Inheritance
Inheritance can be defined as the process where one class acquires the properties (methods and fields) of another. With the use of inheritance the information is made manageable in a hierarchical order.
The class which inherits the properties of other is known as subclass (derived class, child class) and the class whose properties are inherited is known as superclass (base class, parent class).
Inheritance represents the IS-A relationship
Why use inheritance in java
· For Method Overriding (so runtime polymorphism can be achieved).
· For Code Reusability.
[image:]

[image:]
[image:]
[image:]
Q) Why multiple inheritance is not supported in java?
[image:]
Code:
class Animal {
 public void displayInfo() {
 System.out.println("I am an animal.");
 }
}

class Dog extends Animal {
 @Override
 public void displayInfo() {
 System.out.println("I am a dog.");
 }
}

class Main {
 public static void main(String[] args) {
 Dog d1 = new Dog();
 d1.displayInfo();
 }
}

Super keyword:
The super keyword in Java is a reference variable which is used to refer immediate parent class object.
Whenever you create the instance of subclass, an instance of parent class is created implicitly which is referred by super reference variable.
Usage of Java super Keyword
1. super can be used to refer immediate parent class instance variable.
2. super can be used to invoke immediate parent class method.
3. super() can be used to invoke immediate parent class constructor.
1) super is used to refer immediate parent class instance variable.

image4.png
Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in the example given below, BabyDog
class inherits the Dog class which again inherits the Animal class, so there is a multilevel inheritance.

File: TestInheritance2.java

class Animal{
void eat(){System.out.printin("eating..
¥

class Dog extends Animal{

void bark(){System.out.printin("barking...");}
¥

class BabyDog extends Dog{

void weep(){System.out.printin("weeping...");}
¥

class TestInheritance2{

public static void main(String args[1){
BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

b2g

image5.png
class A{

void msg(){System.out.pr
¥

class B{

In("Hello");

void msg(){System.out.printin("Welcome");}
¥
class C extends A,B{//suppose

were

public static void main(String args[1){
C obj=new c();

obj.msg();//Now which msg() method would be invoked?

image1.png
Java Inheritance Example

T Y

Employee

salary: float

ﬁr/

TP

Programmer

bonus: int

As displayed in the above figure, Programmer is the subclass and Employee is the superclass. The relationship between the two
classes is Programmer 1S-A Employee. It means that Programmer is a type of Employee.

image2.png
Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. We will learn about interfaces later.

ClassA ClassA ClassA
%
ClassB ClassB ClassB ClassC
%
1) Single 3) Hierarchical
ClassC

2) Multilevel

image3.png
Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given below, Dog class inherits the Animal
class, so there s the single inheritance.

File: TestInheritance.java

class Animal{
void eat(){System.out.printin("e:
¥

class Dog extends Animal{

void bark(){System.out.printin("barking...");}
¥

class Testinheritance{

public static void main(String args[1){

Dog d=new Dog();

d.bark();

d.eat();

b2g

Output:

barking.

eating....

