

Course Profile

Semester:Summer

Year: 2020

Level/Term: 2/3

I. Course Code:	EEE 225		
II. Course Title:	Electromagnetic Fields & Waves		
III. Credit:	3	IV. Pre-Requisite:	N/A
V. Contact Hours:	Lecture- 3 hours/week		

VI. Course Objectives:

The objectives of this course are

- a) To develop the basic ideas about vectors, vector calculus& co-ordinate system.
- b) To understand the ideas of electromagnetics including Static and dynamic electromagnetic (EM) fields, energy, and power.
- c) To study and interpret Divergence theorem, Stoke's theorem, Gauss's law, Biot-Savart law, Curl, Ampere's law, Farayay's law, Boundary conditions and Maxwell's equations.
- d) To relate the knowledge of EM to important applications.

VII. Course Outcome (COs):							
Sl. No.	COs (Upon successful completion of this course, students should be able to) Describe the physical interpretation of vector calculus operations.		Bloom's taxonomy domain/level*			Delivery Methods & activities	Assessment tools
			С	Α	P		
CO 225-1			2	-	-	Lectures, Tutorials	CT, Exam, Assignments
CO 225-2	Analyze and visualize different types of co-ordinates system.	PO1	2	1	-	Lectures, Tutorials	CT, Exam
CO 225-3	Interpret visualizations of electric fields, electric scalarpotentials, magnetic fields and different theorems/laws (Divergence theorem, Stoke'stheorem, Biot-Savart law, Curl, Ampere's law, Farayay's law etc)along with boundary conditions and Maxwell's equations.	PO1	2	1	-	Lectures, Tutorials	CT, Exam, Assignments

©Daffodil International University

	Apply the	knowledge	and						
CO 225-4	understanding electromagnetic utilized and als	to explain phenomena so the principl	are	PO2	3	2	-	Lectures, Tutorials	CT, Exam
	perform require	d calculations.							

^{*}C: Cognitive, A: Affective, P: Psychomotor;

VIII. Course Plan with Detail Description:

Session	Contents	COs
	❖ Introduction to the course.	
Week 1	❖ Discussion on vectors algebra & vector calculus	1
	 Practice mathematical problem 	
Week 2	❖ Discussion on Rectangular, cylindrical and spherical co-ordinate system	1,2
WEEK 2	 Practice mathematical problem 	1,2
	❖ Coulomb's law & it's application	
Week 3	❖ Electric field intensity, electric flux density	3
	❖ Field of a line charge and a sheet of charge	
	❖ Electric flux density	
Week 4	❖ Gauss law with application	1,3,4
WCCK 4	❖ Electric field due to point charge, infinite line charge, surface charge	
	❖ Divergence theorem and related maths	
Week 5	❖ Maxwell's first equation	1,3,4
week 5	 Energy expanded in moving point charge in an electric field 	1,3,4
	❖ Line integral	
	❖ Potential field of a point charge	
Week 6	❖ Potential gradient	3
vv eek o	❖ Electric dipole	3
	 Energy of an electrostatic system 	
Week 7	 Current and current density 	3,4
week /	❖ Boundary condition in Electrostatics for various time varying system	3,4
West 0	Resistors & capacitors and their dependence on various factors	3
Week 8	❖ Capacitance of a two wire line	3
W1-0	❖ Poisson's and Laplace's equations	2
Week 9	 Examples of the solutions of Laplace's equation and Poisson's equation 	2
	❖ Biot-Savart law	
Week 10	❖ Curl	3
Week 10	❖ Ampere's law, Stoke's theorem	3
	❖ Magnetic flux and flux density	
	❖ Magnetic boundary conditions	
Week 11	❖ Magnetic Forces	3
	 Inductance and Mutual Inductance 	
	❖ Faraday's law	
Week 12	❖ Maxwell's equations in point and integral form	3
	The retarded potentials	

IX. Evaluation Policy:

Marks Distribution:		Attendance	10%	
		Quiz	20%	
		Assignment	10%	
		Presentation	10%	
		Final Exam	50%	
		Total	100%	
Grading System:	As per DIU 1	rule		
	_			

X. Resources:

Textbook(s):

[1] Engineering Electromagnetics, W.H. Hayt

[2] Elements of Electromagnetics, Matthew N. O. Sadiku

Reference(s):

[1] Fundamentals of Engineering Electromagnetics, David K, Cheng

XI. Course Link in Moodle/Google Class Room:

Moodle Link: https://elearn.daffodilvarsity.edu.bd/course/view.php?id=5644

Google Classroom Code: xrcor5i

XII. Course Instructor(s):

Name: Dr. M. ShamsulAlam
 Designation: Professor & Dean

Department of EEE Faculty of Engineering

Email: eeesa@daffodilvarsity.edu.bd

Cell: 01713109917