CHAPTER-5

Conductors, Dielectrics and Capacitance

Current and Current Density

Electric charges in motion constitute a current. The unit of current is the ampere (A), defined as a rate
of movement of charge passing a given reference point of one coulomb per second. Current is
symbolized by I and therefore

d
=%
dt
Thus in a current of one ampere, charge is being transferred at a rate of one coulomb per second.

Now the concept of current density /, if current Al flows through a surface AS then the current density
is

Y
Jn = AS
Or,
Al =], AS

Assuming that the current density is perpendicular to the surface. If the current density is not normal to
the surface,

Al =] AS
Thus, the total current flowing through a surface S is

sz]-ds

S

The current density at a given point is the current through a unit normal area at that point. Current
density measured in amperes per square meter (4/m?).



Charge in motion constitutes a current

Consider a filament of following figure. If there is a flow of charge of density p,, at velocity
v = a,, a, then the current through the filament is

A
Al = A—?
[The element of charge AQ = p,, AS Al ]
Al = p, AS al
At
Al = p, AS v,
The y-directed current density /,, is given by
] — ﬂ
Y AS
Jy = pv vy
Hence, in general
J=pyv

This result show very clearly that charge in motion constitutes a current.



Continuity of current

Due to the principle of charge conservation, the time rate of decrease of charge within a given volume
must be equal to the net outward current flow through the closed surface of the volume. Thus current

oy CcOming out of the closed surface is
loyt = f] -dS
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Where, Q;,, is the total charge enclosed by the closed surface. Invoking divergence theorem

5if]-dS=va-]dv
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Now substituting equations (2) and (3) into equation (1) gives,

5py
fV]dv—— &dv
v v
Or
5py
V=5

Which is called the continuity of current equation.

(2)

.(3)



Resistance of Conductors of uniform fields
The relationship between J and E for a metallic conductor is specified by the conductivity ¢ (Sigma),
J =oFE

Where ¢ is measured in Siemens per meter (S/m). One Siemens (1 S) is the basic unit of conductance
in the SI system and is defined as one ampere per volt.

Let us assume that J and E are uniform, as they are in the cylindrical region shown in following figure.

Conductivity o

- L >
Since they are uniform,
I=j]-dS
S
1=JS
And
a
Vyp = —f E-dL
b
a
Vab = - f dL
b
Vap = —E " Lpg
Vap = —E " Lgp
Or
V=EL
Thus
_I
J=3
J=0F
_ vV
J=071
Or
L
V=—1



The ratio of the potential difference between the two ends of the cylinder to the current entering the
more positive end, however, is recognized as the resistance of the cylinder and therefore,

V=IR

Where,
R = L
" oS

It is the resistance of any conductor of uniform cross section. If the cross section of the conduction is
not uniform then this equation is not applicable.

However, the basic definition of resistance R as the ration of the potential difference V between the
two ends of the conductor to the current | through the conductor still applies. The general expression
for resistance of a conductor of non-uniform cross section,

R_Vab_—fbaE-dL
I [oE-dS



Mathematical Problem-1:

Evaluated the resistance of a 1-mile length of copper wire, which has a diameter of 0.0508 inch.
Solution:

Diameter of the wire = 0.0508 inch
= 0.0508 x 0.0254
= 1.291 x 1073 meter

The area of the cross section = mr?

(1.291 X 10-3>2
=T\

= 1.308 X 107° m?
The length = 1 mile = 1609 meter
Conductivity,o = 5.80 X 107 S/m

The resistance of the wire is therefore,
_ L
" oS
R 1609
~ (5.80 x 107) x (1.308 x 10-%)

R=212Q (Ans)



Boundary conditions

If the field exists in a region consisting of two different media, the conditions that the field must
satisfy at the interface separating the media are called boundary conditions. These conditions are
helpful in determining the field on one side of the boundary if the field on the other side is known.

We shall consider the boundary conditions at an interface separating

e Dielectric (¢,,) and dielectric (¢,-,)
e Conductor and dielectric
e Conductor and free space

To determine the boundary conditions, we need to use Maxwell’s equations:

%E-dl=0

éD dS = Qenciosed

And

Also we need to decompose the electric field intensity E into two orthogonal components,
E=E,+E,

Where, E; and E,, are, respectively, the tangential and normal components of E to the interface of
interest. Similar decomposition can be done for the electric flux density D.



Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting of two different dielectrics characterized by
€1 = €9€rq and €, = €€, @S Shown in following figure. E; and E, in media 1 and 2 respectively,
can be decomposed as

E1 - Elt + Eln T (1)
EZ - EZt + EZTl P e ae s (2)
<§> €q
\Z54

Now, applying $E -dl =0 to the closed path abcda assuming that the path is very small with
respect to the variation of E. We get

Ah Ah Ah Ah
0= Ell' Aw — Eln 7 - EZTL 7 - EZt Aw + EZTI. 7 + Eln 7 (3)

Where
E; = |E¢| and E,, = |Ey|.
As Ah — 0, then equation (3) becomes
Eir = Epp e v oen o (4)

Thus the tangential components of E are the same on the two sides of the boundary. In other words, E;
undergoes no change on the boundary and it is said to be continuous across the boundary.

Since D = €E = D; + D,,, then equation (4) can be written as

Dlt D2t
— = Elt = E2t =
1 €2
Or
Dlt D2t
6_ = 6— e wEw wEw wws (5)
1 2

D, undergoes some change across the interface. Hence D, is said to be discontinuous across the
interface.



Similarly, we apply $ D - dS = Qunciosea t0 the pilloox (Gaussian surface) of following figure.

® & AS

® <

Allowing Ah — 0 gives
AQ = ps AS
AQ = Dy, AS — D,, AS
Or

Dln - DZTL = Ps veecinain i (6)

Where ps is the free charge density placed deliberately at the boundary. Equation (6) is based on the
assumption that D is directed from region 2 to region 1. If no free charge exist at the interface then
ps = 0 and equation (6) becomes

Dyp = Doy eee e e (7)

Thus the normal component of D is continuous across the interface; that is, D,, undergoes no change at
the boundary.

Since D = €E then equation (7) can be written as
61 Eln = 62 EZn T (8)
The normal component of E is discontinuous at the boundary.

Equation (4) and (7) are collectively referred to as boundary conditions; they must be satisfied by an
electric field at the boundary separating two different dielectrics.



We can also use the boundary conditions to determine the refraction of the electric field across the
interface. Consider D, or E; and D, or E, making angles 8, and 6, with normal to the interface as
illustrated in following figure.

Using equation (4), we have

El Sin91 = Elt = EZt = E2 Sin92

E, sinf; = E, sinf, ... ... ......(9)
Similarly, by applying equation (7) or (8), we get
€, E; cos6; = Dy, = Dy, = €,F, cos0,
Or
€, E; cosf; = €,E, cosH, ... .........(10)

Now, dividing equation (9) by equation (10) gives,

tan8; tan6,
= e e e (11)
€1 €2

Since €; = €4€,1 and €, = €,€,,, then equation (11) becomes

tan6; €.

tanf, €.,

This is the law of refraction of the electric field at a boundary free of charge (Since ps = 0 is assumed
at the interface).



Conductor-Dielectric Boundary Conditions

This is the case shown in following figure. The conductor is assumed to be perfect (i.e., o —
o or p. — 0). Although such a conduction is not practically realizable, we may regard conductors
such as copper and silver.

Applying ¢ E - dl = 0 to the closed path abcda gives

Ah Ah Ah Ah
0=O'AW+O'7+En'7—Et'AW—En'7—0'7 (1)
As Ah - 0,
E;=0 . (2)

Similarly, by applying $ D * dS = Qenciosea t0 the pillbox of following figure

dielectric

Allowing Ah — 0, we get

AQ =D, -AS—0-AS..........(3)

As D = eE = 0 inside the conductor. Equation (3) may be written as



Or

D, = pg s vv v e (4)

Thus under static conditions,
e No electric field may exist within a conductor, that is
pry=0 E=0........(5)

e Since E = —-VV =0, there can be no potential difference between any two points in the
conductor.

e The electric field E can be external to the conductor and normal to its surface; that is

Dt = EoerEt = 0, DTl = EoerEn = pS (6)

Conductor-Free Space Boundary Conditions

This is a special case of the conductor-dielectric conditions and is illustrated in following figure.
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The boundary conditions at the interface between a conductor and free space can be obtained from the
following equation

Dy = €o€rEr =0, Dy = €o€rEyn = ps

By replacing €, by 1 (because free space may be regarded as a special dielectric for which €, = 1).
We expect E to be external to the conductor and normal to its surface. Thus the boundary conditions
are

Dy = €Ey =0, Dy = €oEy = ps

E field must approach a conducting surface normally.



Capacitance

Two oppositely charged conductors M, and M, surrounded by a uniform dielectric. Let as designate
the potential difference between M, and M, as VV. Then we can define the capacitance as-

+ +
st -+
+
+ -+
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= > e2a L

The ratio of the magnitude of the total charge on either conductor to the magnitude of the potential
difference between conductors; that is

C:V
_$eE-dS
- —[E-dL

The capacitance C is a physical property of the capacitor and in measured in Farads (F), where a farad
is defined as one coulomb per volt.



Now applying the definition of capacitance to a simple two-conductor system shown in following
figure in which the conductors are identical, infinite parallel planes with separation d.

Conductor surface -Ps z=d
A A A
Uniform surface E
charge density
Conductor surface *+Ps 2=0

The lower conducting plane at z = 0 and the upper one at z = d, a uniform sheet of surface charge
+ps on each conductor leads to the uniform field

Ps
E =
€ a;

Where the permittivity of the homogeneous dielectric is €, and
D= Ps az

The charge on the lower plane must then be positive, since D is directed upward and the normal value
of D is equal to the surface charge density there.

Dy =D, = ps
On the upper plane,
DN = _DZ

And the surface charge there is the negative of that on the lower plane.

The potential difference between lower and upper planes is

lower
Vo =— f E-dL
upper

0
VOZ_J‘ p_SdZ
d 6
Ps
Voz?d
Now,
Q=psS
Vozp_sd



Then

The total energy stored in the capacitor is

1
WE=§ feE2 dv

vol

WE=%fOSde(p?S)26dzdS
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Mathematical Problem-2:

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, e = 6, a plate area of
10 inch? and a separation of 0.01 inch.

Solution:
Given,
S =10x%0.0254% = 6.45 x 1073 m?
d =0.01x%0.0254=254%x10"* m
Therefore,

- 6 X 8.854 x 10712 x 6.45 x 1073
N d2.54 x 10~*

C =1.349 nF (Ans)




