This chapter deals with convolutional coding. Chapter 6 presented the fundamen-
. tals of linear block codes, which are described by two integers, n and &, and a gen-
“erator matrix or polynomial. The integer k is the number of data bits that form an

input to a block encoder. The integer # is the total number of bits in the associated

codeword out of the encoder. A characteristic of linear block codes is that each
codeword n-tuple is uniquely determined by the input message k-tuple. The ratio

k/n is called the rate of the code—a measure of the amount of added redundancy.

A convolutional code is described by three integers, n, k, and K, where the ratio k/n

has the same code rate significance (information per coded bit) that it has for block

codes; however, n does not define a block or codeword length as it does for block
codes. The integer K is a parameter known as the constraint length; it represents
the number of k-tuple stages in the encoding shift register. An important character-
istic of convolutional codes, different from block codes, is that the encoder has
memory—the n-tuple emitted by the convolutional encoding procedure is not only

a function of an input k-tuple, but is also a function of the previous K — 1 input

k-tuples. In practice, n and k are small integers and K is varied to control the capa-

bility and complexity of the code.

7.1 CONVOLUTIONAL ENCODING
In Figure 1.2 we presented a typical block diagram of a digital communication sys-
tem. A version of this functional diagram, focusing primarily on the convolutional

encode/decode and modulate/demodulate portions of the communication link, is

382 Channel Coding: Part 2 Chap. 7

shown in Figure 7.1. The input message source is denoted by the sequence m = m;,
My, ..., my, ..., where each m; represents a binary digit (bit), and i is a time index.
To be precise, one should denote the elements of m with an index for class mem-
bership (e.g., for binary codes, 1 or 0) and an index for time. However, in this chap-
ter, for simplicity, indexing is only used to indicate time (of location within a
sequence). We shall assume that each m, is equally likely to be a one or a zero, and
independent from digit to digit. Being independent, the bit sequence lacks any re-
dundancy; that is, knowledge about bit m; gives no information about m; (i #j). The
encoder transforms each sequence m into a unique codeword sequence U = G(m).
Even though the sequence m uniquely defines the sequence U, a key feature of
convolutional codes is that a given k-tuple within m does not uniquely define its as-
sociated n-tuple within U since the encoding of each k-tuple is not only a function
of that k-tuple but is also a function of the K — 1 input k-tuples that precede it. The
sequence U can be partitioned into a sequence of branch words: U = Uy, Us, ...,
Ui, Each branch word U, is made up of binary code symbols, often called chan-_
- nel symbols, channel bits, or code bits; unlike the input message bits the code sym-
bols are not independent.

In a typical communication application, the codeword sequence U modulates
a waveform s(s). During transmission, the waveform s(t) is corrupted by noise, re-
sulting in a received waveform §(r) and a demodulated sequence Z = Z;, Z,, ... ,
Z;, ..., asindicated in Figure 7.1. The task of the decoder is to produce an estimate
m = A1y, My, ..., 10, ... of the original message sequence, using the received se-
quence Z together with a priori knowledge of the encoding procedure.

A general convolutional encoder, shown in Figure 7.2, is mechanized with a
kK-stage shift register and n modulo-2 adders, where K is the constraint length.

Information _ | Convolutional "
source / i encode — Modulate
m =y, my, ..., M, ... U =G(m) {sit))]
Input sequence =Uy, Ug, ..., U5, ...
Codeword sequence - AWGN
where U; = uqj, ..., Wi, ... up; channel
Information | _ Convolutional | _ :
sink / decode - Demodufate
J}(-’.’ g
W =y, hy, ... iy, Zoedn B LB (8
' Where.Zi= 2y, sou¥iirling

and zj; is the jth demodulator output
symbol of branch word Z;

Figure 7.1 Encode/decode and modulate/demodulate portions of a
communication link.

F Convolutional Encoding 383

m =mi, M3, ..., My, ... 123 ...

kK
kK-stage
Input sequence . 3
(shifted in k at a time) +L [I | | —l shift register

TooftottTe

Codeword sequence U=U,, Uy, ..., U;, ... °
where U; = uqj, ..., Wiy oo Upj
= ith codeword branch
uji = jth binary code symbol
of branch word U;

Figure 7.2 Convolutional encoder with constraint length K'and rate k/n.

The constraint length represents the number of k-bit shifts over which a single in-
formation bit can influence the encoder output. At each unit of time, k bits are
shifted into the first k stages of the register; all bits in the register are shifted k
stages to the right, and the outputs of the n adders are sequentially sampled to yield
the binary code symbols or code bits. These code symbols are then used by the
modulator to specify the waveforms to be transmitted over the channel. Since there.
are n code bits for each input group of k message bits, the code rate is k/n message
bit per code bit, where k < n, ;

We shall consider only the most commonly used binary convolutional en-
coders for which k = 1—that is, those encoders in which the message bits are shifted
into the encoder one bit at a time, although generalization to higher order alpha-
bets is straightforward [1, 2]. For the k =1 encoder, at the ith unit of time, message
bit m, is shifted into the first shift register stage; all previous bits in the register are
shifted one stage to the right, and as in the more general case, the outputs of the n
adders are sequentially sampled and transmitted. Since there are n code bits for
each message bit, the code rate is 1/n. The n code symbols occurring at time f, com-
prise the ith branch word, U, = u,;, u,, . . . , Uy, Where w; (j=1,2, ..., n) is the jth
code symbol belonging to the ith branch word. Note that for the rate 1/n encoder,
the kK-stage shift register can be referred to simply as a K-stage register, and the
constraint length K, which was expressed in units of k-tuple stages, can be referred
to as constraint length in units of bits.

7.2 CONVOLUTIONAL ENCODER REPRESENTATION
To describe a convolutional code, one needs to characterize the encoding function
G(m), so that given an input sequence m, one can readily compute the output se-

quence U. Several methods are used for representing a convolutional encoder, the

384 -+ Channel Coding: Part 2 Chap. 7

.

most popular being the connection pictorial, connection vectors or polynomials, the

state diagram, the tree diagram, and the trellis diagram. They are each described
below.

7.2.1 Connection Representation

We shall use the convolutional encoder, shown in Figure 7.3, as a model for dis-
cussing convolutional encoders. The figure illustrates a (2, 1) convolutional en-
coder with constraint length K = 3. There are n =2 modulo-2 adders; thus the code
rate k/n is 3. At each input bit time, a bit is shifted into the leftmost stage and the
bits in the register are shifted one position to the right. Next, the output switch
samples the output of each modulo-2 adder (i.e., first the upper adder, then the
lower adder). thus forming the code symbol pair making up the branch word asso-
ciated with the bit just inputted. The sampling is repeated for each inputted bit.
The choice of connections between the adders and the stages of the register gives
rise to the characteristics of the code. Any change in the choice of connections re-
sults in a different code. The connections are, of course, not chosen or changed ar-
bitrarily. The problem of choosing connections to yield good distance properties is
complicated and has not been solved in general; however, good codes have been
found by computer search for all constraint lengths less than about 20 [3-5].

Unlike a block code that has a fixed word length #, a convolutional code has
no particular block size. However, convolutional codes are often forced into a
block structure by periodic truncation. This requires a number of zero bits to be ap-
pended to the end of the input data sequence, for the purpose of clearing or flush-

‘ing the encoding shift register of the data bits. Since the added zeros carry no
information, the effective code rate falls below k/n. To keep the code rate close to
k/n, the truncation period is generally made as long as practical.

One way to represent the encoder is to specify a set of n connection vectors,
one for each of the n modulo-2 adders. Each vector has dimension K and describes
the connection of the encoding shift register to that modulo-2 adder. A one in the
ith position of the-vector indicates that the corresponding stage in the shift register

. u { First
: T code symbol
B o)
Inﬁut’bit g ‘.J.’:_.________ Output
m A branch word

0
Second
a {code symbol

Figure 7.3 Convolutional encoder (rate 1, K= 3),

i Convolutional Encoder Representation z¥s - 385

is connected to the modulo-2 adder, and a zero in a given position indicates that no
connection exists between the stage and the modulo-2 adder. For the encoder ex-
ample in Figure 6.3, we can write the connection vector g, for the upper connec-
tions and g, for the lower connections as follows:

gjzlll
g=101

Now consider that a message vector m = 1 0 1 is convolutionally encoded with the
‘encoder shown in Figure 7.3. The three message bits are inputted, one at a time, at
times t;, t,, and f3, as shown in Figure 7.4. Subsequently, (K — 1) = 2 zeros are in-
putted at times f, and f; to flush the register and thus ensure that the tail end of the
message is shifted the full length of the register. The output sequence is seen to be
1110001011, where the leftmost symbol represents the earliest transmission.
The entire output sequence, including the code symbols as a result of flushing, are
needed to decode the message. To flush the message from the encoder requires
one less zero than the number of stages in the register, or K — 1 flush bits. Another
zero input is shown at time #, for the reader to verify that the flushing is completed
at time #s. Thus, a new message can be entered at time .

7.2.1.1 Impulse _Responsé of the Encoder

We can approach the encoder in terms of its impulse response—that is, the
response of the encoder to a single “one” bit that moves through it. Consider the
contents of the register in Figure 7.3 as a one moves through it:

x Branch word
Register N
contents uy U
100 1 1
010 1 0
001 1 1
Input sequence: 1w 0 0

Output sequence: 11 10 11

The output sequence for the input “one” is called the impulse response of the en-
coder. Then, for the input sequence m = 1 0 1, the output may be found by the su-
perposition or the linear addition of the time-shifted input “impulses™ as follows:

Input m Output
1 11 10 11
0 00 00 00
1 11 10 1%

Modulo-2 sum: (8 [R o 00 10 T

Observe that this is the same output as that obtained in Figure 7.4, demonstrating
that convolutional codes are linear—just like the linear block codes of Chapter 6. It

386 Channel Coding: Part 2 Chap. 7

m = 101 v

Time Encoder Output

L]

Figure 7.4 Convolutionally encoding a message
sequence with a rate }, K = 3 encoder.

7.2 Convolutional Encoder Representation

Output sequence: 11 10 00 10 11

is from this property of generating the output by the linear addition of time-shifted
impulses, or the convolution of the input sequence with the impulse response of the
encoder, that we derive the name convolutional encoder. Often, this encoder char-
acterization is presented in terms of an infinite-order generator matrix [6].

Notice that the effective code rate for the foregoing example with 3-bit input
sequence and 10-bit output sequence is k/n = A quite a bit less than the rate ; that
might have been expected from the knowledge that each input data bit yields a pair
of output channel bits. The reason for the disparity is that the final data bit into the
encoder needs to be shifted through the encoder. All of the output channel bits aré
needed in the decoding process. If the message had been longer, say 300 bits, the
output codeword sequence would contain 604 bits, resulting in a code rate o
300/604—much closer to 5. gl

7.2.1.2 Polynomial Representaiion

Sometimes, the encoder connections are characterized by generator polynomi-
als, similar to those used in Chapter 6 for describing thie feedback shift register imple-
mentation of cyclic codes. We can represent a convolutional encoder with a set of n
generator polynomials, one for each of the n modulo-2 adders. Each polynomial is of
degree K — 1 or less and describes the connection of the encoding shift register to that
modulo-2 adder, much the same way that a connection vector does. The coefficient of
each term in the (K — 1)-degree polynomial is either 1 or 0, depending on whether a
connection exists or does not exist between the shift register and the modulo-2 adder
in question. For the encoder example in Figure 7.3, we can write the generator poly-
nomial g;(X) for the upper connections and g,(X) for the lower connections as follows:

g(X)=1+X+.X?
g(X) =1+ X?

where the lowest order term in the polynomial corresponds to the input stage of
the register. The output sequence is found as follows:

U(X) = m(X)g,(X) interlaced with m(X)g,(X)

First, express the message vector m = 1 0 1 as a polynomial—that is, m(X)=1+X".
We shall again assume the use of zeros following the message bits, to flush the reg-
ister. Ther the output polynomial U(X), or the output sequence U, of the Figure
7.3 encoder can be found for the input message m as follows:

mXg,X)=0+X)1+X+X)=1+X+ X +Xx*
mX)g,(X) =1+ XH1 + X)) =1+ Xx*
mXg(X) =1+ X+0x2+ X*+Xx°
m(X)g,(X) = 1 + 0X + 0X? + 0X> + X*

UX) = (1L 1) + (1O)X + (0, 0)X% + (1,0)X° + (1, 1)X*
U=l 0 - 00 030 11

388 s Channel Coding: Part 2 Chap. 7

In this example we started with another point of view—namely, that the convolu-
tional encoder can be treated as a set of cyclic code shift registers. We represented
the encoder with polynomial generators as used for describing cyclic codes.
However, we arrived at the same output sequence as in Figure 7.4 and at the same
output sequence as the impulse response treatment of the preceding section.
(For a good presentation of convolutional code structure in the context of linear
sequential circuits, see Reference [7].) '

7.2.2 State Representation and the State Diagram
A convolutional encoder belongs to a class of devices known as finite-state ma-
chines, which is the general name given to machines that have a memory of past
signals. The adjective finite refers to the fact that there are only a finite number of
unique states that the machine can encounter. What is meant by the state of a
finite-state machine? In the most general sense, the state consists of the smallest
amount of information that, together with a current input to the machine, can pre-
dict the output of the machine. The state provides some knowledge of the past sig-
naling events and the restricted set of possible outputs in the-future. A future state
is restricted by the past state. For a rate 1/n convolutional encoder, the state is rep-
resented by the contents of the rightmost K — 1 stages (see Figure 7.3). Knowledge
of the state together with knowledge of the next input is necessary and sufficient to
determine the next output. Let the state of the encoder at time ¢, be defined as X, =
Mi-1y M2, ..., M;_ g,y The ith codeword branch U, is completely determined by
state X; and the present input bit m2,; thus the state X, represents the past history of
the encoder in determining the encoder output. The encoder state is said to be
Markov, in the sense that the probability P(X, 11X, Xy, .., Xp) of being in state
X; . . given all previous states, depends only on the most recent state X;; that is, the
probability is equal to P(X, , | X)). :
One way to represent simple encoders is with a state diagram; such a
representation for the encoder in Figure 7.3 is shown in Figure 7.5. The states,
shown in the boxes of the diagram, represent the possible contents of the right-
most K — 1 stages of the register, and the paths between the states represent
the output branch words resulting from such state transitions. The states of the
register are designated @ = 00, b = 10, ¢ = 01, and d = 11; the diagram shown in
Figure 7.5 illustrates all the'state transitions that are possible for the encoder in
Figure 7.3. There are only two transitions emanating from each state, correspond-
ing to the two possible input bits. Next to each path between states is written the
output branch word associated with the state transition. In drawing the path, we
use the convention that a solid line denotes a path associated with an input bit,
zero, and a dashed line denotes a path associated with an input bit, one. Notice that
it is 1ot possible in a single transition to move from a given state to any arbitrary
State. As a consequence of shifting-in one bit at a time. there are only two possible
state transitions that™\he register can make at each bit time. For example, if the

present encoder state is 00, the only possibilities for the state at the next shift are 00
or 10,

7.2 Convolutional Encoder Representation 389

00

O Qutput

1 _-4a=00 11/branchword
|
//
/ ..
- RS B Encoder 3
10 C”m. .state /
\\ 10
~ Legend
01 "~~dd =11 01
— Input bit 0
LNESR
|‘\ ‘ === Input bit 1
il Figure 7.5 Encoder state diagram
10 (rate 3, K=3).

Example 7.1 Convolutional Encoding

For the encoder shown in Figure 7.3, show the state changes and the resulting output
codeword sequence U for the message sequencem=11011, followed by K -1=2
zeros to flush the register. Assume that the initial contents of the register are all zeros.

Solution
Branch
word
- S“_“e Bl at time [;
Input Register State at time P
bit m; contents time ¢; Lot u; Uy
— 000 . 00 00 —
1 100 00 10 1 1 o
1 110 10- @it 0 LA Uy
0 011 11 01 0y 1P X
1 101 01 10 0 17 0
1 110 10 1 0 1 Ol
0 011 150, 01 0 1
0 001 01 00 - 1 1
Iy
Jstatc L
state
i

Output sequence: U=11 01 01 00 01 01 11

390 Channel Coding: Part 2 Chap. 7

Example 72 Convolutional Encoding

In Example 7.1 the initial contents of the register are all zeros. This is equivalent to
the condition that the given input sequence is preceded by two zero bits (the encoding
is a function of the present bit and the K - 1 prior bits). Repeat Example 7.1 with the
assumption that the given input sequence is preceded by two one bits, and verify that
now the codeword sequence U for input sequence m = 11 0 1 1 is different than the
codeword found in Example 7.1,

Solution

The entry “X" signifies “don’t know.”

Branch
word
. State at at time [;
Input Register State at time PRt S S P
bit m, contents time ¢ &t iy u;
— 11X 1 X 11 -
1 1k 11 11 1 0
1 111 i1 11 1 0
0 011 11 01 0 1
] 101 01 10 0 0
1 110 10 171 0 1
0 011 & | 01 0 1
0 0 Q} 01 00 1 1
I\
istate t;
state
rf+ 1

Outputsequence: U=10 10 01 00 01 01 11

By comparing this result with that of Example 7.1, we can see that each branch

word of the output sequence U is not only a function of the input bit, but is also a
function of the K - 1 prior bits.]

7.2.3 The Tree Diagram

Although the state diagram completely characterizes the encoder, one cannot eas-
ily use it for tracking the encoder transitions as a function of {ime since the diagram
cannot represent time history. The tree diagram adds thg'df}nensfon of time to the
state diagram. The tree diagram for the convolutionggencoder shown in Figure 7.3
is illustrated in Figure 7.6. At each successive input bit time the encoding proce-
dure can be described by traversing the diagram from left to right, each tree brancH
describing an output branch word. The branching rule for finding a codeword se-
quence is as follows: If the input bit is a zero, its associated branch word is found by
moving to the next rightmost branch in the upward direction. If the input bit is a
- one, its branch word is found by moving to the next rightmost branch in the down-
ward direction. Assuming that the initial contents of the encoder is all zeros, the

7.2 Convoluticnal Encoder Representation 391

Codeword _

=10

branch

392

HUEE

\

11

tq

00 @
| 1
00 a
10
1i=ih
s A L
00 a
11
10 ¢
00
11 b
01
Q1 d
L0 g
a d
00
)
Aleri
16
10
00 b
e O
11 b
11
e
' 00
01 d
01
10 d
I gy
00
00 a
Rl T
g B a .
11 b 12
S ey
10 c
1.0' 11
< 00
00 b
01
01 d
i
b
00
11 a
4“' 141
01 c
00 b L
_.._E
01 d :
ol 11
=
A0 d
10 d !
S
Figure 7.6 Tree representation
t2 ta tg ts

of encoder (rate 3, K=3).

]

Channel Coding: Part 2 Chap.7 -

diagram shows that if the first input bit is a zero, the output branch word is 00 and,
if the first input bit is a one, the output branch word is 11. Similarly, if the first
input bit is a one and the second input bit is a zero, the second output branch word
is 10. Or, if the first input bit is a one and the second input bit is a one, the second
output branch word is 01. Following this procedure we see that the input sequence
11011 traces the heavy line drawn on the tree diagram in Figure 7.6. This path
corresponds to the output codeword sequence 110101000 1.

The added dimension of time in the tree diagram (compared 1o the state dia-
gram) allows one to dynamically describe the encoder as a function of a particular
input sequence. However, can you see one problem in trying to use a tree diagram
for describing a sequence of any length? The number of branches increases as a
function of 2%, where L is the number of branch words in the sequence. You would
quickly run out of paper, and patience.

7.2.4 The Trellis Diagram

Observation of the Figure 7.6 tree diagram shows that for this example, the struc-
ture repeats itself at time f,, after the third branching (in general, the tree structure
repeats after K branchings, where K is the constraint length). We label each node in
the tree of Figure 7.6 to correspond to the four possible states in the shift register,
as follows: @ = 00, b = 10, ¢ = 01, and d = 11. The first branching of the tree struc-
ture, at time f,, produces a pair of nodes labeled a and b. At each successive
branching the number of nodes double. The second branching, at time #,, results in
four nodes labeled a, b, ¢, and d. After the third branching, there are a total of eight
nodes: two are labeled a, two are labeled b, two are labeled ¢, and two are labeled
d. We can see that all branches emanating from two nodes of the same state gener-
ate identical branch word sequences. From this point on, the upper and the lower
halves of the tree are identical. The reason for this should be obvious from exami-
nation of the encoder in Figure 7.3. As the fourth input bit enters the encoder on
the left, the first input bit is ejected on the right and no longer influences the output
branch words. Consequently, the input sequences 100xy...and000xy ...,
where the leftmost bit is the earliest bit, generate the same branch words after the
(K =3)rd branching. This means that any two nodes having the same state label at
the same time ; can be merged, since all succeeding paths will be indistinguishable.
If we do this to the tree structure of Figure 7.6, we obtain another diagram, called
the trellis diagram. The trellis diagram, by exploiting the repetitive structure, pro-
vides a more manageable encoder descripiion than does the tree diagram. The trel-
lis diagram for the convolutional encoder of Figure 7.3 is shown in Figure 7.7.

In drawing the trellis diagram, we use the same convention that we intro-
duced with the state diagram—a solid line denotes the output generated by an
input bit zero, and a dashed line denotes the output generated by an input bit one.
The nodes of the trellis characterize the encoder states; the first row nodes corre-
spond to the state a = 00, the second and subsequent rows correspond to the states
b =10, ¢ =01, and d = 11. At each unit of time, the trellis requires 2X ! nodes to
represent the 2%~ ! possible encoder states. The trellis in our example assumes a

7.2 Convolutional Encoder Representation 393

State a=00 & @ o Py > iy
b3 *~
el e [Tk
e i % Codeword
\\ ~ branch
~
b=10 e = »
c=01e
a=lt e R [R [R 10
Legend)
Input bit 0
————— Input bit 1

Figure 7.7 Encoder trellis diagram (rate , K= 3).

fixed periodic structure after trellis depth 3 is reached (at time #,). In the general
case, the fixed structure prevails after depth K is reached. At this point and there-
after, each of the states can be entered from either of two preceding states. Also,
each of the states can transition to one of two states. Of the two outgoing branches,
one corresponds to an input bit zero and the other corresponds to an input bit one.
On Figure 7.7 the output branch words corresponding to the state transitions
appear as labels on the trellis branches.

One time-interval section of a fully-formed encoding trellis structure com-
pletely defines the code. The only reason for showing several sections is for viewing
a code-symbol sequence as a function of time. The state of the convolutional en-
coder is represented by the contents of the rightmost K - 1 stages in the encoder
register. Some authors describe the state as the contents of the leftmost K ~ 1
stages. Which description is correct? They are both correct in the foliowing sense.
Every transition has a starting state and a terminating state. The rightmost K - 1 '
stages describe the starting state for the current input, which is in the leftmost stage
(assuming a rate 1/n encoder). The leftmost K — 1 stages represent the terminat-
ing state for that transition. A code-symbol sequence is characterized by N
branches (representing N data bits) occupying N intervals of time and associated

-with a particular state at each of [NV +d. times (from start to finish). Thus, we launch

bits at times ty, £, . . ., ty, and are interested in state metrics at times #y, ty, ..., In,1-
The convention used here is that the current bit is located in the leftmost stage (not
on a wire leading to that stage),"and the rightmost K — 1 stages start in the all-zeros
state. We refer to this time as the start time and label it 1. We refer to the conclud-
ing time of the last transition as the rerminating time and label it 1y, ;.

Channel Coding: Part 2 Chap. 7

	scan00382
	scan00383
	scan00384
	scan00385
	scan00386
	scan00387
	scan00388
	scan00389
	scan00390
	scan00391
	scan00392
	scan00393
	scan00394

