Application of first order ODE

Problem-01: The population of bacteria in a culture grows at a rate that is proportional to the number at present. Initially, it has p_0 number of bacteria, and after 1 hr the number of bacteria is measured to be

$$\frac{3}{2}p_{0}$$
.

- (a). What is the number of bacteria after thr?
- (b). Determine the necessary time for number of bacteria to triple.

Solution: Let, p(t) be the number of bacteria at any time t hr.

Since, the rate of growth of bacteria is proportional to the number of bacteria p(t),

So
$$\frac{dp}{dt} \propto p$$

or,
$$\frac{dp}{dt} = kp \dots \dots (1)$$

where, k is a proportional constant.

According to the question we have,

$$p(0) = p_0 \dots \dots (2)$$

$$p(1) = \frac{3}{2} p_0 \dots \dots (3)$$

Now from Eq. (1) we can write,

$$\frac{dp}{p} = kdt$$

$$or, \int \frac{dp}{p} = k \int dt$$

$$or$$
, $\ln p = kt + \ln c$

$$or$$
, $\ln p = \ln e^{kt} + \ln c$

$$or$$
, $\ln p = \ln ce^{kt}$

$$\therefore p = ce^{kt} \dots \dots (4)$$

From Eq. (2) & Eq.(4) we have,

$$p_0 = ce^{k.0}$$

$$\therefore c = p_0$$

From Eq. (3) & Eq.(4) we have,

$$\frac{3}{2}p_0 = p_0 e^k$$

or,
$$e^{k} = \frac{3}{2}$$

or,
$$k = \ln\left(\frac{3}{2}\right)$$

$$k = 0.4055$$

Using the values of c & k in Eq.(4) we have,

$$p = p_0 e^{0.4055t} \dots \dots (5)$$

This is the number of bacteria after *t* hr.

Again, let after $t = t_1$ hr the number of bacteria will be triple. i.e, $p(t_1) = 3p_0$.

Now from Eq. (4) we have,

$$3p_0 = p_0 e^{0.4055t_1}$$

or,
$$e^{0.4055t_1} = 3$$

$$or, \ 0.4055t_1 = \ln 3$$

$$or, \ t_1 = \frac{\ln 3}{0.4055}$$

or,
$$t_1 = 2.71 \ hr$$

This is the required time. (ans.)

Problem-02: The population of bacteria in a culture grows at a rate that is proportional to the number at present. Initially, there are 600 bacteria, and after 3 hr there are 10,000 bacteria.

(a). What is the number of bacteria after thr?

- (b). What is the number of bacteria after 5 hr?
- (c). When will the number of bacteria reach 24,000?

Solution: Let, p(t) be the number of bacteria at any time t hr.

Since, the rate of growth of bacteria is proportional to the number of bacteria p(t),

So
$$\frac{dp}{dt} \propto p$$

$$or, \frac{dp}{dt} = kp \dots \dots \dots (1)$$

where, k is a proportional constant.

According to the question we have,

$$p(0) = 600 \dots \dots (2)$$

$$p(3) = 10,000 \dots (3)$$

Now from Eq. (1) we can write,

$$\frac{dp}{p} = kdt$$

$$or$$
, $\int \frac{dp}{p} = k \int dt$

$$or$$
, $\ln p = kt + \ln c$

$$or, \ln p = \ln e^{kt} + \ln c$$

or,
$$\ln p = \ln ce^{kt}$$

$$\therefore p = ce^{kt} \dots \dots (4)$$

From Eq. (2) & Eq.(4) we have,

$$600 = ce^{k.0}$$

$$c = 600$$

From Eq. (3) & Eq.(4) we have,

$$10,000 = 600e^{3k}$$

or,
$$e^{3k} = \frac{10,000}{600}$$

or,
$$e^{3k} = 16.667$$

or,
$$3k = \ln(16.667)$$

or,
$$k = \frac{1}{3} \ln(16.667)$$

$$k = 0.9378$$

Using the values of c & k in Eq.(4) we have,

$$p = 600e^{0.9378t} \dots \dots (5)$$

This is the number of bacteria after *t* hr.

Again, For t = 5 we get from Eq. (5),

$$p = 600e^{0.9378 \times 5}$$

$$p = 65246.63$$

This is the number of bacteria after 5 hr.

Again, let after $t = t_1$ hr the number of bacteria will be 24,000. i.e, $p(t_1) = 24,000$.

Now from Eq. (4) we have,

$$24,000 = 600e^{0.9378t_1}$$

or,
$$e^{0.9378t_1} = 40$$

or,
$$0.9378t_1 = \ln(40)$$

or,
$$t_1 = \frac{\ln(40)}{0.9378}$$

or,
$$t_1 = 3.93 \ hr$$

This is the required time. (ans.)

Problem-03: Radioactive substances decay at a rate that is proportional to the amount present. The half-life of a substance is the time required for a given amount to be reduced by one-half. The half-life of cesium-137 is 30 years. Suppose we have 100 mg sample.

- (a). Find the mass that remains after t years.
- (b). How much of the sample remains after 100 years?
- (c). After how long will only 1 mg remain?

Solution: Let, p(t) be the amount of cesium-137 present in the sample at any time t hr.

Since, the rate of decay of cesium-137 is proportional to the amount p(t),

So
$$\frac{dp}{dt} \propto p$$

$$or$$
, $\frac{dp}{dt} = kp \dots \dots (1)$

where, k is a proportional constant.

According to the question we have,

$$p(0) = 100 \dots (2)$$

$$p(30) = 50 \dots (3)$$

Now from Eq. (1) we can write,

$$\frac{dp}{p} = kdt$$

$$or$$
, $\int \frac{dp}{p} = k \int dt$

$$or$$
, $\ln p = kt + \ln c$

$$or$$
, $\ln p = \ln e^{kt} + \ln c$

$$or$$
, $\ln p = \ln ce^{kt}$

$$\therefore p = ce^{kt} \dots \dots (4)$$

From Eq. (2) & Eq.(4) we have,

$$100 = ce^{k.0}$$

$$\therefore c = 100$$

From Eq. (3) & Eq.(4) we have,

$$50 = 100e^{30k}$$

or,
$$e^{30k} = \frac{1}{2}$$

or,
$$30k = \ln(0.5)$$

or,
$$k = \frac{1}{30} \ln(0.5)$$

$$k = -0.0231$$

Using the values of c & k in Eq.(4) we have,

$$p = 100e^{-0.0231t}$$
(5)

This is the number of bacteria after *t* hr.

Again, For t = 100 years, we get from Eq. (5),

$$p = 100e^{-0.0231 \times 100}$$

:.
$$p = 9.926mg$$

This amount of sample will remain after 100 years.

Again, let after $t = t_1$ years the amount of sample will remain 1 mg. i.e, $p(t_1) = 1$.

Now from Eq. (4) we have,

$$1 = 100e^{-0.0231t_1}$$

or,
$$e^{-0.0231t_1} = \frac{1}{40}$$

$$or$$
, $-0.0231T = \ln(0.025)$

or,
$$t_1 = -\frac{\ln(0.025)}{0.0231}$$

or,
$$t_1 = 159.7$$
 years

This is the required time. (ans.)

Problem-04: When a cake is removed from an oven, it's temperature is measured at 300° F. Three minutes later it's temperature is 200° F. How long will it take for the cake to cool off to a room temperature of 70° F?

- (a). Give a relation that gives the temperature of the cake after t mins.
- (b). How long will it take for the cake to cool off to 75^{0} F?

Solution: Let, T(t) be the amount of temperature of the cake at any time t mins.

From Newton's Law of Cooling we know that the temperature of a body drops at a rate that is proportional to the difference between the temperature of the body and the temperature of the surrounding medium.

So
$$\frac{dT}{dt} \propto \left(T - T_m\right)$$

or,
$$\frac{dT}{dt} = k(T - T_m) \dots \dots \dots (1)$$

where, k is a proportional constant.

According to the question we have,

$$T(0) = 300 \dots (2)$$

$$T(3) = 200 \dots (3)$$

$$T_m = 70 \dots (4)$$

Now from Eq. (1) & Eq. (4) we can write,

$$\frac{dT}{dt} = k \left(T - 70 \right)$$

$$or$$
, $\frac{dT}{T-70} = kdt$

$$or, \int \frac{dT}{T - 70} = k \int dt$$

$$or$$
, $\ln(T-70) = kt + \ln c$

$$or, \ln(T-70) = \ln e^{kt} + \ln c$$

$$or$$
, $\ln(T-70) = \ln ce^{kt}$

or,
$$T - 70 = ce^{kt}$$

From Eq. (2) & Eq.(5) we have,

$$300 = 70 + ce^{k.0}$$

:.
$$c = 230$$

From Eq. (3) & Eq.(5) we have,

$$200 = 70 + 230e^{3k}$$

or,
$$e^{3k} = \frac{13}{23}$$

or,
$$3k = \ln\left(\frac{13}{23}\right)$$

or,
$$k = \frac{1}{3} \ln \left(\frac{13}{23} \right)$$

$$k = -0.19018$$

Using the values of c & k in Eq.(5) we have,

$$T = 70 + 230e^{-0.19018t} \dots \dots (5)$$

This is the amount of temperature of the cake after t mins..

Again, let after $t = t_1$ mins. the amount of temperature of the cake will be 75° F. i.e, $T(t_1) = 75$.

Now from Eq. (5) we have,

$$75 = 70 + 230e^{-0.19018t_1}$$

or,
$$e^{-0.19018t_1} = \frac{5}{230}$$

$$or, -0.19018t_1 = \ln\left(\frac{5}{230}\right)$$

$$or, t_1 = -\frac{1}{0.19018} \ln \left(\frac{5}{230} \right)$$

or,
$$t_1 = 20.13$$
 mins.

This is the required time. (ans.)

Exercise:

Problem-01: The population of a certain community increases at a rate that is proportional to the number of people present at any time. If the population has doubled in 30 years, how long will it take to triple?

Problem-02: If a small metal bar, whose initial temperature is $20^{\circ}C$, is dropped into a container of boiling water. How long will it take for the bar to reach $90^{\circ}C$, if it is known that temperature increases $2^{\circ}C$ in 1second?