Application of first order ODE

Problem-01: The population of bacteria in a culture grows at a rate that is proportional to the number at present. Initially, it has p_{0} number of bacteria, and after 1 hr the number of bacteria is measured to be $\frac{3}{2} p_{0}$.
(a). What is the number of bacteria after thr ?
(b). Determine the necessary time for number of bacteria to triple.

Solution: Let, $\quad p(t)$ be the number of bacteria at any time $t \mathrm{hr}$.

Since, the rate of growth of bacteria is proportional to the number of bacteria $p(t)$,

So $\quad \frac{d p}{d t} \propto p$
or, $\frac{d p}{d t}=k p$
where, k is a proportional constant.
According to the question we have,

$$
\begin{align*}
& p(0)=p_{0} \ldots \ldots \tag{2}\\
& p(1)=\frac{3}{2} p_{0} \ldots \ldots \ldots \tag{3}
\end{align*}
$$

Now from Eq. (1) we can write,

$$
\begin{gather*}
\frac{d p}{p}=k d t \\
\text { or, } \int \frac{d p}{p}=k \int d t \\
\text { or, } \ln p=k t+\ln c \\
\text { or, } \ln p=\ln e^{k t}+\ln c \\
\text { or, } \ln p=\ln c e^{k t} \\
\therefore p=c e^{k t} \ldots \ldots \ldots \text { (4) } \tag{4}
\end{gather*}
$$

From Eq. (2) \& Eq.(4) we have,

$$
\begin{aligned}
p_{0} & =c e^{k .0} \\
\therefore c & =p_{0}
\end{aligned}
$$

From Eq. (3) \& Eq.(4) we have,

$$
\begin{aligned}
& \quad \frac{3}{2} p_{0}=p_{0} e^{k} \\
& \text { or, } e^{k}=\frac{3}{2} \\
& \text { or, } k=\ln \left(\frac{3}{2}\right) \\
& \therefore k=0.4055
\end{aligned}
$$

Using the values of $c \& k$ in Eq.(4) we have,

$$
\begin{equation*}
p=p_{0} e^{0.4055 t} \tag{5}
\end{equation*}
$$

This is the number of bacteria after $t \mathrm{hr}$.
Again, let after $t=t_{1}$ hr the number of bacteria will be triple. i.e, $p\left(t_{1}\right)=3 p_{0}$.
Now from Eq. (4) we have,

$$
\begin{aligned}
& \quad 3 p_{0}=p_{0} e^{0.4055 t_{1}} \\
& \text { or, } e^{0.4055 t_{1}}=3 \\
& \text { or, } 0.4055 t_{1}=\ln 3 \\
& \text { or, } t_{1}=\frac{\ln 3}{0.4055} \\
& \text { or, } t_{1}=2.71 \mathrm{hr}
\end{aligned}
$$

This is the required time. (ans.)
Problem-02: The population of bacteria in a culture grows at a rate that is proportional to the number at present. Initially, there are 600 bacteria, and after 3 hr there are 10,000 bacteria.
(a). What is the number of bacteria after thr ?
(b). What is the number of bacteria after 5 hr ?
(c). When will the number of bacteria reach 24,000 ?

Solution: Let, $p(t)$ be the number of bacteria at any time $t \mathrm{hr}$.
Since, the rate of growth of bacteria is proportional to the number of bacteria $p(t)$,
So $\quad \frac{d p}{d t} \propto p$
or, $\frac{d p}{d t}=k p$
where, k is a proportional constant.
According to the question we have,

$$
\begin{align*}
& p(0)=600 \ldots \tag{2}\\
& p(3)=10,000 \tag{3}
\end{align*}
$$

Now from Eq. (1) we can write,

$$
\begin{gather*}
\frac{d p}{p}=k d t \\
\text { or, } \int \frac{d p}{p}=k \int d t \\
\text { or, } \ln p=k t+\ln c \\
\text { or, } \ln p=\ln e^{k t}+\ln c \\
\text { or, } \ln p=\ln c e^{k t} \\
\therefore p=c e^{k t} \ldots \ldots \ldots \text { (4) } \tag{4}
\end{gather*}
$$

From Eq. (2) \& Eq.(4) we have,

$$
600=c e^{k .0}
$$

$\therefore c=600$
From Eq. (3) \& Eq.(4) we have,
$10,000=600 e^{3 k}$
or, $e^{3 k}=\frac{10,000}{600}$
or, $e^{3 k}=16.667$
or, $3 k=\ln (16.667)$
or, $k=\frac{1}{3} \ln (16.667)$
$\therefore k=0.9378$
Using the values of $c \& k$ in Eq.(4) we have,

$$
\begin{equation*}
p=600 e^{0.9378 t} \tag{5}
\end{equation*}
$$

This is the number of bacteria after $t \mathrm{hr}$.
Again, For $t=5$ we get from Eq. (5),

$$
\begin{aligned}
p & =600 e^{0.9378 \times 5} \\
\therefore p & =65246.63
\end{aligned}
$$

This is the number of bacteria after 5 hr .
Again, let after $t=t_{1}$ hr the number of bacteria will be 24,000. i.e, $p\left(t_{1}\right)=24,000$.
Now from Eq. (4) we have,

$$
\begin{aligned}
& 24,000=600 e^{0.9378 t_{1}} \\
& \text { or, } e^{0.9378 t_{1}}=40 \\
& \text { or, } 0.9378 t_{1}=\ln (40) \\
& \text { or, } t_{1}=\frac{\ln (40)}{0.9378} \\
& \text { or, } t_{1}=3.93 \mathrm{hr}
\end{aligned}
$$

This is the required time. (ans.)

Problem-03: Radioactive substances decay at a rate that is proportional to the amount present. The halflife of a substance is the time required for a given amount to be reduced by one-half. The half-life of cesium- 137 is 30 years. Suppose we have 100 mg sample.
(a). Find the mass that remains after t years.
(b). How much of the sample remains after 100 years?
(c). After how long will only 1 mg remain?

Solution: Let, $p(t)$ be the amount of cesium- 137 present in the sample at any time $t \mathrm{hr}$.
Since, the rate of decay of cesium-137 is proportional to the amount $p(t)$,
So $\quad \frac{d p}{d t} \propto p$

$$
\begin{equation*}
\text { or, } \frac{d p}{d t}=k p \tag{1}
\end{equation*}
$$

where, k is a proportional constant.
According to the question we have,

$$
\begin{align*}
& p(0)=100 \\
& p(30)=50
\end{align*}
$$

Now from Eq. (1) we can write,

$$
\begin{gather*}
\frac{d p}{p}=k d t \\
\text { or, } \int \frac{d p}{p}=k \int d t \\
\text { or, } \ln p=k t+\ln c \\
\text { or, } \ln p=\ln e^{k t}+\ln c \\
\text { or, } \ln p=\ln c e^{k t} \\
\therefore p=c e^{k t} \ldots \ldots \ldots(4) \tag{4}
\end{gather*}
$$

From Eq. (2) \& Eq.(4) we have,

$$
100=c e^{k .0}
$$

$\therefore c=100$
From Eq. (3) \& Eq.(4) we have,

$$
\begin{aligned}
& 50=100 e^{30 k} \\
& \text { or, } e^{30 k}=\frac{1}{2} \\
& \text { or, } 30 k=\ln (0.5) \\
& \text { or, } k=\frac{1}{30} \ln (0.5) \\
& \therefore k=-0.0231
\end{aligned}
$$

Using the values of $c \& k$ in Eq.(4) we have,

$$
\begin{equation*}
p=100 e^{-0.0231 t} \tag{5}
\end{equation*}
$$

This is the number of bacteria after $t \mathrm{hr}$.
Again, For $t=100$ years, we get from Eq. (5),

$$
\begin{aligned}
& \quad p=100 e^{-0.0231 \times 100} \\
& \therefore \quad p=9.926 \mathrm{mg}
\end{aligned}
$$

This amount of sample will remain after 100 years.
Again, let after $t=t_{1}$ years the amount of sample will remain 1 mg . i.e, $p\left(t_{1}\right)=1$.
Now from Eq. (4) we have,

$$
\begin{aligned}
& 1=100 e^{-0.0231 t_{1}} \\
& \text { or, } e^{-0.023 t_{1}}=\frac{1}{40} \\
& \text { or, }-0.0231 T=\ln (0.025) \\
& \text { or, } t_{1}=-\frac{\ln (0.025)}{0.0231}
\end{aligned}
$$

$$
\text { or, } t_{1}=159.7 \text { years }
$$

This is the required time. (ans.)
Problem-04: When a cake is removed from an oven, it's temperature is measured at $300^{\circ} \mathrm{F}$. Three minutes later it's temperature is $200^{\circ} \mathrm{F}$. How long will it take for the cake to cool off to a room temperature of $70^{\circ} \mathrm{F}$?
(a). Give a relation that gives the temperature of the cake after t mins.
(b). How long will it take for the cake to cool off to $75^{\circ} \mathrm{F}$?

Solution: Let, $T(t)$ be the amount of temperature of the cake at any time t mins.
From Newton's Law of Cooling we know that the temperature of a body drops at a rate that is proportional to the difference between the temperature of the body and the temperature of the surrounding medium.

So $\quad \frac{d T}{d t} \propto\left(T-T_{m}\right)$

$$
\begin{equation*}
\text { or, } \frac{d T}{d t}=k\left(T-T_{m}\right) \tag{1}
\end{equation*}
$$

where, k is a proportional constant.
According to the question we have,

$$
\begin{align*}
& T(0)=300 \\
& T(3)=200 \\
& T_{m}=70 \ldots \ldots \tag{4}
\end{align*}
$$

Now from Eq. (1) \& Eq. (4) we can write,

$$
\begin{array}{r}
\frac{d T}{d t}=k(T-70) \\
\text { or, } \frac{d T}{T-70}=k d t \\
\text { or, } \int \frac{d T}{T-70}=k \int d t
\end{array}
$$

$$
\begin{align*}
& \text { or, } \ln (T-70)=k t+\ln c \\
& \text { or, } \ln (T-70)=\ln e^{k t}+\ln c \\
& \text { or, } \ln (T-70)=\ln c e^{k t} \\
& \text { or, } T-70=c e^{k t} \\
& \therefore T=70+c e^{k t} \ldots \ldots \ldots \ldots \tag{5}
\end{align*}
$$

From Eq. (2) \& Eq.(5) we have,

$$
\begin{aligned}
& 300=70+c e^{k .0} \\
\therefore c & =230
\end{aligned}
$$

From Eq. (3) \& Eq.(5) we have,

$$
200=70+230 e^{3 k}
$$

or, $e^{3 k}=\frac{13}{23}$
or, $3 k=\ln \left(\frac{13}{23}\right)$
or, $k=\frac{1}{3} \ln \left(\frac{13}{23}\right)$
$\therefore k=-0.19018$
Using the values of $c \& k$ in Eq.(5) we have,

$$
\begin{equation*}
T=70+230 e^{-0.19018 t} \tag{5}
\end{equation*}
$$

This is the amount of temperature of the cake after t mins..
Again, let after $t=t_{1}$ mins. the amount of temperature of the cake will be $75^{0} \mathrm{~F}$. i.e, $T\left(t_{1}\right)=75$.
Now from Eq. (5) we have,

$$
\begin{gathered}
75=70+230 e^{-0.19018 t_{1}} \\
\text { or, } e^{-0.19018 t_{1}}=\frac{5}{230}
\end{gathered}
$$

$$
\begin{aligned}
& \text { or, }-0.19018 t_{1}=\ln \left(\frac{5}{230}\right) \\
& \text { or, } t_{1}=-\frac{1}{0.19018} \ln \left(\frac{5}{230}\right) \\
& \text { or, } t_{1}=20.13 \text { mins. }
\end{aligned}
$$

This is the required time. (ans.)

Exercise:

Problem-01: The population of a certain community increases at a rate that is proportional to the number of people present at any time. If the population has doubled in 30 years, how long will it take to triple?

Problem-02: If a small metal bar, whose initial temperature is $20^{\circ} \mathrm{C}$, is dropped into a container of boiling water. How long will it take for the bar to reach $90^{\circ} \mathrm{C}$, if it is known that temperature increases $2^{0} \mathrm{C}$ in 1 second?

