Linear Differential Equation and integrating factor

If P and Q are only functions of x or constants then the differential equation of the form $\frac{dy}{dx} + Py = Q$ is called the first order linear differential equation.

INTEGRATING FACTOR (I.F)

A given differential equation may not be integrable as such. But it may become integrable when it is multiplied by a function. Such a function is called the **integrating factor (I.F).** Hence an integrating factor is one which changes a differential equation into one which is directly integrable.

Solve:
$$\frac{dy}{dx} + 2y = 4x$$

Solution: Given that,

$$\frac{dy}{dx} + 2y = 4x \dots (i)$$

$$I.F = e^{\int 2dx} = e^{2x}$$

Multiplying equation (i) by the I.F. e^{2x} we get,

$$e^{2x} \frac{dy}{dx} + 2ye^{2x} = 4xe^{2x}$$

$$or, \frac{d}{dx}(ye^{2x}) = 4xe^{2x}$$

Now integrating,

$$ye^{2x} = 4 \int xe^{2x} dx$$

or,
$$ye^{2x} = 4\left[x\frac{e^{2x}}{2} - \int 1\frac{e^{2x}}{2}dx\right]$$

$$or, ye^{2x} = 2xe^{2x} - 2\int e^{2x} dx$$

or,
$$ye^{2x} = 2xe^{2x} - 2\frac{e^{2x}}{2} + c$$

$$or, ye^{2x} = 2xe^{2x} - e^{2x} + c$$

$$\therefore y = 2x - 1 + ce^{-2x}$$

Solve:
$$\frac{dy}{dx} + y = e^{5x}$$

Solution: Given that,

$$\frac{dy}{dx} + y = e^{5x} \dots (i)$$

$$I.F. = e^{\int 1 dx} = e^x$$

Multiplying equation (i) by the I.F. e^x we get,

$$e^x \frac{dy}{dx} + ye^x = e^{5x} \cdot e^x$$

$$or, \frac{d}{dx}(ye^x) = e^{6x}$$

Now integrating,

$$ye^x = \int e^{6x} dx$$

$$or, ye^x = \frac{e^{6x}}{6} + c$$

$$\therefore y = \frac{e^{5x}}{6} + ce^{-x}$$

Solve:
$$\frac{dy}{dx} - y = e^{-5x}$$

Solution: Given that,

$$\frac{dy}{dx} - y = e^{-5x} \dots (i)$$

I.F.
$$=e^{\int -1dx} = e^{-x}$$

Multiplying equation (i) by the I.F. e^{-x} we get,

$$e^{-x} \frac{dy}{dx} + ye^{-x} = e^{-5x} \cdot e^{-x}$$

$$or, \frac{d}{dx}(ye^{-x}) = e^{-6x}$$

Now integrating,

$$ye^{-x} = \int e^{-6x} dx$$

$$or, ye^{-x} = -\frac{e^{-6x}}{6} + c$$

$$\therefore y = -\frac{e^{-5x}}{6} + ce^x$$

Solve:
$$\frac{dy}{dx} + y = \cos x$$

Solution: Given that,

$$\frac{dy}{dx} + y = \cos x \dots (i)$$

$$I.F. = e^{\int 1 dx} = e^x$$

Multiplying equation (i) by the I.F. e^x we get,

$$e^x \frac{dy}{dx} + ye^x = e^x \cos x$$

$$or, \frac{d}{dx}(ye^x) = e^x \cos x$$

Now integrating,

$$ye^x = \int e^x \cos x dx$$
....(ii)

Let
$$I = \int e^x \cos x dx$$

$$= e^x \sin x - \int e^x \sin x dx$$

$$= e^x \sin x - \left[e^x(-\cos x) - \int e^x(-\cos x) dx\right]$$

$$= e^x \sin x + e^x \cos x - \int e^x \cos x dx$$

$$=e^{x}(\sin x + \cos x) - I$$

$$or, 2I = e^x(\sin x + \cos x)$$

$$or, I = \frac{e^x}{2}(\sin x + \cos x)$$

$$\therefore \int e^x \cos x dx = \frac{e^x}{2} (\sin x + \cos x)$$

From (ii) we get,

$$ye^x = \frac{e^x}{2}(\sin x + \cos x) + c$$

$$\therefore y = \frac{1}{2}(\sin x + \cos x) + ce^{-x}$$

Solve:
$$\frac{dy}{dx} + y = \sin x$$

Solution: Given that,

$$\frac{dy}{dx} + y = \sin x \dots (i)$$

$$I.F. = e^{\int 1 dx} = e^x$$

Multiplying equation (i) by the I.F. e^x we get,

$$e^x \frac{dy}{dx} + ye^x = e^x \sin x$$

$$or, \frac{d}{dx}(ye^x) = e^x \sin x$$

Now integrating,

$$ye^x = \int e^x \sin x dx$$
....(ii)

Let
$$I = \int e^x \sin x dx$$

$$= e^{x}(-\cos x) - \int e^{x}(-\cos x)dx$$

$$= -e^x \cos x + \int e^x \cos x dx$$

$$= -e^x \cos x + e^x \sin x - \int e^x \sin x dx$$

$$=e^{x}(\sin x - \cos x) - I$$

$$or$$
, $2I = e^x(\sin x - \cos x)$

$$or, I = \frac{e^x}{2} (\sin x - \cos x)$$

$$\therefore \int e^x \sin x dx = \frac{e^x}{2} (\sin x - \cos x)$$

From (ii) we get,

$$ye^x = \frac{e^x}{2}(\sin x - \cos x) + c$$

$$\therefore y = \frac{1}{2}(\sin x - \cos x) + ce^{-x}$$

Solve:
$$\frac{dy}{dx} + 2xy = 2xe^{x^2}$$

Solution: Given that,

$$\frac{dy}{dx} + 2xy = 2xe^{x^2} \dots (i)$$

I.F.
$$=e^{\int 2x dx} = e^{2\frac{x^2}{2}} = e^{x^2}$$

Multiplying equation (i) by the I.F. e^{x^2} we get,

$$e^{x^2} \frac{dy}{dx} + 2xye^{x^2} = 2xe^{x^2}.e^{x^2}$$

$$or, \frac{d}{dx} \left(y e^{x^2} \right) = 2x e^{2x^2}$$

Now integrating,

$$ye^{x^2} = \int 2xe^{2x^2}dx$$
 Let $x^2 = z$
 $= \int e^{2z}dz$ or, $2x = \frac{dz}{dx}$
 $= \frac{e^{2z}}{2} + c$ $\therefore 2xdx = dz$

$$=\frac{e^{2x^2}}{2}+c$$

$$\therefore y = \frac{e^{x^2}}{2} + ce^{-x^2}$$

Solve: $\frac{dy}{dx} = 2xy + x$

Solution: Given that,

$$\frac{dy}{dx} = 2xy + x$$

$$or, \frac{dy}{dx} - 2xy = x \dots (i)$$

IF
$$= e^{\int -2x dx} = e^{-2\frac{x^2}{2}} = e^{-x^2}$$

Multiplying equation (i) by the I.F. e^{-x^2} we get,

$$e^{-x^2} \frac{dy}{dx} - 2xye^{-x^2} = xe^{-x^2}$$

$$or, \frac{d}{dx} \left(ye^{-x^2} \right) = xe^{-x^2}$$

Now integrating,

$$ye^{-x^{2}} = \int xe^{-x^{2}}dx$$

$$= \int e^{-z}\frac{dz}{2}$$

$$= -\frac{e^{-z}}{2} + c$$

$$= -\frac{e^{-x^{2}}}{2} + c$$
Let $x^{2} = z$

$$or, 2x = \frac{dz}{dx}$$

$$\therefore xdx = \frac{dz}{2}$$

$$\therefore y = -\frac{1}{2} + ce^{x^2}$$

Solve:
$$(1 + x^2) \frac{dy}{dx} - 2xy = (1 + x^2)^2$$

Solution: Given that,

$$(1+x^2)\frac{dy}{dx} - 2xy = (1+x^2)^2$$

$$or_{i}\frac{dy}{dx} - \frac{2x}{1+x^2}y = 1 + x^2$$
....(i)

I.F.
$$=e^{\int -\frac{2x}{1+x^2}dx} = e^{-\ln(1+x^2)} = e^{\ln(1+x^2)^{-1}} = (1+x^2)^{-1} = \frac{1}{1+x^2}$$

Multiplying equation (i) by the I.F. $\frac{1}{1+x^2}$ we get,

$$\frac{1}{1+x^2}\frac{dy}{dx} - \frac{2x}{(1+x^2)^2}y = 1$$

$$or, \frac{d}{dx} \left(y \frac{1}{1 + x^2} \right) = 1$$

Now integrating,

$$y\frac{1}{1+x^2} = \int 1dx$$

$$or, y \frac{1}{1+x^2} = x + c$$

$$\therefore y = (x+c)(1+x^2)$$

Solve:
$$\frac{dy}{dx} + y\cot x = \cot x$$

Solution: Given that,

$$\frac{dy}{dx} + y\cot x = \cot x....(i)$$

$$I.F. = e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$$

Multiplying equation (i) by the I.F. $\sin x$ we get,

$$\sin x \frac{dy}{dx} + y\cot x \cdot \sin x = \cot x \cdot \sin x$$

$$or, \frac{d}{dx}(y\sin x) = \cot x.\sin x$$

Now integrating,

$$ysin x = \int \cot x \cdot \sin x \, dx$$

or,
$$y\sin x = \int \frac{\cos x}{\sin x} \sin x \, dx$$

$$or, ysin \ x = \int \cos x dx$$

$$or, ysin x = \sin x + c$$

$$\therefore y = 1 + c. \, cosec \, x$$

Solve:
$$\frac{dy}{dx} + y\cot x = \sec x$$

Solution: Given that,

$$\frac{dy}{dx} + y\cot x = \sec x \dots (i)$$

I.F.
$$=e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$$

Multiplying equation (i) by the I.F. $\sin x$ we get,

$$\sin x \frac{dy}{dx} + y\cot x \cdot \sin x = \sec x \cdot \sin x$$

$$or, \frac{d}{dx}(y\sin x) = \sec x.\sin x$$

Now integrating,

$$y\sin x = \int \sec x \cdot \sin x \, dx$$

or, ysin
$$x = \int \frac{1}{\cos x} \sin x dx$$

$$or, ysin x = \int tan x dx$$

$$or, ysin x = -\ln|\cos x| + c$$

$$\therefore y = [-\ln|\cos x| + c] cosec x$$

Solve:
$$\frac{dy}{dx} + y\cot x = \tan x$$

Solution: Given that,

$$\frac{dy}{dx} + y\cot x = \tan x....(i)$$

$$I.F. = e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$$

Multiplying equation (i) by the I.F. $\sin x$ we get,

$$\sin x \frac{dy}{dx} + y\cot x \cdot \sin x = \tan x \cdot \sin x$$

$$or, \frac{d}{dx}(y\sin x) = \tan x.\sin x$$

Now integrating,

$$ysin x = \int \tan x \cdot \sin x \, dx$$

or, ysin
$$x = \int \frac{\sin x}{\cos x} \sin x dx$$

or, ysin
$$x = \int \frac{\sin^2 x}{\cos x} dx$$

or, ysin
$$x = \int \frac{1 - \cos^2 x}{\cos x} dx$$

$$or, ysinx = \int (\sec x - \cos x) dx$$

$$or, ysin x = \ln|\sec x + \tan x| - \sin x + c$$

$$\therefore y = \ln|\sec x + \tan x|. cosec x - 1 + c. cosec x$$

Problems for Solution

(i)
$$\frac{dy}{dx} - 3y = \cos x$$

(ii)
$$\frac{dy}{dx} = -\frac{1}{x}y + x$$

(iii)
$$\frac{dy}{dx} + \frac{1}{x}y = \cos x$$

(iv)
$$\frac{dy}{dx} + \frac{2}{x}y = e^x$$

(v)
$$\frac{dy}{dx} + y\cot x = \csc x$$

(vi)
$$\frac{dy}{dx} + ysec \ x = \sin x$$

(vii)
$$\frac{dy}{dx} + ysec x = \cos x$$

Real life problem

(Q) A computer manufacturing company of computer apparatus has found that the cost C of operating and maintaining the equipment is related to the length m of intervals between overhauls by the equation

$$m^2 \frac{dC}{dm} + 2mC = 2$$
 and $C = 4$ when $m = 2$.

Find the relationship between C and m.

Solution:

Given
$$m^2 \frac{dC}{dm} + 2mC = 2$$
 or $\frac{dC}{dm} + \frac{2C}{m} = \frac{2}{m^2}$

This is a first order linear differential equation of the form

$$\frac{dy}{dx} + Py = Q$$
, where $P = \frac{2}{m}$; $Q = \frac{2}{m^2}$
 $I.F = e^{\int Pdm} = e^{\int \frac{2}{m}dm} = e^{1 \circ g m^2} = m^2$

General solution is

$$C (I.F) = \int Q(I.F) dm + k$$
 where k is a constant
$$Cm^2 = \int \frac{2}{m^2} m^2 dm + k$$

$$Cm^2 = 2m + k$$

When C = 4 and m = 2, we have

$$16 = 4 + k$$
 \Rightarrow $k = 12$

... The relationship between C and m is
$$Cm^2 = 2m + 12 = 2(m + 6)$$