if a graph entered in the above 
format is connected, e.g., if there is a path from every node to every 
other node. 

4. Write a program that will determine if a graph entered in the above for- 
mat is biconnected, e.g., if removal of a single node will not disconnect 
the graph. 

5. Assuming that the input graph represents a tree, and that all links are 
given in the order of (parent, child), write a program that will draw 
the tree as in Figure 8.5, where all nodes on the same level are evenly 
spaced. (Hint: in a single pass through the list of links, you should be 
able to assign each node to a level.) 

6. Modify the above program to generate a radial layout, e.g., the layers 
are arranged as concentric circles with a radius proportional to the tree 
depth. 

7. Modify either or both of the above programs to insert extra space 
between adjacent nonsibling nodes. 

8. Write a program that generates the adjacency matrix A using the same 
data as in Project 1 or some other graph data. Use R-project (or your 
own code) to compute A2 and draw it differentiating the values in 
the matrix using color (note that is may have values larger than 1). 
Explain what you see and the meaning of the numbers. 


