
CHAPTER 8

Visualization Techniques for
Trees, Graphs, and Networks

While most of the visualization techniques discussed thus far focus on the
display of data values and their attributes, another important application of
visualization is the conveying of relational information, e.g., how data items
or records are related to each other. These interrelationships can take many
forms:

part/subpart, parent/child, or other hierarchical relation;

coimectedness, such as cities connected by roads or computers con-
nected by networks;

derived from, as in a sequence of steps or stages;

shared classification;

similarities in values;

similarities in attributes (e.g., spatial, temporal).

Relationships can be simple or complex: unidirectional or bi-directional,
nonweighted or weighted, certain or uncertain. Indeed, the relationships may
provide inore and richer information than that contained in the data records.
Applications for visualizing relational information are equally diverse, from
categorizing biological species, to exploriilg document archives, to studying
a terrorist network.

8. Visualization Techniques for Trees, Graphs, and Networks

In this chapter we will exainine a number of techniques that have been
developed for visualizing relational information. This presentation, how-
ever, will just be the tip of the iceberg, as tree and graph visualization is
a well-established field, with its own books, journals, conferences, software
packages, and algorithms.

8.1 Displaying Hierarchical Structures

Trees or hierarchies (we'll use the terms interchangeably) are one of the most
comnloll structures to hold relational information. For this reason, inany vi-
sualization techi~iques have been developed for display of such information.
We can divide these techniques into two classes of algorithms: space-filling
and non-space-filling. The rest of this section will provide details on imple-
menting algorithins for visualizing this type of data.

8.1.1 Space-Filling Methods

As the name implies, space-filling techniques make maxiinal use of the dis-
play space. This is accomplisl~ed by using juxtapositioning to imply rela-
tions, as opposed to, for example, conveying relations with edges joining
data objects. The two most coininon approaches to generating space-filling
hierarchies are rectangular and radial layouts.

Treemaps [l761 and their many variants are the most popular form of
rectangular space-filling layout. In the basic treemap, a rectangle is recur-
sively divided into slices, alternating horizontal and vertical slicing, based on
the populations of the subtrees at a given level. Pseudocode for this process
is given in Figure 8.1, and an exainple is shown in Figure 8.2.

As mentioned, inany variants on treeinaps have been proposed and de-
veloped since they were introduced, including squarified treemaps [40] (to
reduce the occurrence of long, thin rectangles) and nested treemaps [l761
(to emphasize the hierarchical structure).

Tlle inethods described above are structured using horizontal and vertical
divisions to convey the hierarcl~y. A number of other approaches are pos-
sible, however, such as those that divide space radially. Radial space-filling
hierarchy visualiza,tions, sometimes referred to as sunburst displays [336],
have the root of the hierarchy in the center of the display and use nested
rings to convey the layers of the l~ierarcl~y. Each ring is divided based on the
nuinber of nodes at that level. These techniques follow a similar strategy
to treen~aps, in that the i l~~mber of terminal nodes in a subtree determines

8.1. Displaying Hierarchical Structures

Start : Main Program
Width = width of rectangle
Height = height of rectangle
Node = root node of the tree
Origin = position of rectangle, e.g. , CO, 01
Orientation = direction of cuts, alternating between horizontal and vertical
Treemap(Node, Orientation, Origin, Width, Height)

End: Main Program

Treemap(node n, orientation o, position orig, hsize W, vsize h)
if n is a terminal node (i.e., it has no children)

draw-rectangle (orig, W, h)
return

for each child of n (child-i), get number of terminal nodes in subtree
sum up number of terminal nodes
compute percentage of terminal nodes in n from each subtree (percent-i)
if orientation is horizontal

for each subtree
compute offset of origin based on origin and width (offset-i)
treemap(chi1d-i, vertical, orig + offset-i, W 9 percent-i, h)

else
for each subtree

compute offset of origin based on origin and height (offset-i)
treemap(chi1d-i, horizontal, orig + off set-i, W, h * percent-i)

End: Treemap

Figure 8. l. Pseudocode for drawing a hierarchy using a treemap.

A sample hierarchy and the corresponding treemap display.

8. Visualization Techniques for Trees, Graphs, and Networks

Start : Main Program
Start = start angle for a node (initially 0)
End = end angle for a node (initially 360)
Origin = position of center of sunburst, e.g., [0,0]
Level = current level of hierarchy (initially 0)
Width = thickness of each radial band - based on max depth and display size
Sunburst (Node, Start, End, Level)

End: Main Program

Sunburst (node n, angle st, angle en, level 1)
if n is a terminal node (i.e., it has no children)

draw-radial-section(Origin, st, en, l * Width, (1+i) * Width)
return

for each child of n (child-i), get number of terminal nodes in subtree
sum up number of terminal nodes
compute percentage of terminal nodes in n from each subtree (percent31
for each subtree

compute start/end angle based on size of subtrees, order, and angle range
Sunburst (child-i, st-i, en-i, 1+i)

End: Sunburst

Figure 8.3. Pseudocode for drawing a hierarchy using a sunburst display.

Figure 8.4. A sample hierarchy and the corresponding sunburst display.

8.1. Displaying Hierarchical Structures 275

the amount of screen space that will be allocated for it. However, unlike
treemaps, which assign most screen space to coilveying the terminal nodes,
radial techniques also show the intermediate nodes. The process is described
in pseudocode in Figure 8.3, and an example is shown in Figure 8.4.

For these and other space-filling techniques, color can be used to convey
inany attributes, such as a value associated with the node (e.g., classification)
or it inay reinforce the hierarchical relationships, e.g., siblings and parents
may have similarities in color, a s seen in Figure 8.4. Symbols and other
markings may also be embedded in the rectangular or circular segments to
communicate other data features.

8.1.2 Non-Space-Filling Methods

The most common representation used to visualize tree or hierarchical re-
lationships is a node-link diagram. Organizational charts, family trees, and
tournament pairings are just some of the common applications for such dia-
grams. The drawing of such trees is influenced the most by two factors: the
fan-out degree (e.g., the number of siblings a parent node can have) and the
depth (e.g., the furthest node from the root). Trees that are significantly
coilstraiiled in one or both of these aspects, such as a binary tree or a tree
with only three or four levels, tend to be much easier to draw than those
with fewer constraints.

When designing an algorithm for drawing any node-link diagram (not just
trees), one must consider three categories of often-contradictory guidelines:
drawing conventions, constraints, and aesthetics. Conventioils may include
restricting edges to be either a single straight line, a series of rectilinear lines,
polygonal lines, or curves. Other conventions might be to place nodes on
a fixed grid, or to have all sibling nodes share the same vertical position.
Constraints may include requiring a particular node to be at the center of
the display, or that a group of nodes be located close to each other, or that
certain links must either go from top to bottom or left to right. Each of the
above guidelines can be used to drive the algorithm design.

Aesthetics, however, often have significant impact on the interpretability
of a tree or graph drawing, yet often result in conflicting guidelines. Some
typical aesthetic rules include:

minimize line crossings

maintain a pleasing aspect ratio

minimize the total area of the drawing

8. Visualization Techniques for Trees, Graphs, and Networks

Figure 8.5. An example of visualizing hierarchies with a simple node-link diagram, using equal
spacing per level.

W minimize the total length of the edges

W minimize the number of bends in the edges

minimize the number of distinct angles or curvatures used

W strive for a symmetric structure

For trees, especially balanced ones, it is relatively easy to design algo-
rithms that adhere to many, if not most, of these guidelines. For example,
a simple tree drawing procedure is given below (sample output is shown in
Figure 8.5):

1. Slice the drawing area into equal-height slabs, based on the depth of
the tree.

2. For each level of the tree, determine how many nodes need to be drawn.

3. Divide each slice into equal-sized rectangles based on the number of
nodes at that level.

4. Draw each node in the center of its corresponding rectangle.

5. Draw a link between the center-bottom of each node to the center-top
of its child node(s).

Many enhancements can be made to this rather basic algorithm in order
to improve space utilization and move child nodes closer to their parents.

8.1. Displaying Hierarchical Structures

Some of these include:

a Rather than using even spacing and centering, divide each level based
on the iluinber of terminal nodes beloilging to each subtree.

a Spread terininal nodes evenly across the drawing area and center par-
ent nodes above them.

a Add some buffer space between adjacent noilsibling nodes to einphasize
relationships.

If possible, reorder the subtrees of a node to achieve more symmetry
and balance.

a Position the root node in the center of the display and lay out child
nodes radially, rather than vertically.

For large trees, a popular approach is to use the third dimension, supple-
mented with tools for rotation, translation, and zooming. Perhaps the most
well-known of such techniclues is called a cone tree [293]. In this layout, the
children of a node are arranged radially at evenly spaced angles and the11
offset perpendicular to the plane. The two parameters critical to this process
are the radius and offset distance; varying these influences the density of the
display and the level of occlusion. Minimally they should be set so that

Figure 8.6. A11 example of a hierarclly displayed with a cone tree [293]. (Image @ 1991 Associ-
ation of Coinputing Machinery. Reprinted by permission, courtesy of PARC, Inc.)

8. Visualization Techniques for Trees, Graphs, and Networks

separate branches of the tree do not fall into the same section of 3D space.
One method to ensure this is to have the radius inversely proportional to
the depth of a node in the tree. In this manner, nodes close to the root
are significantly separated, and those near the bottom of the tree are closer
together. An example is shown in Figure 8.6.

8.2 Displaying Arbitrary GraphsINetworks

Trees are just one type of a more general representation of relations called
a graph. Technically speaking, a tree is a connected, unweighted, acyclic
graph. Clearly, there are many other possibilities, including graphs with
weighted edges, undirected graphs, graphs with cycles, disconnected graphs,
and so on. Rather than give more algorithms specific to other classes of
graphs, which could certainly fill more than a textbook, we will describe
some general approaches for visualizing graphs in which the class or struc-
ture is not known, which we term an arbitrary graph. For our purposes,
we will assume that the graph is undirected, though some of the techniques
presented are easily extended to directed graphs. We will look at two dis-
tinct graph drawing approaches: node-link dzagrams (building on the ma-
terial from the previous section) and matrix displays. Readers interested
in a broader or deeper exposure to graph drawing are directed to the vast
amount of literature on this topic, some of which is listed at the end of
the chapter.

8.2.1 Node-Link Graphs

Force-directed graph drawing methods use a spring analogy to represent
the links, with node positions iteratively refined until the overall energy or
stress of the system is minimized (see Figure 8.7). For each pair of connected
nodes, there are two forces: f,, , the force caused by the spring between them,
and g,], an electrical repulsion force to keep nodes from getting too close.
A simple model is to use Hooke's law to represent the spring force and an
inverse square law to represent the repulsion force. If d(i, j) is the Euclidean
distance between nodes i and j, S,,, is the natural spring length (at rest),
and k,, is the spring tension, the X-component of the spring force between
two nodes can be computed as

8.2. Displaying Arbitrary GraphslNetworks

Figure 8.7. An example of a force-directed graph. The graph, showing relationships between
countries of Europe, was generated with aiSee: http://www.aisee.com.

If rij is the strength of the repulsion between nodes i and j, the x-
component of the repulsion force can be computed as

Thus, one step of the position refinement process would calculate the
sum of all the forces on each node (X-, y-, and z-components, as appropriate)
and move its position proportional to that force. Clearly, once points have
moved, all the forces need to be recalculated and another shift of positions
made. To avoid oscillation, it is common to start with movements that are a
significant percentage of the force and then use smaller and smaller step sizes
to converge on the point where the forces are minimized. Initial positions
can be assigned randomly. As it is quite possible to end up in a local, rather
than a global, energy minimum, it is common to run the layout algorithm
multiple times with different initial configurations to find the best of several
computed configurations. The goodness of the layout can be computed based
on the sum of the magnitude of forces on a given configuration.

8. Visualization Techniques for Trees, Graphs, and Networks

Planar graph drawing techiliques start with the assumption that the
underlyiilg graph is planar, e.g., it l ~ a s no edge crossings. These algorithms
have gottell a lot of attention, for several reasons. First, as the theory
of planar graphs has a long history, there are many concepts that can be
exploited from the literature. Secoad, as edge-crossings tend to make graphs
difficult to read, it is a good strategy to minimize or eliminate such crossings.
Finally, planar graphs tend to be sparse; Euler's formula indicates that a
planar graph with n vertices has at most 3n - 6 edges. Conceiltrating on
planar graphs is not overly restrictive, as one can eliminate crossings by
iilsertiilg duininy nodes at the crossings, perform the layout using a planar
graph algorithm, and then remove the dummy nodes.

We will, in addition, assume that the graph is conmected, e.g., there is a
path from every node to every other node. Graphs that are not conilected can
be separated illto subgraphs that can be drawn separately. A subgraph that
is maxiinally coililected (all nodes are connected) is a connected component
of the graph. Other useful definitions include:

m A face is a partition of the plane isolated by a set of coilnected vertices.

m A neighbor set is a counter-clockwise listing of the vertices incident to
a particular vertex.

m A planar embedding is a class of planar graph drawings with the same
neighbor sets for each vertex. A planar graph call have an exponential
number of such einbeddings.

m A cutvertex is any node that causes the graph to be discoilnected if it
is removed.

m A biconnected graph is one without a cutvertex.

m A block is a maximally biconnected subgraph of a graph.

m A separating pair means two vertices whose removal causes a bicon-
nected graph to become disconnected.

m A triconnected graph is one without a separating pair. A planar tri-
conilected graph has a uiliclue embedding.

We first need a strategy for determining if a graph is planar. Several such
algorithms exist, though efficient ones have a very high degree of complexity
and simple ones tend to be computationally expensive. We call start by
simplifying the problem a bit. We do this by noting that a graph is planar

8.2. Displaying Arbitrary GraphslNetworks

only if all of its connected components are also planar. Similarly, we can
state that a connected graph is planar only if all its biconnected components
are planar. Thus, we just need an algorithm that determines if a biconnected
graph is planar or not.

The general reasoning of the algorithm is as follows. We will perform
a divide-and-conquer approach by noting that if our graph contains a cycle
such that no other cycle is present that doesn't contain an edge of the original
cycle (e.g., there aren't cycles left when the edges involved in the original
cycle are removed), what remain are paths that start and stop on one of the
vertices of the cycle (called attachments). These pieces of the graph can be
drawn either within the cycle or outside the cycle. Two such pieces interlace
if they both start and end on nodes of the cycle, and the two ends of one piece
are separated by one end of the other piece. To be drawn in a planar fashion,
one of these interlaced pieces would need to be drawn inside the cycle, and
the other on the outside. If we now create a graph of all the pieces, with an
edge between two pieces if they interlace, as long as this graph is bzpartite
(separable into two sets of vertices such that no edge exists between members
of the same set), the original graph is planar. Figure 8.8 shows examples of
these components. Note that there are a couple of instances of interlacing
among the parts.

If the graph contaiils more cycles after removing the edges of the original
cycle, this means that one or more of the pieces contains a cycle (see the
purple piece in Figure 8.8). In this case, we create a subgraph containing
this piece and a section of the original cycle connecting the end points of
the part, and recursively call the planarity test algorithm. The pseudocode

Figure 8.8. An example of a biconnected graph, a cycle (in black), and the five pieces (in
different colors).

8. Visualization Techniques for Trees, Graphs, and Networks

for this algorithm is as follows [20]. Note that a separating cycle is one that
generates at least two pieces.

Given a biconnected graph G and a separating cycle C:

1. Compute all the pieces of G with respect to C.

2. For each piece P that is not a simple path (e.g., that coiltains a cycle).

(a) Create graph G' consisting of P plus C.

(b) Create cycle C' consisting of a path through P plus the section of
C joining the ends.

(c) Apply the algorithm to (G', C'). If the result is nonplanar, G is
nonplanar .

3. Compute the interlaceinent graph I of the pieces of G.

4. If I is not bipartite, G is noaplanar; else G is planar.

If a graph is nonplanar, we call make it planar using the followiilg
strategy:

1. Determine the largest planar subgraph of the graph.

2. For the remaining vertices, place each within a face that minimizes the
number of edge crossings.

3. For each edge crossing, break the edges into two parts each, and con-
nect the broken ends to a new dummy vertex.

Once a graph has been either determined to be planar or has been aug-
mented to achieve planarity, there are many possible strategies for generating
a drawing. One such technique, called the uisib~;lity approach [20], consists
of a two-step process. In the first step, called the visibility step, a visibility
representation of the graph is formed. In such a representation, each vertex
is depicted as a horizoiltal line segment, and each edge is depicted as a ver-
tical line connecting the corresponding vertex segments. It should be clear
that for a planar graph, it is always possible to draw such a representatioil
without crossing edges other than where they meet the vertex segments.
Obviously, many possible orderings of the vertex segments are possible; one
strategy would be to arrange them to minimize the total length of the vertical
connectors.

In the second step, called the replacement step, each vertex segment
is collapsed to a single point, and each vertical conilector is replaced by a

8.2. Displaying Arbitrary GraphslNetworks

Figure 8.9. The stages of drawing a planar graph. From left to right: original graph, visibility
representation, and replacement step.

polyline that follows the original edge as much as possible, with a segment
at each end conilecting the edge to its corresponding vertex. Many options
exist for the replacement step, including the location of the nodes and the
strategy used to form the connections (e.g., straight versus curved lines,
single segment versus multiple segments). An example of the process is
shown in Figure 8.9.

8.2.2 Matrix Representations for Graphs

An alternate visual representation of a graph is via an adjacency ma,trix,
which is an N by N grid (where N is the number of nodes), where posi-
tion (i, j) represents the existence (or not) of a link between nodes i and j.
This inay be a binary matrix, or the value might represent the strength or
weight of the link between the two nodes. This method overcomes one of the
biggest problems with node-link diagrams, namely that of crossing edges,
though it doesn't scale well to graphs with large numbers (thousands) of
nodes. Bertin [26] was one of the first researchers to investigate the power
of this representation, using different reordering strategies to organize the
rows and coluini~s to reveal structures within the graph. The importance of
the reordering is apparent in Figure 8.10, where each matrix represents the
same eight-node graph. The two four-node cliques are clearly apparent in
the second display.

There have been numerous algorithms proposed for reordering the rows
and columns of the matrix to expose the most structure. Some are primarily
user-driven, which would support ordering based on the values in one of the
rows or columns as a starting point. Others are purely automatic, which

8. Visualization Techniques for Fees, Graphs, and Networks

Figure 8.10. Two matrix displays of the same graph, using different orderings of nodes. Struc-
ture is more clearly present in the matrix on the right.

rely on some metric for evaluating a particular ordering and a strategy for
generating orders to test. As in any optimization process, there is a good
chance that finding the optimal ordering is NP-complete (namely, that no
algorithm of polynomial or less complexity can be found). Thus, a number
of heuristics have been proposed over the years that generally result in good
orderings, especially for certain classes of graphs.

As an example, we can use a simplistic order evaluation strategy, namely
to count the number of occurrences of matching elements in adjacent rows
or columns. This tends to group nodes that link or don't link to a common
node. In Figure 8.10, the left-most matrix has a score of 9 when counting
only vertical neighbors, while the right-most matrix has a score of 20. By
enumerating all possible orders, we can find the orderings that give the high-
est match score. For modest numbers of nodes, this would be an acceptable
strategy, but since the number of possible orderings is on the order of N!, this
approach does not scale well. Ordering of nodes is similar to the traveling
salesman problem (TSP), where one tries to find a path that passes through
a collection of cities without visiting any city more than once, while at the
same time minimizing the total distance traveled. As this is basically the
same problem as finding the ordering of the rows or columns of a matrix to
minimize some metric, heuristic solutions that have been used for the TSP
can also be employed here.

8.3 Other Issues

Once a basic visualization of a tree or graph has been developed, there
are a number of additional considerations, primarily addressing the issue of
interpretability. Two such importailt considerations will be elaborated upon
in this section: labeling and interaction.

8.3. Other Issues 285

8.3.1 Labeling

Proper labeliilg of a visualization is crucial to allow a viewer to uilderstaild
what is being shown. A map would be of little value without some form
of labeling; similarly, a color-coded plot would be difficult to understand
w i t h o ~ ~ t some indication of the meaning associated with the colors. I11 tree
and graph drawing, the problem of labelii~g is compounded, not only because
of the potential for many nocles, but also because labels miglzt also be iweded
for the links between nodes.

If there are only a small number of distinct labels, such as showing the
type of link or a class associated with a node, it is best to use nontextual
labels, such as the color, size, or shape of a node or the color, thickness, or
line style of a link. This does not require much screen space and can usually
be interpreted uilainbiguously even in the presence of illodest amount of
line crossing and node occlusion. However, if the number of distinct labels
exceeds five or six, the likelihood of inisinterpretation can become large. A
key for interpreting the graphical attribute mapping is essential.

For sinall graphs, a cornmoll strategy for node labeling is to put the labels
within the nodes, using rectangular or oval node shapes to accommodate the
text. To avoid distorting the perception of the nodes, the size of the ilodes
should be dictated by the length of the loilgest label. For situations where
the labels can be very long, one option is to use abbreviations or numeric
labels, along with a key for interpretation. Viewers will eventually learn the
correspondences between the shortened labels and their actual meaning. A
similar strategy can be used for edge labeling, placing the labels near tlle
center of the edge. For edges that are predominantly vkrtical, these should
be to the left or right of the edge, while for predominantly horizontal edges,
they should be above or below. Using a consistent strategy will reduce the
potential for erroneously associating a label with the wrong edge.

At the other extreme, if there are a large number of distinct labels that
need to be shown, or the labels themselves are quite long, it becomes readily
apparent that siinultaneous display of all labels will be ineffective. Several
strategies have been developed to cope with this problem. A cornmoll so-
lution is to only show labels in a small region of the graph, for example,
within a certain radius of the cursor positioa. If the density of the display
is too high, a distortioil of the visualizatioil may be required (see the next
subsection) to provide more screen space for that section of the graph. A11
alternate to distortion that sometimes works is to rotate the graph to reduce
the overlap between labels (see Figure 8.11). Ailother interesting solutioi1
proposed in [37] is to only show a random subset of the labels for a short

8. Visualization Techniques fir Trees, Graphs, and Networks

Figure 8.1 l. Improving the readability of labels via rotation. (Image from [412], @ 2003 Pal-
grave Macmillan.)

period of time, and then switch to showing the labels for a different subset.
The idea behind this approach is that the viewer's short-term memory will
enable recall of a larger number of labels as compared to a static display,
especially if this memory is refreshed on a regular basis.

8.3.2 lnteractions

Even though Chapters 10 and l1 of this text are dedicated to interactions
within visualization environments, there are a few interaction techniques
that are most relevant to tree and graph visualization that will be described
in this chapter. Some types of interaction, such as panning and zooming, are
common to all types of visualization, and thus will only be briefly mentioned
here for completeness. Others, such as focus+ context, while applicable to a
wide range of visualizations, have been primarily developed in the area of
tree and graph visualization and will thus be described in more detail here.

lnteractions with the virtual camera. Interactions such as panning, zooming,
and rotation can be viewed as simple changes to the virtual camera being
used to capture a segment of a scene. These allow the viewer to incremen-
tally build up a mental model of the objects of the scene and their interre-
lationships. Operations of this type are often manually controlled, though

8.3. Other Issues 287

automated techniques such as data-driven fly-throughs and spinning of 3D
objects can be automatically derived and presented.

Interactions with the graph elements. Most interactions of this type start with
a selection operation, where one or more of the components of the graph are
isolated for some action, such as highlighting, deleting, masking, moving,
or obtaining details. For example, t o declutter a graph one might select
some nodes and drag them to a less-occupied section of the screen, while
maintaining their links. Similarly, one might select and move or change the
shape of a link to eliminate a crossing or improve the aesthetics of a graph.
Selection may involve a single object, all objects within a specified region or
distance, or a set of objects that satisfy a user-specified set of constraints
(e.g., all nodes directly connected to a given node). One of the biggest
problems with selecting elements in a graph occurs in dense regions of the
drawing, where elements are so close together that unambiguous selection is
difficult or impossible. This exposes the need for other types of interaction,
such as zooming or the distortion techniques described later.

lnteractions with the graph structure. There are two classes of interactions that
are directed at the graph structure. The first class result in changes to the
structure itself. For example, reordering the branches of a tree may expose
relationships that were not apparent in the original ordering. Redrawing
a graph with different weights on the constraints can generate graphs that
make certain tasks easier to perform. Reordering the columns or rows in a
matrix visualization can expose new features or relations within the data.
Techniques within this class are often very specific to the type of graph being
shown.

A second class of interactions associated with the graph structure com-
prises the so-called focus+context techniques, where a selected subset of the
structure (focus) is presented in detail, while the rest of the structure is
shown in low detail to help the viewer maintain context. These techniques
are related to panning and zooming, without the loss of context. The most
popular of these distortion techniques are the many variants on a fisheye
lens, where the parts of the visualization falling within a focal region are
enlarged using a nonlinear scaling, while the parts outside the focal region
are proportionally shrunk to maintain their presence in the display. This dis-
tortion can be performed either in screen space (i.e., based on pixels) or in
structure space (i.e., based on the components of the graph). It is the latter
case that is more interesting in graph visualization, as we might, for example,
enlarge one branch of a tree while reducing the size of other branches, or en-
large all links within three connections of a particular node in order to view

Figure 8.12.

8. Visualization Techniques for Trees, Graphs, and Networks

Some interaction operations on sunburst displays: (a) the blue subtree has been
expanded, while the rest of the tree has been compressed; (b) several subtrees
have been rolled up to simplify the display. (Image from [412], @ 2003 Palgrave
Macmillan.)

its neigl~borhood in more detail. An example of structure space distortion
can be seen in Figure 8.12, where the blue subtree of Figure 8.11 has been
angularly enlarged to enable easier exploration and interactive selection.

A technique that can be considered related to both of these classes is
that of selective hiding or removal of sections of the graph. For example,
once a branch of a tree has been thoroughly investigated, the user might
want to remove it from the display to provide more space for the uilexplored
regions. In a sense, this can be seen as changing the structure (deleting a
component), or as reducing the level of detail for the branch to its root. The
terms roll-up and drill-down are often used to describe the process of hiding
and exposing details in a visualization. Figure 8.12 shows several subtrees
that have been rolled up, with the double white band informing the user
that details exist under those nodes.

8.4 Related Readings

Robertson et al. [293] and Brian Johnson and Ben Schneiderinan [l761 in-
troduce the concepts of cone trees and treemaps, respectively. John Stasko
and Eugene Zhang [336] describe one of several variants on radial space-

8.5. Exercises 289

filling techniques for tree visualization. The book, Graph Drawing: Algo-
rithms for the Visualization oaf Graphs [20] is an excellent introduction to
the field of graph drawing. The Semiology of Graphs [26] by J . Bertin is
the seminal work on reorderable matrix representations for graphs. Herman
et al. [l591 presents a survey of graph visualization and interactions with
graphs. The paper by Leung and Apperley [232] contains a comprehensive
survey of distortion techniques, many of which are applicable to tree and
graph visualizations.

8.5 Exercises

1. Give some examples of how r~lles for graph drawing can conflict with
each other.

2. Compare rectilinear and radial space-filling tree visualization tech-
niques. Under what conditions, or for what taslts, is one better or
worse than the other?

3. Compare node-link and matrix graph visualization techniques. Under
what conditions, or for what tasks, is one better or worse than the
other?

4. What is the smallest node-link graph (e.g., smallest number of nodes
and links) that you can devise that is nonplanar?

8.6 Projects

1. Write a program that reads in a graph in the following format:

number-of-vertices number-of-edges

edgel-start edgel-end

edge2-start edge2-end

Add a very simple drawing function that places the vertices in random
positions and connects the vertices based on the edge list. Run the
program several tiines with a data set of your design (it should have
inore than 10 nodes and 20 edges). What conclusions can you draw
from observing the o ~ ~ t p u t ?

8. Visualization Techniques for Trees, Graphs, and Networks

2. Modify the above program to place the vertices at equal angles around
a circle. Again, run the program several times and describe your obser-
vations. From these observations, can you propose a vertex-ordering
algorithm that will generally result in less cluttered displays?

3. Write a program that will determine if a graph entered in the above
format is connected, e.g., if there is a path from every node to every
other node.

4. Write a program that will determine if a graph entered in the above for-
mat is biconnected, e.g., if removal of a single node will not disconnect
the graph.

5. Assuming that the input graph represents a tree, and that all links are
given in the order of (parent, child), write a program that will draw
the tree as in Figure 8.5, where all nodes on the same level are evenly
spaced. (Hint: in a single pass through the list of links, you should be
able to assign each node to a level.)

6. Modify the above program to generate a radial layout, e.g., the layers
are arranged as concentric circles with a radius proportional to the tree
depth.

7. Modify either or both of the above programs to insert extra space
between adjacent nonsibling nodes.

8. Write a program that generates the adjacency matrix A using the same
data as in Project 1 or some other graph data. Use R-project (or your
own code) to compute A2 and draw it differentiating the values in
the matrix using color (note that is may have values larger than 1).
Explain what you see and the meaning of the numbers.

