
Requirements
Analysis
MD. ISRAFIL MAHMUD RAJU
LECTURER

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DAFFODIL INTERNATIONAL UNIVERSITY

1

Requirements Analysis
2

 Software engineering task bridging the gap between
system requirements engineering and software design.

 Provides software designer with a model of:
 system information

 function

 behavior

 Model can be translated to data, architectural, and
component-level designs.

 Expect to do a little bit of design during analysis and a little
bit of analysis during design.

Analysis Objectives
3

 Identify customer’s needs.

 Evaluate system for feasibility.

 Perform economic and technical analysis.

 Allocate functions to system elements.

 Establish schedule and constraints.

 Create system definitions.

Software Requirements Analysis Phases
4

 Problem recognition

 Evaluation and synthesis

 focus is on what not how

 Modeling

 Specification

 Review

Management Questions
5

 How much effort put towards analysis?

 Who does the analysis?

 Why is it so difficult?

 Bottom line - who pays for it?

Feasibility Study
6

 Economic feasibility

 cost/benefit analysis

 Technical feasibility

 hardware/software/people, etc.

 Legal feasibility

 Alternatives

 there is always more than one way to do it

Requirements
7

 Requirement
 features of system or system function used to fulfill

system purpose.

 Focus on customer’s needs and problem,
not on solutions:

 Requirements definition document
 (written for customer).

 Requirements specification document
 (written for programmer; technical staff).

Types of Requirements - 1
8

 Functional requirements:
 input/output

 processing.

 error handling.

 Non-functional requirements:
 Physical environment (equipment locations, multiple sites,

etc.).

 Interfaces (data medium etc.).

 User & human factors (who are the users, their skill level

etc.).

Types of Requirements - 2
9

 Non-functional requirements (continued):
 Performance (how well is system functioning).

 Documentation.

 Data (qualitative stuff).

 Resources (finding, physical space).

 Security (backup, firewall).

 Quality assurance (max. down time, MTBF, etc.).

Requirement Validation

 Correct?

 Consistent?

 Complete?
 Externally - all desired properties are present.

 Internally - no undefined references.

 Each requirement describes something
actually needed by the customer.

 Requirements are verifiable (testable)?

 Requirements are traceable.

10

Requirements Definition Document
11

 General purpose of document.

 System background and objectives.

 Description of approach.

 Detailed characteristics of proposed
system (data & functionality).

 Description of operating environment.

Software Requirements Elicitation
12

 Customer meetings are the most commonly
used technique.

 Use context free questions to find out

 customer's goals and benefits

 identify stakeholders

 gain understanding of problem

 determine customer reactions to proposed solutions

 assess meeting effectiveness

 Interview cross section of users when many users
are anticipated.

F.A.S.T
13

 Facilitated application specification technique

 Meeting between customers and developers at a

neutral site (no home advantage).

 Goals

 identify the problem

 propose elements of solution

 negotiate different approaches

 specify preliminary set of requirements

Use Cases
14

 Scenarios that describe how the product will be used
in specific situations.

 Written narratives that describe the role of an
actor (user or device) as it interacts with the
system.

 Use-cases designed from the actor's point of view.

 Not all actors can be identified during the first
iteration of requirements elicitation, but it is
important to identify the primary actors before
developing the use- cases.

User Profile - Example
15

 Full Control (Administrator)

 Read/Write/Modify All (Manager)

 Read/Write/Modify Own (Inspector)

 Read Only (General Public)

Use Case Example - 1
16

 Read Only Users

 The read-only users will only read the database and
cannot insert, delete or modify any records.

 Read/Write/Modify Own Users

 This level of users will be able to insert new
inspection details, facility information and
generate letters. They will be also able to modify
the entries they made in the past.

Use Case Example - 2
17

 Read/Write/Modify All Users

 This level of users will be able to do all the record
maintenance tasks. They will be able to modify any
records created by any users.

 Full Control Users

 This is the system administrative level which will be
able to change any application settings, as well as
maintaining user profiles.

Analysis Principles
18

 Information domain of problem must be
presented & understood.

 Models depicting system information, functions, and
behavior should be developed.

 Models and problems must be partitioned in a manner
that uncovers detail in layers.

 Analysis proceeds from essential information toward

implementation detail

 Must be traceable.

Information Domain
19

 Encompasses all data objects that contain

numbers, text, images, audio, or video.

 Information content or data model

 shows the relationships among the data and control objects that

make up the system

 Information flow

 represents manner in which data and control objects change as each

moves through system

 Information structure

 representations of the internal organizations of various data and control

items

Thank You

20

