Formation of partial differential equation:

Problems

(1)Form the partial differential equation by eliminating the arbitrary constants
fromz =ax+by +a’ +b°.
Solution:

Given z=ax+by+a’ +b’

Here we have two arbitrary constants a & b.

Differentiating equation (1) partially with respect to x and y respectively we get

Zea=mp=a 2)
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Substitute (2) and (3) in (1) we get

z=px+qy+ p° +q’. which is the required partial differential equation.

Problem-02: Eliminate arbitrary constants from the equation, z = (x—af +(y— b)z.
Solution: Given that, z=(x—a)’+(y—b)’ e (D)

Differentiating (1) partially with respect to x, we get
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Adding equations (1) and (2), we get
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which is the required partial differential equation.
Problem-03: Find the differential equation of all spheres of radius A, having centre
in the xy - plane.

Solution: From the coordinate geometry of three dimensions, the equation of any
sphere of radius A, having centre (4, £, 0) in the xy — plane is,

(x=h) +(yv—k) +22 =22 (D)
Differentiating (1) partially with respect to x, we get

2x—h)+2:Z =0
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And differentiating (1) partially with respect to v, we get
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32
or(v—k) =2 [;—‘] [Squaring] (3)

From equations (1), (2) and (3), we get
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which is the required partial differential equation.



Problem-04: Eliminate the arbitrary constants @, b and ¢ from the relation
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Solution: Given that, — +-—+==1 (D)
at J.?" ‘..!

Differentiating (1) partially with respect to x, we get
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Agamn, differentiating (2) partially with respect to x, we get
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From (2), we get
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Putting this value of ¢* in (4), we obtain
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which is the required partial differential equation.

Problem-05: Form partial differential equation by eliminating constant 4 and p from
z=Ae" sin px.

Solution: Given that, z = 4e” sin px (D)

Differentiating (1) partially with respect to x, we get



CT:—’ = Ape”™ cos px
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Again, differentiating (2) partially with respect to x, we get
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Sinularly, differentiating (1) partially with respect to 7, we get
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Again, differentiating (4) partially with respect to r, we get
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Adding (3) and (5). we get
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which 1s the required partial differential equation.

6. Form a partial differential equation by eliminating arbitrary constants a and b from

Z=(x+a)2 +(y+b)1

Ans:
k]iven z=(x+a)2 +(y+.€:v)2
p=%=2(x+a) ------ (2)
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Substituting (2) & (3) in (1), we get z =



(7)Find the singular integral of the partial differential equatioh z=px+qy+p’ —q°.

Ans:
The complete integral 1s

z=ax+by+a® -b’.

%=x+2a=0=>a=—£
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8. Find the PDE of all planes having equal intercepts on the x and y axis.

Solution:

The equation of such plane is
X y z

;+;+3=1 Q{

Partially differentiating (1) with respect to ‘x” and ‘y’ we get

l+£=0=}p=——
a b a
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a b a

From (2) and (3), we get
p=9q
(9YForm a partial differential equation by eliminating the arbitrary constants a and b from
z=ax" +by".
Ans:
Given z=ax" +by".
Partially differentiating with respect to “x” and “y” we get
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Substituting (2) in (1) we get
z= Pn_]xn_l_ Q;_Iyn
nx ny
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This 1s the required PDE.

10. Form a partial differential equation by eliminate the arbitrary function f from
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z
Ans:
Given: z= f(ﬂ)
z
, - xy.
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From (1), we get
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Substituting (3) in(2), we get
_ pzt zy-xpp
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zy —xyp z

Exercise: Try yourself: Find the partial differential equation by eliminating
constants from the following relations:

1. z=de®'cospx (constants 4, p)

2. ax’+by*+cz* =1 (constants a , b)

3. z=ax+bv+exy (constantsa, b, c¢)
2 3

4. 2z="+- (constants a, b))
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