
Computer Languages

Professor Dr. Md. Ismail Jabiullah

Department of CSE

Daffodil International University

Learning Objectives

 In this Lecture you will learn about:

▪ Computer languages or programming languages

▪ Three broad categories of programming languages –
machine, assembly, and high-level languages

▪ Commonly used programming language tools such as
assembler, compiler, linker, and interpreter

▪ Concepts of object-oriented programming languages

▪ Some popular programming languages such as FORTRAN,
COBOL, BASIC, Pascal, C, C++, C#, Java, RPG, LISP and
SNOBOL

▪ Related concepts such as Subprogram, Characteristics of a
good programming language, and factors to consider while
selecting a language for coding an application

Broad Classification of

Computer Languages

▪ Machine language

▪ Assembly language

▪ High-level language

Machine Language

▪ Only language of a computer understood by it
without using a translation program

▪ Normally written as strings of binary 1s and 0s

▪ Written using decimal digits if the circuitry of the
computer being used permits this

Advantages & Limitations of
Machine Language

Advantages

▪ Can be executed very fast

Limitations

▪ Machine Dependent

▪ Difficult to program

▪ Error prone

▪ Difficult to modify

Assembly/Symbolic
Language
 Programming language that overcomes the limitations of machine
language programming by:

▪ Using alphanumeric mnemonic codes instead of numeric codes for
the instructions in the instruction set e.g. using ADD instead of 1110
(binary) or 14 (decimal) for instruction to add

▪ Allowing storage locations to be represented in form of alphanumeric
addresses instead of numeric addresses e.g. representing memory
locations 1000, 1001, and 1002 as FRST, SCND, and ANSR
respectively

▪ Providing pseudo-instructions that are used for instructing the system
how we want the program to be assembled inside the computer’s
memory e.g. START PROGRAM AT 0000; SET ASIDE AN ADRESS FOR
FRST

Advantages of Assembly Language

Over Machine Language

▪ Easier to understand and use

▪ Easier to locate and correct errors

▪ Easier to modify

▪ No worry about addresses

▪ Easily relocatable

▪ Efficiency of machine language

Limitations of Assembly

Language

▪ Machine dependent

▪ Knowledge of hardware required

▪ Machine level coding

High-Level Languages

▪ Machine independent

▪ Do not require programmers to know anything about the
internal structure of computer on which high-level language
programs will be executed

▪ Deal with high-level coding, enabling the programmers to
write instructions using English words and familiar
mathematical symbols and expressions

Advantages of High-Level

Languages

▪ Machine independent

▪ Easier to learn and use

▪ Fewer errors during program development

▪ Lower program preparation cost

▪ Better documentation

▪ Easier to maintain

Limitations of High-Level

Languages

▪ Lower execution efficiency

▪ Less flexibility to control the computer’s CPU, memory and
registers

C

c

▪ Developed in 1972 at AT&T’s Bell laboratories, USA
by Dennis Ritchie and Brian Kernighan

▪ Standardized by ANSI and ISO as C89, C90, C99

▪ High-level programming languages (mainly machine
independence) with the efficiency of an assembly
language

▪ Language of choice of programmers for portable
systems software and commercial software
packages like OS, compiler, spreadsheet, word
processor, and database management systems

C is Middle Level Language
 There are following reason that C is called Middle Level

Language as:

 C programming language behaves as high level language
through function, it gives a modular programming and
breakup, increased the efficiency for resolvability.

 C programming language support the low level language i.e.
Assembly Language.

 C language also gives the facility to access memory through
pointer.

 Its combines the elements of high-level languages with the
functionalism of assembly language.

 So, C language neither a High Level nor a Low level
language but a Middle Level Language.

Variables in C

Topics

 What is Variable

 Naming Variables

 Declaring Variables

 Using Variables

 The Assignment Statement

What Are Variables in C?

 Variables are the names that refer to sections of memory into

which data can be stored.

 Variables in C have the same meaning as variables in algebra.

That is, they represent some unknown, or variable, value.

x = a + b

z + 2 = 3(y – 5)

 Remember that variables in algebra are represented by a single
alphabetic character.

Naming Variables

 Rules for variable naming:
 Can be composed of letters (both uppercase and

lowercase letters), digits and underscore only.

 The first character should be either a letter or an
underscore(not any digit).

 Punctuation and special characters are not
allowed except underscore.

 Variable name should not be keywords.

 names are case sensitive.

 There is no rule for the length of a variable name.
However, the first 31 characters are discriminated
by the compiler. So, the first 31 letters of two name
in a program should be different.

Naming Conventions
 C programmers generally agree on the following

conventions for naming variables.

 Begin variable names with lowercase letters

 Use meaningful identifiers

 Separate “words” within identifiers with underscores or
mixed upper and lower case.

 Examples: surfaceArea surface_Area
surface_area

 Be consistent!

 Use all uppercase for symbolic constants (used in
#define preprocessor directives).Examples:

#define PI 3.14159

#define AGE 52

Reserved Words (Keywords)

in C
auto break int long

register return short signed

size of static struct switch

Typedef union unsigned void

Volatile while case char

const continue default do

double else enum extern

float for goto if

Declaring Variables
 Before using a variable, you must give the

compiler some information about the variable;

i.e., you must declare it.

 C has three basic predefined data types:

▪ Integers (whole numbers): int

int length = 7 ;

 Floating point (real numbers): float, double

float diameter = 5.9 ;

 Characters: char

char initial = ‘A’ ;

A Simple C Program
#include<stdio.h>

int main()

{

printf("Hello World");

}

Sum of two numbers

#include <stdio.h>

int main()

{

int num1, num2, sum;

printf("Enter two integers: ");

scanf("%d %d",&num1,&num2); /* Stores the two integer
entered by user in variable num1 and num2 */

sum=num1+num2; /* Performs addition and stores it in
variable sum */

printf("Sum: %d",sum); /* Displays sum */

return 0;

}

Printf() and Scanf() functions

 printf() and scanf() functions are inbuilt library

functions in C which are available in C library by

default.

 These functions are declared and related macros
are defined in “stdio.h” which is a header file.

 We have to include “stdio.h” file as shown in

below C program to make use of these printf()

and scanf() library functions.

printf() function
 C printf() function:

 The printf statement allows you to send output to standard out.
For us, standard out is generally the screen.

 printf() function is used to print the “character, string, float,
integer, octal and hexadecimal values” onto the output
screen.

 We use printf() function with %d format specifier to display the
value of an integer variable.

 Similarly %c is used to display character, %f for float
variable, %s for string variable, %lf for double and %x for
hexadecimal variable.

 To generate a newline,we use “\n” in C printf() statement.

 Note:

 C language is case sensitive. For example, printf() and scanf()
are different from Printf() and Scanf(). All characters in printf()
and scanf() functions must be in lower case.

scanf() function
 scanf() function:

 The scanf function allows you to accept input from

standard in, which for us is generally the keyboard.

 scanf() function is used to read character, string,

numeric data from keyboard

 Consider below example program where user enters

a character. This value is assigned to the variable

“ch” and then displayed.

 Then, user enters a string and this value is assigned to

the variable ”str” and then displayed.

Thank You

