

Daffodil International University (DIU) Department of Electrical and Electronic Engineering

EEE 422: Measurement and Instrumentation Lab

EXPERIMENT NO: 08

NAME OF THE EXPERIMENT: INTRODUCTION TO ANALOG TO DIGITAL (A/D) AND DIGITAL TO ANALOG (D/A) CONVERSIONS.

Objective:

To study the operation of *Analog to Digital* and *Digital to Analog* converters and be familiar with the parameters which serve to describe the quality of performance of the converters.

Theory:

Digital to Analog Conversion:

D/A conversion is the process of taking a value represented in digital code (such as straight binary or BCD) and converting it to a voltage or current that is proportional to the digital value.

Fig. 1: DAC Module

Notice that there is an input for a voltage reference, V_{ref} . This input is used to determine the **full-scale output** or maximum value that the D/A converter can produce. The digital inputs D, B, C and A are usually derived from the output register of a digital system. For each input number, the D/A converter output voltage is a unique value. In fact, for this case, the analog output voltage V_{out} is equal in volts to the binary number. It could also have been twice the binary number or some other proportionality factor. The same idea would hold true if the D/A output were a current lout.

In general, Analog output = $K \times digital input (10-1)$

Where, K is the proportionality factor and is a constant value for a given DAC connected to a fixed reference voltage.

Resolution (Step Size)

Resolution of a D/A converter is defined as the smallest change that can occur in the analog output as a result of a change in the digital input.

Analog-To-Digital Conversion

An **analog-to-digital converter** takes an analog input voltage and after a certain amount of time produces a digital output code that represents the analog input. The A/D conversion

process is generally more complex and time consuming than the D/A process, and many different methods have been developed and used.

List of Equipment:

- 1. IC ADC0808
- 2. IC 741
- 3. Resistor: 10K(11 pcs.)
- 4. Trainer board
- 5. Oscilloscope
- 6. DMM

Circuit Diagram:

Figure 1

Figure 2

^{*}If not available use the square wave output but use a rectifier (half wave) so that output clock is unipolar

^{*}Use TTL/Sync output from signal generator.

C	B (S2)	A(S1)	Selection
0	0	0	IN0
0	0	1	IN1
0	1	0	IN2
0	1	1	IN3
1	0	0	IN4
1	0	1	IN5
1	1	0	IN6
1	1	1	IN7

Procedure:

1. Construct the circuit in figure-1 and fill up the following table:

1. Construct the cheat in figure 1 and in up the following tuble.								
S3	S2	S 1	S0	V0				
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

- 2. Construct the circuit as shown in figure 2.
- 3. Apply 20 KHz TTL pulse from the signal generator to the clock input.
- 4. Connect S1 and S2 to the logic switches. Connect V1 and V2 with two different voltage sources.
- 5. Observe the multiplexing operation of the ADC by changing selection (CBA input) [V1=IN1;V2=IN2]
- 6. Fill up the following table for an input varying from 0V to 5V at IN0 select proper selection for that.

V1	OUT ₇	OUT ₆	OUT ₅	OUT ₄	OUT ₃	OUT ₂	OUT ₁	OUT_0

				·

7. Observe the EOC (end of conversion) signal in the oscilloscope. Compare it with the applied clock pulse. Determine the conversion time for a particular input voltage

Report:

- 1. Define quantization error.
- 2. Calculate resolution for both ADC and DAC and verify the obtained readings.
- 3. Discuss on different types of Analog to Digital converters.
- 4. Design an 8-bit DAC.

Change the connection in Fig.2, to allow an input signal that varies from -10V to +10V.