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Ordinary Differential Equations (ODEs) 
 
 

Differential Equation:  
A differential equation is, in simpler terms, a statement of equality having a derivative or 
differentials. 
An equation involving differentials or differential co-efficient is called a differential equation.    

For examples, 0
2

2

=
xd

yd
and 0=+ dyxdxy  are two differential equations.  

 
Ordinary Differential Equation: 
If a differential equation contains one dependent variable and one independent variable, then 
the differential equation is called ordinary differential equation.  

For example, (i) Sinxx
xd

dy = ; 

                        (ii) xy
xd

yd
tan64

2

2

=+ . 

 
Partial Differential Equation: 
If there are two or more independent variables, so that the derivatives are partial, then the 
differential equation is called partial differential equation.  

For example, z
y

z
y

x

z
x =

∂
∂+

∂
∂

. 

 
Order: 
By the order of a differential equation, we mean the order of the highest differential co-
efficient which appears in it. 

For example, 04
2

2

=+
dx

dy
x

xd

yd
 is a second order differential equation. 

 
Degree: 
By the degree of a differential equation, we mean the degree of the highest differential co-
efficient after the equation has been put in the form free from radicals and fraction. 

For example, 02
54

2

2

=







+











xd

yd
x

xd

yd
 is a differential equation whose degree is 4.                       

The degree of 34

3

4

4

22 −=









+ x

xd

yd
x

xd

yd
 is 9. 

                       ( ) 3
1

4
1

3

4

4

22 −=






















+ x

xd

yd
x

xd

yd
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                       ( ) 4

33

4

4

22 −=






















+ x

xd

yd
x

xd

yd
. 

 
 
General Solution: 
The solution of a differential equation in which the number of arbitrary constants is equal to 
the order of the differential equation is called the general solution. 

For example, bxay +=  is the general solution of the differential equation 0
2

2

=
xd

yd
, 

where a  and b  are arbitrary constant. 
 
 
Particular Solution:  
If particular values are given to the arbitrary constants in the general solution, then the 
solution so obtained is called particular solution. 

For example, putting 2=a  and 3=b  a particular solution of 0
2

2

=
xd

yd
is 32 += xy . 

How to solve 0
2

2

=
xd

yd
? 

Solution: 

0
2

2

=
xd

yd
,  or ,0=









dx

dy

dx

d
  or  ∫ =








,a

dx

dy
d  

 or  ∫ = adu  where ,
dx

dy
u =  

or au = ,  

or ,a
dx

dy =  

or  ,∫ ∫ += bdxady   

or  .baxy +=  
which geometrically represents a straight line. 

 
Or one may solve it in the following way : 

0
2

2

=
xd

yd
, or  ;0=









dx

dy

dx

d
  

since the derivative of 
dx

dy
 is zero; 

so =
dx

dy
constant  a (say) 

or ∫ ∫ += bdxady    or   .baqxy +=  

In fact 0
2

2

=
xd

yd
is an ODE of order 2 and has as solution with 2 parameters a and b. 
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Formation of Ordinary Differential Equation: 
              Eliminating arbitrary constants, we can form ODE. 
 

Form an ODE corresponding to ( )SinxBCosxAey x +=  
Solution: 
Given, ( )SinxBCosxAey x +=  
Differentiating with respect to x we get 

                    ( ) ( )CosxBASinxeSinxBCosxAe
xd

yd xx +−++=                       

                            ( )CosxBASinxey x +−+=  
Differentiating again with respect to x we get 
 

                    ( ) ( )SinxBCosxAexCosBASinxe
xd

yd

xd

yd xx −−++−+=
2

2

 

                               ( ) ( )SinxBCosxAexCosBASinxe
xd

yd xx +−+−+=                                

                               yy
xd

yd

xd

yd
−








−+=  

                                

                     022
2

2

=+− y
xd

yd

xd

yd
. 

 
Derive an ODE corresponding to all circles lying in a plane. 
Derivation: 
The equation of all circles lying in a plane is 

                                  02222 =++++ cfygxyx   …  …  …  …  …  …  …  …  (i) 
       Which contains three arbitrary constantg , f  and c . 
Differentiating (i) thrice successively, we have 

                                  02222 =+++
xd

yd
fg

xd

yd
yx  

                                  0=+++
xd

yd
fg

xd

yd
yx  

                                  01
2

2

2

22

=++







+

xd

yd
f

xd

yd
y

xd

yd
 

                                  ( ) 01
2

22

=++







+

xd

yd
fy

xd

yd
 

                                ( )
2

22

1
xd

yd
fy

xd

yd
+−=








+ … …  …  …  …  …  …  …  …  …  (ii) 
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                                ( )
2

2

3

3

2

2

2
xd

yd

xd

yd

xd

yd
fy

xd

yd

xd

yd
−+−=








 

                                ( )
3

3

2

2

3
xd

yd
fy

xd

yd

xd

yd
+−=








 …  …  …  …  …  …  …  …  …  (iii) 

Dividing (ii) by (iii) 
 

                             

( )

( )
3

3

2

2

2

2

2

3

1

xd

yd
fy

xd

yd
fy

xd

yd

xd

yd

xd

yd

+−

+−
=


















+

 

                         






















+=


















2

3

32

2

2

13
xd

yd

xd

yd

xd

yd

xd

yd
 

 
Find the differential equation of the curves xx eBeAyx 22 −+=  for different values of A  
and B . State order and degree of the derived equation. 
Solution: 
Given equation, xx eBeAyx 22 −+=  
Differentiating with respect to x we get 
 

                        xx eBeAy
dx

yd
x 22 22 −−=+  

Differentiating again with respect to x we get 
 

                       xx eBeA
xd

yd

xd

yd

dx

yd
x 22

2

2

44 −+=++  

                      ( )xx eBeA
xd

yd

dx

yd
x 22

2

2

42 −+=+  

                      04
2

2

=−++ xy
xd

yd

xd

yd

dx

yd
x  

This is the required differential equation. The order of the above equation is 2 and the degree 
is 1. 

Show that 122 =+ yBxA is the solution of
dx

dy
y

dx

dy

dx

yd
yx =















+ 2
2

2

. 

Proof: 
Given equation, 122 =+ yBxA  
Differentiating with respect to x we get 

                        022 =+
dx

yd
ByAx  

                        0=+
dx

yd
ByAx   …  …  …  …  …  …  …  …  (i) 
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dx

yd

x

y

B

A −=      …  …  …  …  …  …  …  …  (ii) 

 
 
Differentiating (i) again with respect to x we get 
 

                       0
2

2

2

=







++

xd

yd
B

dx

yd
yBA  

                       
2

2

2









−−=

xd

yd

dx

yd
y

B

A
 

                   
2

2

2









−−=−

xd

yd

dx

yd
y

dx

yd

x

y
          [Using (ii)] 

                      
dx

dy
y

dx

dy

dx

yd
yx =















+ 2
2

2

. 

 
Find the differential equations of all circles passing through origin and having their 
centres on the X-axis. 
Solution: 
The equations of all circles passing through origin and having their centres on the X-axis is  

                         0222 =++ gxyx    …  …  …  …  …  …  …  …  (i) 

                         ( )222 yxgx +−=  

                         








 +
−=

x

yx
g

22

2 …  …  …  …  …  …  …  …  (ii) 

 
Differentiating (i) with respect to x we get 

                         0222 =++ g
xd

yd
yx  

                         022
22

=







 +
−+

x

yx

xd

yd
yx . 

 
 
 


