Bernoulli's Equation

If P and Q are only functions of x or constants, then the differential equation of the form $\frac{d y}{d x}+$ $P y=Q y^{n} ; n \neq 1$ is called Bernoulli's equation.

Solve: $\frac{d y}{d x}+3 x^{2} y=x^{2} y^{3}$
Solution: In this equation, $P(x)=3 x^{2}, Q(x)=x^{2}, n=3$
Let us transform the above equation by the following transformation

$$
z=y^{1-n}=y^{1-3}=y^{-2}=\frac{1}{y^{2}}
$$

After the transformation the transformed equation stands,

$$
\begin{align*}
& \frac{d z}{d x}+(1-3) 3 x^{2} z=(1-3) x^{2} \\
& \text { or, } \frac{d z}{d x}-6 x^{2} z=-2 x^{2}, \ldots \ldots \ldots \tag{i}
\end{align*}
$$

which is a linear differential equation in z .
Now, I.F. $=e^{\int-6 x^{2} d x}=e^{-6 \frac{x^{3}}{3}}=e^{-2 x^{3}}$
Now, multiplying the equation (i) by the I.F. $e^{-2 x^{3}}$,

$$
\begin{aligned}
& e^{-2 x^{3}} \frac{d z}{d x}-6 x^{2} z e^{-2 x^{3}}=-2 x^{2} e^{-2 x^{3}} \\
& \text { or, } \frac{d}{d x}\left(z e^{-2 x^{3}}\right)=-2 x^{2} e^{-2 x^{3}}
\end{aligned}
$$

Now integrating,

$$
\begin{aligned}
z e^{-2 x^{3}} & =-2 \int x^{2} e^{-2 x^{3}} d x & \text { Let } x^{3}=t \\
& =-2 \int e^{-2 t} \frac{d t}{3} & \text { or, } 3 x^{2}=\frac{d t}{d x} \\
& =-\frac{2}{3} \int e^{-2 t} d t & \text { or, } x^{2} d x=\frac{d t}{3} \\
& =-\frac{2}{3}\left(\frac{e^{-2 t}}{-2}\right)+c & \\
z e^{-2 x^{3}} & =\frac{1}{3} e^{-2 x^{3}}+c &
\end{aligned}
$$

or, $z=\frac{1}{3}+c e^{2 x^{3}}$
$\therefore \frac{1}{y^{2}}=\frac{1}{3}+c e^{2 x^{3}}$

Solve: $\frac{d y}{d x}+2 x y=x y^{2}$
Solution: In this equation, $P(x)=2 x, Q(x)=x, n=2$
Let us transform the above equation by the following transformation

$$
z=y^{1-n}=y^{1-2}=y^{-1}=\frac{1}{y}
$$

After the transformation the transformed equation stands,

$$
\begin{align*}
& \frac{d z}{d x}+(1-2) 2 x z=(1-2) x \\
& \text { or, } \frac{d z}{d x}-2 x z=-x, \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

which is a linear differential equation in z .
Now, I.F. $=e^{\int-2 x d x}=e^{-2 \frac{x^{2}}{2}}=e^{-x^{2}}$
Now, multiplying the equation (i) by the I.F. $e^{-x^{2}}$,

$$
\begin{gathered}
e^{-x^{2}} \frac{d z}{d x}-2 x z e^{-x^{2}}=-x e^{-x^{2}} \\
\text { or, } \frac{d}{d x}\left(z e^{-x^{2}}\right)=-x e^{-x^{2}}
\end{gathered}
$$

Now integrating,

$$
\begin{array}{rlr}
z e^{-x^{2}} & =-\int x e^{-x^{2}} d x & \text { Let } x^{2}=t \\
& =-\int e^{-t} \frac{d t}{2} & \text { or, } 2 x=\frac{d t}{d x} \text { or, } x d x=\frac{d t}{2} \\
& =-\frac{1}{2} \int e^{-t} d t & \\
& =\frac{1}{2} e^{-t}+c &
\end{array}
$$

$z e^{-x^{2}}=\frac{1}{2} e^{-x^{2}}+c$
$o r, z=\frac{1}{2}+c e^{x^{2}}$
$\therefore \frac{1}{y}=\frac{1}{2}+c e^{x^{2}}$
Solve: $\frac{d y}{d x}+\frac{1}{x} y=x y^{2}$
Solution: In this equation, $P(x)=\frac{1}{x}, Q(x)=x, n=2$
Let us transform the above equation by the following transformation

$$
z=y^{1-n}=y^{1-2}=y^{-1}=\frac{1}{y}
$$

After the transformation the transformed equation stands,

$$
\begin{align*}
& \frac{d z}{d x}+(1-2) \frac{1}{x} z=(1-2) x \\
& \text { or, } \frac{d z}{d x}-\frac{1}{x} z=-x, \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

which is a linear differential equation in z .
Now, I.F. $=e^{-\int \frac{1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=\frac{1}{x}$
Now, multiplying the equation (i) by the I.F. $\frac{1}{x}$,

$$
\begin{aligned}
& \frac{1}{x} \frac{d z}{d x}-\frac{1}{x^{2}} z=-1 \\
& \text { or, } \frac{d}{d x}\left(z \frac{1}{x}\right)=-1
\end{aligned}
$$

Now integrating,

$$
\begin{aligned}
& z \frac{1}{x}=-\int d x \\
& \text { or, } z \frac{1}{x}=-x+c \\
& \text { or, } z=-x^{2}+c x
\end{aligned}
$$

$$
\therefore \frac{1}{y}=-x^{2}+c x
$$

Solve: $\frac{d y}{d x}+\frac{1}{x} y=x \sqrt{y}$
Solution: Given that,

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{1}{x} y=x \sqrt{y} \\
& \text { or, } \frac{d y}{d x}+\frac{1}{x} y=x y^{\frac{1}{2}}
\end{aligned}
$$

In this equation, $P(x)=\frac{1}{x}, Q(x)=x, n=\frac{1}{2}$
Let us transform the above equation by the following transformation

$$
z=y^{1-n}=y^{1-\frac{1}{2}}=y^{\frac{1}{2}}
$$

After the transformation the transformed equation stands,

$$
\begin{align*}
& \frac{d z}{d x}+\left(1-\frac{1}{2}\right) \frac{1}{x} z=\left(1-\frac{1}{2}\right) x \\
& \text { or, } \frac{d z}{d x}+\frac{1}{2 x} z=\frac{1}{2} x, \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

which is a linear differential equation in z .
Now, I.F. $=e^{\int \frac{1}{2 x} d x}=e^{\frac{1}{2} \ln x}=x^{\frac{1}{2}}$
Now, multiplying the equation (i) by the I.F. $x^{\frac{1}{2}}$,

$$
\begin{aligned}
& x^{\frac{1}{2}} \frac{d z}{d x}+\frac{1}{2 x} z x^{\frac{1}{2}}=\frac{1}{2} x \cdot x^{\frac{1}{2}} \\
& \text { or }, \frac{d}{d x}\left(z x^{\frac{1}{2}}\right)=\frac{1}{2} x^{\frac{3}{2}}
\end{aligned}
$$

Now integrating,

$$
\begin{aligned}
z x^{\frac{1}{2}}= & \int \frac{1}{2} x^{\frac{3}{2}} d x \\
& =\frac{1}{2} \int x^{\frac{3}{2}} d x \\
& =\frac{1}{2} \frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c
\end{aligned}
$$

$$
\begin{aligned}
& z x^{\frac{1}{2}}=\frac{1}{5} x^{\frac{5}{2}}+c \\
& \text { or, } z=\frac{1}{5} x^{2}+c x^{-\frac{1}{2}} \\
& \therefore y^{\frac{1}{2}}=\frac{1}{5} x^{2}+c x^{-\frac{1}{2}}
\end{aligned}
$$

Problems for Solution

(i) $\frac{d y}{d x}-y=x \sqrt[3]{y}$
(ii) $y \frac{d y}{d x}-y^{2}=e^{x}$

