
 

CHAPTER-5 

 Conductors, Dielectrics and Capacitance 

 

Current and Current Density 

Electric charges in motion constitute a current. The unit of current is the ampere (𝐴), defined as a rate 

of movement of charge passing a given reference point of one coulomb per second. Current is 

symbolized by 𝐼 and therefore 

𝐼 =
𝑑𝑄

𝑑𝑡
 

Thus in a current of one ampere, charge is being transferred at a rate of one coulomb per second. 

 

Now the concept of current density 𝐽, if current ∆𝐼 flows through a surface ∆𝑆 then the current density 

is 

𝐽𝑛 =
∆𝐼

∆𝑆
 

Or, 

∆𝐼 = 𝐽𝑛 ∆𝑆 

Assuming that the current density is perpendicular to the surface. If the current density is not normal to 

the surface, 

∆𝐼 = 𝐽 ∆𝑆 

Thus, the total current flowing through a surface 𝑆 is 

𝐼 = ∫ 𝐽 ∙ 𝑑𝑆

𝑆

 

The current density at a given point is the current through a unit normal area at that point. Current 

density measured in amperes per square meter (𝐴/𝑚2). 

  



 

Charge in motion constitutes a current 

 

 

 

 

 

 

 

 

Consider a filament of following figure. If there is a flow of charge of density 𝜌𝑣, at velocity            

𝑣 = 𝑎𝑦 𝒂𝒚 then the current through the filament is  

∆𝐼 =
∆𝑄

∆𝑡
 

[𝑻𝒉𝒆 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝒄𝒉𝒂𝒓𝒈𝒆 ∆𝑸 = 𝝆𝒗 ∆𝑺 ∆𝒍 ] 

∆𝐼 = 𝜌𝑣  ∆𝑆 
∆𝑙

∆𝑡
 

∆𝐼 = 𝜌𝑣 ∆𝑆 𝑣𝑦  

The y-directed current density 𝐽𝑦  is given by 

𝐽𝑦 =
∆𝐼

∆𝑆
 

𝐽𝑦 = 𝜌𝑣 𝑣𝑦  

Hence, in general  

𝐽 = 𝜌𝑣 𝑣 

 

This result show very clearly that charge in motion constitutes a current. 

 

  



 

Continuity of current 

Due to the principle of charge conservation, the time rate of decrease of charge within a given volume 

must be equal to the net outward current flow through the closed surface of the volume. Thus current 

𝐼𝑂𝑢𝑡 coming out of the closed surface is 

𝐼𝑂𝑢𝑡 = ∮ 𝐽 ∙ 𝑑𝑆 

𝐼𝑂𝑢𝑡 =
−𝑑𝑄𝑖𝑛

𝑑𝑡
 … … … … … (1) 

Where, 𝑄𝑖𝑛 is the total charge enclosed by the closed surface. Invoking divergence theorem 

∮ 𝐽 ∙ 𝑑𝑆 = ∫ ∇ ∙ 𝐽 𝑑𝑣

𝑣𝑆

 … … … … … (2) 

But 

−𝑑𝑄𝑖𝑛

𝑑𝑡
= −

𝑑

𝑑𝑡
∫ 𝜌𝑣 𝑑𝑣

𝑣

 

−𝑑𝑄𝑖𝑛

𝑑𝑡
= − ∫

𝛿𝜌𝑣 

𝛿𝑡
𝑣

𝑑𝑣 … … … … … (3) 

 

Now substituting equations (2) and (3) into equation (1) gives, 

∫ ∇ ∙ 𝐽 𝑑𝑣

𝑣

= − ∫
𝛿𝜌𝑣 

𝛿𝑡
𝑣

𝑑𝑣 

Or 

∇ ∙ 𝐽 = −
𝛿𝜌𝑣  

𝛿𝑡
 

 

Which is called the continuity of current equation. 

  



 

Resistance of Conductors of uniform fields 

The relationship between 𝐽 and 𝐸 for a metallic conductor is specified by the conductivity 𝜎 (𝑆𝑖𝑔𝑚𝑎), 

𝐽 = 𝜎𝐸 

Where 𝜎 is measured in Siemens per meter (S/m). One Siemens (1 S) is the basic unit of conductance 

in the SI system and is defined as one ampere per volt.  

 

Let us assume that 𝐽 and 𝐸 are uniform, as they are in the cylindrical region shown in following figure.  

 

 

 

 

 

 

Since they are uniform, 

𝐼 = ∫ 𝐽 ∙ 𝑑𝑆

𝑆

 

𝐼 = 𝐽 𝑆 

And  

𝑉𝑎𝑏 = − ∫ 𝐸 ∙ 𝑑𝐿
𝑎

𝑏

 

𝑉𝑎𝑏 = −𝐸 ∫ 𝑑𝐿
𝑎

𝑏

 

𝑉𝑎𝑏 = −𝐸 ∙ 𝐿𝑏𝑎 

𝑉𝑎𝑏 = −𝐸 ∙ 𝐿𝑎𝑏 

Or  

𝑉 = 𝐸 𝐿 

Thus 

𝐽 =
𝐼

𝑆
 

𝐽 = 𝜎 𝐸 

𝐽 = 𝜎 
𝑉

𝐿
 

Or 

𝑉 =
𝐿

𝜎𝑆
 𝐼 



 

The ratio of the potential difference between the two ends of the cylinder to the current entering the 

more positive end, however, is recognized as the resistance of the cylinder and therefore, 

𝑉 = 𝐼 𝑅 

Where, 

𝑅 =
𝐿

𝜎𝑆
 

 

It is the resistance of any conductor of uniform cross section. If the cross section of the conduction is 

not uniform then this equation is not applicable.  

 

However, the basic definition of resistance R as the ration of the potential difference V between the 

two ends of the conductor to the current I through the conductor still applies. The general expression 

for resistance of a conductor of non-uniform cross section,  

𝑅 =
𝑉𝑎𝑏

𝐼
=

− ∫ 𝐸 ∙ 𝑑𝐿
𝑎

𝑏

∫ 𝜎𝐸 ∙ 𝑑𝑆 
𝑆

 

  



 

Mathematical Problem-1: 

Evaluated the resistance of a 1-mile length of copper wire, which has a diameter of 0.0508 inch. 

 

Solution: 

 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑟𝑒 = 0.0508 𝑖𝑛𝑐ℎ 

= 0.0508 × 0.0254 

= 1.291 × 10−3 𝑚𝑒𝑡𝑒𝑟 

𝑇ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝜋𝑟2 

= 𝜋 × (
1.291 × 10−3

2
)

2

 

= 1.308 × 10−6  𝑚2 

𝑇ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 1 𝑚𝑖𝑙𝑒 = 1609  𝑚𝑒𝑡𝑒𝑟 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝜎 = 5.80 × 107 𝑆/𝑚 

 

The resistance of the wire is therefore, 

𝑅 =
𝐿

𝜎𝑆
 

𝑅 =
1609

(5.80 × 107) × (1.308 × 10−6)
 

𝑅 = 21.2  Ω     (Ans) 

  



 

Boundary conditions 

If the field exists in a region consisting of two different media, the conditions that the field must 

satisfy at the interface separating the media are called boundary conditions. These conditions are 

helpful in determining the field on one side of the boundary if the field on the other side is known.  

We shall consider the boundary conditions at an interface separating  

 Dielectric (𝜖𝑟1) and dielectric (𝜖𝑟2) 

 Conductor and dielectric 

 Conductor and free space 

To determine the boundary conditions, we need to use Maxwell’s equations: 

∮ 𝐸 ∙ 𝑑𝑙 = 0 

And 

∮ 𝐷 ∙ 𝑑𝑆 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑  

Also we need to decompose the electric field intensity 𝐸 into two orthogonal components, 

𝐸 = 𝐸𝑡 + 𝐸𝑛 

Where, 𝐸𝑡  𝑎𝑛𝑑 𝐸𝑛 are, respectively, the tangential and normal components of 𝐸 to the interface of 

interest. Similar decomposition can be done for the electric flux density 𝐷. 

  



 

Dielectric-Dielectric Boundary Conditions 

Consider the 𝐸 field existing in a region consisting of two different dielectrics characterized by      

𝜖1 = 𝜖0𝜖𝑟1 𝑎𝑛𝑑 𝜖2 = 𝜖0𝜖𝑟2 as shown in following figure. 𝐸1 𝑎𝑛𝑑 𝐸2 in media 1 and 2 respectively, 

can be decomposed as 

𝐸1 = 𝐸1𝑡 + 𝐸1𝑛 … … … … (1) 

𝐸2 = 𝐸2𝑡 + 𝐸2𝑛 … … … … (2) 

 

 

 

 

 

 

 

 

Now, applying ∮ 𝐸 ∙ 𝑑𝑙 = 0  to the closed path 𝑎𝑏𝑐𝑑𝑎 assuming that the path is very small with 

respect to the variation of 𝐸. We get 

0 = 𝐸1𝑡  ∆𝑤 − 𝐸1𝑛  
∆ℎ

2
− 𝐸2𝑛  

∆ℎ

2
− 𝐸2𝑡  ∆𝑤 + 𝐸2𝑛  

∆ℎ

2
+ 𝐸1𝑛  

∆ℎ

2
… … … … (3) 

Where 

𝐸𝑡 = |𝐸𝑡| 𝑎𝑛𝑑 𝐸𝑛 = |𝐸𝑛|. 

As ∆ℎ → 0, then equation (3) becomes 

𝐸1𝑡 = 𝐸2𝑡 … … … … (4) 

Thus the tangential components of 𝐸 are the same on the two sides of the boundary. In other words, 𝐸𝑡 

undergoes no change on the boundary and it is said to be continuous across the boundary. 

 

Since 𝐷 = 𝜖𝐸 = 𝐷𝑡 + 𝐷𝑛, then equation (4) can be written as 

𝐷1𝑡

𝜖1
= 𝐸1𝑡 = 𝐸2𝑡 =

𝐷2𝑡

𝜖2
 

Or 

𝐷1𝑡

𝜖1
=

𝐷2𝑡

𝜖2
… … … … (5) 

𝐷𝑡 undergoes some change across the interface. Hence 𝐷𝑡 is said to be discontinuous across the 

interface. 

 

 



 

Similarly, we apply ∮ 𝐷 ∙ 𝑑𝑆 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑  to the pillbox (Gaussian surface) of following figure.  

 

 

 

 

 

 

 

 

 

Allowing ∆ℎ → 0 gives 

∆𝑄 = 𝜌𝑆  ∆𝑆 

∆𝑄 = 𝐷1𝑛 ∆𝑆 − 𝐷2𝑛 ∆𝑆 

Or 

𝐷1𝑛 − 𝐷2𝑛 = 𝜌𝑆 … … … … (6) 

Where 𝜌𝑆 is the free charge density placed deliberately at the boundary. Equation (6) is based on the 

assumption that D is directed from region 2 to region 1. If no free charge exist at the interface then 

𝜌𝑆 = 0 and equation (6) becomes 

𝐷1𝑛 = 𝐷2𝑛 … … … … (7) 

 

Thus the normal component of D is continuous across the interface; that is, 𝐷𝑛 undergoes no change at 

the boundary.  

Since 𝐷 = 𝜖𝐸 then equation (7) can be written as 

𝜖1 𝐸1𝑛 = 𝜖2 𝐸2𝑛 … … … … (8) 

The normal component of E is discontinuous at the boundary. 

Equation (4) and (7) are collectively referred to as boundary conditions; they must be satisfied by an 

electric field at the boundary separating two different dielectrics. 

 

  



 

We can also use the boundary conditions to determine the refraction of the electric field across the 

interface. Consider 𝐷1 𝑜𝑟 𝐸1 𝑎𝑛𝑑 𝐷2 𝑜𝑟 𝐸2 making angles 𝜃1 𝑎𝑛𝑑 𝜃2 with normal to the interface as 

illustrated in following figure.  

 

 

 

 

 

 

 

 

 

 

 

Using equation (4), we have 

𝐸1 𝑠𝑖𝑛𝜃1 = 𝐸1𝑡 = 𝐸2𝑡 = 𝐸2 𝑠𝑖𝑛𝜃2 

𝐸1 𝑠𝑖𝑛𝜃1 = 𝐸2 𝑠𝑖𝑛𝜃2 … … … … (9) 

Similarly, by applying equation (7) or (8), we get 

𝜖1 𝐸1 𝑐𝑜𝑠𝜃1 = 𝐷1𝑛 = 𝐷2𝑛 = 𝜖2𝐸2 𝑐𝑜𝑠𝜃2 

Or 

𝜖1 𝐸1 𝑐𝑜𝑠𝜃1 = 𝜖2𝐸2 𝑐𝑜𝑠𝜃2 … … … … (10) 

Now, dividing equation (9) by equation (10) gives, 

tan 𝜃1

𝜖1
=

𝑡𝑎𝑛𝜃2

𝜖2
… … … … (11) 

Since 𝜖1 = 𝜖0𝜖𝑟1 𝑎𝑛𝑑 𝜖2 = 𝜖0𝜖𝑟2, then equation (11) becomes 

tan 𝜃1

𝑡𝑎𝑛𝜃2
=

𝜖𝑟1

𝜖𝑟2
 

This is the law of refraction of the electric field at a boundary free of charge (Since 𝜌𝑆 = 0 is assumed 

at the interface). 

 

 

 

 

 



 

Conductor-Dielectric Boundary Conditions 

This is the case shown in following figure. The conductor is assumed to be perfect (𝑖. 𝑒., 𝜎 →

∞ 𝑜𝑟 𝜌𝐶 → 0). Although such a conduction is not practically realizable, we may regard conductors 

such as copper and silver. 

 

 

 

 

 

 

 

 

 

Applying ∮ 𝐸 ∙ 𝑑𝑙 = 0 to the closed path 𝑎𝑏𝑐𝑑𝑎 gives 

0 = 0 ∙ ∆𝑤 + 0 ∙
∆ℎ

2
+ 𝐸𝑛 ∙

∆ℎ

2
− 𝐸𝑡 ∙ ∆𝑤 − 𝐸𝑛 ∙

∆ℎ

2
− 0 ∙

∆ℎ

2
 … … … … (1) 

As ∆ℎ → 0, 

𝐸𝑡 = 0 … … … … (2) 

Similarly, by applying ∮ 𝐷 ∙ 𝑑𝑆 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 to the pillbox of following figure  

 

 

 

 

 

 

 

 

 

 

 

Allowing ∆ℎ → 0, we get 

∆𝑄 = 𝐷𝑛 ∙ ∆𝑆 − 0 ∙ ∆𝑆 … … … … (3) 

 

As 𝐷 = 𝜖𝐸 = 0 inside the conductor. Equation (3) may be written as 



 

𝐷𝑛 =
∆𝑄

∆𝑆
= 𝜌𝑆 

Or 

𝐷𝑛 = 𝜌𝑆 … … … … (4) 

 

Thus under static conditions, 

 No electric field may exist within a conductor, that is  

𝜌𝑣 = 0,     𝐸 = 0 … … … … (5) 

 Since 𝐸 = −∇𝑉 = 0, there can be no potential difference between any two points in the 

conductor. 

 The electric field E can be external to the conductor and normal to its surface; that is 

𝐷𝑡 = 𝜖0𝜖𝑟𝐸𝑡 = 0,     𝐷𝑛 = 𝜖0𝜖𝑟𝐸𝑛 = 𝜌𝑆 … … … … (6) 

 

Conductor-Free Space Boundary Conditions 

This is a special case of the conductor-dielectric conditions and is illustrated in following figure. 

 

 

 

 

 

 

 

 

 

The boundary conditions at the interface between a conductor and free space can be obtained from the 

following equation 

𝐷𝑡 = 𝜖0𝜖𝑟𝐸𝑡 = 0,     𝐷𝑛 = 𝜖0𝜖𝑟𝐸𝑛 = 𝜌𝑆 

By replacing 𝜖𝑟 by 1 (because free space may be regarded as a special dielectric for which 𝜖𝑟 = 1). 

We expect E to be external to the conductor and normal to its surface. Thus the boundary conditions 

are 

𝐷𝑡 = 𝜖0𝐸𝑡 = 0,     𝐷𝑛 = 𝜖0𝐸𝑛 = 𝜌𝑆 

E field must approach a conducting surface normally. 

 

 

 



 

Capacitance 

 

Two oppositely charged conductors 𝑀1 and 𝑀2 surrounded by a uniform dielectric. Let as designate 

the potential difference between 𝑀2 and 𝑀1 as 𝑉. Then we can define the capacitance as- 

 

 

 

 

 

 

 

 

 

 

 

 

The ratio of the magnitude of the total charge on either conductor to the magnitude of the potential 

difference between conductors; that is 

𝐶 =
𝑄

𝑉
 

𝐶 =
∮ 𝜖 𝐸 ∙ 𝑑𝑆

− ∫ 𝐸 ∙ 𝑑𝐿
 

The capacitance C is a physical property of the capacitor and in measured in Farads (F), where a farad 

is defined as one coulomb per volt. 

 

  



 

Now applying the definition of capacitance to a simple two-conductor system shown in following 

figure in which the conductors are identical, infinite parallel planes with separation 𝑑. 

 

 

 

 

 

 

 

The lower conducting plane at 𝑧 = 0 and the upper one at 𝑧 = 𝑑, a uniform sheet of surface charge 

±𝜌𝑆 on each conductor leads to the uniform field 

𝐸 =
𝜌𝑆

𝜖
 𝑎𝑧 

Where the permittivity of the homogeneous dielectric is 𝜖, and 

𝐷 = 𝜌𝑆 𝑎𝑧 

The charge on the lower plane must then be positive, since D is directed upward and the normal value 

of D is equal to the surface charge density there. 

𝐷𝑁 = 𝐷𝑧 = 𝜌𝑆 

On the upper plane, 

𝐷𝑁 = −𝐷𝑧 

And the surface charge there is the negative of that on the lower plane. 

 

The potential difference between lower and upper planes is  

𝑉0 = − ∫ 𝐸 ∙ 𝑑𝐿
𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟

 

𝑉0 = − ∫
𝜌𝑆

𝜖

0

𝑑

𝑑𝑧 

𝑉0 =
𝜌𝑆

𝜖
 𝑑 

Now,  

𝑄 = 𝜌𝑆  𝑆 

𝑉0 =
𝜌𝑆

𝜖
 𝑑 

 

 



 

Then 

𝐶 =
𝑄

𝑉0
 

𝐶 =
𝜌𝑆 𝑆
𝜌𝑆

𝜖  𝑑
 

𝐶 =
𝜖 𝑆

 𝑑
 

The total energy stored in the capacitor is 

𝑊𝐸 =
1

2
 ∫ 𝜖 𝐸2

𝑣𝑜𝑙

 𝑑𝑣 

𝑊𝐸 =
1

2
 ∫ ∫ (

𝜌𝑆

𝜖
)

2

𝜖 𝑑𝑧 𝑑𝑆
𝑑

0

𝑆

0

 

𝑊𝐸 =
1

2
 
𝜌𝑆

2

𝜖2

𝜖 ∙ 𝑑2 ∙ 𝑆

𝑑
  

𝑊𝐸 =
1

2
 
𝜌𝑆

2

𝜖
 𝑆𝑑 

𝑊𝐸 =
1

2
 
𝜖 𝑆

 𝑑

𝜌𝑆
2𝑑2

𝜖2
  

𝑊𝐸 =
1

2
 
𝜖 𝑆

 𝑑
(

𝜌𝑆

𝜖
 𝑑)

2

 

𝑊𝐸 =
1

2
 𝐶𝑉2 

𝑊𝐸 =
1

2
 𝐶 (

𝑄

𝐶
)

2

 

𝑊𝐸 =
1

2
 
𝑄2

𝐶
 

 

 

 

 

 

  



 

Mathematical Problem-2: 

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, 𝜖𝑅 = 6, a plate area of 

10 𝑖𝑛𝑐ℎ2 and a separation of 0.01 inch. 

 

Solution: 

 Given, 

𝑆 = 10 × 0.02542 = 6.45 × 10−3  𝑚2 

𝑑 = 0.01 × 0.0254 = 2.54 × 10−4  𝑚 

 

 Therefore, 

𝐶 =
6 × 8.854 × 10−12 × 6.45 × 10−3

 𝑑2.54 × 10−4
 

𝐶 = 1.349  𝑛𝐹     (𝐴𝑛𝑠) 

 

 

 

 

 


