Sequence Diagram

MD. ISRAFIL MAHMUD RAJU

LECTURER

DAFFODIL INTERNATIONAL UNIVERSITY

What is Sequence Diagram?

Sequence Diagram describe interactions among classes in terms of an exchange of *meggages* over time. They are also called **event diagram**.

Notation

- Frame
- ► Life lines
- Activation or Execution Occurrence
- Messages
- Guards
- ► Alternatives (If else)
- ▶ Option (If then)
- Parallel (Two works together)
- Loop

Frame

< diagram's label >

< diagram's content >

Life lines

Denotes the life of actors/objects over time during a sequence

Object Name : Class name

Activation or Execution Occurrence

Message

- ▶ Used to illustrate communication between different activeobjects.
- Used when an object needs
 - ▶ to activate a process of a different object
 - ▶ to give information to another object

Messages

Guards

- Guard is a condition, that must be met for a message to be sent to the object.
- Guards are used throughout UML diagrams to control flow
- ▶ Place the guard element above the message line being guarded and in front of the message name.
- ▶ The notation of a guard is very simple; the format is:

[Boolean Test]

For example,

[pastDueBalance = 0]

Guards

Alternatives

- ► A combined fragment is used to group sets of messages together to show conditional flow in a sequence diagram.
- Alternatives are used to designate a mutually exclusive choice between two or more message sequences.
- ▶ Alternatives allow the modeling of the classic "if then else" logic (e.g., if I buy three items, then I get 20% off my purchase; else I get 10% off my purchase).

Alternatives

Option

- ► The option combination fragment is used to model a sequence that will either occur or will not occur.
- An option is used to model a simple "if then" statement (i.e., if there are fewer than five donuts on the shelf, then make two dozen more donuts).
- ▶ It only has one operand and there never can be an "else" guard.
- ► To draw an option combination you draw a frame text "opt" is placed inside the frame's namebox, and in the frame's content area the option's guard is placed towards the top left corner on top of a lifeline.
- ► Then the option's sequence of messages is placed in the remainder of the frame's content area.

Option

Parallel

- Modern computer systems are advancing in complexity and at times perform concurrent tasks.
- Parallel element is used for creating a sequence diagram that shows parallel processing activities.
- Drawn using a frame and place the text "par" in the frame's namebox.
- Break up the frame's content section into horizontal operands separated by a dashed line.
- ► Each operand in the frame represents a thread of execution done in parallel.

Parallel

Loop

- To model a repetitive sequence.
- ▶ In frame's namebox the text "loop" is placed.
- Inside the frame's content area the loop's guard is placed.
- ▶ Then the loop's sequence of messages is placed in the remainder of the frame's content area.
- In a loop, a guard can have two special conditions tested against, in addition to the standard Boolean test.
- The special guard conditions are minimum iterations written as "minint = [the number]" (e.g., "minint = 1") and maximum iterations written as "maxint = [the number]".
- With a minimum iterations guard, the loop must execute at least the number of times indicated, whereas with a maximum iterations guard the number of loop executions cannot exceed the number.

Loop

Log-in Scenario

