Lecture: 01

Ordinary Differential Equations (ODEs)

Differential Equation:

A differential equation is, in simpler terms, a statement of equality having a derivative or differentials.
An equation involving differentials or differential co-efficient is called a differential equation.
For examples, $\frac{d^{2} y}{d x^{2}}=0$ and $y d x+x d y=0$ are two differential equations.

Ordinary Differential Equation:

If a differential equation contains one dependent variable and one independent variable, then the differential equation is called ordinary differential equation.
For example, (i) $\frac{d y}{d x}=x \operatorname{Sin} x$;
(ii) $4 \frac{d^{2} y}{d x^{2}}+6 y=\tan x$.

Partial Differential Equation:

If there are two or more independent variables, so that the derivatives are partial, then the differential equation is called partial differential equation.
For example, $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.

Order:

By the order of a differential equation, we mean the order of the highest differential coefficient which appears in it.
For example, $4 \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0$ is a second order differential equation.

Degree:

By the degree of a differential equation, we mean the degree of the highest differential coefficient after the equation has been put in the form free from radicals and fraction.
For example, $\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+2 x\left(\frac{d y}{d x}\right)^{5}=0$ is a differential equation whose degree is 4 .
The degree of $\sqrt[4]{\frac{d y}{d x}+2 x\left(\frac{d^{4} y}{d x^{4}}\right)^{3}}=\sqrt[3]{x-2}$ is 9 .

$$
\left\{\frac{d y}{d x}+2 x\left(\frac{d^{4} y}{d x^{4}}\right)^{3}\right\}^{1 / 4}=(x-2)^{1 / 3}
$$

Shirin Sultana, Lecturer (Mathematics), Dept. of $\mathcal{N a t u r a l}$ Sciences, Daffodil International University.

$$
\left\{\frac{d y}{d x}+2 x\left(\frac{d^{4} y}{d x^{4}}\right)^{3}\right\}^{3}=(x-2)^{4}
$$

General Solution:

The solution of a differential equation in which the number of arbitrary constants is equal to the order of the differential equation is called the general solution.
For example, $y=a x+b$ is the general solution of the differential equation $\frac{d^{2} y}{d x^{2}}=0$, where a and b are arbitrary constant.

Particular Solution:

If particular values are given to the arbitrary constants in the general solution, then the solution so obtained is called particular solution.
For example, putting $a=2$ and $b=3$ a particular solution of $\frac{d^{2} y}{d x^{2}}=0$ is $y=2 x+3$.
How to solve $\frac{d^{2} y}{d x^{2}}=0$?

Solution:

$\frac{d^{2} y}{d x^{2}}=0$, or $\frac{d}{d x}\left(\frac{d y}{d x}\right)=0$, or $\int d\left(\frac{d y}{d x}\right)=a$,
or $\int d u=a$ where $u=\frac{d y}{d x}$,
or $u=a$,
or $\frac{d y}{d x}=a$,
or $\int d y=a \int d x+b$,
or $y=a x+b$.
which geometrically represents a straight line.
Or one may solve it in the following way:

$$
\frac{d^{2} y}{d x^{2}}=0, \text { or } \frac{d}{d x}\left(\frac{d y}{d x}\right)=0 ;
$$

since the derivative of $\frac{d y}{d x}$ is zero;
so $\frac{d y}{d x}=$ constant a (say)
or $\int d y=a \int d x+b$ or $\quad y=a q x+b$.
In fact $\frac{d^{2} y}{d x^{2}}=0$ is an ODE of order 2 and has as solution with 2 parameters a and b.
Shirin Sultana, Lecturer (Mathematics), Dept. of $\mathcal{N a t u r a l}$ Sciences, Daffodil International University.

Formation of Ordinary Differential Equation:

Eliminating arbitrary constants, we can form ODE.
Form an ODE corresponding to $y=e^{x}(A \operatorname{Cos} x+B \operatorname{Sin} x)$

Solution:

Given, $y=e^{x}(A \operatorname{Cos} x+B \operatorname{Sin} x)$
Differentiating with respect to x we get

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x}(A \operatorname{Cos} x+B \operatorname{Sin} x)+e^{x}(-A \operatorname{Sin} x+B \operatorname{Cos} x) \\
& =y+e^{x}(-A \operatorname{Sin} x+B \operatorname{Cos} x)
\end{aligned}
$$

Differentiating again with respect to x we get

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d y}{d x}+e^{x}(-A \operatorname{Sin} x+B \operatorname{Cos} x)+e^{x}(-A \operatorname{Cos} x-B \operatorname{Sin} x) \\
& =\frac{d y}{d x}+e^{x}(-A \operatorname{Sin} x+B \operatorname{Cos} x)-e^{x}(A \operatorname{Cos} x+B \operatorname{Sin} x) \\
& =\frac{d y}{d x}+\left(\frac{d y}{d x}-y\right)-y \\
\frac{d^{2} y}{d x^{2}} & -2 \frac{d y}{d x}+2 y=0 .
\end{aligned}
$$

Derive an ODE corresponding to all circles lying in a plane.

Derivation:

The equation of all circles lying in a plane is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{i}
\end{equation*}
$$

Which contains three arbitrary constant g, f and c.
Differentiating (i) thrice successively, we have

$$
\begin{align*}
& 2 x+2 y \frac{d y}{d x}+2 g+2 f \frac{d y}{d x}=0 \\
& x+y \frac{d y}{d x}+g+f \frac{d y}{d x}=0 \\
& 1+\left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}+f \frac{d^{2} y}{d x^{2}}=0 \\
& 1+\left(\frac{d y}{d x}\right)^{2}+(y+f) \frac{d^{2} y}{d x^{2}}=0 \\
& 1+\left(\frac{d y}{d x}\right)^{2}=-(y+f) \frac{d^{2} y}{d x^{2}} \ldots . . \tag{ii}
\end{align*}
$$

Shirin Sultana, Lecturer (Mathematics), Dept. of $\mathcal{N a t u r a l}$ Sciences, Daffodil International University.

$$
\begin{align*}
& 2\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}=-(y+f) \frac{d^{3} y}{d x^{3}}-\frac{d y}{d x} \frac{d^{2} y}{d x^{2}} \\
& 3\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}=-(y+f) \frac{d^{3} y}{d x^{3}} \ldots \ldots \ldots \tag{iii}
\end{align*}
$$

Dividing (ii) by (iii)

$$
\begin{gathered}
\frac{1+\left(\frac{d y}{d x}\right)^{2}}{3\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}}=\frac{-(y+f) \frac{d^{2} y}{d x^{2}}}{-(y+f) \frac{d^{3} y}{d x^{3}}} \\
3\left(\frac{d y}{d x}\right)\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\frac{d^{3} y}{d x^{3}}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]
\end{gathered}
$$

Find the differential equation of the curves $x y=A e^{2 x}+B e^{-2 x}$ for different values of A and B. State order and degree of the derived equation.

Solution:

Given equation, $x y=A e^{2 x}+B e^{-2 x}$
Differentiating with respect to x we get

$$
x \frac{d y}{d x}+y=2 A e^{2 x}-2 B e^{-2 x}
$$

Differentiating again with respect to x we get

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\frac{d y}{d x}=4 A e^{2 x}+4 B e^{-2 x} \\
& x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=4\left(A e^{2 x}+B e^{-2 x}\right) \\
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\frac{d y}{d x}-4 x y=0
\end{aligned}
$$

This is the required differential equation. The order of the above equation is 2 and the degree is 1 .
Show that $A x^{2}+B y^{2}=1$ is the solution of $x\left[y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]=y \frac{d y}{d x}$.
Proof:
Given equation, $A x^{2}+B y^{2}=1$
Differentiating with respect to x we get

$$
\begin{align*}
& 2 A x+2 B y \frac{d y}{d x}=0 \\
& A x+B y \frac{d y}{d x}=0 . . \tag{i}
\end{align*}
$$

Shirin Sultana, Lecturer (Mathematics), Dept. of \mathcal{N} atural Sciences, Daffodil International University.

$$
\begin{equation*}
\frac{A}{B}=-\frac{y}{x} \frac{d y}{d x} \tag{ii}
\end{equation*}
$$

Differentiating (i) again with respect to x we get

$$
\begin{aligned}
& A+B y \frac{d^{2} y}{d x^{2}}+B\left(\frac{d y}{d x}\right)^{2}=0 \\
& \frac{A}{B}=-y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2} \\
& -\frac{y}{x} \frac{d y}{d x}=-y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2} \quad[\text { Using (ii)] } \\
& x\left[y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]=y \frac{d y}{d x} .
\end{aligned}
$$

Find the differential equations of all circles passing through origin and having their centres on the X -axis.
Solution:
The equations of all circles passing through origin and having their centres on the X -axis is

$$
\begin{align*}
& x^{2}+y^{2}+2 g x=0 \tag{i}\\
& 2 g x=-\left(x^{2}+y^{2}\right) \\
& 2 g=-\left(\frac{x^{2}+y^{2}}{x}\right) \tag{ii}
\end{align*}
$$

Differentiating (i) with respect to x we get

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}+2 g=0 \\
& 2 x+2 y \frac{d y}{d x}-\left(\frac{x^{2}+y^{2}}{x}\right)=0 .
\end{aligned}
$$

Shirin Sultana, Lecturer (Mathematics), Dept. of $\mathcal{N a t u r a l}$ Sciences, Daffodil International University.

