LINEAR PARTIAL DIFFERENTAIL EQUATIONS OF ORDER ONE

Linear Partial Differential Equations of Order One: A differential equation involving derivatives p and q only and no higher is called of order one. If, in addition, the degree or power of p and q is unity, then it is a linear partial differential equation of order one.

Example: 1. 3xp + 9yq = z

2.
$$px^3 + qy^4 = z^2$$

The standard form of linear partial differential equation of order one is,

$$Pp + Qq = R$$
 $\cdots(A)$

where, P, Q and R being functions of x, y and z. This is also known as Lagrange equation.

The general solution of (1) is,

$$\phi(u,v)=0$$

where ϕ is an arbitrary function and $u(x, y, z) = c_1$ and $v(x, y, z) = c_2$ are solutions of equations,

$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R} \qquad \cdots (B)$$

which are called Lagrange auxiliary or subsidiary equations for (1).

Working procedure for solving Pp + Qq = R by Lagrange's method:

Step-1: Put the given linear partial differential equation in the standard form,

$$Pp + Qq = R$$
 $\cdots(A)$

Step-2: Write down Lagrange's auxiliary equations for (1) namely,

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \qquad \cdots (B)$$

Step-3: Solve (2) by well-known methods. Let $u(x, y, z) = c_1$ and $v(x, y, z) = c_2$ be two independent solutions of (2).

Step-4: The general solution (or integral) of (1) is then written in one of the following three equivalent forms:

$$\phi(u,v)=0$$
, $u=\phi(v)$ and $v=\phi(u)$.

Problem-01: Solve $(y^2z/x)p + xzq = y^2$

Solution: Given that,
$$(y^2z/x)p + xzq = y^2$$
 ...(1)

The Lagrange's auxiliary equations for (1) are,

$$\frac{dx}{(y^2z/x)} = \frac{dy}{xz} = \frac{dz}{y^2} \qquad \cdots (2)$$

Taking the first two fractions of (2), we get

$$\frac{dx}{\left(y^2z/x\right)} = \frac{dy}{xz}$$

$$or, \frac{xdx}{y^2z} = \frac{dy}{xz}$$

or,
$$x^2 dx = y^2 dy$$

$$or, x^2 dx - y^2 dy = 0$$

Integrating,

$$\frac{x^3}{3} - \frac{y^3}{3} = \frac{c_1}{3}$$

$$or, x^3 - y^3 = c_1 \qquad \cdots (3)$$

Next, taking the first and the last fractions of (2), we get

$$\frac{dx}{\left(y^2z/x\right)} = \frac{dz}{y^2}$$

$$or, \frac{xdx}{y^2z} = \frac{dz}{y^2}$$

$$or, xdx = zdz$$

or,
$$xdx - zdz = 0$$

Integrating,

$$\frac{x^2}{2} - \frac{z^2}{2} = \frac{c_2}{2}$$
or, $x^2 - z^2 = c_2$...(4)

From (3) and (4) the required general solution (integral) is,

$$\phi(x^3-y^3,x^2-z^2)=0$$

where, ϕ is an arbitrary constant.

Problem-02: Solve $p \tan x + q \tan y = \tan z$

Solution: Given that,
$$p \tan x + q \tan y = \tan z$$
 ...(1)

The Lagrange's auxiliary equations for (1) are,

$$\frac{dx}{\tan x} = \frac{dy}{\tan y} = \frac{dz}{\tan z} \qquad \cdots (2)$$

Taking the first two fractions of (2), we get

$$\frac{dx}{\tan x} = \frac{dy}{\tan y}$$

or, $\cot x dx = \cot y dy$

$$or$$
, $\cot x dx - \cot y dy = 0$

Integrating,

$$\ln(\sin x) - \ln(\sin y) = \ln c_1$$

$$or, \ln\left(\frac{\sin x}{\sin y}\right) = \ln c_1$$

$$or, \frac{\sin x}{\sin y} = c_1 \qquad \cdots (3)$$

Next, taking the last two fractions of (2), we get

$$\frac{dy}{\tan y} = \frac{dz}{\tan z}$$

$$or$$
, $\cot y dy = \cot z dz$

$$or$$
, $\cot y dy - \cot z dz = 0$

Integrating,

$$\ln(\sin y) - \ln(\sin z) = \ln c_2$$

$$or, \ln\left(\frac{\sin y}{\sin z}\right) = \ln c_2$$

$$or, \frac{\sin y}{\sin z} = c_2 \qquad \cdots (4)$$

From (3) and (4) the required general solution (integral) is,

$$\frac{\sin x}{\sin y} = \phi \left(\frac{\sin y}{\sin z} \right)$$

where, ϕ is an arbitrary constant.

Problem-03: Solve zp = -x

Solution: Given that,
$$zp = -x$$
 ...(1)

The Lagrange's auxiliary equations for (1) are,

$$\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x} \qquad \cdots (2)$$

Taking the first and the last fractions of (2), we get

$$\frac{dx}{z} = \frac{dz}{-x}$$

$$or$$
, $-xdx = zdz$

$$or, xdx + zdz = 0$$

Integrating,

$$\frac{x^2}{2} - \frac{y^3}{2} = \frac{c_1}{2}$$

$$or, x^2 + y^2 = c_1 \qquad \cdots (3)$$

Next, taking the last two fractions of (2), we get

$$\frac{dy}{0} = \frac{dz}{-x}$$

or,
$$dy = 0$$

Integrating,

$$y = c_2$$
 $\cdots (4)$

From (3) and (4) the required general solution (integral) is,

$$x^2 + y^2 = \phi(y)$$

where, ϕ is an arbitrary constant.

Exercise:

- 1. 2p+3q=1
- **2.** yzp + 2xq = xy
- $3. \quad x^2p + y^2q + z^2 = 0$
- **4.** xp + yq = z