Formation of partial differential equation:

Problems
(1)Form the partial differential equation by eliminating the arbitrary constants from $z=a x+b y+a^{2}+b^{2}$.

Solution:

$$
\begin{equation*}
\text { Given } z=a x+b y+a^{2}+b^{2} \tag{1}
\end{equation*}
$$

Here we have two arbitrary constants a \& b.
Differentiating equation (1) partially with respect to x and y respectively we get
$\frac{\partial z}{\partial x}=a \Rightarrow p=a$
$\frac{\partial z}{\partial y}=b \Rightarrow q=a$
Substitute (2) and (3) in (1) we get
$z=p x+q y+p^{2}+q^{2}$, which is the required partial differential equation.

Problem-02: Eliminate arbitrary constants from the equation, $z=(x-a)^{2}+(y-b)^{2}$.
Solution: Given that, $z=(x-a)^{2}+(y-b)^{2}$
Differentiating (1) partially with respect to x, we get

$$
\begin{align*}
& \frac{\partial z}{\partial x}=2(x-a) \\
& \text { or, }\left(\frac{\partial z}{\partial x}\right)^{2}=4(x-a)^{2} \quad[\text { Squaring }] \tag{2}
\end{align*}
$$

And differentiating (1) partially with respect to y, we get

$$
\begin{gather*}
\frac{\partial z}{\partial y}=2(y-b) \\
\text { or, }\left(\frac{\partial z}{\partial y}\right)^{2}=4(y-b)^{2} \quad[\text { Squaring }] \tag{3}
\end{gather*}
$$

Adding equations (1) and (2), we get

$$
\begin{aligned}
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2} & =4(x-a)^{2}+4(y-b)^{2} \\
& =4\left\{(x-a)^{2}+(y-b)^{2}\right\} \\
& =4 z \quad \text { [using eq.(1)] } \\
\therefore\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2} & =4 z
\end{aligned}
$$

which is the required partial differential equation.
Problem-03: Find the differential equation of all spheres of radius λ, having centre in the $x y$ - plane.

Solution: From the coordinate geometry of three dimensions, the equation of any sphere of radius λ, having centre $(h, k, 0)$ in the $x y$-plane is,

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}+z^{2}=\lambda^{2} \tag{1}
\end{equation*}
$$

Differentiating (1) partially with respect to x, we get

$$
\begin{align*}
& 2(x-h)+2 z \frac{\partial z}{\partial x}=0 \\
& \text { or, }(x-h)=-z \frac{\partial z}{\partial x} \\
& \text { or, }(x-h)^{2}=z^{2}\left(\frac{\partial z}{\partial x}\right)^{2} \quad[\text { Squaring }] \tag{2}
\end{align*}
$$

And differentiating (1) partially with respect to y, we get

$$
\begin{align*}
& 2(y-k)+2 z \frac{\partial z}{\partial y}=0 \\
& \text { or, }(y-k)=-z \frac{\partial z}{\partial y} \\
& \text { or, }(y-k)^{2}=z^{2}\left(\frac{\partial z}{\partial y}\right)^{2} \quad[\text { Squaring }] \tag{3}
\end{align*}
$$

From equations (1), (2) and (3), we get

$$
z^{2}\left(\frac{\partial z}{\partial x}\right)^{2}+z^{2}\left(\frac{\partial z}{\partial y}\right)^{2}+z^{2}=\lambda^{2}
$$

which is the required partial differential equation.

Problem-04: Eliminate the arbitrary constants a, b and c from the relation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Solution: Given that, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Differentiating (1) partially with respect to x, we get

$$
\begin{align*}
& \frac{2 x}{a^{2}}+\frac{2 z}{c^{2}} \frac{\partial z}{\partial x}=0 \\
& \text { or, } c^{2} x+a^{2} z \frac{\partial z}{\partial x}=0 \tag{2}
\end{align*}
$$

Again, differentiating (2) partially with respect to x, we get

$$
\begin{equation*}
c^{2}+a^{2}\left(\frac{\partial z}{\partial x}\right)^{2}+a^{2} z \frac{\partial^{2} z}{\partial x^{2}}=0 \tag{3}
\end{equation*}
$$

From (2), we get

$$
c^{2}=-\frac{a^{2} z}{x} \frac{\partial z}{\partial x}
$$

Putting this value of c^{2} in (4), we obtain

$$
\begin{aligned}
& -\frac{a^{2} z}{x} \frac{\partial z}{\partial x}+a^{2}\left(\frac{\partial z}{\partial x}\right)^{2}+a^{2} z \frac{\partial^{2} z}{\partial x^{2}}=0 \\
& \text { or, }-\frac{z}{x} \frac{\partial z}{\partial x}+\left(\frac{\partial z}{\partial x}\right)^{2}+z \frac{\partial^{2} z}{\partial x^{2}}=0 \\
& \text { or, }-z \frac{\partial z}{\partial x}+x\left(\frac{\partial z}{\partial x}\right)^{2}+z x \frac{\partial^{2} z}{\partial x^{2}}=0 \\
& \text { or, } z x \frac{\partial^{2} z}{\partial x^{2}}+x\left(\frac{\partial z}{\partial x}\right)^{2}-z \frac{\partial z}{\partial x}=0
\end{aligned}
$$

which is the required partial differential equation.
Problem-05: Form partial differential equation by eliminating constant A and p from $z=A e^{p t} \sin p x$.

Solution: Given that, $z=A e^{p t} \sin p x$
Differentiating (1) partially with respect to x, we get

$$
\begin{equation*}
\frac{\partial z}{\partial x}=A p e^{p t} \cos p x \tag{2}
\end{equation*}
$$

Again, differentiating (2) partially with respect to x, we get

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}=-A p^{2} e^{p x} \sin p x \tag{3}
\end{equation*}
$$

Similarly, differentiating (1) partially with respect to t, we get

$$
\begin{equation*}
\frac{\partial z}{\partial t}=A p e^{p t} \sin p x \tag{4}
\end{equation*}
$$

Again, differentiating (4) partially with respect to t, we get

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial t^{2}}=A p^{2} e^{p t} \sin p x \tag{5}
\end{equation*}
$$

Adding (3) and (5), we get

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial t^{2}}=-A p^{2} e^{p t} \sin p x+A p^{2} e^{p t} \sin p x \\
& \therefore \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial t^{2}}=0
\end{aligned}
$$

which is the required partial differential equation.
6. Form a partial differential equation by eliminating arbitrary constants a and b from

$$
z=(x+a)^{2}+(y+b)^{2}
$$

Ans:

$$
\begin{align*}
& \text { Given } z=(x+a)^{2}+(y+b)^{2} \tag{1}\\
& \qquad \begin{array}{c}
p=\frac{\partial z}{\partial x}=2(x+a) \\
q=\frac{\partial z}{\partial y}=2(y+b)
\end{array} \tag{2}
\end{align*}
$$

Substituting (2) \& (3) in (1), we get $z=\frac{p^{2}}{4}+\frac{q^{2}}{4}$
(7) Find the singular integral of the partial differential equation $z=p x+q y+p^{2}-q^{2}$.

Ans:

The complete integral is

$$
\begin{aligned}
z & =a x+b y+a^{2}-b^{2} . \\
\frac{\partial z}{\partial a} & =x+2 a=0 \Rightarrow a=-\frac{x}{2} \\
\frac{\partial z}{\partial b} & =y-2 b=0 \Rightarrow b=\frac{y}{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& z=-\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{x^{2}}{4}-\frac{y^{2}}{4}=-\frac{x^{2}}{4}+\frac{y^{2}}{4} \\
\Rightarrow & y^{2}-x^{2}=4 z
\end{aligned}
$$

8. Find the PDE of all planes having equal intercepts on the x and y axis.

Solution:
The equation of such plane is

$$
\frac{x}{a}+\frac{y}{a}+\frac{z}{b}=1
$$

Partially differentiating (1) with respect to ' x ' and ' y ' we get

$$
\begin{aligned}
& \frac{1}{a}+\frac{p}{b}=0 \Rightarrow p=-\frac{b}{a} \\
& \frac{1}{a}+\frac{q}{b}=0 \Rightarrow q=-\frac{b}{a}
\end{aligned}
$$

From (2) and (3), we get

$$
p=q
$$

(9)Form a partial differential equation by eliminating the arbitrary constants a and b from $z=a x^{n}+b y^{n}$.
Ans:

$$
\begin{equation*}
\text { Given } z=a x^{n}+b y^{n} \text {. } \tag{1}
\end{equation*}
$$

Partially differentiating with respect to ' x ' and ' y ' we get

$$
\begin{array}{ll}
p=\frac{\partial z}{\partial x}=a . n x^{n-1} & \Rightarrow a=\frac{p}{n x^{n-1}} \\
q=\frac{\partial z}{\partial y}=b . n y^{n-1} & \Rightarrow b=\frac{q}{n y^{n-1}} \tag{2}
\end{array}
$$

Substituting (2) in (1) we get

$$
\begin{aligned}
& z=\frac{p}{n x^{n-1}} x^{n}+\frac{q}{n y^{n-1}} y^{n} \\
& z=\frac{1}{n}(p x+q y)
\end{aligned}
$$

This is the required PDE.
10. Form a partial differential equation by eliminate the arbitrary function f from $z=f\left(\frac{x y}{z}\right)$.

Ans:
Given: $\quad z=f\left(\frac{x y}{z}\right)$.

$$
\begin{align*}
& p=f^{\prime}\left(\frac{x y}{z}\right) \cdot \frac{z y-x y \cdot p}{z^{2}} \tag{1}\\
& q=f^{\prime}\left(\frac{x y}{z}\right) \cdot \frac{z x-x y \cdot q}{z^{2}} \tag{2}
\end{align*}
$$

From (1), we get

$$
\begin{equation*}
f^{\prime}\left(\frac{x y}{z}\right)=\frac{p z^{2}}{z y-x y p} \tag{3}
\end{equation*}
$$

Substituting (3) in(2), we get

$$
p=\frac{p z^{2}}{z y-x y p} \cdot \frac{z y-x y \cdot p}{z^{2}}
$$

Exercise: Try yourself: Find the partial differential equation by eliminating constants from the following relations:

1. $z=A e^{-p^{2} t} \cos p x \quad$ (constants $\left.A, p\right)$
2. $a x^{2}+b y^{2}+c z^{2}=1$ (constants $\left.a, b\right)$
3. $z=a x+b y+c x y \quad$ (constants a, b, c)
4. $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \quad$ (constants a, b)
