Sequence Diagram

What is Sequence Diagram ¢

Sequence Diagram describe inferactions among classes in ferms of an
exchange of meggages over time. They are also called event diagram.

Sequence Diagram
Control ..
. Activation Box
Information

.‘/l_—l Notation

Frame

Life lines
Activation or Execution Occurrence
Messages

Guards

Alternatives (If - else)
Option (If — then)

Parallel (Two works together)

vV v vV vV v vV VvV VY

Loop

< diagram's label >)

< diagram's content >

Life lines

= Denotes the life of actors/objects over time during a sequence

Object Mame : Class name

Activation or Execution Occurrence

Message

» Used to illustrate communication between different activeobjects.
» Used when an object needs

» to acftivate a process of a different object

» to give information to another object

Messages

A class B :class
v .

i i
1 1
[] i
1 1
[] i
“Message =
R (=80l 8 i MEBSSaEe:s ~===================== l
[]
1
[]
1
[]

Self message

Guards

Guard is a condition, that must be met for a message to be sent to the
object.

Guards are used throughout UML diagrams to control flow

Place the guard element above the message line being guarded and in
front of the message name.

The notation of a guard is very simple; the format is:
[Boolean Tesf]

For example,
[pastDueBalance = 0]

user : class

[deposite = 0]

Bank : class

activate credit A/C

Alternatives

» A combined fragment is used to group sets of messages together to show
conditional flow in a sequence diagram.

» Alternatives are used to designate a mutually exclusive choice between
two or more message sequences.

» Alternatives allow the modeling of the classic "if then else" logic (e.q., if | buy
three items, then | get 20% off my purchase; else | get 10% off my purchase).

Alternatives

A:class B :class

Option

The option combination fragment is used to model a sequence that will either
occur or will not occur.

An option is used to model a simple "if then" statement (i.e., if there are fewer
than five donuts on the shelf, then make two dozen more donuts).

It only has one operand and there never can be an "else" guard.

To draw an option combination you draw a frame — text "opt" is placed inside
the frame's namebox, and in the frame's content area the opftion's guard is
placed towards the top left corner on top of a lifeline.

Then the option's sequence of messages is placed in the remainder of the
frame's content area.

reg :class A pps :class B
opt
[pastDueBalance =0]
addstudent(studentlD)
getCostOfClass() =]
3 classCost

chargeForClass()

Parallel

Modern computer systems are advancing in complexity and at fimes perform
concurrent tasks.

Parallel element is used for creating a sequence diagram that shows
parallel processing activities.

Drawn using a frame and place the text "par’ in the frame's namebox.

Break up the frame's content section into horizontal operands separated by
a dashed line.

Each operand in the frame represents a thread of execution done in
parallel.

hungryPerson : Person

Parallel

cookFood()

oven : MicroeaveQOven

[
—

par)

——
heatFood()

L}
rotateFood()

vV v v Y

Loop

To model a repetitive sequence.
In frame's namebox the text "loop" is placed.
Inside the frame's content area the loop's guard is placed.

Then the loop's sequence of messages is placed in the remainder of the frame's content
area.

In a loop, a guard can have two special conditions tested against, in addition to the
standard Boolean test.

The special guard conditions are minimum iterations written as "minint = [the number]"
(e.g.. "minint = 1") and maximum iterations written as "maxint = [the number]“.

With a minimum iterations guard, the loop must execute at least the number of fimes
indicated, whereas with a maximum iterations guard the number of loop executions
cannot exceed the number.

Loop

object name : class name object name : class name

Pt

oo P,

[condition]

message()

—
oee]

TH

Log-in Scenario

| Ul': login |

requestLogin()

name, pass —————————»
Loop

1

displayLoginScreent)

[while valid == false]
isValid(name, pass)

Acc: AccDB |

manager : System

isinDatabasei)

valid

I —

displayErrorMessagel)
‘-

-

displayLoginScreen()

|

ale

[UserType == admin]

displayAdmin()

UserType

[userType == user |

L

displayUser()

