#### **CHAPTER-3**

### Electric Flux Density, Gauss's Law and Divergence

### **Electric Flux Density**

Electric flux density is electric flux passing through a unit area perpendicular to the direction of the flux. Electric flux density is a measure of the strength of an electric field generated by a free electric charge, corresponding to the number of electric lines of force passing through a given area.



A larger positive charge on the inner sphere induced a correspondingly larger negative charge on the outer sphere, leading to a direct proportionality between the electric flux and the charge on the inner sphere. If electric flux is denoted by  $\Psi$  (psi) and the total charge on the inner sphere by Q, then for Faraday's experiment

$$\Psi = Q$$

The electric flux  $\Psi$  is measured in coulombs.

Considering-

- Inner sphere radius a
- Outer sphere radius *b*
- With charges Q and -Q respectively.

Then,

Surface area of the sphere,  $S = 4\pi r^2$ 

Flux produced per unit area =  $\frac{\Psi}{S}$ 

The electric flux density,

$$D|_{r=a} = \frac{Q}{4\pi a^2} a_r$$
 (Inner sphere)

$$D|_{r=b} = \frac{Q}{4\pi b^2} a_r$$
 (Outer sphere)

At a radial distance r, where  $a \le r \le b$ ,

The electric flux density,  $D = \frac{Q}{4\pi r^2} a_r$ 

And the Electric field intensity for a point charge,  $E = \frac{Q}{4\pi\epsilon_0 r^2} a_r$ 

In free space, therefore, the relationship between electric flux density (D) and electric field intensity (E),

$$E = \frac{D}{\epsilon_0}$$
 (Free space only)

$$D = \epsilon_0 E$$
 (free space only)

Evaluate electric flux density, D in the region about a uniform line charge of 8 nC/m lying along the z-axis in free space.

### **Solution:**

Given that,

$$\rho_L = 8 \, nC/m = 8 \times 10^{-9} \, C/m$$
And,  $\rho = 3m$ 

We know, the field of a line charge,

$$E = \frac{\rho_L}{2\pi\epsilon_0 \rho} a_\rho$$

$$= \frac{8 \times 10^{-9}}{2 \times (3.1416) \times (8.854 \times 10^{-12}) \times 3} a_\rho$$

$$= 47.93 a_\rho \text{ V/m}.$$

We know,

$$D = \epsilon_0 E$$
= (8.854 × 10<sup>-12</sup>) × 47.93
$$= 4.24 \times 10^{-10} \frac{C}{m}$$
= 0.424 nC/m

If,  $\rho_L = 8 \, nC$  and the total flux leaving a (5-m) length of the line charge then

Given that,

$$L = 5m$$
 and  $\rho_L = 8 \, nC = 8 \times 10^{-9} \, C$ 

We know,

$$dQ = \rho_L d_L$$

$$\Rightarrow Q = (8 \times 10^{-9}) \times 5$$

$$\therefore Q = 40 \ nC$$

### Gauss's Law

The electric flux passing through any closed surface is equal to the total charge enclosed by that surface.

Thus

$$\Psi = Q_{enclosed}$$



The electric flux density  $D_S$  at P due to charge Q. The total flux passing through  $\Delta S$  is  $D_S \cdot \Delta S$ .

Flux crossing 
$$\Delta S = \Delta \Psi = D_S S \cos\theta \Delta S = D_S \cdot \Delta S$$
  
$$\Delta \Psi = D_S \cdot \Delta S$$

The total flux passing through the closed surface is obtained by adding the differential contributions crossing each surface element  $\Delta S$ ,

$$\Psi = \int d\Psi = \oint_{\substack{closed \\ surface}} D_S \cdot dS$$

Then the mathematical formulation of Gauss's law,

$$\Psi = \oint_{S} D_{S} \cdot dS = charge \ enclosed = Q$$

The charge enclosed might be several point charges, in which case

$$Q = \sum Q_n$$

Or a line charge,

$$Q = \int \rho_L dL$$

Or a surface charge,

$$Q = \int_{S} \rho_{S} dS$$
 (Not necessarity a closed surface)

Or a volume charge,

$$Q = \int_{vol} \rho_v dv$$

Gauss's law may be written in terms of the charge distribution as a mathematical statement meaning simply that the total electric flux through any closed surface is equal to the charge enclosed.

$$\oint_{S} D_{S} \cdot dS = \int_{vol} \rho_{v} dv$$

Using Gauss's Law obtain electric field intensity, E and electric flux density, D for a point charge on a spherical closed surface.



At the surface of a sphere,

$$D_S = \frac{Q}{4\pi r^2} \ a_r$$

The differential element of area on a spherical surface is,

$$dS = r^2 \sin\theta \ d\theta \ d\varphi \ a_r$$

The integrand is,

$$D_S. dS = \frac{Q}{4\pi r^2} r^2 \sin\theta \ d\theta \ d\varphi \ a_r \cdot a_r$$
$$= \frac{Q}{4\pi} \sin\theta \ d\theta \ d\varphi$$

Then,

$$Q = \oint D_s \cdot dS$$

$$= \oint D_s \cdot r^2 \sin\theta \ d\theta \ d\varphi$$

$$= D_s r^2 \int_0^{2\pi} \int_0^{\pi} \sin\theta \ d\theta \ d\varphi$$

$$= D_s r^2 \left[ -\cos \right]_0^{\pi} \left[ \varphi \right]_0^{2\pi}$$

$$= D_s r^2 \left[ 1 + 1 \right] \left[ 2\pi - 0 \right]$$

$$= D_s r^2 2 \cdot 2\pi$$

$$= 4\pi D_s r^2$$

Here 
$$D_s = \frac{Q}{4\pi r^2}$$

Electric flux density, D for a point charge,

$$D = \frac{Q}{4\pi r^2} \ a_r$$

Electric field intensity, E for a point charge,

We know,

$$D = \epsilon_0 E$$

$$E = \frac{Q}{4\pi\epsilon_0 r^2} a_r$$

Using Gauss's Law obtain electric field intensity, E and electric flux density, D for a line charge.



We know,

Differential surface of cylinder,

$$ds = \rho d\varphi dz a_{\rho}$$

Then,

$$Q = \oint D_s . dS$$

$$= \oint D_s . \rho d\varphi dz a_\rho$$

$$= D_s \int_0^l \int_0^{2\pi} \rho d\varphi dz$$

$$= D_s \rho [y]_0^{2\pi} [z]_0^l$$

$$= D_s \rho 2\pi l$$

Here 
$$D_s = \frac{Q}{2\pi\rho l}$$

Electric flux density, D for a line charge,

$$D = \frac{\rho l}{2\pi\rho} \ a_{\rho}$$

Electric field intensity, E for a line charge,

We know,

$$D = \epsilon_0 E$$

$$E = \frac{\rho l}{2\pi \epsilon_0 \rho} \alpha_\rho$$

# Application of Gauss's Law: Differential Volume Element



Consider point P, shown in figure located by a Cartesian coordinate system. The value of D at the point P may be expressed in Cartesian components,  $D_0 = D_{x0} a_x + D_{y0} a_y + D_{z0} a_z$ . We chose as our closed surface the small rectangular box, centered at P, having sides of lengths  $\Delta x$ ,  $\Delta y$  and  $\Delta z$ .

Applying Gauss's law,

$$Q = \oint_{Surface} D_s \cdot dS$$

In order to evaluate the integral over the closed surface, the integral must be broken up into six integrals, one over each face,

$$\oint_{S} D_{s} \cdot dS = \int_{front} + \int_{back} + \int_{left} + \int_{right} + \int_{top \ bottom} - \int_{bottom} - \int_{solution} - \int_{solution}$$

Consider,

$$\int_{front} = D_{front} \cdot \Delta S_{front}$$
$$= D_{front} \cdot \Delta y \, \Delta z \, a_x$$
$$= D_{x,front} \, \Delta y \, \Delta z$$

 $D_{x0}$  is the value of  $D_x$ , the front surface is at a distance of  $\Delta x/2$  from P and partial derivative must be used to express the rate of change of  $D_x$  with x. Then,

$$D_{x,front} = D_{x0} + \frac{\Delta x}{2} \times rate \ of \ change \ of \ D_x \ with \ x$$
$$= D_{x0} + \frac{\Delta x}{2} \frac{\delta D_x}{\delta x}$$

Now we have,

$$\int_{front} = \left( D_{x0} + \frac{\Delta x}{2} \frac{\delta D_x}{\delta x} \right) \Delta y \, \Delta z$$

And the back surface,

$$\int_{back} = \left( -D_{x0} + \frac{\Delta x}{2} \frac{\delta D_x}{\delta x} \right) \Delta y \, \Delta z$$

Now,

$$\begin{split} \int_{front} + \int_{back} &= D_{x0} \cdot \Delta y \, \Delta z + \frac{\Delta x}{2} \frac{\delta D_x}{\delta x} \cdot \Delta y \, \Delta z - D_{x0} \cdot \Delta y \, \Delta z + \frac{\Delta x}{2} \frac{\delta D_x}{\delta x} \cdot \Delta y \, \Delta z \\ &= \frac{\delta D_x}{\delta x} \left( \frac{\Delta x}{2} + \frac{\Delta x}{2} \right) \Delta y \, \Delta z \\ &= \frac{\delta D_x}{\delta x} \, \Delta x \, \Delta y \, \Delta z \end{split}$$

Similarly,

$$\int_{right} + \int_{left} = \frac{\delta D_y}{\delta y} \, \Delta x \, \Delta y \, \Delta z$$

And

$$\int_{ton} + \int_{hottom} = \frac{\delta D_z}{\delta z} \Delta x \Delta y \Delta z$$

Now from equation (1), we have,

$$\oint_{S} D_{s} \cdot dS = \left(\frac{\delta D_{x}}{\delta x} \Delta x \Delta y \Delta z\right) + \left(\frac{\delta D_{y}}{\delta y} \Delta x \Delta y \Delta z\right) + \left(\frac{\delta D_{z}}{\delta z} \Delta x \Delta y \Delta z\right)$$

$$\oint_{S} D_{s} \cdot dS = \left(\frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}\right) \Delta x \, \Delta y \, \Delta z$$

$$\oint_{S} D_{s} \cdot dS = \left(\frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}\right) \Delta v$$

We can write,

$$Q = \oint_{S} D_{s} \cdot dS = \left( \frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z} \right) \Delta v$$

$$\frac{Q}{\Delta v} = \frac{\oint_{S} D_{s} \cdot dS}{\Delta v} = \frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}$$

Charge enclosed in volume  $\Delta v = \left(\frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}\right) \times volume \Delta v$ 

### **Divergence**

$$\frac{Q}{\Delta v} = \frac{\oint_{S} D_{s} \cdot dS}{\Delta v} = \frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}$$

By allowing the volume element  $\Delta v$  shrink to zero, we can write

$$\left(\frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}\right) = \lim_{\Delta v \to 0} \frac{\oint_S D_s \cdot dS}{\Delta v} = \lim_{\Delta v \to 0} \frac{Q}{\Delta v}$$

$$\left(\frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}\right) = \lim_{\Delta v \to 0} \frac{\oint_S D_s \cdot dS}{\Delta v} = \rho_v$$

The equation on any vector D to find  $\oint_S D \cdot dS$  for a small closed surface,

$$\left(\frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}\right) = \lim_{\Delta v \to 0} \frac{\oint_S \mathbf{D} \cdot \mathbf{dS}}{\Delta v}$$

The divergence of the vector flux density D is the outflow of flux from a small closed surface per unit volume as the volume shrinks to zero.

Divergence of 
$$D = \operatorname{div} D = \lim_{\Delta v \to 0} \frac{\oint_{S} D \cdot dS}{\Delta v}$$

Then,

$$div \, D = \frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z} \quad (Cartesian)$$
 
$$div \, D = \frac{1}{\rho} \frac{\delta}{\delta \rho} (\rho D_\rho) + \frac{1}{\rho} \frac{\delta D_\varphi}{\delta \varphi} + \frac{\delta D_z}{\delta z} \quad (Cylindrical)$$
 
$$div \, D = \frac{1}{r^2} \frac{\delta}{\delta r} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{\delta}{\delta \theta} (\sin \theta D_\theta) + \frac{1}{r \sin \theta} \frac{\delta D_\varphi}{\delta \varphi} \quad (Spherical)$$

# **Maxwell's First equation (Electrostatics)**

$$div D = \lim_{\Delta v \to 0} \frac{\oint_{S} D \cdot dS}{\Delta v}$$
$$div D = \frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}$$

Then,

$$\oint_{S} D \cdot dS = Q$$

Per unit volume

$$\frac{\oint_S \mathbf{D} \cdot \mathbf{dS}}{\Delta v} = \frac{Q}{\Delta v}$$

As the volume shrinks to zero,

$$\lim_{\Delta \nu \to 0} \frac{\oint_{S} \mathbf{D} \cdot \mathbf{dS}}{\Delta \nu} = \lim_{\Delta \nu \to 0} \frac{Q}{\Delta \nu}$$

We can write,

$$div D = \rho_v$$

Integral Form of Maxwell's equation,

$$\oint_{S} \mathbf{D} \cdot \mathbf{dS} = \int_{v} \rho_{v} \ dv = Q$$

Differential Form of Maxwell's equation,

$$\nabla \cdot D = \rho_{\nu}$$

Find an approximate value for the total charge enclosed in an incremental volume of  $10^{-9}m^3$  located at the origin, if  $D = e^{-x} \sin y \ a_x - e^{-x} \cos y \ a_y + 2z \ a_z \ C/m^2$ .

### **Solution:**

Evaluate the three partial derivatives,

$$\frac{\delta D_x}{\delta x} = -e^{-x} \sin y$$
$$\frac{\delta D_y}{\delta y} = e^{-x} \sin y$$
$$\frac{\delta D_z}{\delta z} = 2$$

- At the origin, the first two expressions are zero and the last is 2.
- Thus the charge enclosed in a small volume element there must be approximately  $2\Delta v$ .

If  $\Delta v = 10^{-9} m^3$ , then we have the total charge enclosed about 2 nC. (Ans)

# **Mathematical problem-3**

Find div D at the origin if  $D = e^{-x} \sin y \, a_x - e^{-x} \cos y \, a_y + 2z \, a_z$ 

# **Solution:**

We know

$$div D = \frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}$$
$$= -e^{-x} \sin y + e^{-x} \sin y + 2$$
$$= 2 \quad (Ans)$$

Determine the divergence of the vector field  $D = x^2yz a_x + xz a_z$ 

#### **Solution:**

We know

$$div D = \frac{\delta D_x}{\delta x} + \frac{\delta D_y}{\delta y} + \frac{\delta D_z}{\delta z}$$
$$= \frac{\delta}{\delta x} (x^2 yz) + \frac{\delta}{\delta y} (0) + \frac{\delta}{\delta z} (xz)$$
$$= 2xyz + x \quad (Ans)$$

### Mathematical problem-5

Determine the divergence of the vector field  $D=\rho \sin\varphi \ a_{\rho} + \rho^2 z \ a_{\varphi} + z \cos\varphi \ a_z$ 

### **Solution:**

We know

$$div D = \frac{1}{\rho} \frac{\delta}{\delta \rho} (\rho D_{\rho}) + \frac{1}{\rho} \frac{\delta}{\delta \varphi} D_{\varphi} + \frac{\delta}{\delta z} D_{z}$$

$$= \frac{1}{\rho} \frac{\delta}{\delta \rho} (\rho^{2} \sin \varphi) + \frac{1}{\rho} \frac{\delta}{\delta \varphi} (\rho^{2} z) + \frac{\delta}{\delta z} (z \cos \varphi)$$

$$= 2 \sin \varphi + \cos \varphi \quad (Ans)$$

### **Mathematical problem-6**

Determine the divergence of the vector field  $D = \frac{1}{r^2} \cos\theta \, a_r + r \sin\theta \, \cos\varphi \, a_\theta + \cos\theta \, a_\varphi$ 

#### **Solution:**

We know

$$div A = \frac{1}{r^2} \frac{\delta}{\delta r} (r^2 D_r) + \frac{1}{r \sin\theta} \frac{\delta}{\delta \theta} (\sin\theta D_\theta) + \frac{1}{r \sin\theta} \frac{\delta}{\delta \varphi} D_\varphi$$

$$= \frac{1}{r^2} \frac{\delta}{\delta r} (\cos\theta) + \frac{1}{r \sin\theta} \frac{\delta}{\delta \theta} (r \sin^2\theta \cos\varphi) + \frac{1}{r \sin\theta} \frac{\delta}{\delta \varphi} (\cos\theta)$$

$$= 0 + \frac{1}{r \sin\theta} 2r \sin\theta \cos\theta \cos\varphi + 0$$

$$= 2 \cos\theta \cos\varphi \quad (Ans)$$

Evaluate both sides of the divergence theorem for the field  $D = 2xy a_x + x^2 a_y C/m^2$  and the rectangular parallelepiped formed by the planes x = 0 and x

### **Solution:**

Given

$$D = 2xy a_x + x^2 a_y$$

$$x = 0 \text{ and } 1$$

$$y = 0 \text{ and } 2$$

$$z = 0 \text{ and } 3$$

We know,

$$\int_{vol} (\nabla \cdot D) \ dv = \oint_{S} D \cdot ds$$

Then,

$$\nabla \cdot D = \frac{\delta}{\delta x} (2xy \, a_x + x^2 a_y) \, a_x + \frac{\delta}{\delta y} (2xy \, a_x + x^2 \, a_y) a_y + \frac{\delta}{\delta z} (2xy \, a_x + x^2 \, a_y) a_z$$

$$= \frac{\delta}{\delta x} 2xy + \frac{\delta}{\delta y} x^2 + \frac{\delta}{\delta z}$$

$$= 2y$$

Now,

$$L.H.S = \int_{vol} (\nabla \cdot D) \, dv$$

$$= \int_{z=0}^{3} \int_{y=0}^{2} \int_{x=0}^{1} (2y) \, dx \, dy \, dz$$

$$= [x]_{0}^{1} [y]_{0}^{2} [z]_{0}^{3}$$

$$= 1 \times 2 \times 3$$

$$= 12 C$$

Again,

$$R.H.S = \oint_{S} D \cdot dS$$

$$= \int_{z=0}^{3} \int_{y=0}^{2} (D)_{x=0} \cdot (-dy \, dz \, a_{x}) + \int_{z=0}^{3} \int_{y=0}^{2} (D)_{x=1} \cdot (dy \, dz \, a_{x})$$

$$+ \int_{z=0}^{3} \int_{y=0}^{2} (D)_{y=0} \cdot (-dx \, dz \, a_{y}) + \int_{z=0}^{3} \int_{y=0}^{2} (D)_{y=2} \cdot (dx \, dz \, a_{y})$$

$$= -\int_{0}^{3} \int_{0}^{2} (D)_{x=0} \cdot dy \, dz + \int_{0}^{3} \int_{0}^{2} (D)_{x=1} \cdot dy \, dz - \int_{0}^{3} \int_{0}^{2} (D)_{y=0} \cdot dx \, dz + \int_{0}^{3} \int_{0}^{2} (D)_{y=2} \cdot dx \, dz$$
Hence  $A = 0$  and  $A = 0$ 

However,  $(D)_{x=0} = 0$  and  $(D)_{y=0} = (D)_{y=2}$ , which leaves only

$$= \int_0^3 \int_0^2 (D)_{x=1} \cdot dy \, dz$$
$$= \int_0^3 \int_0^2 2y \cdot dy \, dz$$
$$= \int_0^3 4 \, dz$$
$$= 12$$

A total charge of 12 C lies within this parallelepiped. (Ans)

Given the flux density,  $D = \frac{16}{r} cos 2\theta a_{\theta} C/m^2$ , use two different methods to find the total charge within the region 1 < r < 2m,  $1 < \theta < 2rad$ ,  $1 < \varphi < 2rad$ .

### **Solution:**

Evaluating the net outer flux through a cube,

Here, D has only  $\theta$  component so the flux contributions will be only through the surface of constant  $\theta$ . On a constant—theta surface, the differential area is  $da = r \sin\theta \ dr \ d\varphi$ , where  $\theta$  is fixed at surface location.

Flux integral- (For the both surface of  $\theta$ )

$$\oint D \cdot ds = \int_{Left} D \cdot ds + \int_{Right} D \cdot ds + \int_{Front} D \cdot ds + \int_{Back} D \cdot ds + \int_{Top} D \cdot ds + \int_{Bottom} D \cdot ds$$

$$= 0 + 0 + 0 + 0 - \int_{1}^{2} \int_{1}^{2} \frac{16}{r} \cos(2) r \sin(1) dr d\varphi + \int_{1}^{2} \int_{1}^{2} \frac{16}{r} \cos(4) r \sin(2) dr d\varphi$$

$$= -16 \int_{1}^{2} \int_{1}^{2} \cos(2) \sin(1) dr d\varphi + 16 \int_{1}^{2} \int_{1}^{2} \cos(4) \sin(2) dr d\varphi$$

$$= -16 \times -0.3502 \times [r]_{1}^{2} \times [\varphi]_{1}^{2} + 16 \times -0.5943 \times [r]_{1}^{2} \times [\varphi]_{1}^{2}$$

$$= 16 \times 0.3502 - 16 \times 0.5943$$

$$= 16 (0.3502 - 0.5943)$$

$$= -3.91 C (Ans)$$

The volume integral side of the divergence theorem,

$$\nabla \cdot D = \frac{1}{r^2} \frac{d}{dr} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{d}{d\theta} (\sin \theta D_\theta) + \frac{1}{r \sin \theta} \frac{d}{d\phi} (D\phi)$$

$$= 0 + \frac{1}{r \sin \theta} \frac{d}{d\theta} (\sin \theta D_\theta) + 0$$

$$= \frac{1}{r \sin \theta} \frac{d}{d\theta} \left[ \frac{16}{r} \cos 2\theta \sin \theta \right]$$

$$= \frac{16}{r^2} \left[ \frac{\cos 2\theta \cos \theta}{\sin \theta} - 2 \sin 2\theta \right]$$

Now,

$$dv = r^2 \sin\theta dr d\theta d\phi$$

Then,

$$\int_{volume} \nabla .D \ dv = \int_{1}^{2} \int_{1}^{2} \frac{16}{r^{2}} \left[ \frac{\cos 2\theta \cos \theta}{\sin \theta} - 2 \sin 2\theta \right] r^{2} \sin \theta \ dr \ d\theta \ d\varphi$$

$$= \int_{1}^{2} \int_{1}^{2} \int_{1}^{2} 16 \left[ \frac{\cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta}{\sin \theta} \right] \sin \theta \ dr \ d\theta \ d\varphi$$

$$= \int_{1}^{2} \int_{1}^{2} \int_{1}^{2} 16 \left[ \cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta \right] \ dr \ d\theta \ d\varphi$$

$$= \int_{1}^{2} \int_{1}^{2} 16 \left[ \cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta \right] \ [r]_{1}^{2} \ d\theta \ d\varphi$$

$$= \int_{1}^{2} 16 \left[ \cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta \right] \ [\varphi]_{1}^{2} \ d\theta$$

$$= \int_{1}^{2} 16 \left[ \cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta \right] \ [\varphi]_{1}^{2} \ d\theta$$

$$= \int_{1}^{2} 16 \left[ \cos 2\theta \cos \theta - 2 \sin 2\theta \sin \theta \right] \ d\theta$$

$$= 8 \int_{1}^{2} \left[ 2 \cos 2\theta \cos \theta - 4 \sin 2\theta \sin \theta \right] \ d\theta$$

$$= 8 \int_{1}^{2} \left[ 2 \cos 2\theta \cos \theta - 4 \sin 2\theta \sin \theta \right] \ d\theta$$

$$= 8 \int_{1}^{2} \cos 3\theta + \cos \theta - 2 \left( \cos \theta - \cos 3\theta \right) \ [2 \sin A \sin \theta = \cos(A + B) + \cos(A + B)]$$

$$= 8 \int_{1}^{2} \cos 3\theta + \cos \theta - 2 \cos \theta + 2 \cos 3\theta$$

$$= 8 \int_{1}^{2} \left[ 3 \cos 3\theta - \cos \theta \right] \ d\theta$$

$$= 8 \left[ 3 \frac{\sin 3\theta}{3} - \sin \theta \right]_{1}^{2}$$

$$= \left[ \sin 6 - \sin 2 - \sin 3 + \sin 1 \right]$$

$$= -3.91 C (Ans)$$

The cylindrical surface  $\rho=8$  cm contains the surface charge density,  $\rho_{\rm S}=5$   $e^{-20}$  |z| n  $C/m^2$ .

- (a) What is the total amount of charge present?
- (b) How much electric flux leaves the surface, = 8 cm, 1 cm < z < 5 cm,  $30^{\circ} < \varphi < 90^{\circ}$ ?

# **Solution:**

(a) Integrate over the surface-

$$Q = \int_{S} \rho_{S} dS$$

$$= \int_{0}^{\infty} \int_{0}^{2\pi} \rho_{S} \rho d\varphi dZ$$

$$= \int_{0}^{\infty} \int_{0}^{2\pi} 5e^{-20z} (0.08) d\varphi dZ$$

$$= \int_{0}^{\infty} 5 e^{-20z} (0.08) \int_{0}^{2\pi} 1 d\varphi dZ$$

$$= \int_{0}^{\infty} 5 e^{-20z} (0.08) [\varphi]_{0}^{2\pi} dZ$$

$$= \int_{0}^{\infty} 5 e^{-20z} (0.08) [\varphi]_{0}^{2\pi} dZ$$

$$= 10\pi (0.08) \int_{0}^{\infty} e^{-20z} dZ$$

$$= 10\pi (0.08) \times \frac{1}{-20} [e^{-20z}]_{0}^{\infty}$$

$$= 10\pi (0.08) \times \frac{1}{-20} (0-1)$$

$$= 10\pi \times (0.08) \times \frac{1}{20}$$

$$= 0.125 nC (Nano - Coulomb) \quad (Ans)$$

(b) Integrate the charge density on that surface-

$$\varphi = Q' = \int_{S} \rho_{S} dS$$

$$= \int_{0.01}^{0.05} \int_{30^{\circ}}^{90^{\circ}} \rho_{S} \rho d\varphi dZ$$

$$= \int_{0.01}^{0.05} \int_{30^{\circ}}^{90^{\circ}} 5 e^{-20 z} (0.08) d\varphi dZ$$

$$= \int_{0.01}^{0.05} 5 e^{-20 z} (0.08) \int_{30^{\circ}}^{90^{\circ}} d\varphi dZ$$

$$= \int_{0.01}^{0.05} 5 e^{-20 z} (0.08) [\varphi]_{30^{\circ}}^{90^{\circ}} dZ$$

$$= \int_{0.01}^{0.05} 5 e^{-20 z} (0.08) \times \frac{(90 - 30)2\pi}{360} dZ$$

$$= 5 \times (0.08) \times \left(\frac{90 - 30}{360}\right) 2\pi \int_{0.01}^{0.05} e^{-20 z} dZ$$

$$= \frac{300 \times 0.08 \times 2\pi}{360} \left[\frac{1}{-20} e^{-20 z}\right]_{0.01}^{0.05}$$

$$= \frac{24 \times 2\pi}{360} \left[\frac{1}{-20} (e^{-20 \times 0.05} - e^{-20 \times 0.01})\right]$$

$$= 9.45 \times 10^{-3} nC$$

$$= 9.45 pC (Pico - Coulomb) (Ans)$$

Volume charge density is located in free space as  $\rho_v = 2e^{-1000r} \, nC/m^3$  for  $0 < r < 1 \, mm$  and  $\rho_v = 0$  elsewhere.

- (a) Find the total charge enclosed by the spherical surface r = 1 mm.
- (b) By using Gauss's law, calculate the value of  $D_r$  on the surface r = 1mm.

# **Solution:**

(a) The charge-

$$Q = \int_0^{2\pi} \int_0^{\pi} \int_0^{0.001} 2 e^{-1000 r} r^2 \sin \theta \, dr \, d\theta \, d\phi$$

We obtain,

$$Q = 8\pi \left[ \frac{-r^2 e^{-1000 r}}{1000} \Big|_0^{0.001} + \frac{2}{1000} \frac{e^{-1000 r}}{(1000)^2} (-1000r - 1) \Big|_0^{0.001} \right]$$
$$= 4.0 \times 10^{-9} nC \quad (Ans)$$

(b) The enclosed charge is the result of part-(a).

We thus write  $4\pi r^2 D_r = Q$ .

Then,

$$D_r = \frac{Q}{4\pi r^2}$$

$$= \frac{4.0 \times 10^{-9}}{4\pi (0.001)^2}$$

$$= 3.2 \times 10^{-4} \frac{nC}{m^2} \quad (Ans)$$