CHAPTER-02

Coulomb's Law and Electric Field Intensity

Coulomb's law

Coulomb's law states that the force F between two point charges Q_{1} and Q_{2} along the line joining them is-

- Directly proportional to the product $\mathrm{Q}_{1} \mathrm{Q}_{2}$ of the charges
- Inversely proportional to the square of the distance R between

$$
\begin{aligned}
& \mathrm{F} \alpha Q_{1} \\
& \mathrm{~F} \alpha Q_{2} \\
& \mathrm{~F} \alpha \frac{1}{r^{2}}
\end{aligned}
$$

Now we can easily write an equation based on above equations.

$$
\begin{aligned}
& \mathrm{F} \alpha \frac{Q_{1} Q_{2}}{R^{2}} a_{R} \\
& \mathrm{~F}=K \frac{Q_{1} Q_{2}}{R^{2}} a_{R} \quad \text { [Where } K \text { is proportional constant] }
\end{aligned}
$$

Where,
The value of, $K=\frac{1}{4 \pi \epsilon_{0}}$

$$
\therefore \mathrm{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} R^{2}} a_{R} \quad\left[\text { Where, } \epsilon_{0}=8.854 \times 10^{-12}=\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / \mathrm{m}\right]
$$

The new constant ϵ_{0} is called the permittivity of free space and has the magnitude, measured in farads per meter (F / m). This is a mathematical quantity that represents, how much electric field is permitted (Penetrated) in free space or vacuum. It is an ideal physical constant that represents the absolute dielectric permittivity of a vacuum. In other words, ϵ_{0} quantifies the ability of a vacuum to allow electric field lines to flow through.

In SI units, Q_{1} and Q_{2} are measured in coulombs (C), the distance R is in meters (m) and the force F is in newtons (N).

Triangle law of forces

If two vectors are represented in magnitude and direction by the two sides of a triangle taken in order, the third side of the triangle represents their resultant in magnitude and direction in reverse order.

- $\quad \vec{P}$ and \vec{Q} are two non-zero forces
- These two are represented by two sides of a triangle AB, BC respectively
- The third side of the triangle AC is the resultant in the opposite direction.

Mathematical problem-1:

The use of the vector form of Coulomb's law consider a charge of $Q_{1}=3 \times 10^{-4} C$ at $\mathrm{P}(1,2,3)$ and a charge of $Q_{2}=-10^{-4} C$ at $\mathrm{Q}(2,0,5)$ in a vacuum. Evaluate the force exerted on Q_{2} by Q_{1}.

Solution:

Given,

$$
\begin{aligned}
& Q_{1}=3 \times 10^{-4} C \\
& Q_{2}=-10^{-4} C
\end{aligned}
$$

Now,

$$
\left.\begin{array}{rl}
R_{12}= & r_{2}-r_{1} \\
& =(2-1) a_{x}+(0-2) a_{y}+(5-3) a_{z} \\
& =a_{x}-2 a_{y}+2 a_{z}
\end{array}\right\} \begin{aligned}
& \left|R_{12}\right|=\sqrt{1^{2}+(-2)^{2}+2^{2}}=\sqrt{9}=3 \\
& a_{12}=\frac{1}{3}\left(a_{x}-2 a_{y}+2 a_{z}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
F_{2}= & \frac{Q_{1} Q_{2}}{R^{2}} a_{12} \\
& =\frac{3 \times 10^{-4} \times\left(-10^{-4}\right)}{4 \pi\left(\frac{1}{36 \pi} \times 10^{-9}\right) \times 3^{2}}\left(\frac{a_{x}-2 a_{y}+2 a_{z}}{3}\right) \\
& =-10\left(a_{x}-2 a_{y}+2 a_{z}\right) \\
& =-10 a_{x}+20 a_{y}-20 a_{z} \quad \text { (Answer) }
\end{aligned}
$$

The force expressed by Coulomb's law is a mutual force, for each of the two charges experiences a force of the same magnitude, although of opposite direction.

$$
F_{1}=-F_{2}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0}\left(R_{12}\right)^{2}} a_{21}=-\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0}\left(R_{12}\right)^{2}} a_{12}
$$

Electric Field Intensity

The electric field intensity (or electric field strength) E is the force per unit charge when placed in the electric field. Thus

$$
E=\lim _{Q \rightarrow 0} \frac{F}{Q}
$$

Or simply

$$
E=\frac{F}{Q}
$$

Now consider one charge fixed in position, say Q_{1} and move a second charge slowly around, note that there exists everywhere a force on this second charges; in other words, this second charge is displaying the existence of a force field. Call this second charge a test charge Q_{t}. The force on it is given by Coulomb's law,

$$
F_{t}=\frac{Q_{1} Q_{t}}{R^{2}} a_{1 t}
$$

This force as a force per unit charge gives

$$
\frac{F_{t}}{Q_{t}}=\frac{Q_{1}}{4 \pi \epsilon_{0} R_{1 t}^{2}} a_{1 t}
$$

The quantity on the right side of the above equation is function only of Q_{1} and the directed line segment from Q_{1} to the position of the test charge. This describes a vector field and is called the electric field intensity.

We define the electric field intensity as the vector force on a unit positive test charge. Electric field intensity must be measured by the unit newtons per coulomb-the force per unit charge. We shall at once measure electric field intensity in the practical units of volts per meter (V/m). Using a capital letter \mathbf{E} for electric field intensity, we have

$$
\begin{gathered}
E=\frac{F_{t}}{Q_{t}} \\
E=\frac{Q_{1}}{4 \pi \epsilon_{0} R_{1 t}^{2}} a_{1 t}
\end{gathered}
$$

Finally,

$$
E=\frac{Q}{4 \pi \epsilon_{0} R^{2}} a_{R}
$$

Mathematical problem-2:

Point charges 1 mC and -2 mC are located at $(3,2,-1)$ and $(-1,-1,4)$ respectively. Calculate the electric force on a 10 nC charge located at $(0,3,1)$ and the electric field intensity at that point.

Solution:

$$
\begin{aligned}
& F=\sum_{K=1,2} \frac{Q Q_{k}}{4 \pi \epsilon_{0} R^{2}} a_{R} \\
& =\sum_{K=1,2} \frac{Q Q_{k}\left(r-r_{k}\right)}{4 \pi \epsilon_{0}\left|r-r_{k}\right|^{3}} \\
& =\frac{Q Q_{1}\left(r-r_{1}\right)}{4 \pi \epsilon_{0}\left|r-r_{1}\right|^{3}}+\frac{Q Q_{2}\left(r-r_{2}\right)}{4 \pi \epsilon_{0}\left|r-r_{2}\right|^{3}} \\
& =\frac{Q}{4 \pi \epsilon_{0}}\left\{\frac{Q_{1}\left(r-r_{1}\right)}{\left|r-r_{1}\right|^{3}}+\frac{Q_{2}\left(r-r_{2}\right)}{\left|r-r_{2}\right|^{3}}\right\} \\
& =\frac{Q}{4 \pi \epsilon_{0}}\left\{\frac{10^{-3}[(0,3,1)-(3,2,-1)]}{|(0,3,1)-(3,2,-1)|^{3}}-\frac{2.10^{-3}[(0,3,1)-(-1,-1,4)]}{|(0,3,1)-(-1,-1,4)|^{3}}\right\} \\
& =9 \times 10^{-2}\left[\frac{(-3,1,2)}{14 \sqrt{14}}+\frac{(-2,-8,6)}{26 \sqrt{26}}\right] \\
& F=-6.507 a_{x}-3.817 a_{y}+7.506 a_{z} m N
\end{aligned}
$$

At that point,

$$
\begin{aligned}
& E=\frac{F}{Q} \\
& =(-6.507,-3.817,7.506) \times \frac{10^{-3}}{10 \times 10^{-9}} \\
& E=-650.7 a_{x}-381.7 a_{y}+750.6 a_{z} \mathrm{kV} / \mathrm{m}
\end{aligned}
$$

Electric Fields due to continuous charge distributions

It is customary to denote the line charge density, surface charge density and volume charge density by ρ_{L} (in C / m), ρ_{S} (in $\mathrm{C} / \mathrm{m}^{2}$) and ρ_{v} (in $\left(\mathrm{C} / \mathrm{m}^{3}\right.$) respectively. The charge element $d Q$ and the total charge Q due to these charge distributions are obtained from above figure as

$$
\begin{gathered}
d Q=\rho_{L} d l \rightarrow Q=\int_{L} \rho_{L} d l \text { (Line charge) } \\
d Q=\rho_{S} d S \rightarrow Q=\int_{S} \rho_{S} d S \text { (Surface charge) } \\
d Q=\rho_{v} d v \rightarrow Q=\int_{v} \rho_{v} d v \text { (Volume charge) }
\end{gathered}
$$

The electric field intensity due to each of the charge distributions ρ_{L}, ρ_{S} and ρ_{v} may be regarded as the summation of the field contributed by the numerous point charges making $\rho_{L} d l, \rho_{S} d S, \rho_{v} d v$ and integrating, we get

$$
\begin{gathered}
E=\int \frac{\rho_{L} d l}{4 \pi \epsilon_{0} R^{2}} a_{R} \quad \text { (Line charge) } \\
E=\int \frac{\rho_{S} d S}{4 \pi \epsilon_{0} R^{2}} a_{R} \quad \text { (Surface charge) } \\
E=\int \frac{\rho_{v} d v}{4 \pi \epsilon_{0} R^{2}} a_{R} \quad \text { (Volume charge) }
\end{gathered}
$$

Field due to a continuous volume charge distribution

Cylindrical Co-ordinate

$$
\begin{aligned}
& \mathrm{dQ}=\rho_{v} \mathrm{dv} \\
& \begin{aligned}
\int \mathrm{dQ} & =\int_{v} \rho_{v} \mathrm{dv} \\
& =\int_{z=0}^{h} \int_{\varphi=0}^{2 \pi} \int_{0}^{r} \rho_{v} \rho d \rho d \varphi d z
\end{aligned}
\end{aligned}
$$

Spherical Co-ordinate

$$
\begin{aligned}
& \mathrm{dQ}=\rho_{v} \mathrm{dv} \\
& \begin{array}{l}
\int \mathrm{dQ}=\int_{v} \rho_{v} \mathrm{dv} \\
\quad=\int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{0}^{r} \rho_{v} r^{2} \sin \theta d \theta d r d \varphi
\end{array}
\end{aligned}
$$

Surface of Cylindrical Co-ordinate

$$
\begin{aligned}
& \int \mathrm{dQ}=\int_{s} \rho_{s} \mathrm{ds} \\
& Q=\int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{s} \rho d \rho d \varphi a_{z}
\end{aligned}
$$

Spherical Co-ordinate:

$$
\begin{aligned}
& \int \mathrm{dQ}=\int_{s} \rho_{s} \mathrm{ds} \\
& Q=\int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{s}\left(r^{2} \sin \theta d \theta d \varphi\right) a_{r}
\end{aligned}
$$

Mathematical problem-3:

Evaluate the total charge contained in a $2-\mathrm{cm}$ length of the electron beam show in following figure.

Solution:

The total charge contained may be obtained by evaluating

$$
Q=\int_{v} \rho_{v} d v
$$

The charge density is

$$
\rho_{v}=-5 \times 10^{-6} e^{-10^{5}} \mathrm{C} / \mathrm{m}^{2}
$$

Therefore,

$$
\begin{aligned}
Q & =\int_{0.02}^{0.04} \int_{0}^{2 \pi} \int_{0}^{0.01}-5 \times 10^{-6} e^{-10^{5} \rho z} \rho d \rho d \varphi d z \\
& =-10^{-5} \pi \int_{0.02}^{0.04} \int_{0}^{0.01} e^{-10^{5} \rho z} \rho d \rho d z \\
& =-10^{-5} \pi \int_{0}^{0.01}\left[\frac{e^{-10^{5} \rho z}}{10^{-5} \rho}\right]_{0.02}^{0.04} \rho d \rho \\
& =-10^{-10} \pi \int_{0}^{0.01}\left[e^{-2000 \rho}-e^{-4000 \rho}\right] d \rho
\end{aligned}
$$

$$
\begin{aligned}
& =-10^{-10} \pi\left(\frac{1}{2000}-\frac{1}{4000}\right) \\
& =-10^{-10} \pi\left(\frac{2-1}{4000}\right) \\
& =-10^{-10} \pi\left(\frac{1}{40 \times 10^{2}}\right) \\
& =\frac{-\pi}{40} \rho c \\
& =0.0785 \mathrm{pC} \quad(\mathrm{Ans})
\end{aligned}
$$

Field of a Line Charge

Let us assume a straight line charge extending along the z -axis in a cylindrical co-ordinate system from $-\infty$ to ∞ as shown in following figure. We desire the electric field intensity, E at any and every point resulting from a uniform line charge density ρ_{L}.

As we move around the line charge, varying φ while keeping ρ and z constant, the line charge appears the same from every angle. Again, if we maintain ρ and φ constant while moving up and down the line charge by changing z , the line charge still recedes into infinite distance in both directions and the problem is unchanged. This is axial symmetry and leads to fields are not functions of z .

If we maintain φ and z constant and vary ρ, the problem changes and Coulomb's law leads us to expect the field to become weaker as ρ increases. Hence, by a process of elimination we are led to the fact that the field varies only with ρ.

No element of charge produces a φ component of electric intensity; E_{φ} is zero. However, each element does produce an E_{ρ} and an E_{z} component but the contribution to E_{z} by elements of charge which are equal distances above and below the point at which we are determining the field will cancel.

Therefore we have found that we have only an E_{ρ} component and it varies only with ρ. Now to find this component we choose a point $\mathrm{P}(0, y, 0)$ on the y -axis at which to determine the field. This is perfectly general point in view of the lack of variation of the field with φ and z. To find the incremental field at P due to the incremental charge $d Q=\rho_{L} d z^{\prime}$, we have

$$
d E=\frac{\rho_{L} d z^{\prime}\left(r-r^{\prime}\right)}{4 \pi \epsilon_{0}\left|r-r^{\prime}\right|^{3}}
$$

Where

$$
\begin{gathered}
r=y a_{y}=\rho a_{\rho} \\
r^{\prime}=z^{\prime} a_{z}
\end{gathered}
$$

And

$$
r-r^{\prime}=\rho a_{\rho}-z^{\prime} a_{z}
$$

Therefore,

$$
d E=\frac{\rho_{L} d z^{\prime}\left(\rho a_{\rho}-z^{\prime} a_{z}\right)}{4 \pi \epsilon_{0}\left(\rho^{2}+z^{\prime 2}\right)^{3 / 2}}
$$

Since only the E_{ρ} component is present, we may simplify:

$$
d E_{\rho}=\frac{\rho_{L} \rho d z^{\prime}}{4 \pi \epsilon_{0}\left(\rho^{2}+z^{\prime 2}\right)^{3 / 2}}
$$

And

$$
E_{\rho}=\int_{-\infty}^{\infty} \frac{\rho_{L} \rho d z^{\prime}}{4 \pi \epsilon_{0}\left(\rho^{2}+z^{\prime 2}\right)^{3 / 2}}
$$

Integrating by integral tables or change of variable, $z^{\prime}=\rho \cot \theta$, we have

$$
\begin{gathered}
E_{\rho}=\frac{\rho_{L}}{4 \pi \epsilon_{0}} \rho\left(\frac{1}{\rho^{2}} \frac{z^{\prime}}{\sqrt{\rho^{2}+z^{\prime 2}}}\right)_{-\infty}^{\infty} \\
E_{\rho}=\frac{\rho_{L}}{2 \pi \epsilon_{0} \rho} \\
E_{\rho}=\frac{\rho_{L}}{2 \pi \epsilon_{0} \rho} a_{\rho}
\end{gathered}
$$

Field of a Sheet of Charge

The infinite sheet of charge having a unit form density of $\rho_{s} C / \mathrm{m}^{2}$.
Such a charge distribution may often be used to approximate that found on the conductors of a strip transmission line of parallel-plate capacitor. ρ_{s} is commonly known as surface charge density.

Let us place a sheet of charge in the yz plane and again consider symmetry as following figure. The field cannot vary with y or with z and then that the y and z components arising from differential elements of charge symmetrically located with respect to the point at which we wish the field will cancel. Hence only E_{x} is present and this component is a function of x alone.

Let us use the field of the infinite line charge by dividing the infinite sheet into differential-width strips shown in following figure. The line charge density or charge per unit length is $\rho_{L}=\rho_{s} d y^{\prime}$ and the distance from this line charge to out general point P on the x -axis is $R=\sqrt{x^{2}+y^{\prime 2}}$.

$$
\begin{aligned}
& E=\frac{\rho_{L}}{2 \pi \epsilon_{0} R} a_{R} \\
& d E=\frac{\rho_{s} d y^{\prime}}{2 \pi \epsilon_{0} R} a_{R}
\end{aligned}
$$

The contribution to E_{x} at P from this differential-width strip is then

$$
d E_{x}=\frac{\rho_{s} d y^{\prime}}{2 \pi \epsilon_{0} \sqrt{x^{2}+y^{\prime 2}}} \cos \theta=\frac{\rho_{s}}{2 \pi \epsilon_{0}} \frac{x d y^{\prime}}{x^{2}+y^{\prime 2}}
$$

Adding the effects of all the strips,

$$
\begin{aligned}
E_{x} & =\frac{\rho_{s}}{2 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \frac{x d y^{\prime}}{x^{2}+y^{\prime 2}} \\
& \left.=\frac{\rho_{s}}{2 \pi \epsilon_{0}} \tan ^{-1} \frac{y^{\prime}}{x}\right]_{-\infty}^{-}
\end{aligned}
$$

$$
=\frac{\rho_{s}}{2 \epsilon_{0}}
$$

If the point P were chosen on the negative x -axis, then

$$
E_{x}=-\frac{\rho_{s}}{2 \epsilon_{0}}
$$

For the field is always directed away from the positive charge. This difficulty in sign in usually overcome by specifying a unit vector a_{N}, which is normal to the sheet and directed outward or away from it. Then

$$
E=\frac{\rho_{s}}{2 \epsilon_{0}} a_{N}
$$

If a second infinite sheet of charge having a negative charge density $-\rho_{s}$, is located in the plane $x=$ a, we may find the total field by adding the contribution of each sheet.

In the region $x>a$,

$$
\begin{gathered}
E_{+}=\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E_{-}=-\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E=E_{+}+E_{-}=0
\end{gathered}
$$

And for $x<0$,

$$
\begin{gathered}
E_{+}=-\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E_{-}=\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E=E_{+}+E_{-}=0
\end{gathered}
$$

And when $0<x<a$,

$$
\begin{gathered}
E_{+}=\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E_{-}=\frac{\rho_{s}}{2 \epsilon_{0}} a_{x} \\
E=E_{+}+E_{-}=\frac{\rho_{s}}{\epsilon_{0}} a_{x}
\end{gathered}
$$

