
 

CHAPTER-4 

 Energy and potential 

 

Energy expended in moving a Point charge in an Electric Field 

 

We wish to move a charge Q a distance dL from (B) to (A) location in an electric field E. The force on 

Q due to the electric field is 

𝐹𝐸 = 𝑄𝐸 

The force which we must apply is equal and opposite to the force due to the field. Therefore, the work 

done is, 

𝐹 ∙ 𝑑𝐿 = −𝑄𝐸. 𝑑𝐿 𝑎𝐿 

Where 𝑎𝐿= a unit vector in the direction of dL. 

The differential work done by external source moving Q, 

= −𝑄𝐸. 𝑑𝐿 𝑎𝐿 

= −𝑄𝐸. 𝑑𝐿 

∴ 𝑑𝑊 = −𝑄𝐸. 𝑑𝐿 

 

 If E and L are perpendicular, the differential work will be zero. 

 

The total work required to move the charge from (B) to (A) location is, 

𝑊 = 𝑑𝑊 

⟹ 𝑊 =  ∫ − 𝑄𝐸. 𝑑𝐿
𝐴

𝐵

 

∴ 𝑊 = −𝑄 ∫ 𝐸. 𝑑𝐿
𝐴

𝐵

 

 W > 0 means we expend energy or do work. 

 W < 0 means the field expends energy or do work. 

 

  



 

Mathematical problem-1: 

The non-uniform field 𝐸 = 𝑦 𝑎𝑥 + 𝑥 𝑎𝑦 + 2 𝑎𝑧.  

(a) Determine the work expended in carrying 2 C from B(1, 0, 1) to A(0.8, 0.6, 1) along the 

shorter arc of the circle 𝑥2 + 𝑦2 = 1 𝑎𝑛𝑑 𝑧 = 1. 

(b) Determine the work required to carry 2 C from B to A in the same field, but this time use 

straight-line path from B to A. 

 

Solution: 

(a) Working in Cartesian co-ordinates, the differential path 𝒅𝑳 𝒊𝒔 𝒅𝒙 𝒂𝒙 + 𝒅𝒚 𝒂𝒚 + 𝒅𝒛 𝒂𝒛 and the 

integral becomes 

𝑊 = −𝑄 ∫ 𝐸 ∙ 𝑑𝐿
𝐴

𝐵

 

= −2 ∫ (𝑦 𝑎𝑥 + 𝑥 𝑎𝑦 + 2 𝑎𝑧) ∙ (𝑑𝑥 𝑎𝑥 + 𝑑𝑦 𝑎𝑦 + 𝑑𝑧 𝑎𝑧)
𝐴

𝐵

 

= −2 ∫ 𝑦 𝑑𝑥 − 2 ∫ 𝑥 𝑑𝑦 − 4 ∫ 𝑑𝑧
1

1

0.6

0

0.8

1

 

= −2 ∫ √1 − 𝑥2  𝑑𝑥 − 2 ∫ √1 − 𝑦2  𝑑𝑦 − 0
0.6

0

0.8

1

 

 [𝑪𝒊𝒓𝒄𝒍𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐 + 𝒚𝟐 = 𝟏, 𝒙 = √𝟏 − 𝒚𝟐, 𝒚 = √𝟏 − 𝒙𝟐] 

= − [𝑥√1 − 𝑥2 + sin−1 𝑥]
1

0.8

−  [𝑦√1 − 𝑦2 + sin−1 𝑦]
0

0.6

 

 [∫ √𝒂𝟐 − 𝒖𝟐𝒅𝒖 =
𝒖

𝟐
 √𝒂𝟐 − 𝒖𝟐 +

𝒂𝟐

𝟐
𝐬𝐢𝐧−𝟏 𝒖

𝒂
] 

= −(0.48 + 0.927 − 0 − 1.571) − (0.48 + 0.644 − 0 − 0) 

= −0.96 𝐽     (𝐴𝑛𝑠) 

  



 

(b) The equations of the straight line,  

𝑦 − 𝑦𝐵 =
𝑦𝐴 − 𝑦𝐵

𝑥𝐴 − 𝑥𝐵
 (𝑥 − 𝑥𝐵) 

𝑧 − 𝑧𝐵 =
𝑧𝐴 − 𝑧𝐵

𝑦𝐴 − 𝑦𝐵
 (𝑦 − 𝑦𝐵) 

𝑥 − 𝑥𝐵 =
𝑥𝐴 − 𝑥𝐵

𝑧𝐴 − 𝑧𝐵
 (𝑧 − 𝑧𝐵) 

 From the first equation above we have 

𝑦 = −3𝑥 + 3  

𝑦 = −3 (𝑥 − 1) 

 And from the second we obtain 

𝑧 = 1 

 Thus, 

𝑊 = −2 ∫ 𝑦 𝑑𝑥 − 2 ∫ 𝑥 𝑑𝑦 − 4 ∫ 𝑑𝑧
1

1

0.6

0

0.8

1

 

= 6 ∫ (𝑥 − 1) 𝑑𝑥 − 2 ∫ (1 −
𝑦

3
) 𝑑𝑦

0.6

0

0.8

1

 

= −0.96 𝐽     (𝐴𝑛𝑠) 

 

 

Differential Length 

 

 

 

 

 

  

x y z
d dx dy dz  L a a a

z
d d d dz     L a a a

sin
r

d dr rd r d     L a a a

(Rectangular) 

(Cylindrical) 

(Spherical) 



 

Electric potential 

We know, the total work required to move the charge from (B) to (A) location is, 

𝑊 = −𝑄 ∫ 𝐸. 𝑑𝐿
𝐴

𝐵

 

Now dividing W by Q gives the potential energy per unit charge. The quantity denoted by VAB is know 

as the potential difference between points B and A. Thus, 

𝑉𝐴𝐵 =
𝑊

𝑄
= − ∫ 𝐸. 𝑑𝐿

𝐴

𝐵

 

Note that, 

 In determining VAB, B is the initial point while A is the final point. 

 If VAB is negative, there is a loss in potential energy in moving Q from B to A; this implies that 

the work is being done by the field. However, if VAB is positive, there is a gain in potential 

energy in the movement. 

 VAB is measured in joules per coulomb, commonly referred to as volts (V). 

 

 

 

 

 

 

 

If the E field in above figure is due to a point charge Q located at the origin, then 

𝐸 =
𝑄

4𝜋𝜖0𝑟2
 𝑎𝑟 

Then we have,  

𝑉𝐴𝐵 = − ∫ 𝐸. 𝑑𝐿
𝐴

𝐵

 

𝑉𝐴𝐵 = − ∫
𝑄

4𝜋𝜖0𝑟2

𝑟𝐴

𝑟𝐵

  𝑎𝑟 ∙ 𝑑𝑟 𝑎𝑟 

=
𝑄

4𝜋𝜖0
 [

1

𝑟𝐴
−

1

𝑟𝐵
] 

Then,  

𝑉𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵  

Where, 𝑉𝐵  𝑎𝑛𝑑 𝑉𝐴 are the potentials at B and A respectively.  



 

Potential difference produced by a line charge 

We know,  

𝐸 = 𝐸𝜌𝑎𝜌 =
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌 

The potential difference, 

𝑉𝐴𝐵 = − ∫ 𝐸 ∙ 𝑑𝐿
𝐴

𝐵

 

= ∫ (
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌)

𝐴

𝐵

(𝑑𝜌 𝑎𝜌 + 𝜌𝑑𝜑 𝑎𝜑 + 𝑑𝑧 𝑎𝑧) 

= −
𝜌𝐿

2𝜋𝜖0
 ∫

𝑑𝜌

𝜌

𝐴

𝐵

 

= −
𝜌𝐿

2𝜋𝜖0
 [ln 𝜌]𝐵

𝐴 

𝑉𝐴𝐵 = −
𝜌𝐿

2𝜋𝜖0
 ln

𝐴

𝐵
 

 

Work done when displacement (𝝆) of source to point charge increase or decrease 

We know,  

𝐸 =
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌 

We also know, work done 

𝑊 = −𝑄 ∫ 𝐸. 𝑑𝐿
𝑓𝑖𝑛𝑎𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

= −𝑄 ∫ (
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌)

𝜌2

𝜌1

∙ (𝑑𝜌 𝑎𝜌 + 𝜌𝑑𝜑 𝑎𝜑 + 𝑑𝑧 𝑎𝑧) 

= −
𝑄𝜌𝐿

2𝜋𝜖0
 ∫

𝑑𝜌

𝜌

𝜌2

𝜌1

 

= −
𝑄𝜌𝐿

2𝜋𝜖0
 [ln 𝜌]𝜌1

𝜌2 

𝑊 = −
𝑄𝜌𝐿

2𝜋𝜖0
 ln

𝜌2

𝜌1
 

  



 

Work done when displacement (𝝆) is same but, change in angle (𝝋). 

We know,  

𝐸 =
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌 

We also know, work done 

𝑊 = −𝑄 ∫ 𝐸. 𝑑𝐿
𝑓𝑖𝑛𝑎𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

= −𝑄 ∫ (
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌)

𝜌2

𝜌1

∙ 𝑑𝐿 

Here, 𝑑𝐿 = 𝑑𝜌 𝑎𝜌 + 𝜌𝑑𝜑 𝑎𝜑 + 𝑑𝑧 𝑎𝑧. Change in agnle  (𝜑) makes (𝜌) 𝑎𝑛𝑑 (𝑧) 𝑧𝑒𝑟𝑜. 

= −𝑄 ∫ (
𝜌𝐿

2𝜋𝜖0𝜌
 𝑎𝜌)

𝜌2

𝜌1

∙ (𝜌𝑑𝜑 𝑎𝜑) 

𝑊 = 0 

 

 

  



 

Potential Gradient (W.H.Hayt) 

 

We know 

𝑉 = − ∫ 𝐸 ∙ 𝑑𝐿 

For a very short element of length ∆𝐿 along which E is constant, leading to an incremental potential 

difference ∆𝑉, 

∆𝑉 = − 𝐸 ∙  ∆𝐿 

 

 

 

 

 

 

 

 

 

If we designate the angle between ∆𝐿 𝑎𝑛𝑑 𝐸 𝑎𝑠 𝜃, then 

∆𝑉 = − 𝐸 ∙  ∆𝐿 𝑐𝑜𝑠𝜃 

Then, 

𝑑𝑉

𝑑𝐿
= − 𝐸 𝑐𝑜𝑠𝜃 

It is obvious that the maximum positive increment of potential, ∆𝑉𝑚𝑎𝑥 , will occur when 𝑐𝑜𝑠𝜃 𝑖𝑠 −

1, 𝑜𝑟 ∆𝐿 points in the direction opposite to E. For this condition, 

𝑑𝑉

𝑑𝐿
|

𝑚𝑎𝑥
= 𝐸 

 

Characteristics of the relationship between E and V:  

 The magnitude of the electric field intensity is given by the maximum value of the rate of 

change of potential with distance. 

 This maximum value is obtain when the direction of the distance increment is opposite to E. 

 

 

 

 



 

 

 

 

 

 

 

 

 

*Equipotential surfaces shown as lines in the two dimensional sketch. 

At P, small incremental distance ∆𝐿 in various directions, to find that direction in which the potential 

is changing the most rapidly. From the figure this direction appears to be left and slightly upward. So 

the electric field intensity is therefore oppositely directed (to the right and slightly downward at P). Its 

magnitude is given by dividing the small increase in potential by the small element of length. 

The direction in which the potential is increasing the most rapidly is perpendicular to the 

equipotentials (in the direction of increasing potential). If ∆𝐿 is directed along an equipotential, ∆𝑉 =

0. Then, 

∆𝑉 = −𝐸 ∙ ∆𝐿 = 0 

Since neither 𝐸 𝑛𝑜𝑟 ∆𝐿 𝑖𝑠 𝑧𝑒𝑟𝑜, E must be perpendicular to ∆𝐿 or equipotentials. 

Now, by letting 𝑎𝑁 be a unit vector normal to the equipotential surface and directed toward the higher 

potentials. The electric field intensity is then expressed in terms of the potential, 

𝐸 = −
𝑑𝑉

𝑑𝐿
|

𝑚𝑎𝑥
𝑎𝑁 

The magnitude of E is given by the maximum space rate of change of V and the direction of E is 

normal to the equipotential surface (in the direction of decreasing potential). 

Since 𝑑𝑉/𝑑𝐿|𝑚𝑎𝑥 occurs when ∆𝐿 is in the direction of 𝑎𝑁, 

𝑑𝑉

𝑑𝐿
|

𝑚𝑎𝑥
=  

𝑑𝑉

𝑑𝑁
 

𝐸 = −
𝑑𝑉

𝑑𝑁
𝑎𝑁 

The operation on V by which –E is obtained is known as the gradient and the gradient of a scalar field 

T is defined as 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑇 = 𝑔𝑟𝑎𝑑 𝑇 =  
𝑑𝑇

𝑑𝑁
 𝑎𝑁 

Using the new term, we now may write 

𝐸 = −𝑔𝑟𝑎𝑑 𝑉 



 

Now,  

𝑑𝑉 =  
𝛿𝑉

𝛿𝑥
𝑑𝑥 +

𝛿𝑉

𝛿𝑦
𝑑𝑦 +

𝛿𝑉

𝛿𝑧
𝑑𝑧 

Also, 

𝑉 = − ∫ 𝐸 ∙ 𝑑𝐿 

𝑑𝑉 = −𝐸 ∙ 𝑑𝐿 = −𝐸𝑥𝑑𝑥 − 𝐸𝑦𝑑𝑦 − 𝐸𝑧𝑑𝑧 

Since both expressions are true for any 𝑑𝑥, 𝑑𝑦 𝑎𝑛𝑑 𝑑𝑧, then 

𝐸𝑥 = − 
𝛿𝑉

𝛿𝑥
 

𝐸𝑦 = − 
𝛿𝑉

𝛿𝑦
 

𝐸𝑧 = − 
𝛿𝑉

𝛿𝑧
 

Then, 

𝐸 = − (
𝛿𝑉

𝛿𝑥
𝑎𝑥 +

𝛿𝑉

𝛿𝑦
𝑎𝑦 +

𝛿𝑉

𝛿𝑧
𝑎𝑧) 

𝐸 = − (
𝛿

𝛿𝑥
𝑎𝑥 +

𝛿

𝛿𝑦
𝑎𝑦 +

𝛿

𝛿𝑧
𝑎𝑧) ∙ 𝑉 

∴ 𝐸 = −∇ ∙ 𝑉                𝑤ℎ𝑒𝑟𝑒, [𝛻 =
𝛿

𝛿𝑥
𝑎𝑥 +

𝛿

𝛿𝑦
𝑎𝑦 +

𝛿

𝛿𝑧
𝑎𝑧] 

 

∇𝑉 =
𝛿𝑉

𝛿𝑥
𝑎𝑥 +

𝛿𝑉

𝛿𝑦
𝑎𝑦 +

𝛿𝑉

𝛿𝑧
𝑎𝑧      (𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) 

∇𝑉 =
𝛿𝑉

𝛿𝜌
𝑎𝜌 +

1

𝜌
  

𝛿𝑉

𝛿𝜑
𝑎𝜑 +

𝛿𝑉

𝛿𝑧
𝑎𝑧      (𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙) 

∇𝑉 =
𝛿𝑉

𝛿𝑟
𝑎𝑟 +

1

𝑟
  

𝛿𝑉

𝛿𝜃
𝑎𝜃 +

1

𝑟 𝑠𝑖𝑛𝜃
  

𝛿𝑉

𝛿𝜑
𝑎𝜑     (𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙) 

 

 

 

 

 

 

 

 



 

Gradient of a Scalar (Sadiku) 

The gradient of a scalar field 𝑉 is a vector that represents both the magnitude and the direction of the 

maximum space rate of increase of 𝑉. 

Mathematical expression for the gradient can be obtained by evaluating the difference in the field 𝑑𝑉 

between points 𝑃1𝑎𝑛𝑑 𝑃2 of following figure, 

 

 

 

 

 

 

 

 

 

𝑑𝑣 =
𝛿𝑉

𝛿𝑥
𝑑𝑥 +

𝛿𝑉

𝛿𝑦
𝑑𝑦 +

𝛿𝑉

𝛿𝑧
𝑑𝑧 

= (
𝛿𝑉

𝛿𝑥
 𝑎𝑥 +

𝛿𝑉

𝛿𝑦
 𝑎𝑦 +

𝛿𝑉

𝛿𝑧
 𝑎𝑧) ∙ (𝑑𝑥 𝑎𝑥 + 𝑑𝑦 𝑎𝑦 + 𝑑𝑧 𝑎𝑧) 

For convenience, let 

𝐺 =
𝛿𝑉

𝛿𝑥
 𝑎𝑥 +

𝛿𝑉

𝛿𝑦
 𝑎𝑦 +

𝛿𝑉

𝛿𝑧
 𝑎𝑧 

Then 

𝑑𝑉 = 𝐺 ∙ 𝑑𝑙 

𝑑𝑉 = 𝐺 𝑐𝑜𝑠𝜃 𝑑𝑙 

Or 

𝑑𝑉

𝑑𝑙
= 𝐺 𝑐𝑜𝑠𝜃 

Where 𝑑𝑙 is the differential displacement from 𝑃1 𝑡𝑜 𝑃2 𝑎𝑛𝑑 𝜃 is the angle between 𝐺 𝑎𝑛𝑑 𝑑𝑙. 

𝑑𝑉/𝑑𝑙 is maximum when 𝜃 = 0, that is when 𝑑𝑙 is in the direction of 𝐺. Hence, 

𝑑𝑉

𝑑𝑙
|

𝑚𝑎𝑥
=

𝑑𝑉

𝑑𝑛
= 𝐺 



 

Where, 𝑑𝑉/𝑑𝑛 is the normal derivative. Thus G has its magnitude and direction as those of the 

maximum rate of change of V. By definition, G is the gradient of V. Therefore, 

𝑔𝑟𝑎𝑑 𝑉 = ∇𝑉 =
𝛿𝑉

𝛿𝑥
 𝑎𝑥 +

𝛿𝑉

𝛿𝑦
 𝑎𝑦 +

𝛿𝑉

𝛿𝑧
 𝑎𝑧 

The gradient of V can be expressed in Cartesian, cylindrical and spherical coordinates. 

∇𝑉 =
𝛿𝑉

𝛿𝑥
𝑎𝑥 +

𝛿𝑉

𝛿𝑦
𝑎𝑦 +

𝛿𝑉

𝛿𝑧
𝑎𝑧      (𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) 

∇𝑉 =
𝛿𝑉

𝛿𝜌
𝑎𝜌 +

1

𝜌
  

𝛿𝑉

𝛿𝜑
𝑎𝜑 +

𝛿𝑉

𝛿𝑧
𝑎𝑧      (𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙) 

∇𝑉 =
𝛿𝑉

𝛿𝑟
𝑎𝑟 +

1

𝑟
  

𝛿𝑉

𝛿𝜃
𝑎𝜃 +

1

𝑟 𝑠𝑖𝑛𝜃
  

𝛿𝑉

𝛿𝜑
𝑎𝜑     (𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙) 

 

 

  



 

 Mathematical problem-2: 

Given,  

𝑣 = 100 𝑟2 𝑠𝑖𝑛𝜃 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑, 𝐸 =? 

Solution: 

 

We know, 

𝐸 = −∇ ∙ 𝑉 

⟹  − (
𝛿

𝛿𝑟
𝑎𝑟 +

1

𝑟
  

𝛿

𝛿𝜃
𝑎𝜃 +

1

𝑟 𝑠𝑖𝑛𝜃
  

𝛿

𝛿𝜑
𝑎𝜑) ∙ (100 𝑟2 𝑠𝑖𝑛𝜃) 

⟹  −
𝛿(100 𝑟2 𝑠𝑖𝑛𝜃)

𝛿𝑟
𝑎𝑟 −

𝛿(100 𝑟2 𝑠𝑖𝑛𝜃)

𝑟 𝛿𝑟
𝑎𝜃 − 0 

⟹  −(100 𝑠𝑖𝑛𝜃) 
𝛿

𝛿𝑟
 (𝑟)2 𝑎𝑟 − 100𝑟 

𝛿

𝛿𝜃
 (𝑠𝑖𝑛𝜃) 𝑎𝜃 

∴ 𝐸 = −100 𝑠𝑖𝑛𝜃 (2𝑟) 𝑎𝑟 − 100𝑟 𝑐𝑜𝑠𝜃 𝑎𝜃     (𝐴𝑛𝑠) 

 

Mathematical problem-3: 

Given,  

𝑣 = 100 𝜌2 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑, 𝐸 =? 

Solution: 

We know, 

𝐸 = −∇ ∙ 𝑉 

⟹  − (
𝛿

𝛿𝜌
𝑎𝜌 +

1

𝜌
  

𝛿

𝛿𝜑
𝑎𝜑 +

𝛿

𝛿𝑧
𝑎𝑧) ∙ (100 𝜌2) 

⟹  −
𝛿 (100 𝜌2)

𝛿𝜌
𝑎𝜌 − 0 − 0 

⟹ −100 (2𝜌) 𝑎𝜌       

∴ 𝐸 =  −200𝜌 𝑎𝜌      (𝐴𝑛𝑠)      

 

 

 

 



 

Mathematical problem-4: 

Potential field, 𝑉 = 2𝑥2𝑦 − 5𝑧 and a point 𝑃(−4, 3, 6). Find following numerical values at point P: 

(a) The potential, V 

(b) The electric field intensity, E 

(c) The direction of E 

(d) The electric flux density D and 

(e) The volume charge density 𝜌𝑣 

Solution: 

(a) The potential at 𝑃(−4, 3, 6) 

𝑉𝑃 = 2(−4)2(3) − 5(6) = 66 𝑉 

(b) The electric field intensity 

𝐸 = −∇𝑉 

𝐸 = −4𝑥𝑦 𝑎𝑥 − 2𝑥2 𝑎𝑦 + 5 𝑎𝑧    𝑉/𝑚 

The value of E at point P is 

𝐸𝑃 = 48 𝑎𝑥 − 32 𝑎𝑦 + 5 𝑎𝑧    𝑉/𝑚 

And 

|𝐸𝑃| = √482 + (−32)2 + 52    

 

|𝐸𝑃| = 57.9  𝑉/𝑚 

 

(c) The direction of E at point P is given by the unit vector 

 

𝑎𝐸,𝑃 =
48 𝑎𝑥 − 32 𝑎𝑦 + 5 𝑎𝑧

57.9
 

 

𝑎𝐸,𝑃 = 0.829 𝑎𝑥 − 0.553 𝑎𝑦 + 0.086 𝑎𝑧 

 

(d) Assuming these fields exist in free space, then the electric flux density 

 

𝐷 = 𝜖0𝐸 = −35.4 𝑥𝑦 𝑎𝑥 − 17.71 𝑥2 𝑎𝑦 + 44.3 𝑎𝑧   𝑝𝐶/𝑚3    

 

(e) The volume charge density 

𝜌𝑣 = ∇ ∙ 𝐷 

𝜌𝑣 = −35.4 𝑦   𝑝𝐶/𝑚3    

At P,  

𝜌𝑣 = −106.2   𝑝𝐶/𝑚3    

 

 



 

The Dipole 

An electric dipole is formed when two point charges of equal magnitude but opposite sign are 

separated by a small distance. 

Consider the dipole shown in following figure, the potential at point 𝑃 (𝑟, 𝜃, 𝜑) is 

𝑉 =
𝑄

4𝜋𝜖0
[

1

𝑟1
−

1

𝑟2
] 

𝑉 =
𝑄

4𝜋𝜖0
[
𝑟2 − 𝑟1

𝑟1𝑟2
] 

Where, 𝑟1 and 𝑟2 are the distances between 𝑃 and +𝑄 and P and – 𝑄 respectively.  

 

 

 

 

 

 

 

 

 

 

𝐼𝑓 𝑟 ≫ 𝑑, 𝑟2 − 𝑟1 ≃ 𝑑 𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝑟2𝑟1 ≃ 𝑟2 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒, 

𝑉 =
𝑄

4𝜋𝜖0

𝑑 𝑐𝑜𝑠𝜃

𝑟2
 

Electric field intensity, 

𝐸 = −∇ ∙ 𝑉 

𝐸 = − (
𝛿𝑉

𝛿𝑟
𝑎𝑟 +

1

𝑟

𝛿𝑉

𝛿𝜃
𝑎𝜃 +

1

𝑟 𝑠𝑖𝑛𝜃

𝛿𝑉

𝛿𝜑
𝑎𝜑) 

Then 

𝐸 = − (−
𝑄𝑑 𝑐𝑜𝑠𝜃

4𝜋𝜖0𝑟3
𝑎𝑟 −

𝑄𝑑 𝑠𝑖𝑛𝜃

4𝜋𝜖0𝑟3
𝑎𝜃) 

𝐸 = −
𝑄𝑑 

4𝜋𝜖0
(−2 𝑐𝑜𝑠𝜃

1

𝑟3
 𝑎𝑟 − 𝑠𝑖𝑛𝜃

1

𝑟3
 𝑎𝜃) 

𝐸 = −
𝑄𝑑 

4𝜋𝜖0𝑟3
(−2 𝑐𝑜𝑠𝜃 𝑎𝑟 − 𝑠𝑖𝑛𝜃 𝑎𝜃) 



 

The potential field of the dipole may be simplified by making use of the dipole moment. The vector 

length  directed from – 𝑄 to +𝑄 as 𝑑 and then define the dipole moment as 𝑄𝑑 and assighn it the 

symbol 𝑃. Thus 

𝑝 = 𝑄𝑑 

The units of 𝑃 are 𝐶𝑚.  

Since 𝑑. 𝑎𝑟 = 𝑑 𝑐𝑜𝑠𝜃, then we have 

𝑉 =
𝑄

4𝜋𝜖0

𝑑 𝑐𝑜𝑠𝜃

𝑟2
 

𝑉 =
𝑝. 𝑎𝑟

4𝜋𝜖0𝑟2
 

This may be generalized as 

𝑉 =
1

4𝜋𝜖0 |𝑟 − 𝑟′|2
 𝑝 ∙  

𝑟 − 𝑟′

|𝑟 − 𝑟′|
 

𝑉 =
𝑝 ∙ (𝑟 − 𝑟′)

4𝜋𝜖0 |𝑟 − 𝑟′|3
  

  



 

Energy Density in Electrostatic Fields 

Three point charges 𝑄1, 𝑄2 𝑎𝑛𝑑 𝑄3 in an empty space shown in following figure. 

 No work is required to transfer 𝑄1 from infinity to 𝑃1 because the space is initially charge free 

and there is no electric field.  

 The work done in transferring of 𝑄2 from infinity to 𝑃2 is equal to the product of 𝑄2 and the 

potential 𝑉21 at 𝑃2 due to 𝑄1. 

 Similarly, the work done in positioning 𝑄3 at 𝑃3 is equal to 𝑄3(𝑉32 + 𝑉31), where 𝑉32 and 𝑉31 

are the potentials at 𝑃3 due to 𝑄2 and 𝑄1 respectively. 

 

Work to position 𝑄2 =  𝑄2 𝑉21 

Work to position 𝑄3 =  𝑄3 (𝑉31 + 𝑉32) 

 

 

 

 

 

 

The total work done in positioning the three charges is, 

𝑊𝐸 = 𝑊1 + 𝑊2 + 𝑊3 

𝑊𝐸 = 0 + 𝑄2𝑉21 + 𝑄3 (𝑉31 + 𝑉32)_________________(1) 

If the charges were positioned in reverse order, then, 

𝑊𝐸 = 𝑊3 + 𝑊2 + 𝑊1 

𝑊𝐸 = 0 + 𝑄2𝑉23 + 𝑄1 (𝑉12 + 𝑉13)_________________(2) 

 

Where, 𝑉23 is the potential at 𝑃2 due to 𝑄3, 𝑉12 and 𝑉13 are respectively the potentials at 𝑃1 due to 𝑄2 

and 𝑄3.  

Now adding equations (1) and (2) gives, 

2𝑊𝐸 = 𝑄1 (𝑉12 + 𝑉13) + 𝑄2 (𝑉21 + 𝑉23) + 𝑄3 (𝑉31 + 𝑉32) 

2𝑊𝐸 = 𝑄1 𝑉1 + 𝑄2 𝑉2 + 𝑄3 𝑉3       [𝐻𝑒𝑟𝑒, 𝑉12 + 𝑉13 = 𝑉1] 

𝑊𝐸 =
1

2
𝑄1 𝑉1 + 𝑄2 𝑉2 + 𝑄3 𝑉3   



 

Where, 𝑉1, 𝑉2 𝑎𝑛𝑑 𝑉3 are total potentials at 𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃3 respectively. In general, if there are 𝑛 point 

charges then, 

𝑊𝐸 =
1

2
∑ 𝑄𝑚𝑉𝑚

𝑚=𝑛

𝑚=1

       (𝑖𝑛 𝑗𝑜𝑢𝑙𝑒𝑠) 

If, instead of point charges, the region has continuous charge distribution, then we have, 

𝑊𝐸 =
1

2
 ∫ 𝜌𝐿  𝑉 𝑑𝑙      (𝐿𝑖𝑛𝑒 𝑐ℎ𝑎𝑟𝑔𝑒) 

𝑊𝐸 =
1

2
 ∫ 𝜌𝑆  𝑉 𝑑𝑆     (𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒) 

𝑊𝐸 =
1

2
 ∫ 𝜌𝑣 𝑉 𝑑𝑣      (𝑉𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑟𝑔𝑒) 

Since,  

𝜌𝑣 = ∇ ∙ 𝐷 

For volume charge, we can write 

𝑊𝐸 =
1

2
 ∫(∇ ∙ 𝐷) 𝑉 𝑑𝑣

𝑣

 

But for any vector A and scalar, the identity 

∇ ∙ 𝑉𝐴 = 𝐴 ∙ ∇𝑉 + 𝑉(∇ ∙ 𝐴) 

Or, 

(∇ ∙ 𝐴)𝑉 = ∇ ∙ 𝑉𝐴 − 𝐴 ∙ ∇𝑉 

Applying the identity, we get, 

𝑊𝐸 =
1

2
 ∫(∇ ∙ 𝑉𝐷) 𝑑𝑣

𝑣

−
1

2
 ∫(D ∙ ∇𝑉) 𝑑𝑣

𝑣

 

Applying divergence theorem to the first term on the right-hand side of this equation, we have 

𝑊𝐸 =
1

2
∮(𝑉𝐷) ∙ 𝑑𝑆 −

𝑆

1

2
 ∫(D ∙ ∇𝑉) 𝑑𝑣

𝑣

 

As we know that  

 𝑉 varies as 1/𝑟 and 𝐷 as 1/𝑟2 for point charges 

 𝑉 varies as 1/𝑟2 and 𝐷 as  1/𝑟3 for dipoles 

So, here in the first term on the right-hand side of the equation 

 𝑉𝐷 must vary at least as 1/𝑟3 and 

 𝑑𝑆 varies as 𝑟2 



 

Consequently, the first integral of the equation must tend to zero as the surface 𝑆 becomes large. So 

the equations reduces to 

𝑊𝐸 = −
1

2
 ∫(D ∙ ∇𝑉) 𝑑𝑣

𝑣

 

Since, 𝐸 = −∇𝑉 and 𝐷 =  𝜖0𝐸, we have, 

𝑊𝐸 =
1

2
 ∫ D ∙ E 𝑑𝑣 

𝑊𝐸 =
1

2
 ∫(𝜖0𝐸 ∙ E) 𝑑𝑣 

𝑊𝐸 =
1

2
 ∫ 𝜖0 𝐸2 𝑑𝑣 

From this, we can define electrostatic energy density 𝑊𝐸  (𝑖𝑛 𝐽/𝑚3) 𝑎𝑠 

𝑤𝐸 =
𝑑𝑊𝐸

𝑑𝑣
=

1

2
 𝐷 ∙ 𝐸 =

1

2
 𝜖0 𝐸2 =

𝐷2

2𝜖0
 

 


