Interface
What is an interface in Java?
Interface looks like a class but it is not a class. An interface can have methods and variables just like the class but the methods declared in interface are by default abstract (only method signature, no body)
Why do we use interface ?
· It is used to achieve total abstraction.
· Since java does not support multiple inheritance in case of class, but by using interface it can achieve multiple inheritance

interface MyInterface
{
 /* compiler will treat them as:
 * public abstract void method1();
 * public abstract void method2();
 */
 public void method1();
 public void method2();
}
class Demo implements MyInterface
{
 /* This class must have to implement both the abstract methods
 * else you will get compilation error
 */
 public void method1()
 {
	System.out.println("implementation of method1");
 }
 public void method2()
 {
	System.out.println("implementation of method2");
 }
 public static void main(String arg[])
 {
	Demo obj = new Demo();
	obj.method1();
 }
}

Interface and Inheritance
Can we implement more than one interfaces in a class
Yes, we can implement more than one interfaces in our program because that doesn’t cause any ambiguity(see the explanation below).
interface X
{
 public void myMethod();
}

interface Y
{
 public void myMethod();
}

class JavaExample implements X, Y
{
 public void myMethod()
 {
 System.out.println("Implementing more than one interfaces");
 }
 public static void main(String args[]){
	 JavaExample obj = new JavaExample();
	 obj.myMethod();
 }
}

Why Java doesn’t support Multiple Inheritance?
// First Parent class
class Parent1
{
 void fun()
 {
 System.out.println("Parent1");
 }
}

// Second Parent Class
class Parent2
{
 void fun()
 {
 System.out.println("Parent2");
 }
}

// Error : Test is inheriting from multiple
// classes
class Test extends Parent1, Parent2
{
 public static void main(String args[])
 {
 Test t = new Test();
 t.fun();
 }
}

UML
What is UML?
It is the general purpose modeling language used to visualize the system. It is a graphical language that is standard to the software industry for specifying, visualizing, constructing as well as for business modeling.

Why we need?
· It reduces thousands of words of explanation in a few graphical diagrams that may reduce time consumption to understand.
· It makes communication more clear and real.
· It helps to acquire the entire system in a view.
· It becomes very much easy for the software programmer to implement the actual demand once they have the clear picture of the problem.

UML class diagrams: Class diagrams are the main building blocks of every object oriented methods. The class diagram can be used to show the classes, relationships, interface, association, and collaboration. UML is standardized in class diagrams.

There are three types of modifiers which are used to decide the visibility of attributes and operations.
· + is used for public visibility(for everyone)
· # is used for protected visibility (for friend and derived)
· – is used for private visibility (for only me)

[image:]
[image:]
Association
It is a structural relationship that represents objects can be connected or associated with another object inside the system
[image:]
[image:]
2. Composition implies a relationship where the child cannot exist independent of the parent
 [image:]
The folder could contain many files, while each File has exactly one Folder parent. If a folder is deleted, all contained files are removed as well.

3. In an aggregation relationship, the dependent object remains in the scope of a relationship even when the source object is destroyed.

[image:]
image5.png
Example:

For example, in a windowing system, a Frame belongs to precisely one Window. In a composite
ageregation, the whole system is responsible for the disposition of its parts, which means that the
composite must manage the creation and destruction of its parts.

Parent Child

FOLDER

+Composition

composition

image6.png
Example:
Let us consider an example of a car and a wheel.

Acar needs a wheel to function correctly, but a wheel doesn't always need a car. It can also be used
with the bike, bicycle, or any other vehicles but not a particular car. Here, the wheel object is
meaningful even without the car object. Such type of relationship is called an aggregation relation.

+Aggregation

aggregation

image1.png
Z0o System

Animal

sname: string
sid: int
sage: int

ssetName()

Visibility
- private
+ public
protected

same class or subclass

seat() > @

image2.png
Relationships

Inheritance ———> =
Animal

-id:int
-age: int

-setName()
-eat()

i

Tortoise Otter Slow Loris

image3.png
Example:
Let us consider an example of a class fruit.

The fruit class has two instances, such as mango and apple. Reflexive association states that a link
between mango and apple can be present as they are instances of the same class, such as fruit.

.
+instance instance

image4.png
Bxample:
You can say that there is a directed association relationship between a server and a client.

Aserver can process the requests of a client. This flow is unidirectional, that flows from server to
client only. Hence a directed association relationship can be present within servers and clients of a

system.

A Server

+Directed Association

directed association

